1
|
Liu J, Xi Z, Fan C, Mei Y, Zhao J, Jiang Y, Zhao M, Xu L. Hydrogels for Nucleic Acid Drugs Delivery. Adv Healthc Mater 2024; 13:e2401895. [PMID: 39152918 DOI: 10.1002/adhm.202401895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Indexed: 08/19/2024]
Abstract
Nucleic acid drugs are one of the hot spots in the field of biomedicine in recent years, and play a crucial role in the treatment of many diseases. However, its low stability and difficulty in target drug delivery are the bottlenecks restricting its application. Hydrogels are proven to be promising for improving the stability of nucleic acid drugs, reducing the adverse effects of rapid degradation, sudden release, and unnecessary diffusion of nucleic acid drugs. In this review, the strategies of loading nucleic acid drugs in hydrogels are summarized for various biomedical research, and classify the mechanism principles of these strategies, including electrostatic binding, hydrogen bond based binding, hydrophobic binding, covalent bond based binding and indirect binding using various carriers. In addition, this review also describes the release strategies of nucleic acid drugs, including photostimulation-based release, enzyme-responsive release, pH-responsive release, and temperature-responsive release. Finally, the applications and future research directions of hydrogels for delivering nucleic acid drugs in the field of medicine are discussed.
Collapse
Affiliation(s)
- Jiaping Liu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ziyue Xi
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Chuanyong Fan
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yihua Mei
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Jiale Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yingying Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ming Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| |
Collapse
|
2
|
Solak K, Yildiz Arslan S, Acar M, Turhan F, Unver Y, Mavi A. Combination of magnetic hyperthermia and gene therapy for breast cancer. Apoptosis 2024:10.1007/s10495-024-02026-4. [PMID: 39427089 DOI: 10.1007/s10495-024-02026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
This study presented a novel breast cancer therapy model that uses magnetic field-controlled heating to trigger gene expression in cancer cells. We created silica- and amine-modified superparamagnetic nanoparticles (MSNP-NH2) to carry genes and release heat under an alternating current (AC) magnetic field. The heat-inducible expression plasmid (pHSP-Azu) was designed to encode anti-cancer azurin and was delivered by magnetofection. MCF-7 cells demonstrated over 93% cell viability and 12% transfection efficiency when exposed to 75 µg/ml of MSNP-NH2, 3 µg of DNA, and PEI at a 0.75 PEI/DNA ratio (w: w), unlike non-tumorigenic cells (MCF-10 A). Magnetic hyperthermia (MHT) increased azurin expression by heat induction, leading to cell death in dual ways. The combination of MHT and heat-regulated azurin expression induced cell death, specifically in cancer cells, while having negligible effects on MCF-10 A cells. The proposed strategy clearly shows that simultaneous use of MHT and MHT-induced azurin gene expression may selectively target and kill cancer cells, offering a promising direction for cancer therapy.
Collapse
Affiliation(s)
- Kubra Solak
- Department of Nanoscience and Nanoengineering, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Seyda Yildiz Arslan
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
| | - Melek Acar
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
| | - Fatma Turhan
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
| | - Yagmur Unver
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Türkiye.
| | - Ahmet Mavi
- Department of Nanoscience and Nanoengineering, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye.
- Department of Mathematics and Science Education, Education Faculty of Kazim Karabekir, Atatürk University, Erzurum, Türkiye.
| |
Collapse
|
3
|
Tanga S, Aucamp M, Ramburrun P. Injectable Thermoresponsive Hydrogels for Cancer Therapy: Challenges and Prospects. Gels 2023; 9:gels9050418. [PMID: 37233009 DOI: 10.3390/gels9050418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
The enervating side effects of chemotherapeutic drugs have necessitated the use of targeted drug delivery in cancer therapy. To that end, thermoresponsive hydrogels have been employed to improve the accumulation and maintenance of drug release at the tumour site. Despite their efficiency, very few thermoresponsive hydrogel-based drugs have undergone clinical trials, and even fewer have received FDA approval for cancer treatment. This review discusses the challenges of designing thermoresponsive hydrogels for cancer treatment and offers suggestions for these challenges as available in the literature. Furthermore, the argument for drug accumulation is challenged by the revelation of structural and functional barriers in tumours that may not support targeted drug release from hydrogels. Other highlights involve the demanding preparation process of thermoresponsive hydrogels, which often involves poor drug loading and difficulties in controlling the lower critical solution temperature and gelation kinetics. Additionally, the shortcomings in the administration process of thermosensitive hydrogels are examined, and special insight into the injectable thermosensitive hydrogels that reached clinical trials for cancer treatment is provided.
Collapse
Affiliation(s)
- Sandrine Tanga
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Marique Aucamp
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Poornima Ramburrun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
4
|
Developments on the Smart Hydrogel-Based Drug Delivery System for Oral Tumor Therapy. Gels 2022; 8:gels8110741. [PMID: 36421563 PMCID: PMC9689473 DOI: 10.3390/gels8110741] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
At present, an oral tumor is usually treated by surgery combined with preoperative or postoperative radiotherapies and chemotherapies. However, traditional chemotherapies frequently result in substantial toxic side effects, including bone marrow suppression, malfunction of the liver and kidneys, and neurotoxicity. As a new local drug delivery system, the smart drug delivery system based on hydrogel can control drug release in time and space, and effectively alleviate or avoid these problems. Environmentally responsive hydrogels for smart drug delivery could be triggered by temperature, photoelectricity, enzyme, and pH. An overview of the most recent research on smart hydrogels and their controlled-release drug delivery systems for the treatment of oral cancer is given in this review. It is anticipated that the local drug release method and environment-responsive benefits of smart hydrogels will offer a novel technique for the low-toxicity and highly effective treatment of oral malignancy.
Collapse
|
5
|
Elbayomi SM, Nie X, You YZ, Tamer TM. Hydrogen bonds in polycation improve the gene delivery efficiency in the serum-containing environment. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Nair A, Bu J, Bugno J, Rawding PA, Kubiatowicz LJ, Jeong WJ, Hong S. Size-Dependent Drug Loading, Gene Complexation, Cell Uptake, and Transfection of a Novel Dendron-Lipid Nanoparticle for Drug/Gene Co-delivery. Biomacromolecules 2021; 22:3746-3755. [PMID: 34319087 DOI: 10.1021/acs.biomac.1c00541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dendron micelles have shown promising results as a multifunctional delivery system, owing to their unique molecular architecture. Herein, we have prepared a novel poly(amidoamine) (PAMAM) dendron-lipid hybrid nanoparticle (DLNP) as a nanocarrier for drug/gene co-delivery and examined how the dendron generation of DLNPs impacts their cargo-carrying capabilities. DLNPs, formed by a thin-layer hydration method, were internally loaded with chemo-drugs and externally complexed with plasmids. Compared to generation 2 dendron DLNP (D2LNPs), D3LNPs demonstrated a higher drug encapsulation efficiency (31% vs 87%) and better gene complexation (minimal N/P ratio of 20:1 vs 5:1 for complexation) due to their smaller micellar aggregation number and higher charge density, respectively. Furthermore, D3LNPs were able to avoid endocytosis and subsequent lysosomal degradation and demonstrated a higher cellular uptake than D2LNPs. As a result, D3LNPs exhibited significantly enhanced antitumor and gene transfection efficacy in comparison to D2LNPs. These findings provide design cues for engineering multifunctional dendron-based nanotherapeutic systems for effective combination cancer treatment.
Collapse
Affiliation(s)
- Ashita Nair
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Jiyoon Bu
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Jason Bugno
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois 60612, United States
| | - Piper A Rawding
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Luke J Kubiatowicz
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Woo-Jin Jeong
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seungpyo Hong
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States.,Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois 60612, United States.,Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Sustained-Release Hydrogel-Based Rhynchophylline Delivery System Improved Injured Tendon Repair. Colloids Surf B Biointerfaces 2021; 205:111876. [PMID: 34087778 DOI: 10.1016/j.colsurfb.2021.111876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/25/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022]
Abstract
During the injured flexor tendon healing process, tendon tissue is easy to form extremely dense adhesion with the surrounding tissue, which causes the serious influence of hand function recovery. Uncaria is widely used in clinic and its main composition, Rhynchophylline (Rhy), has been reported on its good therapeutic effect, which could effectively inhibit the intra-abdominal adhesion formation. However, the therapeutic effect of Rhy on tendon healing and adhesion formation is still unclear. Due to the short half-life of Rhy, hyaluronic acid (HA) sustained-release system for Rhy delivery was constructed and it could also avoid drug from the undesired loss during the transit. After Rhy delivery system was applied around the injured tendons, adhesion formation, gliding function and healing strength of tendons were evaluated. Our results showed that the gliding excursion and healing strength of repaired tendons were both significantly increased, as well as the adhesion was inhibited. From in vivo experiments, Rhy could be able to increase the expression of Col Ⅰ/Col Ⅲ and helped fibroblasts to ordered organization for tendon tissues. But for adhesion tissues, Rhy promoted the apoptosis and accelerated the degradation of extracellular matrix. In vitro study showed Rhy could help tenocytes stimulated with TGF-β1 to recover to normal cell functions involving cell proliferation and apoptosis level. Through high-throughput sequencing, we found that Rhy was involved in the regulation of Extracellular Matrix (ECM) signaling pathway. We draw a conclusion that Rhy enhanced the tendon healing and prevented adhesion formation through inhibiting the phosphorylation of Smad2. In a word, this sustained release system of Rhy may be a promising strategy for the treatment of injured tendons.
Collapse
|
8
|
Wang Z, Liu Y, Wang Z, Huang X, Huang W. Hydrogel‐based composites: Unlimited platforms for biosensors and diagnostics. VIEW 2021. [DOI: 10.1002/viw.20200165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Zeyi Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Yanlei Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Zhiwei Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an China
| |
Collapse
|
9
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Khan FA, Albalawi R, Pottoo FH. Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment. Med Res Rev 2021; 42:227-258. [PMID: 33891325 DOI: 10.1002/med.21809] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Colon cancer is an adenocarcinoma, which subsequently develops into malignant tumors, if not treated properly. The current colon cancer therapy mainly revolves around chemotherapy, radiotherapy and surgery, but the search continues for more effective interventions. With the advancement of nanoparticles (NPs), it is now possible to diagnose and treat colon cancers with different types, shapes, and sizes of NPs. Nanoformulations such as quantum dots, iron oxide, polymeric NPs, dendrimers, polypeptides, gold NPs, silver NPs, platinum NPs, and cerium oxide have been either extensively used alone or in combination with other nanomaterials or drugs in colon cancer diagnosis, and treatments. These nanoformulations possess high biocompatibility and bioavailability, which makes them the most suitable candidates for cancer treatment. The size and shape of NPs are critical to achieving an effective drug delivery in cancer treatment and diagnosis. Most NPs currently are under different testing phases (in vitro, preclinical, and clinical), whereas some of them have been approved for therapeutic applications. We have comprehensively reviewed the recent advances in the applications of NPs-based formulations in colon cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Firdos A Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem Albalawi
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Student of the volunteer/training program at IRMC
| | - Faheem H Pottoo
- College of Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
11
|
Nasab SH, Amani A, Ebrahimi HA, Hamidi AA. Design and preparation of a new multi-targeted drug delivery system using multifunctional nanoparticles for co-delivery of siRNA and paclitaxel. J Pharm Anal 2021; 11:163-173. [PMID: 34012692 PMCID: PMC8116215 DOI: 10.1016/j.jpha.2020.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 02/04/2023] Open
Abstract
Drug resistance is a great challenge in cancer therapy using chemotherapeutic agents. Administration of these drugs with siRNA is an efficacious strategy in this battle. Here, the present study tried to incorporate siRNA and paclitaxel (PTX) simultaneously into a novel nanocarrier. The selectivity of carrier to target cancer tissues was optimized through conjugation of folic acid (FA) and glucose (Glu) onto its surface. The structure of nanocarrier was formed from ternary magnetic copolymers based on FeCo-polyethyleneimine (FeCo-PEI) nanoparticles and polylactic acid-polyethylene glycol (PLA-PEG) gene delivery system. Biocompatibility of FeCo-PEI-PLA-PEG-FA(NPsA), FeCo-PEI-PLA-PEG-Glu (NPsB) and FeCo-PEI-PLA-PEG-FA/Glu (NPsAB) nanoparticles and also influence of PTX-loaded nanoparticles on in vitro cytotoxicity were examined using MTT assay. Besides, siRNA-FAM internalization was investigated by fluorescence microscopy. The results showed the blank nanoparticles were significantly less cytotoxic at various concentrations. Meanwhile, siRNA-FAM/PTX encapsulated nanoparticles exhibited significant anticancer activity against MCF-7 and BT-474 cell lines. NPsAB/siRNA/PTX nanoparticles showed greater effects on MCF-7 and BT-474 cells viability than NPsA/siRNA/PTX and NPsB/siRNA/PTX. Also, they induced significantly higher anticancer effects on cancer cells compared with NPsA/siRNA/PTX and NPsB/siRNA/PTX due to their multi-targeted properties using FA and Glu. We concluded that NPsAB nanoparticles have a great potential for co-delivery of both drugs and genes for use in gene therapy and chemotherapy.
Collapse
Affiliation(s)
- Sara Hosayni Nasab
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Amin Amani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ali Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Asghar Hamidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Gulyuz S, Ozkose UU, Parlak Khalily M, Kesici MS, Kocak P, Bolat ZB, Kara A, Ozturk N, Özçubukçu S, Bozkir A, Alpturk O, Telci D, Sahin F, Vural I, Yilmaz O. Poly(2-ethyl-2-oxazoline- co-ethyleneimine)- block-poly(ε-caprolactone) based micelles: synthesis, characterization, peptide conjugation and cytotoxic activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj01647d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we present self-assembled polymeric micelles as potential delivery systems for therapeutic agents with highly tunable properties.
Collapse
|
13
|
Injectable Thermo-Sensitive Chitosan Hydrogel Containing CPT-11-Loaded EGFR-Targeted Graphene Oxide and SLP2 shRNA for Localized Drug/Gene Delivery in Glioblastoma Therapy. Int J Mol Sci 2020; 21:ijms21197111. [PMID: 32993166 PMCID: PMC7583917 DOI: 10.3390/ijms21197111] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, we aimed to develop a multifunctional drug/gene delivery system for the treatment of glioblastoma multiforme by combining the ligand-mediated active targeting and the pH-triggered drug release features of graphene oxide (GO). Toward this end, we load irinotecan (CPT-11) to cetuximab (CET)-conjugated GO (GO-CET/CPT11) for pH-responsive drug release after endocytosis by epidermal growth factor receptor (EGFR) over-expressed U87 human glioblastoma cells. The ultimate injectable drug/gene delivery system was designed by co-entrapping stomatin-like protein 2 (SLP2) short hairpin RNA (shRNA) and GO-CET/CPT11 in thermosensitive chitosan-g-poly(N-isopropylacrylamide) (CPN) polymer solution, which offers a hydrogel depot for localized, sustained delivery of the therapeutics after the in situ formation of CPN@GO-CET/CPT11@shRNA hydrogel. An optimal drug formulation was achieved by considering both the loading efficiency and loading content of CPT-11 on GO-CET. A sustained and controlled release behavior was found for CPT-11 and shRNA from CPN hydrogel. Confocal microscopy analysis confirmed the intracellular trafficking for the targeted delivery of CPT-11 through interactions of CET with EGFR on the U87 cell surface. The efficient transfection of U87 using SLP2 shRNA was achieved using CPN as a delivery milieu, possibly by the formation of shRNA/CPN polyplex after hydrogel degradation. In vitro cell culture experiments confirmed cell apoptosis induced by CPT-11 released from acid organelles in the cytoplasm by flow cytometry, as well as reduced SLP2 protein expression and inhibited cell migration due to gene silencing. Finally, in vivo therapeutic efficacy was demonstrated using the xenograft of U87 tumor-bearing nude mice through non-invasive intratumoral delivery of CPN@GO-CET/CPT11@shRNA by injection. Overall, we have demonstrated the novelty of this thermosensitive hydrogel to be an excellent depot for the co-delivery of anticancer drugs and siRNA. The in situ forming hydrogel will not only provide extended drug release but also combine the advantages offered by the chitosan-based copolymer structure for siRNA delivery to broaden treatment modalities in cancer therapy.
Collapse
|
14
|
Chen Z, Lv Z, Sun Y, Chi Z, Qing G. Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. J Mater Chem B 2020; 8:2951-2973. [DOI: 10.1039/c9tb02271f] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Precise-synthesis strategies and integration approaches of bioinspired PEI-based systems, and their biomedical, biotechnology and biomaterial applications.
Collapse
Affiliation(s)
- Zhonghui Chen
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology
- China National Analytical Center
- Guangzhou 510070
- China
- Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films
| | - Ziyu Lv
- Institute of Microscale Optoelectronics
- Shenzhen University
- Shenzhen 518000
- China
| | - Yifeng Sun
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology
- China National Analytical Center
- Guangzhou 510070
- China
| | - Zhenguo Chi
- Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films
- State Key Laboratory of OEMT
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116000
- China
| |
Collapse
|
15
|
Fan DY, Tian Y, Liu ZJ. Injectable Hydrogels for Localized Cancer Therapy. Front Chem 2019; 7:675. [PMID: 31681729 PMCID: PMC6797556 DOI: 10.3389/fchem.2019.00675] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional intravenous chemotherapy is relative to many systemic side effects, including myelosuppression, liver or kidney dysfunction, and neurotoxicity. As an alternative method, the injectable hydrogel can efficiently avoid these problems by releasing drugs topically at the tumor site. With advantages of localized drug toxicity in the tumor site, proper injectable hydrogel as the drug delivery system has become a research hotspot. Based on different types and stages of cancer, a variety of hydrogel drug delivery systems were developed, including thermosensitive, pH-sensitive, photosensitive, and dual-sensitive hydrogel. In this review, the latest developments of these hydrogels and related drug delivery systems were summarized. In summary, our increasing knowledge of injectable hydrogel for localized cancer therapy ensures us that it is a more durable and effective approach than traditional chemotherapy. Smart release system reacting to different stimuli at different time according to the micro-environment changes in the tumor site is a promising tendency for further studies.
Collapse
Affiliation(s)
- Dao-Yang Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zhong-Jun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
16
|
Puhl DL, D'Amato AR, Gilbert RJ. Challenges of gene delivery to the central nervous system and the growing use of biomaterial vectors. Brain Res Bull 2019; 150:216-230. [PMID: 31173859 PMCID: PMC8284997 DOI: 10.1016/j.brainresbull.2019.05.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
Gene therapy is a promising form of treatment for those suffering from neurological disorders or central nervous system (CNS) injury, however, obstacles remain that limit its translational potential. The CNS is protected by the blood brain barrier, and this barrier blocks genes from traversing into the CNS if administered outside of the CNS. Viral and non-viral gene delivery vehicles, commonly referred to as vectors, are modified to enhance delivery efficiency to target locations in the CNS. Still, there are few gene therapy approaches approved by the FDA for CNS disease or injury treatment. The lack of viable clinical approaches is due, in part, to the unpredictable nature of many vector systems. In particular, safety concerns exist with the use of viral vectors for CNS gene delivery. To seek some alternatives to viral vectors, development of new non-viral, biomaterial vectors is occurring at a rapid rate. This review discusses the challenges of delivering various forms of genetic material to the CNS, the use and limitations of current viral vector delivery systems, and the use of non-viral, biomaterial vectors for CNS applications.
Collapse
Affiliation(s)
- Devan L Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180, United States; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York, 12180, United States.
| | - Anthony R D'Amato
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180, United States; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York, 12180, United States.
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180, United States; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York, 12180, United States.
| |
Collapse
|
17
|
Killian T, Buntz A, Herlet T, Seul H, Mundigl O, Längst G, Brinkmann U. Antibody-targeted chromatin enables effective intracellular delivery and functionality of CRISPR/Cas9 expression plasmids. Nucleic Acids Res 2019; 47:e55. [PMID: 30809660 PMCID: PMC6547418 DOI: 10.1093/nar/gkz137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/21/2019] [Accepted: 02/20/2019] [Indexed: 01/01/2023] Open
Abstract
We report a novel system for efficient and specific targeted delivery of large nucleic acids to and into cells. Plasmid DNA and core histones were assembled to chromatin by salt gradient dialysis and subsequently connected to bispecific antibody derivatives (bsAbs) via a nucleic acid binding peptide bridge. The resulting reconstituted vehicles termed 'plasmid-chromatin' deliver packaged nucleic acids to and into cells expressing antigens that are recognized by the bsAb, enabling intracellular functionality without detectable cytotoxicity. High efficiency of intracellular nucleic acid delivery is revealed by intracellular expression of plasmid encoded genes in most (∼90%) target cells to which the vehicles were applied under normal growth/medium conditions in nanomolar concentrations. Specific targeting, uptake and transgene expression depends on antibody-mediated cell surface binding: plasmid chromatin of identical composition but with non-targeting bsAbs or without bsAbs is ineffective. Examples that demonstrate applicability, specificity and efficacy of antibody-targeted plasmid chromatin include reporter gene constructs as well as plasmids that enable CRISPR/Cas9 mediated genome editing of target cells.
Collapse
Affiliation(s)
- Tobias Killian
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Annette Buntz
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Teresa Herlet
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Heike Seul
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Olaf Mundigl
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Gernot Längst
- Biochemistry III; Biochemistry Centre Regensburg (BCR), University of Regensburg, Regensburg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| |
Collapse
|
18
|
Polymeric Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for Delivery Applications. Polymers (Basel) 2019; 11:polym11040745. [PMID: 31027272 PMCID: PMC6523186 DOI: 10.3390/polym11040745] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/08/2019] [Accepted: 04/18/2019] [Indexed: 01/19/2023] Open
Abstract
The field of polymeric nanoparticles is quickly expanding and playing a pivotal role in a wide spectrum of areas ranging from electronics, photonics, conducting materials, and sensors to medicine, pollution control, and environmental technology. Among the applications of polymers in medicine, gene therapy has emerged as one of the most advanced, with the capability to tackle disorders from the modern era. However, there are several barriers associated with the delivery of genes in the living system that need to be mitigated by polymer engineering. One of the most crucial challenges is the effectiveness of the delivery vehicle or vector. In last few decades, non-viral delivery systems have gained attention because of their low toxicity, potential for targeted delivery, long-term stability, lack of immunogenicity, and relatively low production cost. In 1987, Felgner et al. used the cationic lipid based non-viral gene delivery system for the very first time. This breakthrough opened the opportunity for other non-viral vectors, such as polymers. Cationic polymers have emerged as promising candidates for non-viral gene delivery systems because of their facile synthesis and flexible properties. These polymers can be conjugated with genetic material via electrostatic attraction at physiological pH, thereby facilitating gene delivery. Many factors influence the gene transfection efficiency of cationic polymers, including their structure, molecular weight, and surface charge. Outstanding representatives of polymers that have emerged over the last decade to be used in gene therapy are synthetic polymers such as poly(l-lysine), poly(l-ornithine), linear and branched polyethyleneimine, diethylaminoethyl-dextran, poly(amidoamine) dendrimers, and poly(dimethylaminoethyl methacrylate). Natural polymers, such as chitosan, dextran, gelatin, pullulan, and synthetic analogs, with sophisticated features like guanidinylated bio-reducible polymers were also explored. This review outlines the introduction of polymers in medicine, discusses the methods of polymer synthesis, addressing top down and bottom up techniques. Evaluation of functionalization strategies for therapeutic and formulation stability are also highlighted. The overview of the properties, challenges, and functionalization approaches and, finally, the applications of the polymeric delivery systems in gene therapy marks this review as a unique one-stop summary of developments in this field.
Collapse
|
19
|
Fernández-Villa D, Jiménez Gómez-Lavín M, Abradelo C, San Román J, Rojo L. Tissue Engineering Therapies Based on Folic Acid and Other Vitamin B Derivatives. Functional Mechanisms and Current Applications in Regenerative Medicine. Int J Mol Sci 2018; 19:E4068. [PMID: 30558349 PMCID: PMC6321107 DOI: 10.3390/ijms19124068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022] Open
Abstract
B-vitamins are a group of soluble vitamins which are cofactors of some of the enzymes involved in the metabolic pathways of carbohydrates, fats and proteins. These compounds participate in a number of functions as cardiovascular, brain or nervous systems. Folic acid is described as an accessible and multifunctional niche component that can be used safely, even combined with other compounds, which gives it high versatility. Also, due to its non-toxicity and great stability, folic acid has attracted much attention from researchers in the biomedical and bioengineering area, with an increasing number of works directed at using folic acid and its derivatives in tissue engineering therapies as well as regenerative medicine. Thus, this review provides an updated discussion about the most relevant advances achieved during the last five years, where folic acid and other vitamins B have been used as key bioactive compounds for enhancing the effectiveness of biomaterials' performance and biological functions for the regeneration of tissues and organs.
Collapse
Affiliation(s)
- Daniel Fernández-Villa
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain.
| | - Mirta Jiménez Gómez-Lavín
- Departamento de Química y Bioquímica. Facultad de Farmacia Universidad CEU San Pablo, 28668 Madrid, Spain.
| | - Cristina Abradelo
- Departamento de Química y Bioquímica. Facultad de Farmacia Universidad CEU San Pablo, 28668 Madrid, Spain.
| | - Julio San Román
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain.
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain.
| |
Collapse
|
20
|
Zhao H, Wang H, Kong F, Xu W, Wang T, Xiao F, Wang L, Huang D, Seth P, Yang Y, Wang H. Oncolytic Adenovirus rAd.DCN Inhibits Breast Tumor Growth and Lung Metastasis in an Immune-Competent Orthotopic Xenograft Model. Hum Gene Ther 2018; 30:197-210. [PMID: 30032645 DOI: 10.1089/hum.2018.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The majority of advanced breast cancer patients develop distal metastasis, including lung and bone metastasis. However, effective therapeutic strategies to prevent metastasis are still lacking. Decorin is a natural inhibitor of transforming growth factor β, which plays a pivotal role in tumor metastasis. An oncolytic adenovirus expressing decorin, rAd.DCN, has been developed previously. In an immune-competent breast tumor (4T1) model, intratumoral (i.t.) as well as intravenous (i.v.) delivery of rAd.DCN inhibited growth of orthotopic tumors and spontaneous lung metastasis. It was shown that i.t. delivery of rAd.DCN produced higher levels of transgene expression and evoked stronger oncolysis of the tumors compared to i.v. delivery. However, i.v. delivery resulted in higher amount of virus accumulation in the lungs and produced stronger responses to prevent tumor lung metastasis. Oncolytic adenovirus-mediated decorin expression in the tumors downregulated the decorin target genes and decreased epithelial mesenchymal transition markers. Decorin expression in lung tissues also increased Th1 cytokine expression, such as interleukin (IL)-2, IL-12, and tumor necrosis factor α, and decreased Th2 cytokines, such as transforming growth factor β and IL-6. Moreover, rAd.DCN treatment induced strong systemic inflammatory responses and upregulated CD8+ T lymphocytes. In conclusion, rAd.DCN inhibits tumor growth and lung metastasis of breast cancer via regulating wnt/β-catenin, vascular endothelial growth factor (VEGF), and Met pathways, and modulating the antitumor inflammatory and immune responses. Considering that i.v. delivery was much more effective in preventing lung metastasis, systemic delivery of rAd.DCN might be a promising strategy to treat breast cancer lung metastasis.
Collapse
Affiliation(s)
- Huiqiang Zhao
- 1 Department of Cadre Health Care, Navy General Hospital, Beijing, P.R. China.,2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Hao Wang
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Fanxuan Kong
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Weidong Xu
- 3 Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Tao Wang
- 4 Breast Cancer Department, PLA 307 Hospital, Beijing, P.R. China
| | - Fengjun Xiao
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Lisheng Wang
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Dandan Huang
- 5 Stem Cell Laboratory, Ningbo No. 2 Hospital, Ningbo, P.R. China
| | - Prem Seth
- 3 Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Yuefeng Yang
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China.,3 Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Hua Wang
- 2 Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| |
Collapse
|
21
|
Magalhães M, Alvarez-Lorenzo C, Concheiro A, Figueiras A, Santos AC, Veiga F. RNAi-based therapeutics for lung cancer: biomarkers, microRNAs, and nanocarriers. Expert Opin Drug Deliv 2018; 15:965-982. [PMID: 30232915 DOI: 10.1080/17425247.2018.1517744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Despite the current advances in the discovery of the lung cancer biomarkers and, consequently, in the diagnosis, this pathology continues to be the primary cause of cancer-related death worldwide. In most cases, the illness is diagnosed in an advanced stage, which limits the current treatment options available and reduces the survival rate. Therefore, RNAi-based therapy arises as a promising option to treat lung cancer. AREAS COVERED This review provides an overview on the exploitation of lung cancer biology to develop RNAi-based therapeutics to be applied in the treatment of lung cancer. Furthermore, the review analyzes the main nanocarriers designed to deliver RNAi molecules and induce antitumoral effects in lung cancer, and provides updated information about current RNAi-based therapeutics for lung cancer in clinical trials. EXPERT OPINION RNAi-based therapy uses nanocarriers to perform a targeted and efficient delivery of therapeutic genes into lung cancer cells, by taking advantage of the known biomarkers in lung cancer. These therapeutic genes are key regulatory molecules of crucial cellular pathways involved in cell proliferation, migration, and apoptosis. Thereby, the characteristics and functionalization of the nanocarrier and the knowledge of lung cancer biology have direct influence in improving the therapeutic effect of this therapy.
Collapse
Affiliation(s)
- Mariana Magalhães
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Carmen Alvarez-Lorenzo
- c Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Angel Concheiro
- c Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Ana Figueiras
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Ana Cláudia Santos
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Francisco Veiga
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| |
Collapse
|
22
|
Li J, Liang H, Liu J, Wang Z. Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. Int J Pharm 2018; 546:215-225. [PMID: 29787895 DOI: 10.1016/j.ijpharm.2018.05.045] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022]
Abstract
Poly (amidoamine) (PAMAM) dendrimers are well-defined, highly branched macromolecules with numerous active amine groups on the surface. Because of their unique properties, PAMAM dendrimers have steadily grown in popularity in drug delivery, gene therapy, medical imaging and diagnostic application. This review focuses on the recent developments on the application in PAMAM dendrimers as effective carriers for drug and gene (pDNA, siRNA) delivery in cancer therapy, including: a) PAMAM for anticancer drug delivery; b) PAMAM and gene therapy; c) PAMAM used in overcoming tumor multidrug resistance; d) PAMAM used for hybrid nanoparticles; and e) PAMAM linked or loaded in other nanoparticles.
Collapse
Affiliation(s)
- Jun Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | - Huamin Liang
- Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, Anhui, China
| | - Jing Liu
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| | - Ziyuan Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
23
|
Foyt DA, Norman MDA, Yu TTL, Gentleman E. Exploiting Advanced Hydrogel Technologies to Address Key Challenges in Regenerative Medicine. Adv Healthc Mater 2018; 7:e1700939. [PMID: 29316363 PMCID: PMC5922416 DOI: 10.1002/adhm.201700939] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/24/2017] [Indexed: 12/16/2022]
Abstract
Regenerative medicine aims to tackle a panoply of challenges from repairing focal damage to articular cartilage to preventing pathological tissue remodeling after myocardial infarction. Hydrogels are water-swollen networks formed from synthetic or naturally derived polymers and are emerging as important tools to address these challenges. Recent advances in hydrogel chemistries are enabling researchers to create hydrogels that can act as 3D ex vivo tissue models, allowing them to explore fundamental questions in cell biology by replicating tissues' dynamic and nonlinear physical properties. Enabled by cutting edge techniques such as 3D bioprinting, cell-laden hydrogels are also being developed with highly controlled tissue-specific architectures, vasculature, and biological functions that together can direct tissue repair. Moreover, advanced in situ forming and acellular hydrogels are increasingly finding use as delivery vehicles for bioactive compounds and in mediating host cell response. Here, advances in the design and fabrication of hydrogels for regenerative medicine are reviewed. It is also addressed how controlled chemistries are allowing for precise engineering of spatial and time-dependent properties in hydrogels with a look to how these materials will eventually translate to clinical applications.
Collapse
Affiliation(s)
- Daniel A. Foyt
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| | - Michael D. A. Norman
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| | - Tracy T. L. Yu
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| |
Collapse
|
24
|
Yang Y, Jia Y, Xiao Y, Hao Y, Zhang L, Chen X, He J, Zhao Y, Qian Z. Tumor-Targeting Anti-MicroRNA-155 Delivery Based on Biodegradable Poly(ester amine) and Hyaluronic Acid Shielding for Lung Cancer Therapy. Chemphyschem 2018; 19:2058-2069. [PMID: 29488305 DOI: 10.1002/cphc.201701375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Yi Yang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 P.R. China
| | - Yanpeng Jia
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 P.R. China
| | - Yao Xiao
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 P.R. China
| | - Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 P.R. China
| | - Lan Zhang
- Research and Development Department, Guangdong Zhongsheng Pharmacy; Dongguan 523325 P.R. China
| | - Xiaoxin Chen
- Research and Development Department, Guangdong Zhongsheng Pharmacy; Dongguan 523325 P.R. China
| | - Jian He
- National Center for International Research, of Biological Targeting Diagnosis and Therapy; Guangxi Key Laboratory of Biological Targeting, Diagnosis and Therapy Research; Collaborative Innovation Center for Targeting, Tumor Diagnosis and Therapy; Guangxi Medical University; Nanning Guangxi 530021 P.R. China
| | - Yongxiang Zhao
- National Center for International Research, of Biological Targeting Diagnosis and Therapy; Guangxi Key Laboratory of Biological Targeting, Diagnosis and Therapy Research; Collaborative Innovation Center for Targeting, Tumor Diagnosis and Therapy; Guangxi Medical University; Nanning Guangxi 530021 P.R. China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Chengdu 610041 P.R. China
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital, West China Medical School; Sichuan University; Chengdu 610041 P.R. China
| |
Collapse
|
25
|
Dev Jayant R, Joshi A, Kaushik A, Tiwari S, Chaudhari R, Srivastava R, Nair M. Nanogels for Gene Delivery. NANOGELS FOR BIOMEDICAL APPLICATIONS 2017:128-142. [DOI: 10.1039/9781788010481-00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Gene therapy encompasses the development of proficient and safe vectors, which remains the topmost challenge. Employment of viral vectors is efficient but it is accompanied with safety risks, which highlights the need for non-viral vectors. Currently, several studies are being done on the development of non-viral vectors, which could enhance delivery and uptake of foreign genetic material by target cells, and facilitate their transport to nucleus. Viral vectors are efficient candidates of gene therapy but are limited due to their toxicity, carcinogenesis, immunogenicity, and low target tissue penetration. In order to avoid the risk, the development of non-viral vectors is being explored for gene delivery applications. Among the potent non-viral vectors, hydrogels seem to be promising due to their adapting chemical and three-dimensional structures, mechanical properties, proficient water retaining capacity and biocompatibility. This chapter will highlight the recent developments and potential of nanogels as gene delivery carriers for genetic and clinical applications.
Collapse
Affiliation(s)
- Rahul Dev Jayant
- Center for Personalized Nanomedicine, Institute of Neuro-Immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University (FIU) Miami FL USA
| | - Abhijeet Joshi
- Centre for Biosciences and Bio-medical Engineering, Indian Institute of Technology Indore (IIT-I) Indore India
| | - Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of Neuro-Immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University (FIU) Miami FL USA
| | - Sneham Tiwari
- Center for Personalized Nanomedicine, Institute of Neuro-Immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University (FIU) Miami FL USA
| | - Rashmi Chaudhari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IITB) Mumbai India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IITB) Mumbai India
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of Neuro-Immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University (FIU) Miami FL USA
| |
Collapse
|
26
|
Influence of alginate backbone on efficacy of thermo-responsive alginate-g-P(NIPAAm) hydrogel as a vehicle for sustained and controlled gene delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 95:409-421. [PMID: 30573265 DOI: 10.1016/j.msec.2017.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/30/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022]
Abstract
Alginate grafted poly(N-isopropylacrylamide) hydrogels (Alg-g-P(NIPAAm)) form three-dimensional networks in mild conditions, making them suitable for incorporation of labile macromolecules, such as DNA. The impact of P(NIPAAm) on copolymer characteristics has been well studied, however the impact of alginate backbone characteristics on copolymer properties has to-date not been investigated. Six different Alg-g-P(NIPAAm) hydrogels were synthesised with 10% alginate, which varied in terms of molecular weight (MW) and mannuronate/guluronate (M/G) monomer ratio, and with 90% NIPAAm in order to develop an injectable and thermo-responsive hydrogel formulation for localised gene delivery. Hydrogel stiffness was directly proportional to MW and the M/G ratio of the alginate backbone. Hydrogels with a high MW or low M/G ratio alginate backbone demonstrated a greater stiffness than those hydrogels comprising low MW alginates and high M/G ratio. Hydrogels with a high M/G ratio also produced a complexed and meshed hydrogel network while hydrogels with a low M/G ratio produced a simplified structure with the superposition of Alg-g-P(NIPAAm) sheets. This study was designed to produce the optimal Alg-g-P(NIPAAm) hydrogel with respect to localised delivery of DNA nanoparticles as a potential medical device for those with castrate resistant prostate cancer (CRPC). Given that CRPC typically disseminates to bone causing pain, morbidity and a plethora of skeletal related events, a copolymer based hydrogel was designed to for long term release of therapeutic DNA nanoparticles. The nanoparticles were comprised of plasmid DNA (pDNA), complexed with an amphipathic cell penetrating peptide termed RALA that is designed to enter cells with high efficiency. Alginate MW and M/G ratio affected stiffness, structure, injectability and degradation of the Alg-g-P(NIPAAm) hydrogel. Algogel 3001, had the optimal characteristics for long-term application and was loaded with RALA/pDNA NPs. From the release profiles, it was evident that RALA protected the pDNA from degradation over a 30-day period and conferred a sustained and controlled release profile from the hydrogels compared to pDNA only. Taken together, we have designed a slowly degrading hydrogel suitable for sustained delivery of nucleic acids when incorporated with the RALA delivery peptide. This now opens up several opportunities for the delivery of therapeutic pDNA from this thermo-responsive hydrogel with numerous medical applications.
Collapse
|
27
|
Liu X, Chen X, Chua MX, Li Z, Loh XJ, Wu YL. Injectable Supramolecular Hydrogels as Delivery Agents of Bcl-2 Conversion Gene for the Effective Shrinkage of Therapeutic Resistance Tumors. Adv Healthc Mater 2017; 6. [PMID: 28481473 DOI: 10.1002/adhm.201700159] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/09/2017] [Indexed: 12/13/2022]
Abstract
Injectable hydrogels to deliver therapeutic genes in a minimally invasive manner and to achieve long term sustained release at tumor sites to minimize side effects are attractive for cancer therapy and precision medicine, but its rational design remains a challenge. In this report, an injectable supramolecular hydrogel system is designed based on the polypesudorotaxane formation between α-cyclodextrin (α-CD) and cationic methoxy-poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(ethylene imine) (MPEG-PCL-PEI) copolymer, with the ability to form polyplexes with anionic plasmid DNA for effective sustained gene delivery. To be mentioned, the MPEG-PCL-PEI copolymers show similar pDNA binding ability, better gene transfection efficiency, lower cytotoxicity than nonviral gene transfection gold standard PEI (25 kDa), due to the formation of micelles and more stable polyplexes. More importantly, this MPEG-PCL-PEI/α-CD/pDNA supramolecular hydrogel shows a sustained release of pDNA in form of polyplex for up to 7 d. By taking these advantages, this supramolecular hydrogel system is applied as an injectable carrier for sustained Bcl-2 conversion gene release, in an in vivo rodent model of therapeutic resistant hepatocarcinoma with high expression of antiapoptotic Bcl-2 protein. This work represents the first time that injectable MPEG-PCL-PEI/α-CD supramolecular hydrogels possess good controllable release effect of Bcl-2 conversion genes in the form of polyplex to effectively inhibit in vivo tumor growth and this "enemy to friend" strategy will benefit various applications, including on-demand gene delivery and personalized medicine.
Collapse
Affiliation(s)
- Xuan Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology; School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 P. R. China
| | - Xiaohong Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology; School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 P. R. China
| | - Ming Xuan Chua
- Department of Chemical & Bimolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
- Department of Materials Science and Engineering; National University of Singapore; 9 Engineering Drive 1 Singapore 117576 Singapore
- Singapore Eye Research Institute; 11 Third Hospital Avenue Singapore 168751 Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology; School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 P. R. China
| |
Collapse
|
28
|
Cortese FAB, Aguiar S, Santostasi G. Induced Cell Turnover: A Novel Therapeutic Modality for In Situ Tissue Regeneration. Hum Gene Ther 2017; 28:703-716. [PMID: 28557533 DOI: 10.1089/hum.2016.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Induced cell turnover (ICT) is a theoretical intervention in which the targeted ablation of damaged, diseased, and/or nonfunctional cells is coupled with replacement by partially differentiated induced pluripotent stem cells in a gradual and multiphasic manner. Tissue-specific ablation can be achieved using pro-apoptotic small molecule cocktails, peptide mimetics, and/or tissue-tropic adeno-associated virus-delivered suicide genes driven by cell type-specific promoters. Replenishment with new cells can be mediated by systemic administration of cells engineered for homing, robustness, and even enhanced function and disease resistance. Otherwise, the controlled release of cells can be achieved using implanted biodegradable scaffolds, hydrogels, and polymer matrixes. In theory, ICT would enable in situ tissue regeneration without the need for surgical transplantation of organs produced ex vivo, and addresses non-transplantable tissues (such as the vasculature, lymph nodes, and the nervous system). This article outlines several complimentary strategies for overcoming barriers to ICT in an effort to stimulate further research at this promising interface of cell therapy, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Francesco Albert Bosco Cortese
- 1 Biogerontology Research Foundation, Oxford, United Kingdom .,2 Department of Biomedical and Molecular Sciences, Queen's University School of Medicine, Queen's University, Kingston, Canada
| | - Sebastian Aguiar
- 3 Neurobiology Department, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Giovanni Santostasi
- 4 Department of Neurology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
29
|
Recent development of synthetic nonviral systems for sustained gene delivery. Drug Discov Today 2017; 22:1318-1335. [PMID: 28428056 DOI: 10.1016/j.drudis.2017.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022]
Abstract
Sustained gene delivery is of particular importance today because it circumvents the need for repeated therapeutic administration and provides spatial and temporal control of the release profile. Better understanding of the genetic basis of diseases and advances in gene therapy have propelled significant research on biocompatible gene carriers for therapeutic purposes. Varied biodegradable polymer-based architectures have been used to create new compositions with unique properties suitable for sustained gene delivery. This review presents the most recent advances in various polymeric systems: hydrogels, microspheres, nanospheres and scaffolds, having complex architectures to encapsulate and deliver functional genes. Through the recombination of different existing polymer systems, the multicomplex systems can be further endowed with new properties for better-targeted biomedical applications.
Collapse
|
30
|
Fathi M, Barar J. Perspective highlights on biodegradable polymeric nanosystems for targeted therapy of solid tumors. ACTA ACUST UNITED AC 2017; 7:49-57. [PMID: 28546953 PMCID: PMC5439389 DOI: 10.15171/bi.2017.07] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Abstract
![]()
Introduction: Polymeric nanoparticles (NPs) formulated using biodegradable polymers offer great potential for development of de novo drug delivery systems (DDSs) capable of delivering a wide range of bioactive agents. They can be engineered as advanced multifunctional nanosystems (NSs) for simultaneous imaging and therapy known as theranostics or diapeutics.
Methods: A brief prospective is provided on biomedical importance and applications of biodegradable polymeric NSs through reviewing the recently published literature.
Results: Biodegradable polymeric NPs present unique characteristics, including: nanoscaled structures, high encapsulation capacity, biocompatibility with non-thrombogenic and non-immunogenic properties, and controlled-/sustained-release profile for lipophilic and hydrophilic drugs. Once administered in vivo, all classes of biodegradable polymers (i.e., synthetic, semi-synthetic, and natural polymers) are subjected to enzymatic degradation; and hence, transformation into byproducts that can be simply eliminated from the human body. Natural and semi-synthetic polymers have been shown to be highly stable, much safer, and offer a non-/less-toxic means for specific delivery of cargo drugs in comparison with synthetic polymers. Despite being biocompatible and enzymatically-degradable, there are some drawbacks associated with these polymers such as batch to batch variation, high production cost, structural complexity, lower bioadhesive potential, uncontrolled rate of hydration, and possibility of microbial spoilage. These pitfalls have bolded the importance of synthetic counterparts despite their somewhat toxicity.
Conclusion: Taken all, to minimize the inadvertent effects of these polymers and to engineer much safer NSs, it is necessary to devise biopolymers with desirable chemical and biochemical modification(s) and polyelectrolyte complex formation to improve their drug delivery capacity in vivo.
Collapse
Affiliation(s)
- Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Abstract
This study focused on developing novel materials for 3D printed reverse thermo-responsive (RTR) and pH-sensitive structures, using the stereolithography (SLA) technique and demonstrated the double responsiveness of the constructs printed.
Collapse
Affiliation(s)
- Sujan Dutta
- Casali Center of Applied Chemistry
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Daniel Cohn
- Casali Center of Applied Chemistry
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| |
Collapse
|
32
|
McErlean EM, McCrudden CM, McCarthy HO. Delivery of nucleic acids for cancer gene therapy: overcoming extra- and intra-cellular barriers. Ther Deliv 2016; 7:619-37. [PMID: 27582234 DOI: 10.4155/tde-2016-0049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The therapeutic potential of cancer gene therapy has been limited by the difficulty of delivering genetic material to target sites. Various biological and molecular barriers exist which need to be overcome before effective nonviral delivery systems can be applied successfully in oncology. Herein, various barriers are described and strategies to circumvent such obstacles are discussed, considering both the extracellular and intracellular setting. Development of multifunctional delivery systems holds much promise for the progression of gene delivery, and a growing body of evidence supports this approach involving rational design of vectors, with a unique molecular architecture. In addition, the potential application of composite gene delivery platforms is highlighted which may provide an alternative delivery strategy to traditional systemic administration.
Collapse
|
33
|
Chen Y, Li Y, Shen W, Li K, Yu L, Chen Q, Ding J. Controlled release of liraglutide using thermogelling polymers in treatment of diabetes. Sci Rep 2016; 6:31593. [PMID: 27531588 PMCID: PMC4987673 DOI: 10.1038/srep31593] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/25/2016] [Indexed: 12/27/2022] Open
Abstract
In treatment of diabetes, it is much desired in clinics and challenging in pharmaceutics and material science to set up a long-acting drug delivery system. This study was aimed at constructing a new delivery system using thermogelling PEG/polyester copolymers. Liraglutide, a fatty acid-modified antidiabetic polypeptide, was selected as the model drug. The thermogelling polymers were presented by poly(ε-caprolactone-co-glycolic acid)-poly(ethylene glycol)-poly(ε-caprolactone-co-glycolic acid) (PCGA-PEG-PCGA) and poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA). Both the copolymers were soluble in water, and their concentrated solutions underwent temperature-induced sol-gel transitions. The drug-loaded polymer solutions were injectable at room temperature and gelled in situ at body temperature. Particularly, the liraglutide-loaded PCGA-PEG-PCGA thermogel formulation exhibited a sustained drug release manner over one week in both in vitro and in vivo tests. This feature was attributed to the combined effects of an appropriate drug/polymer interaction and a high chain mobility of the carrier polymer, which facilitated the sustained diffusion of drug out of the thermogel. Finally, a single subcutaneous injection of this formulation showed a remarkably improved glucose tolerance of mice for one week. Hence, the present study not only developed a promising long-acting antidiabetic formulation, but also put forward a combined strategy for controlled delivery of polypeptide.
Collapse
Affiliation(s)
- Yipei Chen
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yuzhuo Li
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Kun Li
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Qinghua Chen
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|