1
|
Pierce D, Saha L, Geddes CD. Fluorophore-Induced Plasmonic Current Generation from Copper Nanoparticle Films. ACS OMEGA 2024; 9:25181-25188. [PMID: 38882126 PMCID: PMC11170698 DOI: 10.1021/acsomega.4c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 06/18/2024]
Abstract
We describe the process of generating a fluorophore-induced plasmonic current (FIPC) from copper nanoparticle films. Previous work and the literature have shown that excited near-field fluorophores are able to plasmonically couple with metal nanoparticle films (MNFs), inducing surface plasmons in the films. These induced surface plasmons are then in turn able to generate a directly measurable electrical current across the film. These generated currents have been quantified and detected in noble metal films, such as those made from Ag and Au, but due to the cost of such films, there has been a push to use lower cost materials for FIPC. Previous work has detailed the use of gold, silver, and aluminum films for these purposes, and in this paper, we will subsequently examine the ability of thermally deposited copper films to generate FIPC when in close proximity to excited near-field fluorophores. We report the effects of copper film thickness, the effects of light polarization and solution conductance, and the effects of metal-enhanced fluorescence (MEF) emission on the generation of plasmonic current.
Collapse
Affiliation(s)
- Daniel
R. Pierce
- Institute of Fluorescence,
and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 701 E Pratt St, Baltimore, Maryland 21202, United States
| | - Lahari Saha
- Institute of Fluorescence,
and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 701 E Pratt St, Baltimore, Maryland 21202, United States
| | - Chris D. Geddes
- Institute of Fluorescence,
and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 701 E Pratt St, Baltimore, Maryland 21202, United States
| |
Collapse
|
2
|
Ni H, Ping A, Cai T, Ni B, Chang J, Krasavin AV. Tunable polarization control with self-assembled arrays of anisotropic plasmonic coaxial nanocavities. OPTICS EXPRESS 2024; 32:16901-16912. [PMID: 38858886 DOI: 10.1364/oe.519827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/04/2024] [Indexed: 06/12/2024]
Abstract
Polarization control with nanostructures having a tunable design and allowing inexpensive large-scale fabrication is important for many nanophotonic applications. For this purpose, we developed and experimentally demonstrated nanostructured plasmonic surfaces based on hexagonal arrays of anisotropic coaxial nanocavities, which can be fabricated by a low-cost self-assembled nanosphere lithography method. Their high polarization sensitivity is achieved by engineering anisotropy of the coaxial nanocavities, while the optical response is enhanced by the excitation of surface plasmon resonances. Particularly, varying the geometrical parameters of the coaxial nanocavities, namely the height and tilt angle of their central core nanoellipsoids, the plasmonic resonance wavelengths as well as the polarization-selective behavior can be individually tuned in the entire visible and near-infrared spectral regions, which makes such nanostructures good candidates for the implementation of polarization-controlled optical switches and polarization-tunable filters. Moreover, the developed nanostructures demonstrate sensitivity up to 1335 nm/RIU in refractive index sensing.
Collapse
|
3
|
Jumbo-Nogales A, Rao A, Olejniczak A, Grzelczak M, Rakovich Y. Unveiling the Synergy of Coupled Gold Nanoparticles and J-Aggregates in Plexcitonic Systems for Enhanced Photochemical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:35. [PMID: 38202491 PMCID: PMC10780452 DOI: 10.3390/nano14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024]
Abstract
Plexcitonic systems based on metal nanostructures and molecular J-aggregates offer an excellent opportunity to explore the intriguing interplay between plasmonic excitations and excitons, offering unique insights into light-matter interactions at the nanoscale. Their potential applications in photocatalysis have prompted a growing interest in both their synthesis and the analysis of their properties. However, in order to construct a high-performing system, it is essential to ensure chemical and spectral compatibility between both components. We present the results of a study into a hybrid system, achieved through the coupling of gold nanobipyramids with organic molecules, and demonstrate the strengthened photochemical properties of such a system in comparison with purely J-aggregates. Our analysis includes the absorbance and photoluminescence characterization of the system, revealing the remarkable plexcitonic interaction and pronounced coupling effect. The absorbance spectroscopy of the hybrid systems enabled the investigation of the coupling strength (g). Additionally, the photoluminescence response of the J-aggregates and coupled systems reveals the impact of the coupling regime. Utilizing fluorescence lifetime imaging microscopy, we established how the photoluminescence lifetime components of the J-aggregates are affected within the plexcitonic system. Finally, to assess the photodegradation of J-aggregates and plexcitonic systems, we conducted a comparative analysis. Our findings reveal that plasmon-enhanced interactions lead to improved photostability in hybrid systems.
Collapse
Affiliation(s)
- Alba Jumbo-Nogales
- Centro de Física de Materiales (MPC, CSIC-UPV/EHU), 20018 San Sebastián, Spain; (A.J.-N.); (A.R.); (A.O.); (M.G.)
| | - Anish Rao
- Centro de Física de Materiales (MPC, CSIC-UPV/EHU), 20018 San Sebastián, Spain; (A.J.-N.); (A.R.); (A.O.); (M.G.)
| | - Adam Olejniczak
- Centro de Física de Materiales (MPC, CSIC-UPV/EHU), 20018 San Sebastián, Spain; (A.J.-N.); (A.R.); (A.O.); (M.G.)
| | - Marek Grzelczak
- Centro de Física de Materiales (MPC, CSIC-UPV/EHU), 20018 San Sebastián, Spain; (A.J.-N.); (A.R.); (A.O.); (M.G.)
- Donostia International Physics Center (DIPC), 20018 San Sebastián, Spain
| | - Yury Rakovich
- Centro de Física de Materiales (MPC, CSIC-UPV/EHU), 20018 San Sebastián, Spain; (A.J.-N.); (A.R.); (A.O.); (M.G.)
- Donostia International Physics Center (DIPC), 20018 San Sebastián, Spain
- Polymers and Materials, Physics, Chemistry and Technology, Chemistry Faculty, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain
- Ikerbasque Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
4
|
Hong D, Jo EJ, Bang D, Jung C, Lee YE, Noh YS, Shin MG, Kim MG. Plasmonic Approach to Fluorescence Enhancement of Mesoporous Silica-Coated Gold Nanorods for Highly Sensitive Influenza A Virus Detection Using Lateral Flow Immunosensor. ACS NANO 2023; 17:16607-16619. [PMID: 37595106 DOI: 10.1021/acsnano.3c02651] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Rapid diagnostic tests based on the lateral flow immunoassay (LFI) enable early identification of viral infection, owing to simple interpretation, short turnaround time, and timely isolation of patients to minimize viral transmission among communities. However, the LFI system requires improvement in the detection sensitivity to match the accuracy of nucleic acid amplification tests. Fluorescence-based LFIs are more sensitive and specific than absorption-based LFIs, but their performance is significantly affected by fundamental issues related to the quantum yield and photobleaching of fluorophores. Metal-enhanced fluorescence (MEF), which is a plasmonic effect in the vicinity of metallic nanoparticles, can be an effective strategy to improve the detection sensitivity of fluorescence-based LFIs. The key factors for obtaining a strong plasmonic effect include the distance and spectral overlap of the metal and fluorophore in the MEF system. In this study, MEF probes were designed based on core-shell nanostructures employing a gold nanorod core, mesoporous silica shell, and cyanine 5 fluorophore. To optimize the efficiency of MEF probes incorporated on the LFI platform (MEF-LFI), we experimentally and theoretically investigated the distance dependence of plasmonic coupling between cyanine 5 and gold nanorods by adjusting the shell thickness, resulting in significant fluorescence enhancement. The proposed MEF-LFI enabled highly sensitive detection of influenza A virus (IAV) nucleocapsid protein with a detection limit of 0.52 pg mL-1 within 20 min and showed high specificity and accuracy for determining IAV clinical samples. Overall, our findings demonstrate the potential of this method as an effective tool for molecular diagnosis under emergency conditions.
Collapse
Affiliation(s)
- Donggu Hong
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| | - Eun-Jung Jo
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| | - Doyeon Bang
- College of AI Convergence, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
- Korea Institute of Medical Microrobotics, 208 Cheomdangwagi-ro, Gwangju 61011, Republic of Korea
| | - Chaewon Jung
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| | - Young Eun Lee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do 58128, Republic of Korea
| | - Yu-Seon Noh
- Nano Bio Research Center JBF, 123, Nanosandan-ro, Nam-Myun, Jangseong-gun, Jeollanam-do 57248, Republic of Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do 58128, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| |
Collapse
|
5
|
Liu L, Krasavin AV, Li J, Li L, Yang L, Guo X, Dai D, Zayats AV, Tong L, Wang P. Waveguide-Integrated Light-Emitting Metal-Insulator-Graphene Tunnel Junctions. NANO LETTERS 2023; 23:3731-3738. [PMID: 37097286 PMCID: PMC10176563 DOI: 10.1021/acs.nanolett.2c04975] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ultrafast interfacing of electrical and optical signals at the nanoscale is highly desired for on-chip applications including optical interconnects and data processing devices. Here, we report electrically driven nanoscale optical sources based on metal-insulator-graphene tunnel junctions (MIG-TJs), featuring waveguided output with broadband spectral characteristics. Electrically driven inelastic tunneling in a MIG-TJ, realized by integrating a silver nanowire with graphene, provides broadband excitation of plasmonic modes in the junction with propagation lengths of several micrometers (∼10 times larger than that for metal-insulator-metal junctions), which therefore propagate toward the junction edge with low loss and couple to the nanowire waveguide with an efficiency of ∼70% (∼1000 times higher than that for metal-insulator-metal junctions). Alternatively, lateral coupling of the MIG-TJ to a semiconductor nanowire provides a platform for efficient outcoupling of electrically driven plasmonic signals to low-loss photonic waveguides, showing potential for applications at various integration levels.
Collapse
Affiliation(s)
- Lufang Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Alexey V Krasavin
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, U.K
| | - Jialin Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Linjun Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing 314000, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing 314000, China
| | - Liu Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xin Guo
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing 314000, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing 314000, China
| | - Daoxin Dai
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Anatoly V Zayats
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, U.K
| | - Limin Tong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pan Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing 314000, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing 314000, China
| |
Collapse
|
6
|
Pierce DR, Bobbin M, Geddes CD. Fluorophore-Induced Plasmonic Current Generation from Aluminum Nanoparticle Films. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:1126-1134. [PMID: 38106338 PMCID: PMC10723758 DOI: 10.1021/acs.jpcc.2c07588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
In this paper we demonstrate fluorophore induced plasmonic current (FIPC) from aluminum nanoparticle films. It has been previously shown that near-field excited fluorophores are able to plasmonically couple with metal nanoparticle films (MNF's) and induce surface plasmons, which in turn leads to a direct measurable electrical current through the MNF. These currents have been detected and quantified in noble metal MNF's, however due to future envisioned cost considerations there has been a push to adapt FIPC for use with less expensive metals. Subsequently, we observe that plasmonic aluminum films are able to produce these current changes when in close proximity to excited fluorophores, and the magnitude of the current changes are respective to the magnitude of the extinction coefficients of the fluorophores themselves. These findings also further support recent literature reports showing the inverse relationship between metal-enhanced fluorescence (MEF) and FIPC.
Collapse
Affiliation(s)
- Daniel R. Pierce
- Institute of Fluorescence, Dept. of Chemistry and Biochemistry, University of Maryland Baltimore County, 701 E Pratt St., Baltimore, Maryland, 21202, USA
| | - Max Bobbin
- Institute of Fluorescence, Dept. of Chemistry and Biochemistry, University of Maryland Baltimore County, 701 E Pratt St., Baltimore, Maryland, 21202, USA
| | - Chris D. Geddes
- Institute of Fluorescence, Dept. of Chemistry and Biochemistry, University of Maryland Baltimore County, 701 E Pratt St., Baltimore, Maryland, 21202, USA
| |
Collapse
|
7
|
Wang P, Krasavin AV, Liu L, Jiang Y, Li Z, Guo X, Tong L, Zayats AV. Molecular Plasmonics with Metamaterials. Chem Rev 2022; 122:15031-15081. [PMID: 36194441 PMCID: PMC9562285 DOI: 10.1021/acs.chemrev.2c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Molecular plasmonics, the area which deals with the interactions between surface plasmons and molecules, has received enormous interest in fundamental research and found numerous technological applications. Plasmonic metamaterials, which offer rich opportunities to control the light intensity, field polarization, and local density of electromagnetic states on subwavelength scales, provide a versatile platform to enhance and tune light-molecule interactions. A variety of applications, including spontaneous emission enhancement, optical modulation, optical sensing, and photoactuated nanochemistry, have been reported by exploiting molecular interactions with plasmonic metamaterials. In this paper, we provide a comprehensive overview of the developments of molecular plasmonics with metamaterials. After a brief introduction to the optical properties of plasmonic metamaterials and relevant fabrication approaches, we discuss light-molecule interactions in plasmonic metamaterials in both weak and strong coupling regimes. We then highlight the exploitation of molecules in metamaterials for applications ranging from emission control and optical modulation to optical sensing. The role of hot carriers generated in metamaterials for nanochemistry is also discussed. Perspectives on the future development of molecular plasmonics with metamaterials conclude the review. The use of molecules in combination with designer metamaterials provides a rich playground both to actively control metamaterials using molecular interactions and, in turn, to use metamaterials to control molecular processes.
Collapse
Affiliation(s)
- Pan Wang
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Alexey V. Krasavin
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Lufang Liu
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Yunlu Jiang
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Zhiyong Li
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Xin Guo
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Limin Tong
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Anatoly V. Zayats
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| |
Collapse
|
8
|
Lv J, Chang M, Gu Q, Ying Y, Si G. Plasmon-Enhanced Fluorescence Emission of an Electric Dipole Modulated by a Nanoscale Silver Hemisphere. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3070. [PMID: 36080107 PMCID: PMC9459785 DOI: 10.3390/nano12173070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The spontaneous emission of a fluorophore is altered by the surrounding electromagnetic field. Therefore, the radiation of the fluorophore can be engineered by inter-coupling with the nanoscale plasmons. This work proposes a nanoscale hemisphere structure that enhances the electric field and further modulates its effects on fluorophores by adjusting the radius of the hemisphere. A full-wave simulation is carried out using the finite element method, and the radiation characteristics of the nanoscale hemisphere are studied in detail. Compared with free space, the structure has generated significant enhancement exceeding 30. Through curve fitting, the relationship between the enhanced peak wavelength and the radius of the hemisphere is obtained.
Collapse
Affiliation(s)
- Jiangtao Lv
- College of Information Science and Engineering, Northeastern University, Shenyang 110004, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| | - Minghui Chang
- College of Information Science and Engineering, Northeastern University, Shenyang 110004, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| | - Qiongchan Gu
- College of Information Science and Engineering, Northeastern University, Shenyang 110004, China
| | - Yu Ying
- College of Information & Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Guangyuan Si
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
| |
Collapse
|
9
|
Abraham L, Thomas T, Pichumani M. Vivid structural colors of photonic crystals: self-assembly of monodisperse silica nano-colloids synthesized using an anionic surfactant. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Real-Time Fluorescence Imaging of His-Tag-Driven Conjugation of mCherry Proteins to Silver Nanowires. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10040149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this work, we aimed to apply fluorescence microscopy to image protein conjugation to Ni-NTA modified silver nanowires in real time via the His-tag attachment. First, a set of experiments was designed and performed for the mixtures of proteins and silver nanowires in order to demonstrate plasmon enhancement of mCherry protein fluorescence as well as the ability to image fluorescence of single molecules. The results indicated strong enhancement of single-protein fluorescence emission upon coupling with silver nanowires. This conclusion was supported by a decrease in the fluorescence decay time of mCherry proteins. Real-time imaging was carried out for a structure created by dropping protein solution onto a glass substrate with functionalized silver nanowires. We observed specific attachment of mCherry proteins to the nanowires, with the recognition time being much longer than in the case of streptavidin–biotin conjugation. This result indicated that it is possible to design a universal and efficient real-time sensing platform with plasmonically active functionalized silver nanowires.
Collapse
|
11
|
Mota DR, Lima GAS, de Oliveira HPM, Pellosi DS. Pluronic-loaded Silver Nanoparticles/Photosensitizers Nanohybrids: Influence of the Polymer Chain Length on Metal-enhanced Photophysical Properties. Photochem Photobiol 2021; 98:175-183. [PMID: 34309861 DOI: 10.1111/php.13492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022]
Abstract
Silver nanoparticles (AgNPs) are incredibly versatile nanostructures that more recently have been exploited to create advanced optoelectronic materials due enhancement of local magnetic field after its irradiation. However, the use of AgNPs as nanoantennas to amplify photophysical properties of close photosensitizer (PS) molecules in photodynamic therapy is still underexplored. The reason for that is the difficulty to control crucial parameters such as silver-PS distance in aqueous solution. In this scenario, here we propose a nanohybrid system where AgNP/PS distance is controlled by a thin layer of different Pluronic copolymers. The controllable distance and aqueous stability of proposed nanohybrids allow a tunable enhancement of fluorescence emission and singlet oxygen generation of some selected PS molecules. A detailed mechanism investigation demonstrated that the observed metal-enhanced photophysics is due to magnetic field enhancement close to AgNP surface (AgNP/PS distance-controlled effect) and the resonant coupling of AgNP hot electrons and HOMO-LUMO energies of the PS (AgNP/PS spectral overlap-controlled effect). These results show that the rational design in engineering new nanohybrid structures allowed photophysical improvement of PS molecules in aqueous solution in a tunable way and point out Pluronic-based AgNP/PS nanohybrids as a smart material for further developments aiming at theranostic applications in photodynamic therapy.
Collapse
Affiliation(s)
- Danielle Ramos Mota
- Laboratory of Hybrid Materials, Department of Chemistry, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | | | | | - Diogo Silva Pellosi
- Laboratory of Hybrid Materials, Department of Chemistry, Federal University of São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
12
|
Revealing Inflammatory Indications Induced by Titanium Alloy Wear Debris in Periprosthetic Tissue by Label-Free Correlative High-Resolution Ion, Electron and Optical Microspectroscopy. MATERIALS 2021; 14:ma14113048. [PMID: 34205030 PMCID: PMC8199876 DOI: 10.3390/ma14113048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 01/14/2023]
Abstract
The metallic-associated adverse local tissue reactions (ALTR) and events accompanying worn-broken implant materials are still poorly understood on the subcellular and molecular level. Current immunohistochemical techniques lack spatial resolution and chemical sensitivity to investigate causal relations between material and biological response on submicron and even nanoscale. In our study, new insights of titanium alloy debris-tissue interaction were revealed by the implementation of label-free high-resolution correlative microscopy approaches. We have successfully characterized its chemical and biological impact on the periprosthetic tissue obtained at revision surgery of a fractured titanium-alloy modular neck of a patient with hip osteoarthritis. We applied a combination of photon, electron and ion beam micro-spectroscopy techniques, including hybrid optical fluorescence and reflectance micro-spectroscopy, scanning electron microscopy (SEM), Energy-dispersive X-ray Spectroscopy (EDS), helium ion microscopy (HIM) and micro-particle-induced X-ray emission (micro-PIXE). Micron-sized wear debris were found as the main cause of the tissue oxidative stress exhibited through lipopigments accumulation in the nearby lysosome. This may explain the indications of chronic inflammation from prior histologic examination. Furthermore, insights on extensive fretting and corrosion of the debris on nm scale and a quantitative measure of significant Al and V release into the tissue together with hydroxyapatite-like layer formation particularly bound to the regions with the highest Al content were revealed. The functional and structural information obtained at molecular and subcellular level contributes to a better understanding of the macroscopic inflammatory processes observed in the tissue level. The established label-free correlative microscopy approach can efficiently be adopted to study any other clinical cases related to ALTR.
Collapse
|
13
|
Hong D, Kim K, Jo EJ, Kim MG. Electrochemiluminescence-Incorporated Lateral Flow Immunosensors Using Ru(bpy) 32+-Labeled Gold Nanoparticles for the Full-Range Detection of Physiological C-Reactive Protein Levels. Anal Chem 2021; 93:7925-7932. [PMID: 34032406 DOI: 10.1021/acs.analchem.1c00623] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
C-reactive protein (CRP) is used as a general biomarker for inflammation and infection. During stroke and myocardial infarction, CRP increases and is present in a broad concentration range of 1-500 μg/mL. Therefore, full-range CRP detection is crucial to identify patients who need close follow-up or intensive treatment after a heart attack. Here, we report the first attempt to develop an electrochemiluminescent lateral flow immunosensor (ECL-LFI) that allows full-range CRP detection. Ru(bpy)32+-labeled gold nanoparticles (AuNPs) are used as a CRP-targeting probe and a signal generator; they form sandwich immunocomplexes at the test line of the strip and generate strong ECL emission via a Ru(bpy)32+/tripropylamine system. The ECL-LFI shows high sensitivity in detecting CRP in spiked serum, with a limit of detection of 4.6 pg/mL within 15 min, and a broad detection range of 0.01-1000 ng/mL, which is 2 orders of magnitude broader than that of conventional colorimetric LFI. The clinical usability of the ECL-LFI was evaluated using 30 clinical serum samples (200 ng/mL to 5 mg/mL), which showed a good linear correlation (R2 = 0.9896), with a clinical chemistry analyzer. The results suggest that the ECL-LFI holds great potential for CRP detection in point-of-care diagnostics.
Collapse
Affiliation(s)
- Donggu Hong
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Kihyeun Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Eun-Jung Jo
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
14
|
Jenie SNA, Kusumastuti Y, Krismastuti FSH, Untoro YM, Dewi RT, Udin LZ, Artanti N. Rapid Fluorescence Quenching Detection of Escherichia coli Using Natural Silica-Based Nanoparticles. SENSORS 2021; 21:s21030881. [PMID: 33525564 PMCID: PMC7865786 DOI: 10.3390/s21030881] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
The development of fluorescent silica nanoparticles (SNP-RB) from natural amorphous silica and its performance as an Escherichia coli (E. coli) biosensor is described in this paper. SNP-RB was derived from silica recovered from geothermal installation precipitation and modified with the dye, Rhodamine B. The Fourier Infrared (FTIR) confirms the incorporation of Rhodamine B in the silica matrix. Transmission Electron Microscopy (TEM) micrographs show that the SNP-RB had an irregular structure with a particle diameter of about 20-30 nm. The maximum fluorescence spectrum of SNP-RB was recorded at 580 nm, which was further applied to observe the detection performance of the fluorescent nanoparticles towards E. coli. The sensing principle was based on the fluorescence-quenching mechanism of SNP-RB and this provided a wide linear E. coli concentration range of 10-105 CFU/mL with a limit detection of 8 CFU/mL. A rapid response time was observed after only 15 min of incubation of SNP-RB with E. coli. The selectivity of the biosensor was demonstrated and showed that the SNP-RB only gave quenching response only to live E. coli bacteria. The use of SNP-RB as a sensing platform reduced the response time significantly compared to conventional 3-day bacterial assays, as well having excellent analytical performance in terms of sensitivity and selectivity.
Collapse
Affiliation(s)
- S. N. Aisyiyah Jenie
- Research Center for Chemistry, Indonesian Institute of Sciences—LIPI, Building 452, Kawasan Puspiptek, Tangerang Selatan, Banten 15314, Indonesia; (F.S.H.K.); (Y.M.U.); (R.T.D.); (L.Z.U.); (N.A.)
- Correspondence: (S.N.A.J.); (Y.K.); Tel.: +62-21-7560929 (S.N.A.J.); +62-274-513665 (Y.K.)
| | - Yuni Kusumastuti
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia
- Correspondence: (S.N.A.J.); (Y.K.); Tel.: +62-21-7560929 (S.N.A.J.); +62-274-513665 (Y.K.)
| | - Fransiska S. H. Krismastuti
- Research Center for Chemistry, Indonesian Institute of Sciences—LIPI, Building 452, Kawasan Puspiptek, Tangerang Selatan, Banten 15314, Indonesia; (F.S.H.K.); (Y.M.U.); (R.T.D.); (L.Z.U.); (N.A.)
| | - Yovilianda M. Untoro
- Research Center for Chemistry, Indonesian Institute of Sciences—LIPI, Building 452, Kawasan Puspiptek, Tangerang Selatan, Banten 15314, Indonesia; (F.S.H.K.); (Y.M.U.); (R.T.D.); (L.Z.U.); (N.A.)
| | - Rizna T. Dewi
- Research Center for Chemistry, Indonesian Institute of Sciences—LIPI, Building 452, Kawasan Puspiptek, Tangerang Selatan, Banten 15314, Indonesia; (F.S.H.K.); (Y.M.U.); (R.T.D.); (L.Z.U.); (N.A.)
| | - Linar Z. Udin
- Research Center for Chemistry, Indonesian Institute of Sciences—LIPI, Building 452, Kawasan Puspiptek, Tangerang Selatan, Banten 15314, Indonesia; (F.S.H.K.); (Y.M.U.); (R.T.D.); (L.Z.U.); (N.A.)
| | - Nina Artanti
- Research Center for Chemistry, Indonesian Institute of Sciences—LIPI, Building 452, Kawasan Puspiptek, Tangerang Selatan, Banten 15314, Indonesia; (F.S.H.K.); (Y.M.U.); (R.T.D.); (L.Z.U.); (N.A.)
| |
Collapse
|
15
|
Maliszewska I, Wanarska E, Thompson AC, Samuel IDW, Matczyszyn K. Biogenic Gold Nanoparticles Decrease Methylene Blue Photobleaching and Enhance Antimicrobial Photodynamic Therapy. Molecules 2021; 26:molecules26030623. [PMID: 33504099 PMCID: PMC7865674 DOI: 10.3390/molecules26030623] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Antibiotic resistance is a growing concern that is driving the exploration of alternative ways of killing bacteria. Here we show that gold nanoparticles synthesized by the mycelium of Mucor plumbeus are an effective medium for antimicrobial photodynamic therapy (PDT). These particles are spherical in shape, uniformly distributed without any significant agglomeration, and show a single plasmon band at 522–523 nm. The nanoparticle sizes range from 13 to 25 nm, and possess an average size of 17 ± 4 nm. In PDT, light (from a source consisting of nine LEDs with a peak wavelength of 640 nm and FWMH 20 nm arranged in a 3 × 3 array), a photosensitiser (methylene blue), and oxygen are used to kill undesired cells. We show that the biogenic nanoparticles enhance the effectiveness of the photosensitiser, methylene blue, and so can be used to kill both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The enhanced effectiveness means that we could kill these bacteria with a simple, small LED-based light source. We show that the biogenic gold nanoparticles prevent fast photobleaching, thereby enhancing the photoactivity of the methylene blue (MB) molecules and their bactericidal effect.
Collapse
Affiliation(s)
- Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
- Correspondence: (I.M.); (K.M.); Tel.: +48-71-320-4008 (K.M.)
| | - Ewelina Wanarska
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Alex C. Thompson
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9AJ, UK; (A.C.T.); (I.D.W.S.)
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9AJ, UK; (A.C.T.); (I.D.W.S.)
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Correspondence: (I.M.); (K.M.); Tel.: +48-71-320-4008 (K.M.)
| |
Collapse
|
16
|
Farcau C, Craciun AM, Vallée RAL. Surface-enhanced fluorescence imaging on linear arrays of plasmonic half-shells. J Chem Phys 2020; 153:164701. [PMID: 33138438 DOI: 10.1063/5.0021906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Here, we perform a Surface-Enhanced Fluorescence (SEF) intensity and lifetime imaging study on linear arrays of silver half-shells (LASHSs), a class of polarization-sensitive hybrid colloidal photonic-plasmonic crystal unexplored previously in SEF. By combining fluorescence lifetime imaging microscopy, scanning confocal fluorescence imaging, Rayleigh scattering imaging, optical microscopy, and finite difference time domain simulations, we identify with high accuracy the spatial locations where SEF effects (intensity increase and lifetime decrease) take place. These locations are the junctions/crevices between adjacent half-shells in the LASHS and locations of high electromagnetic field enhancement and strong emitter-plasmon interactions, as confirmed also by simulated field maps. Such detailed knowledge of the distributed SEF enhancements and lifetime modification distribution, with respect to topography, should prove useful for improved future evaluations of SEF enhancement factors and a more rational design of efficiency-optimized SEF substrates. These linear arrays of metal-coated microspheres expand the family of hybrid colloidal photonic-plasmonic crystals, platforms with potential for applications in optoelectronic devices, fluorescence-based (bio)chemical sensing, or medical assays. In particular, due to the polarized optical response of these LASHSs, specific applications such as hidden tags for anti-counterfeiting or plasmon-enhanced photodetection can be foreseen.
Collapse
Affiliation(s)
- Cosmin Farcau
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Ana-Maria Craciun
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian, 400271 Cluj-Napoca, Romania
| | - Renaud A L Vallée
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600 Pessac, France
| |
Collapse
|
17
|
Moskowitz J, Geddes CD. The Inverse Relationship between Metal-Enhanced Fluorescence and Fluorophore-Induced Plasmonic Current. J Phys Chem Lett 2020; 11:8145-8151. [PMID: 32886524 DOI: 10.1021/acs.jpclett.0c01973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In this work we investigate the relationship between metal-enhanced fluorescence (MEF) and fluorophore-induced plasmonic current (PC). This is accomplished through measurements of both radiative emission (MEF) and direct electrical current generation between discrete metal nanoparticles upon fluorophore excitation (PC). We have conducted these measurements on silver and gold nanoparticle island films, over a range of nanoparticle sizes and spacing in the films. We have observed an inverse relationship in the magnitude of MEF with PC, where larger and more closely spaced metal nanoparticles are found to result in increased PC and subsequently a decreased MEF. We attribute this effect to the relatively high capacitance and low charging energy of large and closely spaced particles, providing an outlet for plasmon relaxation in the form of electron flow and electrical current generation. These results are significant as they open potential for controlling for and the optimization of both MEF and PC.
Collapse
Affiliation(s)
- Joshua Moskowitz
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21202, United States
| | - Chris D Geddes
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21202, United States
| |
Collapse
|
18
|
Ivošev V, Sánchez GJ, Stefancikova L, Haidar DA, González Vargas CR, Yang X, Bazzi R, Porcel E, Roux S, Lacombe S. Uptake and excretion dynamics of gold nanoparticles in cancer cells and fibroblasts. NANOTECHNOLOGY 2020; 31:135102. [PMID: 31783387 DOI: 10.1088/1361-6528/ab5d82] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Radiotherapy is one of the main treatments used to fight cancer. A major limitation of this modality is the lack of selectivity between cancerous and healthy tissues. One of the most promising strategies proposed in this last decade is the addition of nanoparticles with high-atomic number to enhance radiation effects in tumors. Gold nanoparticles (AuNPs) are considered as one of the best candidates because of their high radioenhancing property, simple synthesis and low toxicity. Ultra small AuNPs (core size of 2.4 nm and hydrodynamic diameter of 4.5 nm) covered with dithiolated diethylenetriaminepentaacetic acid (Au@DTDTPA) are of high interest because of their properties to bind MRI active or PET active compounds at their surface, to concentrate in some tumors and be eliminated via renal clearance thanks to their small size. These key figures make Au@DTDTPA the best candidate to develop image-guided radiotherapy. Surprisingly the capacity of the nanoparticles to penetrate cells, an important issue to predict radioenhancement, has not been established yet. Here, we report the uptake dynamics, internalization routes and excretion dynamics of Au@DTDTPA nanoparticles in various cancer cell lines including glioblastoma (U87-MG), chordoma (UM-Chor1), cervix (HeLa), prostate (PC3), and pancreatic (BxPC-3) cell lines as well as fibroblasts (Dermal fibroblasts). This study demonstrates a strong cell line dependence of the nanoparticle uptake and excretion dynamics. Different pathways of cell internalization evidenced here explain this dependence. As a major finding, the retention of Au@DTDTPA nanoparticles was found to be higher in cancer cells than in fibroblasts. This result strengthens the strategy of using nanoagents to improve tumor selectivity of radiation treatments. In particular Au@DTDTPA nanoparticles are good candidates to improve the treatment of radioresitant gliobastoma, pancreatic and prostate cancer in particular. In conclusion, the variability of cell-to-nanoparticle interaction is a new parameter to consider in the choice of nanoagents in a combined treatment.
Collapse
Affiliation(s)
- Vladimir Ivošev
- ISMO (UMR 8214), University Paris-Saclay, University Paris Sud, CNRS, F-91405 Orsay Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yang X, Salado-Leza D, Porcel E, González-Vargas CR, Savina F, Dragoe D, Remita H, Lacombe S. A Facile One-Pot Synthesis of Versatile PEGylated Platinum Nanoflowers and Their Application in Radiation Therapy. Int J Mol Sci 2020; 21:E1619. [PMID: 32120829 PMCID: PMC7084439 DOI: 10.3390/ijms21051619] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
Nanomedicine has stepped into the spotlight of radiation therapy over the last two decades. Nanoparticles (NPs), especially metallic NPs, can potentiate radiotherapy by specific accumulation into tumors, thus enhancing the efficacy while alleviating the toxicity of radiotherapy. Water radiolysis is a simple, fast and environmentally-friendly method to prepare highly controllable metallic nanoparticles in large scale. In this study, we used this method to prepare biocompatible PEGylated (with Poly(Ethylene Glycol) diamine) platinum nanoflowers (Pt NFs). These nanoagents provide unique surface chemistry, which allows functionalization with various molecules such as fluorescent markers, drugs or radionuclides. The Pt NFs were produced with a controlled aggregation of small Pt subunits through a combination of grafted polymers and radiation-induced polymer cross-linking. Confocal microscopy and fluorescence lifetime imaging microscopy revealed that Pt NFs were localized in the cytoplasm of cervical cancer cells (HeLa) but not in the nucleus. Clonogenic assays revealed that Pt NFs amplify the gamma rays induced killing of HeLa cells with a sensitizing enhancement ratio (SER) of 23%, thus making them promising candidates for future cancer radiation therapy. Furthermore, the efficiency of Pt NFs to induce nanoscopic biomolecular damage by interacting with gamma rays, was evaluated using plasmids as molecular probe. These findings show that the Pt NFs are efficient nano-radio-enhancers. Finally, these NFs could be used to improve not only the performances of radiation therapy treatments but also drug delivery and/or diagnosis when functionalized with various molecules.
Collapse
Affiliation(s)
- Xiaomin Yang
- Institut des Sciences Moléculaires d’Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France; (X.Y.); (D.S.-L.); (F.S.)
| | - Daniela Salado-Leza
- Institut des Sciences Moléculaires d’Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France; (X.Y.); (D.S.-L.); (F.S.)
- Facultad de Ciencias Químicas, Cátedras CONACyT, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, Zona Universitaria, San Luis Potosí 78210, S.L.P., Mexico
| | - Erika Porcel
- Institut des Sciences Moléculaires d’Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France; (X.Y.); (D.S.-L.); (F.S.)
| | - César R. González-Vargas
- Institut des Sciences Moléculaires d’Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France; (X.Y.); (D.S.-L.); (F.S.)
| | - Farah Savina
- Institut des Sciences Moléculaires d’Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France; (X.Y.); (D.S.-L.); (F.S.)
| | - Diana Dragoe
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France;
| | - Hynd Remita
- Institut de Chimie Physique, CNRS, Université Paris-Saclay, UMR 8000, 91405 Orsay, France;
| | - Sandrine Lacombe
- Institut des Sciences Moléculaires d’Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France; (X.Y.); (D.S.-L.); (F.S.)
| |
Collapse
|
20
|
Kyeyune F, Botha JL, van Heerden B, Malý P, van Grondelle R, Diale M, Krüger TPJ. Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes. NANOSCALE 2019; 11:15139-15146. [PMID: 31372623 DOI: 10.1039/c9nr04558a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced when coupled to a gold nanorod (AuNR). The AuNRs utilized in this study were prepared via chemical reactions, and the hybrid system was constructed using a simple and economical spin-assisted layer-by-layer technique. Enhancement of fluorescence brightness of up to 240-fold was observed, accompanied by a 109-fold decrease in the average (amplitude-weighted) fluorescence lifetime from approximately 3.5 ns down to 32 ps, corresponding to an excitation enhancement of 63-fold and emission enhancement of up to 3.8-fold. This large enhancement is due to the strong spectral overlap of the longitudinal localized surface plasmon resonance of the utilized AuNRs and the absorption or emission bands of LHCII. This study provides an inexpensive strategy to explore the fluorescence dynamics of weakly emitting photosynthetic light-harvesting complexes at the single molecule level.
Collapse
Affiliation(s)
- Farooq Kyeyune
- Department of Physics, University of Pretoria, Hatfield, 0028 Pretoria, South Africa.
| | | | | | | | | | | | | |
Collapse
|
21
|
Yang M, Moroz P, Jin Z, Budkina DS, Sundrani N, Porotnikov D, Cassidy J, Sugiyama Y, Tarnovsky AN, Mattoussi H, Zamkov M. Delayed Photoluminescence in Metal-Conjugated Fluorophores. J Am Chem Soc 2019; 141:11286-11297. [DOI: 10.1021/jacs.9b04697] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Zhicheng Jin
- Department of Chemistry, Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| | | | | | | | | | - Yuya Sugiyama
- Asahi-Kasei Corporation, Healthcare R&D Center, 2-1 Samejima, Fuji City, Shizuoka 416-8501 Japan
| | | | - Hedi Mattoussi
- Department of Chemistry, Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| | | |
Collapse
|
22
|
Wang X, Wang Z, Bai L, Wang H, Kang L, Werner DH, Xu M, Li B, Li J, Yu XF. Vivid structural colors from long-range ordered and carbon-integrated colloidal photonic crystals. OPTICS EXPRESS 2018; 26:27001-27013. [PMID: 30469776 DOI: 10.1364/oe.26.027001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/17/2018] [Indexed: 06/09/2023]
Abstract
A facile strategy to prepare high-quality colloidal photonic crystals (PCs) with good visibility is proposed. Based on a high refractive-index material (zinc sulfide), highly monodispersed colloidal particles are successfully produced and assembled into long-range ordered crystalline colloidal arrays. The carbon-based materials are in situ incorporated with the long-range ordered colloidal PCs, which endows PCs with the combined characteristics to simultaneously achieve an intense photonic stop band and excellent control of incoherent light scattering. Owing to these merits, the obtained ZnS colloidal PCs have demonstrated strong brightness with the maximum reflectivity of 98%. Moreover, the coloration, saturation, and viewing angle are all improved. This study provides a straightforward and cost-effective strategy to create structural colors with high-quality visibility, which is expected to facilitate future applications of colloidal PCs.
Collapse
|
23
|
Dube E, Oluwole DO, Nwaji N, Nyokong T. Glycosylated zinc phthalocyanine-gold nanoparticle conjugates for photodynamic therapy: Effect of nanoparticle shape. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:85-95. [PMID: 29860172 DOI: 10.1016/j.saa.2018.05.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
In this work, we report on the synthesis of tris-[(2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methoxy)-2-(4-benzo[d]thiazol-2-ylphenoxyphthalocyaninato] zinc(II) (complex 3) and its linkage to gold nanoparticles (AuNPs) of different shapes through S-Au/N-Au self-assembly. The conjugates of complex 3 (with both gold nanorods (AuNR) and nanospheres (AuNS)), displayed decreased fluorescence quantum yield with corresponding improved triplet and singlet quantum yields compared to complex 3 alone, however 3-AuNR showed improved properties than 3-AuNS. Complex 3 showed relatively low in vitro dark cytotoxicity against the epithelial breast cancer cells with cell survival ≥ 85% at concentration ≤ 160 μg/mL but afforded reduced photodynamic therapy activity which may be due to aggregation. 3-AuNR afforded superior PDT activity with <50% viable cells at concentration ≥ 40 μg/mL in comparison to 3-AuNS with <50% viable cells at concentration ≥ 80 μg/mL. The superior activity of 3-AuNR is attributed to the photothermal therapy effect since nanorods absorb more light at 680 nm than nanospheres.
Collapse
Affiliation(s)
- Edith Dube
- Center for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - David O Oluwole
- Center for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Njemuwa Nwaji
- Center for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Tebello Nyokong
- Center for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
24
|
Huang H, Li H, Wang H, Li J, Li P, Chen Q, Chen Y, Chu PK, Li B, Yu XF. Morphological control of gold nanorods via thermally driven bi-surfactant growth and application for detection of heavy metal ions. NANOTECHNOLOGY 2018; 29:334001. [PMID: 29786615 DOI: 10.1088/1361-6528/aac6b2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report a modified synthesis route of colloidal gold nanorods (AuNRs) by combining the thermal re-shaping treatment and bi-surfactant modification using hexadecyltrimethylammonium bromide (CTAB) and sodium oleate (NaOL). Aspect ratios down to 1.3 ± 0.1 can be achieved in addition to good monodispersity, uniformity, and chemical stability of the materials. Furthermore, without needing post-treatment, metal ions directly interact with the AuNRs efficiently, allowing rapid and sensitive colorimetric detection of heavy metal ions such as Pb2+ and Cu2+ with a low concentration down to 2.5 μM. The detection performance in terms of selectivity, sensitivity and stability is systematically evaluated. The AuNRs with tunable aspect ratios as well as chemical stability have potential in surface-plasmon-based applications such as biochemical sensing, biochemical imaging, medical diagnostics, and cancer therapy.
Collapse
Affiliation(s)
- Hao Huang
- Center for Biomedical Materials and Interfaces, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang J, Lakowicz JR. A superior bright NIR luminescent nanoparticle preparation and indicating calcium signaling detection in cells and small animals. Cell Biosci 2018; 8:37. [PMID: 29928497 PMCID: PMC5987641 DOI: 10.1186/s13578-018-0235-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Near-field fluorescence (NFF) effects were employed to develop a novel near-infrared (NIR) luminescent nanoparticle (LNP) with superior brightness. The LNP is used as imaging contrast agent for cellular and small animal imaging and furthermore suggested to use for detecting voltage-sensitive calcium in living cells and animals with high sensitivity. RESULTS NIR Indocyanine green (ICG) dye was conjugated with human serum albumin (HSA) followed by covalently binding to gold nanorod (AuNR). The AuNR displayed dual plasmons from transverse and longitudinal axis, and the longitudinal plasmon was localized at the NIR region which could efficiently couple with the excitation and emission of ICG dye leading to a largely enhanced NFF. The enhancement factor was measured to be about 16-fold using both ensemble and single nanoparticle spectral methods. As an imaging contrast agent, the ICG-HSA-Au complex (abbreviate as ICG-Au) was conjugated on HeLa cells and fluorescence cell images were recorded on a time-resolved confocal microscope. The emission signals of ICG-Au complexes were distinctly resolved as the individual spots that were observed over the cellular backgrounds due to their strong brightness as well as shortened lifetime. The LNPs were also tested to have a low cytotoxicity. The ICG-Au complexes were injected below the skin surface of mouse showing emission spots 5-fold brighter than those from the same amount of free ICG-HSA conjugates. CONCLUSIONS Based on the observations in this research, the excitation and emission of NIR ICG dyes were found to be able to sufficiently couple with the longitudinal plasmon of AuNRs leading to a largely enhanced NFF. Using the LNP with super-brightness as a contrast agent, the ICG-Au complex could be resolved from the background in the cell and small animal imaging. The novel NIR LNP has also a great potential for detection of voltage-gated calcium concentration in the cell and living animal with a high sensitivity.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201 USA
- Present Address: Vigene Biosciences Inc., 9430 Key W. Ave Suite 105, Rockville, MD 20850 USA
| | - Joseph. R. Lakowicz
- Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201 USA
| |
Collapse
|
26
|
Park JE, Kim J, Nam JM. Emerging plasmonic nanostructures for controlling and enhancing photoluminescence. Chem Sci 2017; 8:4696-4704. [PMID: 28936337 PMCID: PMC5596414 DOI: 10.1039/c7sc01441d] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/30/2017] [Indexed: 11/25/2022] Open
Abstract
Localised surface plasmon resonance endows plasmonic nanostructures with unique, powerful properties such as photoluminescence enhancement, which is a phenomenon based on the interaction between light and a metal nanostructure. In particular, photoluminescence modulation and enhancement are of importance to many research fields such as photonics, plasmonics and biosensing. In this minireview, we introduce basic principles of plasmonic-nanostructure photoluminescence and recently reported plasmonic nanostructures exhibiting surface-enhanced fluorescence and direct photoluminescence, with one-photon photoluminescence being of particular interest. Gaining insights into these systems not only helps understand the fundamental concepts of plasmonic nanostructures but also advances and extends their applications.
Collapse
Affiliation(s)
- Jeong-Eun Park
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea .
| | - Jiyeon Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea .
| | - Jwa-Min Nam
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea .
| |
Collapse
|
27
|
Abstract
This review describes the growing partnership between super-resolution imaging and plasmonics, by describing the various ways in which the two topics mutually benefit one another to enhance our understanding of the nanoscale world. First, localization-based super-resolution imaging strategies, where molecules are modulated between emissive and nonemissive states and their emission localized, are applied to plasmonic nanoparticle substrates, revealing the hidden shape of the nanoparticles while also mapping local electromagnetic field enhancements and reactivity patterns on their surface. However, these results must be interpreted carefully due to localization errors induced by the interaction between metallic substrates and single fluorophores. Second, plasmonic nanoparticles are explored as image contrast agents for both superlocalization and super-resolution imaging, offering benefits such as high photostability, large signal-to-noise, and distance-dependent spectral features but presenting challenges for localizing individual nanoparticles within a diffraction-limited spot. Finally, the use of plasmon-tailored excitation fields to achieve subdiffraction-limited spatial resolution is discussed, using localized surface plasmons and surface plasmon polaritons to create confined excitation volumes or image magnification to enhance spatial resolution.
Collapse
Affiliation(s)
- Katherine A Willets
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Andrew J Wilson
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Vignesh Sundaresan
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Padmanabh B Joshi
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|