1
|
Hayashi Y, Tajiri K, Ozawa T, Angata K, Sato T, Togayachi A, Nagashima I, Shimizu H, Murayama A, Muraishi N, Narimatsu H, Yasuda I. Impact of preS1 Evaluation in the Management of Chronic Hepatitis B Virus Infection. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1334. [PMID: 39202615 PMCID: PMC11356368 DOI: 10.3390/medicina60081334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: The measurement of hepatitis B surface antigen (HBsAg) is essential for managing chronic hepatitis B virus infection (CHB). HBsAg consists of three different surface envelope proteins: large, middle, and small HB surface proteins. However, in clinical practice, it is not common to evaluate each of these HB surface proteins separately. Materials and Methods: In this study, we investigated preS1 expression using seven monoclonal antibodies (mAbs) in 68 CHB patients, as well as examining their antigenicity. Results: Although the seven mAbs had been derived from genotype (Gt) C, they could recognize preS1 with Gts A to D. The epitopes were concentrated within the aa33-47 region of preS1, and their antigenicity was significantly reduced by an aa45F substitution. We found that preS1 expression remained consistent regardless of HBsAg levels and different Gts in CHB patients, in contrast to what was observed in SHBs. Conclusions: These results suggest that the antigenic epitope is preserved among different Gts and that the expression pattern of preS1 is altered during CHB, highlighting its vital role in the HBV infection cycle. Our present results suggest preS1 is a promising therapeutic target in CHB.
Collapse
Affiliation(s)
- Yuka Hayashi
- Third Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.H.)
| | - Kazuto Tajiri
- Third Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.H.)
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Center for Advanced Antibody Drug Development, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kiyohiko Angata
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Takashi Sato
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Akira Togayachi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Izuru Nagashima
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Hiroki Shimizu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Aiko Murayama
- Third Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.H.)
| | - Nozomu Muraishi
- Third Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.H.)
| | - Hisashi Narimatsu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Ichiro Yasuda
- Third Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.H.)
| |
Collapse
|
2
|
Tsai HW, Lee YP, Yen CJ, Cheng KH, Huang CJ, Huang W. The Serum Hepatitis B Virus Large Surface Protein as High-Risk Recurrence Biomarker for Hepatoma after Curative Surgery. Int J Mol Sci 2022; 23:ijms23105376. [PMID: 35628188 PMCID: PMC9140564 DOI: 10.3390/ijms23105376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Chronic hepatitis B (CHB) virus infection is the most important cause of HCC and is also associated with tumor progression. The development of viral biomarkers for HCC prognosis is critical in evaluating relative risks to recurrence in the CHB HCC patients. We report that the large HBV surface protein (LHBS) expression increased in the tumors, implicating that it played a significant role in tumor development. To detect the LHBS in serum and evaluate its association with HCC progression, we developed a sandwich ELISA method for LHBS. The mouse monoclonal antibodies for the pre-S1, pre-S2, and HBS regions were in-house generated and constructed into a chemiluminescent sandwich ELISA system, which allowed sensitive and quantitative measurement of the protein. Using this ELISA assay, we estimated the expression of LHBS in CHB and HCC patients. We found that the serum LHBS level was correlated with the HBS but not the viral titer in serum, indicating that HBV surface proteins’ expression does not mainly depend on viral replication. Moreover, both serum LHBS and HBS levels were lower in the HCC patients than in the CHB. The liver LHBS signals, detected by immunohistochemical staining, showed significant correlations with the serum LHBS and HBS levels. In addition, the more elevated serum LHBS but not HBS level was significantly associated with cirrhosis and worse disease-free and overall survival rates, based on the multivariate analysis. Conclusion: LHBS plays a specific role in tumor progression and is an independent parameter associated with HCC recurrence. Serum LHBS represents a novel noninvasive biomarker for HCC patients with a worse prognosis after surgery.
Collapse
Affiliation(s)
- Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (H.-W.T.); (K.-H.C.)
| | - Yun-Ping Lee
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Chia-Jui Yen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Kuang-Hsiung Cheng
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (H.-W.T.); (K.-H.C.)
| | - Chien-Jung Huang
- Department of Internal Medicine, Taipei City Hospital, Taipei 10341, Taiwan;
| | - Wenya Huang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (H.-W.T.); (K.-H.C.)
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535 (ext. 5766)
| |
Collapse
|
3
|
Beretta M, Mouquet H. Advances in human monoclonal antibody therapy for HBV infection. Curr Opin Virol 2022; 53:101205. [PMID: 35123237 DOI: 10.1016/j.coviro.2022.101205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/10/2021] [Accepted: 01/15/2022] [Indexed: 12/17/2022]
Abstract
HBV neutralizing antibodies target the viral envelope antigens (HBsAg) and confer long-term immune protection in vaccinees and infected humans who seroconvert. They recognize various HBsAg epitopes, and can be armed with Fc-dependent effector functions essential for eliminating infected cells and stimulating adaptive immunity. Hundreds of HBsAg-specific monoclonal antibodies (mAbs) were produced from the early 80's, but it is only recently that bona fide human anti-HBV mAbs were generated from vaccinees and seroconverters. Neutralizing HBV mAbs have in vivo prophylactic and therapeutic efficacy in animal models, and the capacity to decrease antigenemia and viremia in infected humans. Thus, polyfunctional, potent and broad human HBV neutralizing mAbs offer novel opportunities to develop effective interventions to prevent and treat HBV infection. Here, we summarize recent findings on the humoral immune response to HBV, and explore the potential of human HBV neutralizing mAbs as immunotherapeutics to help achieving a functional cure for HBV.
Collapse
Affiliation(s)
- Maxime Beretta
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, 75015, France; INSERM U1222, Paris, 75015, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, 75015, France; INSERM U1222, Paris, 75015, France.
| |
Collapse
|
4
|
Thongsri P, Pewkliang Y, Borwornpinyo S, Wongkajornsilp A, Hongeng S, Sa-Ngiamsuntorn K. Curcumin inhibited hepatitis B viral entry through NTCP binding. Sci Rep 2021; 11:19125. [PMID: 34580340 PMCID: PMC8476618 DOI: 10.1038/s41598-021-98243-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) has been implicated in hepatitis and hepatocellular carcinoma. Current agents (nucleos(t)ide analogs and interferons) could only attenuate HBV infection. A combination of agents targeting different stages of viral life cycle (e.g., entry, replication, and cccDNA stability) was expected to eradicate the infection. Curcumin (CCM) was investigated for inhibitory action toward HBV attachment and internalization. Immortalized hepatocyte-like cells (imHCs), HepaRG and non-hepatic cells served as host cells for binding study with CCM. CCM decreased viral load, HBeAg, HBcAg (infectivity), intracellular HBV DNA, and cccDNA levels. The CCM-induced suppression of HBV entry was directly correlated with the density of sodium-taurocholate co-transporting polypeptide (NTCP), a known host receptor for HBV entry. The site of action of CCM was confirmed using TCA uptake assay. The affinity between CCM and NTCP was measured using isothermal titration calorimetry (ITC). These results demonstrated that CCM interrupted HBV entry and would therefore suppress HBV re-infection.
Collapse
Affiliation(s)
- Piyanoot Thongsri
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.,Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Yongyut Pewkliang
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.,Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| | - Khanit Sa-Ngiamsuntorn
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
5
|
Parray HA, Chiranjivi AK, Asthana S, Yadav N, Shrivastava T, Mani S, Sharma C, Vishwakarma P, Das S, Pindari K, Sinha S, Samal S, Ahmed S, Kumar R. Identification of an anti-SARS-CoV-2 receptor-binding domain-directed human monoclonal antibody from a naïve semisynthetic library. J Biol Chem 2020; 295:12814-12821. [PMID: 32727845 PMCID: PMC7476711 DOI: 10.1074/jbc.ac120.014918] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
There is a desperate need for safe and effective vaccines, therapies, and diagnostics for SARS- coronavirus 2 (CoV-2), the development of which will be aided by the discovery of potent and selective antibodies against relevant viral epitopes. Human phage display technology has revolutionized the process of identifying and optimizing antibodies, providing facile entry points for further applications. Herein, we use this technology to search for antibodies targeting the receptor-binding domain (RBD) of CoV-2. Specifically, we screened a naïve human semisynthetic phage library against RBD, leading to the identification of a high-affinity single-chain fragment variable region (scFv). The scFv was further engineered into two other antibody formats (scFv-Fc and IgG1). All three antibody formats showed high binding specificity to CoV-2 RBD and the spike antigens in different assay systems. Flow cytometry analysis demonstrated specific binding of the IgG1 format to cells expressing membrane-bound CoV-2 spike protein. Docking studies revealed that the scFv recognizes an epitope that partially overlaps with angiotensin-converting enzyme 2 (ACE2)-interacting sites on the CoV-2 RBD. Given its high specificity and affinity, we anticipate that these anti-CoV-2 antibodies will be useful as valuable reagents for accessing the antigenicity of vaccine candidates, as well as developing antibody-based therapeutics and diagnostics for CoV-2.
Collapse
Affiliation(s)
- Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Adarsh Kumar Chiranjivi
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shailendra Asthana
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Naveen Yadav
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shailendra Mani
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Preeti Vishwakarma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Supratik Das
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Kamal Pindari
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
6
|
Wang Q, Michailidis E, Yu Y, Wang Z, Hurley AM, Oren DA, Mayer CT, Gazumyan A, Liu Z, Zhou Y, Schoofs T, Yao KH, Nieke JP, Wu J, Jiang Q, Zou C, Kabbani M, Quirk C, Oliveira T, Chhosphel K, Zhang Q, Schneider WM, Jahan C, Ying T, Horowitz J, Caskey M, Jankovic M, Robbiani DF, Wen Y, de Jong YP, Rice CM, Nussenzweig MC. A Combination of Human Broadly Neutralizing Antibodies against Hepatitis B Virus HBsAg with Distinct Epitopes Suppresses Escape Mutations. Cell Host Microbe 2020; 28:335-349.e6. [PMID: 32504577 DOI: 10.1016/j.chom.2020.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/09/2020] [Accepted: 05/08/2020] [Indexed: 02/08/2023]
Abstract
Although there is no effective cure for chronic hepatitis B virus (HBV) infection, antibodies are protective and correlate with recovery from infection. To examine the human antibody response to HBV, we screened 124 vaccinated and 20 infected, spontaneously recovered individuals. The selected individuals produced shared clones of broadly neutralizing antibodies (bNAbs) that targeted 3 non-overlapping epitopes on the HBV S antigen (HBsAg). Single bNAbs protected humanized mice against infection but selected for resistance mutations in mice with prior established infection. In contrast, infection was controlled by a combination of bNAbs targeting non-overlapping epitopes with complementary sensitivity to mutations that commonly emerge during human infection. The co-crystal structure of one of the bNAbs with an HBsAg peptide epitope revealed a stabilized hairpin loop. This structure, which contains residues frequently mutated in clinical immune escape variants, provides a molecular explanation for why immunotherapy for HBV infection may require combinations of complementary bNAbs.
Collapse
Affiliation(s)
- Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Yingpu Yu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Arlene M Hurley
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Deena A Oren
- Structural Biology Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Christian T Mayer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Zhenmi Liu
- West China School of Public Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunjiao Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jan P Nieke
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jianbo Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qingling Jiang
- West China School of Public Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenhui Zou
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mohanmmad Kabbani
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Kalsang Chhosphel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Qianqian Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Cyprien Jahan
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jill Horowitz
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ype P de Jong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
7
|
Spyrou E, Smith CI, Ghany MG. Hepatitis B: Current Status of Therapy and Future Therapies. Gastroenterol Clin North Am 2020; 49:215-238. [PMID: 32389360 PMCID: PMC7444867 DOI: 10.1016/j.gtc.2020.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the availability of a protective vaccine for over 3 decades, the number of persons with chronic hepatitis B virus (HBV) infection remains high. These persons are at risk for cirrhosis and hepatocellular carcinoma. Current treatment is effective at inhibiting viral replication and reducing complications of chronic HBV infection, but is not curative. There is a need for novel, finite therapy that can cure chronic HBV infection. Several agents are in early-phase development and can be broadly viewed as agents that target the virus directly or indirectly or the host immune response. This article highlights key developments in antiviral/immunomodulatory therapy, the rationale for these approaches, and possible therapeutic regimens.
Collapse
Affiliation(s)
- Elias Spyrou
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington, DC, USA,Nazih Zuhdi Transplant Institute, INTEGRIS Baptist Medical Center, Oklahoma City, OK, USA
| | - Coleman I. Smith
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Marc G. Ghany
- Liver Diseases Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Matsunaga S, Jeremiah SS, Miyakawa K, Kurotaki D, Shizukuishi S, Watashi K, Nishitsuji H, Kimura H, Tamura T, Yamamoto N, Shimotohno K, Wakita T, Ryo A. Engineering Cellular Biosensors with Customizable Antiviral Responses Targeting Hepatitis B Virus. iScience 2020; 23:100867. [PMID: 32105634 PMCID: PMC7113479 DOI: 10.1016/j.isci.2020.100867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/16/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
SynNotch receptor technology is a versatile tool that uses the regulatory notch core portion with an extracellular scFv and an intracellular transcription factor that enables to program customized input and output functions in mammalian cells. In this study, we designed a novel synNotch receptor comprising scFv against HBs antigen linked with an intracellular artificial transcription factor and exploited it for viral sensing and cellular immunotherapy. The synNotch receptor expressing cells sensed HBV particles and membrane-bound HBs antigens and responded by expressing reporter molecules, secNL or GFP. We also programmed these cells to dispense antiviral responses such as type I interferon and anti-HBV neutralizing mouse-human chimeric antibodies. Our data reveal that synNotch receptor signaling works for membrane-bound ligands such as enveloped viral particles and proteins borne on liposomal vesicles. This study establishes the concepts of "engineered immunity" where the synNotch platform is utilized for cellular immunotherapy against viral infections.
Collapse
Affiliation(s)
- Satoko Matsunaga
- Department of Microbiology, Yokohama City University School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Sundararaj S Jeremiah
- Department of Microbiology, Yokohama City University School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Daisuke Kurotaki
- Department of Immunology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Sayaka Shizukuishi
- Department of Microbiology, Yokohama City University School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hironori Nishitsuji
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba 272-8516, Japan
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Sciences, Gunma Paz University, Takasaki 370-0006, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Naoki Yamamoto
- Department of Microbiology, Yokohama City University School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kunitada Shimotohno
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba 272-8516, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan.
| |
Collapse
|
9
|
Hong B, Wen Y, Ying T. Recent Progress on Neutralizing Antibodies against Hepatitis B Virus and its Implications. Infect Disord Drug Targets 2020; 19:213-223. [PMID: 29952267 DOI: 10.2174/1871526518666180628122400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/13/2018] [Accepted: 06/22/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection remains a global health problem. As "cure" for chronic hepatitis B is of current priority, hepatitis B immunoglobulin (HBIG) has been utilized for several decades to provide post-exposure prophylaxis. In recent years, a number of monoclonal antibodies (mAbs) targeting HBV have been developed and demonstrated with high affinity, specificity, and neutralizing potency. OBJECTIVE HBV neutralizing antibodies may play a potentially significant role in the search for an HBV cure. In this review, we will summarize the recent progress in developing HBV-neutralizing antibodies, describing their characteristics and potential clinical applications. RESULTS AND CONCLUSION HBV neutralizing antibodies could be a promising alternative in the prevention and treatment of HBV infection. More importantly, global collaboration and coordinated approaches are thus needed to facilitate the development of novel therapies for HBV infection.
Collapse
Affiliation(s)
- Binbin Hong
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Central Laboratory, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Wani S, Kaul D. Tumorigenic PVT-1 gene locus is governed by miR-2909 RNomics. Cell Biochem Funct 2018; 36:408-412. [PMID: 30318596 DOI: 10.1002/cbf.3360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/18/2018] [Indexed: 02/03/2023]
Abstract
Genomic regulation and functional significance of PVT-1 gene locus, in the MYC-driven cancers, has remained enigmatic ever since its discovery. With the present study, an attempt is made to establish that cellular AATF genome encoded miR-2909 RNomics pathway involving crucial genes coding for KLF4, Deptor, mTORC1, STAT3, and p53 has the inherent capacity to ensure sustained co-amplification of PVT-1 gene locus together with c-Myc gene. Based upon these results, we propose that miR-2909 RNomics pathway may play a crucial role in the regulation of tumorigenic PVT-1 gene locus.
Collapse
Affiliation(s)
- Sameena Wani
- Molecular Biology Unit, Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Deepak Kaul
- Molecular Biology Unit, Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
11
|
Kumar R, Kumari R, Khan L, Sankhyan A, Parray HA, Tiwari A, Wig N, Sinha S, Luthra K. Isolation and Characterization of Cross-Neutralizing Human Anti-V3 Single-Chain Variable Fragments (scFvs) Against HIV-1 from an Antigen Preselected Phage Library. Appl Biochem Biotechnol 2018; 187:1011-1027. [DOI: 10.1007/s12010-018-2862-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
|
12
|
Ghany MG, Block TM. Disease Pathways and Mechanisms of Potential Drug Targets. Clin Liver Dis (Hoboken) 2018; 12:12-18. [PMID: 30988903 PMCID: PMC6385908 DOI: 10.1002/cld.735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/11/2018] [Accepted: 06/20/2018] [Indexed: 02/04/2023] Open
Affiliation(s)
- Marc G. Ghany
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD
| | - Timothy M. Block
- Hepatitis B Foundation and Baruch S. Blumberg InstituteDoylestownPA
| |
Collapse
|
13
|
Affiliation(s)
- Wolfram H Gerlich
- Institute for Medical Virology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, D35292 Giessen, Germany
| |
Collapse
|
14
|
Kaul D, Malik D, Wani S. Cellular miR-2909 RNomics governs the genes that ensure immune checkpoint regulation. Mol Cell Biochem 2018; 451:37-42. [DOI: 10.1007/s11010-018-3390-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/16/2018] [Indexed: 01/18/2023]
|
15
|
Corti D, Benigni F, Shouval D. Viral envelope-specific antibodies in chronic hepatitis B virus infection. Curr Opin Virol 2018; 30:48-57. [PMID: 29738926 DOI: 10.1016/j.coviro.2018.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/26/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
While the cellular immune response associated with acute and chronic HBV infection has been thoroughly studied, the B cell response in chronic hepatitis B and the role of antibodies raised against the HBV envelope antigens in controlling and prevention of infection requires further investigation. The detection of anti-HBs antibodies is considered as one of the biomarkers for functional cure of chronic hepatitis B virus infection, as well as for protective immunity. Indeed, vaccine-induced neutralizing anti-HBs antibodies have been shown to protect against HBV challenge. Yet, the therapeutic potential of viral envelope-specific antibodies and the mechanism involved in protection and prevention of cell-to-cell transmission warrants additional investigative efforts. In this review, we will provide a critical overview of the available preclinical and clinical literature supporting the putative role of active and passive vaccination and neutralizing envelope-specific antibodies for therapeutic intervention in combination regimens intended to cure persistent HBV infection.
Collapse
Affiliation(s)
- Davide Corti
- Humabs BioMed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
| | - Fabio Benigni
- Humabs BioMed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Daniel Shouval
- Liver Unit, Institute for Gastroenterology and Hepatology, Hadassah-Hebrew University Hospital, P.O. Box 12000, 91120 Jerusalem, Israel.
| |
Collapse
|
16
|
Wani S, Kaul D. Cancer cells govern miR-2909 exosomal recruitment through its 3'-end post-transcriptional modification. Cell Biochem Funct 2018; 36:106-111. [PMID: 29468700 DOI: 10.1002/cbf.3323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/01/2017] [Accepted: 12/27/2017] [Indexed: 12/20/2022]
Abstract
It is widely believed that selective packaging of nucleic acids, especially microRNAs, into exosomes secreted by the cancer cells not only ensures their growth and survival but also helps in the escape from immune surveillance. Keeping in view the fact that human cellular miR-2909 has emerged to regulate genes involved in oncogenesis and immunity, the present study was addressed to reveal the nature of miR-2909 expression within cancer cells of different tissue origin and its incorporation into exosomes secreted by these cells. Post-transcriptional modification, especially 3'-end adenylation and uridylation of miR-2909, exerts opposing effects that may contribute to direct its sorting into exosomes secreted by cancer cells. Our study also revealed that selective partitioning of adenosine kinase, between cancer cells and their secreted exosomes, may be responsible for the nature of post-transcriptional modification of miR-2909 observed within these cells.
Collapse
Affiliation(s)
- Sameena Wani
- Molecular Biology Unit Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepak Kaul
- Molecular Biology Unit Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
17
|
Kumar S, Kumar R, Khan L, Makhdoomi MA, Thiruvengadam R, Mohata M, Agarwal M, Lodha R, Kabra SK, Sinha S, Luthra K. CD4-Binding Site Directed Cross-Neutralizing scFv Monoclonals from HIV-1 Subtype C Infected Indian Children. Front Immunol 2017; 8:1568. [PMID: 29187855 PMCID: PMC5694743 DOI: 10.3389/fimmu.2017.01568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022] Open
Abstract
Progression of human immunodeficiency virus type-1 (HIV-1) infection in children is faster than adults. HIV-1 subtype C is responsible for more than 50% of the infections globally and more than 90% infections in India. To date, there is no effective vaccine against HIV-1. Recent animal studies and human Phase I trials showed promising results of the protective effect of anti-HIV-1 broadly neutralizing antibodies (bnAbs). Interaction between CD4 binding site (CD4bs) on the HIV-1 envelope glycoprotein and CD4 receptor on the host immune cells is the primary event leading to HIV-1 infection. The CD4bs is a highly conserved region, comprised of a conformational epitope, and is a potential target of bnAbs such as VRC01 that is presently under human clinical trials. Recombinant scFvs can access masked epitopes due to their small size and have shown the potential to inhibit viral replication and neutralize a broad range of viruses. Pediatric viruses are resistant to many of the existing bnAbs isolated from adults. Therefore, in this study, pooled peripheral blood mononuclear cells from 9 chronically HIV-1 subtype C infected pediatric cross-neutralizers whose plasma antibodies exhibited potent and cross-neutralizing activity were used to construct a human anti-HIV-1 scFv phage library of 9 × 108 individual clones. Plasma mapping using CD4bs-specific probes identified the presence of CD4bs directed antibodies in 4 of these children. By extensive biopanning of the library with CD4bs-specific antigen RSC3 core protein, we identified two cross-neutralizing scFv monoclonals 2B10 and 2E4 demonstrating a neutralizing breadth and GMT of 77%, 17.9 µg/ml and 32%, 51.2 µg/ml, respectively, against a panel of 49 tier 1, 2 and 3 viruses. Both scFvs competed with anti-CD4bs bnAb VRC01 confirming their CD4bs epitope specificity. The 2B10 scFv was effective in neutralizing the 7 subtype C and subtype A pediatric viruses tested. Somatic hypermutations in the VH gene of scFvs (10.1–11.1%) is comparable with that of the adult antibodies. These cross-neutralizing CD4bs-directed scFvs can serve as potential reagents for passive immunotherapy. A combination of cross-neutralizing scFvs of diverse specificities with antiretroviral drugs may be effective in suppressing viremia at an early stage of HIV-1 infection and prevent disease progression.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Lubina Khan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Madhav Mohata
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mudit Agarwal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
18
|
Cai X, Zheng W, Pan S, Zhang S, Xie Y, Guo H, Wang G, Li Z, Luo M. A virus-like particle of the hepatitis B virus preS antigen elicits robust neutralizing antibodies and T cell responses in mice. Antiviral Res 2017; 149:48-57. [PMID: 29129705 DOI: 10.1016/j.antiviral.2017.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/21/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022]
Abstract
The preS antigen of hepatitis B virus (HBV) corresponds to the N-terminal polypeptide in the large (L) antigen in addition to the small (S) antigen. The virus-like particle (VLP) of the S antigen is widely used as a vaccine to protect the population from HBV infection. The presence of the S antigen and its antibodies in patient blood has been used as markers to monitor hepatitis B. However, there is very limited knowledge about the preS antigen. We generated a preS VLP that is formed by a chimeric protein between preS and hemagglutinin (HA), and the matrix protein M1 of influenza virus. The HBV preS antigen is displayed on the surface of preS VLP. Asn112 and Ser98 of preS in VLP were found to be glycosylated and O-glycosylation of Ser98 has not been reported previously. The preS VLP shows a significantly higher immunogenicity than recombinant preS, eliciting robust anti-preS neutralizing antibodies. In addition, preS VLP is also capable of stimulating preS-specific CD8+ and CD4+ T cell responses in Balb/c mice and HBV transgenic mice. Furthermore, preS VLP immunization provided protection against hydrodynamic transfection of HBV DNA in mice. The data clearly suggest that this novel preS VLP could elicit robust immune responses to the HBV antigen, and can be potentially developed into prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Xiaodan Cai
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, PR China
| | - Weihao Zheng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, PR China
| | - Shaokun Pan
- Key Laboratory of Medical Molecular Virology (MOE & MOH), Institute of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | - Shengyuan Zhang
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, 15 Da Tun Road, Beijing 100101, PR China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE & MOH), Institute of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Guoxin Wang
- Research Center of Plasmonic and Near-Infrared Science, Research Institute of Tsinghua University in Shenzhen, South Area of Hi-Tech Park, Nanshan, Shenzhen 518057, PR China.
| | - Zigang Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, PR China.
| | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|