1
|
Zhang C, Su K, Jiang X, Tian Y, Li K. Advances in research on potential therapeutic approaches for Niemann-Pick C1 disease. Front Pharmacol 2024; 15:1465872. [PMID: 39263569 PMCID: PMC11387184 DOI: 10.3389/fphar.2024.1465872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Niemann-Pick disease type C1 (NP-C1) is a rare and devastating recessive inherited lysosomal lipid and cholesterol storage disorder caused by mutations in the NPC1 or NPC2 gene. These two proteins bind to cholesterol and cooperate in endosomal cholesterol transport. Characteristic clinical manifestations of NP-C1 include hepatosplenomegaly, progressive neurodegeneration, and ataxia. While the rarity of NP-C1 presents a significant obstacle to progress, researchers have developed numerous potential therapeutic approaches over the past two decades to address this condition. Various methods have been proposed and continuously improved to slow the progression of NP-C1, although they are currently at an animal or clinical experimental stage. This overview of NP-C1 therapy will delve into different theoretical treatment strategies, such as small molecule therapies, cell-based approaches, and gene therapy, highlighting the complex therapeutic challenges associated with this disorder.
Collapse
Affiliation(s)
- Caifeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Keke Su
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuping Tian
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ke Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
2
|
Ionescu CM, Kovacevic B, Jones MA, Wagle SR, Foster T, Mikov M, Mooranian A, Al-Salami H. Probucol-Ursodeoxycholic Acid Otic Formulations: Stability and In Vitro Assessments for Hearing Loss Treatment. J Pharm Sci 2024; 113:2595-2604. [PMID: 38734207 DOI: 10.1016/j.xphs.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Targeted drug delivery is an ongoing aspect of scientific research that is expanding through the design of micro- and nanoparticles. In this paper, we focus on spray dried microparticles as carriers for a repurposed lipophilic antioxidant (probucol). We characterise the microparticles and quantify probucol prior to assessing cytotoxicity on both control and cisplatin treated hair cells (known as House Ear Institute-Organ of Corti 1; HEI-OC1). The addition of water-soluble polymers to 2% β-cyclodextrin resulted in a stable probucol formulation. Ursodeoxycholic acid (UDCA) used as formulation excipient increases probucol miscibility and microparticle drug content. Formulation characterisations reveals spray drying results in spherical UDCA-drug microparticles with a mean size distribution of ∼5-12 μm. Probucol microparticles show stable short-term storage conditions accounting for only ∼10% loss over seven days. By mimicking cell culture conditions, both UDCA-probucol (67%) and probucol only (82%) microparticles show drug release in the initial two hours. Furthermore, probucol formulations with or without UDCA preserve cell viability and reduce cisplatin-induced oxidative stress. Mitochondrial bioenergetics results in lower basal respiration and non-mitochondrial respiration, with higher maximal respiration, spare capacity, ATP production and proton leak within cisplatin challenged UDCA-probucol groups. Overall, we present a facile method for incorporating lipophilic antioxidant carriers in polymer-based particles that are tolerated by HEI-OC1 cells and show stable drug release, sufficient in reducing cisplatin-induced reactive oxygen species accumulation.
Collapse
Affiliation(s)
- Corina M Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Melissa A Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Susbin R Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia; School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand.
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia; Medical School, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
3
|
Zheng J, Zhou Y, Fuentes RJ, Tan X. Verification of Outer Hair Cell Motor Protein, Prestin, as a Serological Biomarker for Mouse Cochlear Damage. Int J Mol Sci 2024; 25:7285. [PMID: 39000390 PMCID: PMC11241755 DOI: 10.3390/ijms25137285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The motor protein prestin, found in the inner ear's outer hair cells (OHCs), is responsible for high sensitivity and sharp frequency selectivity in mammalian hearing. Some studies have suggested that prestin could be a serological biomarker for cochlear damage, as OHCs are highly vulnerable to damage from various sources. However, the reported data are inconsistent and lack appropriate negative controls. To investigate whether prestin can be used as a serological biomarker for cochlear damage or stress, we measured prestin quantities in the bloodstreams of mice using ELISA kits from different companies. Wildtype (WT) mice were exposed to different ototoxic treatments, including noise exposure and ototoxic reagents that rapidly kill OHCs. Prestin-knockout (KO) mice were used as a negative control. Our data show that some ELISA kits were not able to detect prestin specifically. The ELISA kit that could detect the prestin protein from cochlear homogenates failed to detect prestin in the bloodstream, despite there being significant damage to OHCs in the cochleae. Furthermore, the optical densities of the serum samples, which correlate to prestin quantities, were significantly influenced by hemolysis in the samples. In conclusion, Prestin from OHCs is not a sensitive and reliable serological biomarker for detecting cochlear damage in mice using ELISA.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Chicago Campus, Northwestern University, Chicago, IL 60611, USA; (R.J.F.); (X.T.)
- Department of Communication Sciences and Disorders, School of Communication, Evanston Campus, Northwestern University, Evanston, IL 60208, USA;
- The Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
| | - Yingjie Zhou
- Department of Communication Sciences and Disorders, School of Communication, Evanston Campus, Northwestern University, Evanston, IL 60208, USA;
| | - Robert J. Fuentes
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Chicago Campus, Northwestern University, Chicago, IL 60611, USA; (R.J.F.); (X.T.)
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Chicago Campus, Northwestern University, Chicago, IL 60611, USA; (R.J.F.); (X.T.)
- The Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
4
|
Takahashi S, Zhou Y, Cheatham MA, Homma K. The pathogenic roles of the p.R130S prestin variant in DFNB61 hearing loss. J Physiol 2024; 602:1199-1210. [PMID: 38431907 PMCID: PMC10942758 DOI: 10.1113/jp285599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
DFNB61 is a recessively inherited nonsyndromic hearing loss caused by mutations in SLC26A5, the gene that encodes the voltage-driven motor protein, prestin. Prestin is abundantly expressed in the auditory outer hair cells that mediate cochlear amplification. Two DFNB61-associated SLC26A5 variants, p.W70X and p.R130S, were identified in patients who are compound heterozygous for these nonsense and missense changes (SLC26A5W70X/R130S ). Our recent study showed that mice homozygous for p.R130S (Slc26a5R130S/R130S ) suffer from hearing loss that is ascribed to significantly reduced motor kinetics of prestin. Given that W70X-prestin is nonfunctional, compound heterozygous Slc26a5R130S/- mice were used as a model for human SLC26A5W70X/R130S . By examining the pathophysiological consequences of p.R130S prestin when it is the sole allele for prestin protein production, we determined that this missense change results in progressive outer hair cell loss in addition to its effects on prestin's motor action. Thus, this study defines the pathogenic roles of p.R130S prestin and identifies a limited time window for potential clinical intervention. KEY POINTS: The voltage-driven motor protein, prestin, is encoded by SLC26A5 and expressed abundantly in cochlear outer hair cells (OHCs). The importance of prestin for normal hearing was demonstrated in mice lacking prestin; however, none of the specific SLC26A5 variants identified to date in human patients has been experimentally demonstrated to be pathogenic. In this study we used both cell lines and a mouse model to define the pathogenic role of compound heterozygous p.W70X (c.209G>A) and p.R130S (c.390A>C) SLC26A5 variants identified in patients with moderate to profound hearing loss. As in patients, mice carrying one copy of p.R130S Slc26a5 showed OHC dysfunction and progressive degeneration, which results in congenital progressive hearing loss. This is the first functional study reporting pathogenic SLC26A5 variants and pointing to the presence of a therapeutic time window for potential clinical interventions targeting the affected OHCs before they are lost.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yingjie Zhou
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
| | - Mary Ann Cheatham
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders
| | - Kazuaki Homma
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders
| |
Collapse
|
5
|
Zhang Y, Lin G, Xue N, Wang Y, Du T, Liu H, Xiong W, Shang W, Wu H, Song L. Differential outcomes of high-fat diet on age-related rescaling of cochlear frequency place coding. FASEB J 2023; 37:e23167. [PMID: 37651093 DOI: 10.1096/fj.202300457rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Auditory frequency coding is place-specific, which depends on the mechanical coupling of the basilar membrane-outer hair cell (OHC)-tectorial membrane network. Prestin-based OHC electromotility improves cochlear frequency selectivity and sensitivity. Cochlear amplification determines the frequency coding wherein discrete sound frequencies find a 'best' place along the cochlear length. Loss of OHC is the leading cause of age-related hearing loss (ARHL) and is the most common cause of sensorineural hearing loss and compromised speech perception. Lipid interaction with Prestin impacts OHC function. It has been established that high-fat diet (HFD) is associated with ARHL. To determine whether genetic background and metabolism preserve cochlear frequency place coding, we examined the effect of HFD in C57BL/6J (B6) and CBA/CaJ (CBA) on ARHL.We found a significant rescuing effect on ARHL in aged B6 HFD cohort. Prestin levels and cell sizes were better maintained in the experimental B6-HFD group. We also found that distortion product otoacoustic emission (DPOAE) group delay measurement was preserved, which suggested stable frequency place coding. In contrast, the response to HFD in the CBA cohort was modest with no appreciable benefit to hearing threshold. Notably, group delay was shortened with age along with the control. In addition, the frequency dependent OHC nonlinear capacitance gradient was most pronounced at young age but decreased with age. Cochlear RNA-seq analysis revealed differential TRPV1 expression and lipid homeostasis. Activation of TRPV1 and downregulation of arachidonic acid led to downregulation of inflammatory response in B6 HFD, which protects the cochlea from ARHL. The genetic background and metabolic state-derived changes in OHC morphology and function collectively contribute to a redefined cochlear frequency place coding and improved age-related pitch perception.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Guotong Lin
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Na Xue
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yi Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tingting Du
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Huihui Liu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing, China
| | - Wei Shang
- Navy Clinical Medical School, Anhui Medical University, Hefei, China
- In Vitro Fertility (IVF) Center Department of Obstetrics and Gynecology, the Sixth Medical Center of PLA General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Hao Wu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lei Song
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
6
|
Takahashi S, Zhou Y, Cheatham MA, Homma K. The pathogenic roles of the p.R130S prestin variant in DFNB61 hearing loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554157. [PMID: 37662362 PMCID: PMC10473669 DOI: 10.1101/2023.08.21.554157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
DFNB61 is a recessively inherited nonsyndromic hearing loss caused by mutations in SLC26A5 , the gene that encodes the voltage-driven motor protein, prestin. Prestin is abundantly expressed in the auditory outer hair cells that mediate cochlear amplification. Two DFNB61-associated SLC26A5 variants, p.W70X and p.R130S, were identified in patients who are compound heterozygous for these nonsense and missense changes ( SLC26A5 W70X/R130S ). Our recent study showed that mice homozygous for p.R130S ( Slc26a5 R130S/R130S ) suffer from hearing loss that is ascribed to significantly reduced motor kinetics of prestin. Given that W70X-prestin is nonfunctional, compound heterozygous Slc26a5 R130S/- mice were used as a model for human SLC26A5 W70X/R130S . By examining the pathophysiological consequences of p.R130S prestin when it is the sole allele for prestin protein production, we determined that this missense change results in progressive outer hair cell loss in addition to its effects on prestin's motor action. Thus, this study fully defines the pathogenic roles for the p.R130S prestin, which points to the presence of a limited time window for potential clinical intervention.
Collapse
|
7
|
Capra D, DosSantos MF, Sanz CK, Acosta Filha LG, Nunes P, Heringer M, Ximenes-da-Silva A, Pessoa L, de Mattos Coelho-Aguiar J, da Fonseca ACC, Mendes CB, da Rocha LS, Devalle S, Niemeyer Soares Filho P, Moura-Neto V. Pathophysiology and mechanisms of hearing impairment related to neonatal infection diseases. Front Microbiol 2023; 14:1162554. [PMID: 37125179 PMCID: PMC10140533 DOI: 10.3389/fmicb.2023.1162554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
The inner ear, the organ of equilibrium and hearing, has an extraordinarily complex and intricate arrangement. It contains highly specialized structures meticulously tailored to permit auditory processing. However, hearing also relies on both peripheral and central pathways responsible for the neuronal transmission of auditory information from the cochlea to the corresponding cortical regions. Understanding the anatomy and physiology of all components forming the auditory system is key to better comprehending the pathophysiology of each disease that causes hearing impairment. In this narrative review, the authors focus on the pathophysiology as well as on cellular and molecular mechanisms that lead to hearing loss in different neonatal infectious diseases. To accomplish this objective, the morphology and function of the main structures responsible for auditory processing and the immune response leading to hearing loss were explored. Altogether, this information permits the proper understanding of each infectious disease discussed.
Collapse
Affiliation(s)
- Daniela Capra
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos F. DosSantos
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Odontologia (PPGO), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carolina K. Sanz
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lionete Gall Acosta Filha
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Priscila Nunes
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Manoela Heringer
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | - Luciana Pessoa
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Juliana de Mattos Coelho-Aguiar
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho (HUCFF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Carolina Carvalho da Fonseca
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | | | - Sylvie Devalle
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Paulo Niemeyer Soares Filho
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura-Neto
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Neurociência Translacional, Instituto Nacional de Neurociência Translacional (INNT-UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho (HUCFF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Takahashi S, Zhou Y, Kojima T, Cheatham MA, Homma K. Prestin's fast motor kinetics is essential for mammalian cochlear amplification. Proc Natl Acad Sci U S A 2023; 120:e2217891120. [PMID: 36893263 PMCID: PMC10089206 DOI: 10.1073/pnas.2217891120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Prestin (SLC26A5)-mediated voltage-driven elongations and contractions of sensory outer hair cells within the organ of Corti are essential for mammalian cochlear amplification. However, whether this electromotile activity directly contributes on a cycle-by-cycle basis is currently controversial. By restoring motor kinetics in a mouse model expressing a slowed prestin missense variant, this study provides experimental evidence acknowledging the importance of fast motor action to mammalian cochlear amplification. Our results also demonstrate that the point mutation in prestin disrupting anion transport in other proteins of the SLC26 family does not alter cochlear function, suggesting that the potential weak anion transport of prestin is not essential in the mammalian cochlea.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology–Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Yingjie Zhou
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL60208
| | - Takashi Kojima
- Department of Otolaryngology–Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Mary Ann Cheatham
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL60208
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL60208
| | - Kazuaki Homma
- Department of Otolaryngology–Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL60208
| |
Collapse
|
9
|
Ishitsuka Y, Irie T, Matsuo M. Cyclodextrins applied to the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 191:114617. [PMID: 36356931 DOI: 10.1016/j.addr.2022.114617] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide, is a pharmaceutical additive that improves the solubility of hydrophobic compounds. Recent research has focused on the potential active pharmaceutical abilities of CD. Lysosomal storage diseases are inherited metabolic diseases characterized by lysosomal dysfunction and abnormal lipid storage. Niemann-Pick disease type C (NPC) is caused by mutations in cholesterol transporter genes (NPC1, NPC2) and is characterized by cholesterol accumulation in lysosomes. A biocompatible cholesterol solubilizer 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was recently used in NPC patients for compassionate use and in clinical trials. HP-β-CD is an attractive drug candidate for NPC; however, its adverse effects, such as ototoxicity, should be solved. In this review, we discuss the current use of HP-β-CD in basic and clinical research and discuss alternative CD derivatives that may outperform HP-β-CD, which should be considered for clinical use. The potential of CD therapy for the treatment of other lysosomal storage diseases is also discussed.
Collapse
Affiliation(s)
- Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
10
|
Gao G, Guo S, Zhang Q, Zhang H, Zhang C, Peng G. Kiaa1024L/Minar2 is essential for hearing by regulating cholesterol distribution in hair bundles. eLife 2022; 11:e80865. [PMID: 36317962 PMCID: PMC9714970 DOI: 10.7554/elife.80865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
Unbiased genetic screens implicated a number of uncharacterized genes in hearing loss, suggesting some biological processes required for auditory function remain unexplored. Loss of Kiaa1024L/Minar2, a previously understudied gene, caused deafness in mice, but how it functioned in the hearing was unclear. Here, we show that disruption of kiaa1024L/minar2 causes hearing loss in the zebrafish. Defects in mechanotransduction, longer and thinner hair bundles, and enlarged apical lysosomes in hair cells are observed in the kiaa1024L/minar2 mutant. In cultured cells, Kiaa1024L/Minar2 is mainly localized to lysosomes, and its overexpression recruits cholesterol and increases cholesterol labeling. Strikingly, cholesterol is highly enriched in the hair bundle membrane, and loss of kiaa1024L/minar2 reduces cholesterol localization to the hair bundles. Lowering cholesterol levels aggravates, while increasing cholesterol levels rescues the hair cell defects in the kiaa1024L/minar2 mutant. Therefore, cholesterol plays an essential role in hair bundles, and Kiaa1024L/Minar2 regulates cholesterol distribution and homeostasis to ensure normal hearing.
Collapse
Affiliation(s)
- Ge Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Shuyu Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Quan Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Hefei Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Cuizhen Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Gang Peng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| |
Collapse
|
11
|
Yamada Y, Miwa T, Nakashima M, Shirakawa A, Ishii A, Namba N, Kondo Y, Takeo T, Nakagata N, Motoyama K, Higashi T, Arima H, Kurauchi Y, Seki T, Katsuki H, Okada Y, Ichikawa A, Higaki K, Hayashi K, Minami K, Yoshikawa N, Ikeda R, Ishikawa Y, Kajii T, Tachii K, Takeda H, Orita Y, Matsuo M, Irie T, Ishitsuka Y. Fine-tuned cholesterol solubilizer, mono-6-O-α-D-maltosyl-γ-cyclodextrin, ameliorates experimental Niemann-Pick disease type C without hearing loss. Biomed Pharmacother 2022; 155:113698. [PMID: 36116252 DOI: 10.1016/j.biopha.2022.113698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is a fatal disorder with abnormal intracellular cholesterol trafficking resulting in neurodegeneration and hepatosplenomegaly. A cyclic heptasaccharide with different degrees of substitution of 2-hydroxypropyl groups, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), acts as a strong cholesterol solubilizer and is under investigation for treating this disease in clinical trials, but its physicochemical properties and ototoxicity remain a concern. Here, we evaluated the potential of mono-6-O-α-maltosyl-γ-CD (G2-γ-CD), a single-maltose-branched cyclic octasaccharide with a larger cavity than HP-β-CD, for treating NPC. We identified that G2-γ-CD ameliorated NPC manifestations in model mice and showed lower ototoxicity in mice than HP-β-CD. To investigate the molecular mechanisms of action behind the differential ototoxicity of these CDs, we performed cholesterol solubility analysis, proton nuclear magnetic resonance spectroscopy, and molecular modeling, and estimated that the cholesterol inclusion mode of G2-γ-CD maintained solely the 1:1 inclusion complex, whereas that of HP-β-CD shifted to the highly-soluble 2:1 complex at higher concentrations. We predicted the associations of these differential complexations of CDs with cholesterol with the profile of disease attenuation and of the auditory cell toxicity using specific cell models. We proposed that G2-γ-CD can serve as a fine-tuned cholesterol solubilizer for treating NPC, being highly biocompatible and physicochemically suitable for clinical application.
Collapse
Affiliation(s)
- Yusei Yamada
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan.
| | - Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Tazuke Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ohgi-machi, Kita-ku, Osaka 530-8480, Japan
| | - Masaki Nakashima
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Aina Shirakawa
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Akira Ishii
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Nanami Namba
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hidetoshi Arima
- Laboratory of Evidence-Based Pharmacotherapy, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka 815-8511, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yasuyo Okada
- Institute Biosciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Atsushi Ichikawa
- Institute Biosciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Katsumi Higaki
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Ken Hayashi
- Kawagoe Otology Institute, 103, Wakitamachi, Kawagoe-shi, Saitama 350-1122, Japan
| | - Kentaro Minami
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Naoki Yoshikawa
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Ryuji Ikeda
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Yoshihide Ishikawa
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Tomohito Kajii
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kyoko Tachii
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroki Takeda
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Yorihisa Orita
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Tetsumi Irie
- Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
12
|
Manohar S, Ding D, Jiang H, Li L, Chen GD, Kador P, Salvi R. Combined antioxidants and anti-inflammatory therapies fail to attenuate the early and late phases of cyclodextrin-induced cochlear damage and hearing loss. Hear Res 2021; 414:108409. [PMID: 34953289 DOI: 10.1016/j.heares.2021.108409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 12/06/2021] [Indexed: 11/04/2022]
Abstract
Niemann-Pick C1 (NPC1) is a fatal neurodegenerative disease caused by aberrant cholesterol metabolism. The progression of the disease can be slowed by removing excess cholesterol with high-doses of 2-hyroxypropyl-beta-cyclodextrin (HPβCD). Unfortunately, HPβCD causes hearing loss; the initial first phase involves a rapid destruction of outer hair cells (OHCs) while the second phase, occurring 4-6 weeks later, involves the destruction of inner hair cells (IHCs), pillar cells, collapse of the organ of Corti and spiral ganglion neuron degeneration. To determine whether the first and/or second phase of HPβCD-induced cochlear damage is linked, in part, to excess oxidative stress or neuroinflammation, rats were treated with a single-dose of 3000 mg/kg HPβCD alone or together with one of two combination therapies. Each combination therapy was administered from 2-days before to 6-weeks after the HPβCD treatment. Combination 1 consisted of minocycline, an antibiotic that suppresses neuroinflammation, and HK-2, a multifunctional redox modulator that suppresses oxidative stress. Combination 2 was comprised of minocycline plus N-acetyl cysteine (NAC), which upregulates glutathione, a potent antioxidant. To determine if either combination therapy could prevent HPβCD-induced hearing impairment and cochlear damage, distortion product otoacoustic emissions (DPOAE) were measured to assess OHC function and the cochlear compound action potential (CAP) was measured to assess the function of IHCs and auditory nerve fibers. Cochleograms were prepared to quantify the amount of OHC, IHC and pillar cell (PC) loss. HPβCD significantly reduced DPOAE and CAP amplitudes and caused significant OHC, IHC and OPC losses with losses greater in the high-frequency base of the cochlea than the apex. Neither minocycline + HK-2 (MIN+ HK-2) nor minocycline + NAC (MIN+NAC) prevented the loss of DPOAEs, CAPs, OHCs, IHCs or IPCs caused by HPβCD. These results suggest that oxidative stress and neuroinflammation are unlikely to play major roles in mediating the first or second phase of HPβCD-induced cochlear damage. Thus, HPβCD-induced ototoxicity must be mediated by some other unknown cell-death pathway possibly involving loss of trophic support from damaged support cells or disrupted cholesterol metabolism.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Li Li
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Peter Kador
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Therapeutic Vision, Inc., Elkhorn, NE, 68022, USA.
| |
Collapse
|
13
|
Lin X, Luo J, Tan J, Yang L, Wang M, Li P. Experimental animal models of drug-induced sensorineural hearing loss: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1393. [PMID: 34733945 PMCID: PMC8506545 DOI: 10.21037/atm-21-2508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023]
Abstract
Objective This narrative review describes experimental animal models of sensorineural hearing loss (SNHL) caused by ototoxic agents. Background SNHL primarily results from damage to the sensory organ within the inner ear or the vestibulocochlear nerve (cranial nerve VIII). The main etiology of SNHL includes genetic diseases, presbycusis, ototoxic agents, infection, and noise exposure. Animal models with functional and anatomic damage to the sensory organ within the inner ear or the vestibulocochlear nerve mimicking the damage seen in humans are employed to explore the mechanism and potential treatment of SNHL. These animal models of SNHL are commonly established using ototoxic agents. Methods A literature search of PubMed, Embase, and Web of Science was performed for research articles on hearing loss and ototoxic agents in animal models of hearing loss. Conclusions Common ototoxic medications such as aminoglycoside antibiotics (AABs) and platinum antitumor drugs are extensively used to induce SNHL in experimental animals. The effect of ototoxic agents in vivo is influenced by the chemical mechanisms of the ototoxic agents, the species of animal, routes of administration of the ototoxic agents, and the dosage of ototoxic agents. Animal models of drug-induced SNHL contribute to understanding the hearing mechanism and reveal the function of different parts of the auditory system in humans.
Collapse
Affiliation(s)
- Xuexin Lin
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Luo
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingqian Tan
- Department of Otolaryngology Head and Neck Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Luoying Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mitian Wang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University Yuedong Hospital, Meizhou, China
| | - Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Nishimura S. Marine natural products targeting the eukaryotic cell membrane. J Antibiot (Tokyo) 2021; 74:769-785. [PMID: 34493848 DOI: 10.1038/s41429-021-00468-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
The cell membrane, with high fluidity and alternative curvatures, maintains the robust integrity to distinguish inner and outer space of cells or organelles. Lipids are the main components of the cell membrane, but their functions are largely unknown. Even the visualization of lipids is not straightforward since modification of lipids often hampers its correct physical properties. Many natural products target cell membranes, some of which are used as pharmaceuticals and/or research tools. They show specific recognition on lipids, and thus exhibit desired pharmacological effects and unique biological phenotypes. This review is a catalog of marine natural products that target eukaryotic cell membranes. Chemical structures, biological activities, and molecular mechanisms are summarized. I hope that this review will be helpful for readers to notice the potential of marine natural products in the exploration of the function of lipids and the druggability of eukaryotic cell membranes.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Department of Biotechnology, Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
15
|
Lefler SM, Duncan RK, Goodman SS, Guinan JJ, Lichtenhan JT. Measurements From Ears With Endolymphatic Hydrops and 2-Hydroxypropyl-Beta-Cyclodextrin Provide Evidence That Loudness Recruitment Can Have a Cochlear Origin. Front Surg 2021; 8:687490. [PMID: 34676239 PMCID: PMC8523923 DOI: 10.3389/fsurg.2021.687490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Loudness recruitment is commonly experienced by patients with putative endolymphatic hydrops. Loudness recruitment is abnormal loudness growth with high-level sounds being perceived as having normal loudness even though hearing thresholds are elevated. The traditional interpretation of recruitment is that cochlear amplification has been reduced. Since the cochlear amplifier acts primarily at low sound levels, an ear with elevated thresholds from reduced cochlear amplification can have normal processing at high sound levels. In humans, recruitment can be studied using perceptual loudness but in animals physiological measurements are used. Recruitment in animal auditory-nerve responses has never been unequivocally demonstrated because the animals used had damage to sensory and neural cells, not solely a reduction of cochlear amplification. Investigators have thus looked for, and found, evidence of recruitment in the auditory central nervous system (CNS). While studies on CNS recruitment are informative, they cannot rule out the traditional interpretation of recruitment originating in the cochlea. Design: We used techniques that could assess hearing function throughout entire frequency- and dynamic-range of hearing. Measurements were made from two animal models: guinea-pig ears with endolymphatic-sac-ablation surgery to produce endolymphatic hydrops, and naïve guinea-pig ears with cochlear perfusions of 13 mM 2-Hydroxypropyl-Beta-Cyclodextrin (HPBCD) in artificial perilymph. Endolymphatic sac ablation caused low-frequency loss. Animals treated with HPBCD had hearing loss at all frequencies. None of these animals had loss of hair cells or synapses on auditory nerve fibers. Results: In ears with endolymphatic hydrops and those perfused with HPBCD, auditory-nerve based measurements at low frequencies showed recruitment compared to controls. Recruitment was not found at high frequencies (> 4 kHz) where hearing thresholds were normal in ears with endolymphatic hydrops and elevated in ears treated with HPBCD. Conclusions: We found compelling evidence of recruitment in auditory-nerve data. Such clear evidence has never been shown before. Our findings suggest that, in patients suspected of having endolymphatic hydrops, loudness recruitment may be a good indication that the associated low-frequency hearing loss originates from a reduction of cochlear amplification, and that measurements of recruitment could be used in differential diagnosis and treatment monitoring of Ménière's disease.
Collapse
Affiliation(s)
- Shannon M Lefler
- Department of Otolaryngology, Washington University School of Medicine in St. Louis, Saint Louis, MO, United States
| | - Robert K Duncan
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, United States
| | - Shawn S Goodman
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, United States
| | - John J Guinan
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
| | - Jeffery T Lichtenhan
- Department of Otolaryngology, Washington University School of Medicine in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
16
|
Ding D, Jiang H, Manohar S, Liu X, Li L, Chen GD, Salvi R. Spatiotemporal Developmental Upregulation of Prestin Correlates With the Severity and Location of Cyclodextrin-Induced Outer Hair Cell Loss and Hearing Loss. Front Cell Dev Biol 2021; 9:643709. [PMID: 34109172 PMCID: PMC8181405 DOI: 10.3389/fcell.2021.643709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
2-Hyroxypropyl-beta-cyclodextrin (HPβCD) is being used to treat Niemann-Pick C1, a fatal neurodegenerative disease caused by abnormal cholesterol metabolism. HPβCD slows disease progression, but unfortunately causes severe, rapid onset hearing loss by destroying the outer hair cells (OHC). HPβCD-induced damage is believed to be related to the expression of prestin in OHCs. Because prestin is postnatally upregulated from the cochlear base toward the apex, we hypothesized that HPβCD ototoxicity would spread from the high-frequency base toward the low-frequency apex of the cochlea. Consistent with this hypothesis, cochlear hearing impairments and OHC loss rapidly spread from the high-frequency base toward the low-frequency apex of the cochlea when HPβCD administration shifted from postnatal day 3 (P3) to P28. HPβCD-induced histopathologies were initially confined to the OHCs, but between 4- and 6-weeks post-treatment, there was an unexpected, rapid and massive expansion of the lesion to include most inner hair cells (IHC), pillar cells (PC), peripheral auditory nerve fibers, and spiral ganglion neurons at location where OHCs were missing. The magnitude and spatial extent of HPβCD-induced OHC death was tightly correlated with the postnatal day when HPβCD was administered which coincided with the spatiotemporal upregulation of prestin in OHCs. A second, massive wave of degeneration involving IHCs, PC, auditory nerve fibers and spiral ganglion neurons abruptly emerged 4–6 weeks post-HPβCD treatment. This secondary wave of degeneration combined with the initial OHC loss results in a profound, irreversible hearing loss.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Xiaopeng Liu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Li Li
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
17
|
Ding D, Jiang H, Salvi R. Cochlear spiral ganglion neuron degeneration following cyclodextrin-induced hearing loss. Hear Res 2020; 400:108125. [PMID: 33302057 DOI: 10.1016/j.heares.2020.108125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 01/12/2023]
Abstract
Because cyclodextrins are capable of removing cholesterol from cell membranes, there is growing interest in using these compounds to treat diseases linked to aberrant cholesterol metabolism. One compound, 2-hydroxypropyl-beta-cyclodextrin (HPβCD), is currently being evaluated as a treatment for Niemann-Pick Type C1 disease, a rare, fatal neurodegenerative disease caused by the buildup of lipids in endosomes and lysosomes. HPβCD can reduce some debilitating symptoms and extend life span, but the therapeutic doses used to treat the disease cause hearing loss. Initial studies in rodents suggested that HPβCD selectively damaged only cochlear outer hair cells during the first week post-treatment. However, our recent in vivo and in vitro studies suggested that the damage could become progressively worse and more extensive over time. To test this hypothesis, we treated rats subcutaneously with 1, 2, 3 or 4 g/kg of HPβCD and waited for 8-weeks to assess the long-term histological consequences. Our new results indicate that the two highest doses of HPβCD caused extensive damage not only to OHC, but also to inner hair cells, pillar cells and other support cells resulting in the collapse and flattening of the sensory epithelium. The 4 g/kg dose destroyed all the outer hair cells and three-fourths of the inner hair cells over the basal two-thirds of the cochlea and more than 85% of the nerve fibers in the habenula perforata and more than 80% of spiral ganglion neurons in the middle of basal turn of the cochlea. The mechanisms that lead to the delayed degeneration of inner hair cells, pillar cells, nerve fibers and spiral ganglion neurons remain poorly understood, but may be related to the loss of trophic support caused by the degeneration of sensory and/or support cells in the organ of Corti. Despite the massive damage to the cochlear sensory epithelium, the blood vessels in the stria vascularis and the vestibular hair cells in the utricle and saccule remained normal.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA.
| |
Collapse
|
18
|
Understanding and Treating Niemann-Pick Type C Disease: Models Matter. Int J Mol Sci 2020; 21:ijms21238979. [PMID: 33256121 PMCID: PMC7730076 DOI: 10.3390/ijms21238979] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biomedical research aims to understand the molecular mechanisms causing human diseases and to develop curative therapies. So far, these goals have been achieved for a small fraction of diseases, limiting factors being the availability, validity, and use of experimental models. Niemann–Pick type C (NPC) is a prime example for a disease that lacks a curative therapy despite substantial breakthroughs. This rare, fatal, and autosomal-recessive disorder is caused by defects in NPC1 or NPC2. These ubiquitously expressed proteins help cholesterol exit from the endosomal–lysosomal system. The dysfunction of either causes an aberrant accumulation of lipids with patients presenting a large range of disease onset, neurovisceral symptoms, and life span. Here, we note general aspects of experimental models, we describe the line-up used for NPC-related research and therapy development, and we provide an outlook on future topics.
Collapse
|
19
|
Ding D, Manohar S, Jiang H, Salvi R. Hydroxypropyl-β-cyclodextrin causes massive damage to the developing auditory and vestibular system. Hear Res 2020; 396:108073. [PMID: 32956992 DOI: 10.1016/j.heares.2020.108073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/03/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
2-hydroxypropyl-β-cyclodextrin (HPβCD), a cholesterol chelator used to treat Niemann-Pick C1 (NPC1) lysosomal storage disease, causes hearing loss in mammals by preferentially destroying outer hair cells. Because cholesterol plays an important role in early neural development, we hypothesized that HPβCD would cause more extensive damage to postnatal cochlear and vestibular structures in than adult rats. This hypothesis was tested by administering HPβCD to adult rats and postnatal day 3 (P3) cochlear and vestibular organ cultures. Adult rats treated with HPβCD developed hearing impairment and outer hair cell loss 3-day post-treatment; damage increased with dose from the high frequency base toward the low-frequency apex. The HPβCD-induced histopathologies were more severe and widespread in cochlear and vestibular cultures at P3 than in adults. HPβCD destroyed both outer and inner hair cells, auditory nerve fibers and spiral ganglion neurons as well as type I and type II vestibular hair cells and vestibular ganglion neurons. The early stage of HPβCD damage involved disruption of hair cell mechanotransduction and destruction of stereocilia. HPβCD-mediated apoptosis in P3 cultures was most-strongly initiated by activation of the extrinsic caspase-8 cell death pathway in cochlear and vestibular hair cells and neurons followed by activation of executioner caspase-3. Thus, HPβCD is toxic to all types of postnatal cochlear and vestibular hair cells and neurons in vitro whereas in vivo it only appears to destroy outer hair cells in adult cochleae. The more severe HPβCD-induced damage in postnatal cultures could be due to greater drug bioavailability in vitro and/or greater vulnerability of the developing inner ear.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, United States
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, United States
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, United States
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, United States.
| |
Collapse
|
20
|
Liu X, Ding D, Chen GD, Li L, Jiang H, Salvi R. 2-Hydroxypropyl-β-cyclodextrin Ototoxicity in Adult Rats: Rapid Onset and Massive Destruction of Both Inner and Outer Hair Cells Above a Critical Dose. Neurotox Res 2020; 38:808-823. [PMID: 32607920 DOI: 10.1007/s12640-020-00252-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
2-Hydroxypropyl-β-cyclodextrin (HPβCD), a cholesterol chelator, is being used to treat diseases associated with abnormal cholesterol metabolism such as Niemann-Pick C1 (NPC1). However, the high doses of HPβCD needed to slow disease progression may cause hearing loss. Previous studies in mice have suggested that HPβCD ototoxicity results from selective outer hair cell (OHC) damage. However, it is unclear if HPβCD causes the same type of damage or is more or less toxic to other species such as rats, which are widely used in toxicity research. To address these issues, rats were given a subcutaneous injection of HPβCD between 500 and 4000 mg/kg. Distortion product otoacoustic emissions (DPOAE), the cochlear summating potential (SP), and compound action potential (CAP) were used to assess cochlear function followed by quantitative analysis of OHC and inner hair cell (IHC) loss. The 3000- and 4000-mg/kg doses abolished DPOAE and greatly reduced SP and CAP amplitudes. These functional deficits were associated with nearly complete loss of OHC as well as ~ 80% IHC loss over the basal two thirds of the cochlea. The 2000-mg/kg dose abolished DPOAE and significantly reduced SP and CAP amplitudes at the high frequencies. These deficits were linked to OHC and IHC losses in the high-frequency region of the cochlea. Little or no damage occurred with 500 or 1000 mg/kg of HPβCD. The HPβCD-induced functional and structural deficits in rats occurred suddenly, involved damage to both IHC and OHC, and were more severe than those reported in mice.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Dalian Ding
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Li Li
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Haiyan Jiang
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
21
|
Nishimura S, Matsumori N. Chemical diversity and mode of action of natural products targeting lipids in the eukaryotic cell membrane. Nat Prod Rep 2020; 37:677-702. [PMID: 32022056 DOI: 10.1039/c9np00059c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: up to 2019Nature furnishes bioactive compounds (natural products) with complex chemical structures, yet with simple, sophisticated molecular mechanisms. When natural products exhibit their activities in cells or bodies, they first have to bind or react with a target molecule in/on the cell. The cell membrane is a major target for bioactive compounds. Recently, our understanding of the molecular mechanism of interactions between natural products and membrane lipids progressed with the aid of newly-developed analytical methods. New technology reconnects old compounds with membrane lipids, while new membrane-targeting molecules are being discovered through the screening for antimicrobial potential of natural products. This review article focuses on natural products that bind to eukaryotic membrane lipids, and includes clinically important molecules and key research tools. The chemical diversity of membrane-targeting natural products and the molecular basis of lipid recognition are described. The history of how their mechanism was unveiled, and how these natural products are used in research are also mentioned.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Department of Biotechnology, Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan.
| | | |
Collapse
|
22
|
Cyclodextrin polymer improves atherosclerosis therapy and reduces ototoxicity. J Control Release 2019; 319:77-86. [PMID: 31843641 DOI: 10.1016/j.jconrel.2019.12.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/23/2023]
Abstract
Recently, cyclodextrin (CD) has shown the potential for effective treatment of atherosclerotic plaques in mice by solubilizing plaque cholesterol. While promising as a new therapy for atherosclerosis, poor pharmacokinetics and ototoxicity of CD pose a therapeutic challenge. Thus far, however, there has been no attempts to overcome such limitations. Here, we showed that cyclodextrin polymer (CDP) with a diameter of ~ 10 nm exhibits outstanding pharmacokinetics and plaque targeting efficacy compared to a monomeric CD. Furthermore, we found out that CDP does not induce plasma membrane disruption as opposed to CD, which eliminated cytotoxicity and hemolytic activity of CD. In a mouse model of atherosclerosis, subcutaneous injections of beta-cyclodextrin polymer (βCDP) significantly inhibited plaque growth compared to monomeric hydroxypropyl-beta-cyclodextrin (HPβCD) at the same dose (1 g/kg). More importantly, βCDP did not induce significant ototoxicity at a high-dose (8 g/kg) where HPβCD reduced the outer hair cell content by 36%. These findings suggest that the polymerization of CD can overcome major limitations of CD therapy for treatment of atherosclerosis.
Collapse
|
23
|
Bräuer AU, Kuhla A, Holzmann C, Wree A, Witt M. Current Challenges in Understanding the Cellular and Molecular Mechanisms in Niemann-Pick Disease Type C1. Int J Mol Sci 2019; 20:ijms20184392. [PMID: 31500175 PMCID: PMC6771135 DOI: 10.3390/ijms20184392] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Rare diseases are a heterogeneous group of very different clinical syndromes. Their most common causes are defects in the hereditary material, and they can therefore be passed on to descendants. Rare diseases become manifest in almost all organs and often have a systemic expressivity, i.e., they affect several organs simultaneously. An effective causal therapy is often not available and can only be developed when the underlying causes of the disease are understood. In this review, we focus on Niemann–Pick disease type C1 (NPC1), which is a rare lipid-storage disorder. Lipids, in particular phospholipids, are a major component of the cell membrane and play important roles in cellular functions, such as extracellular receptor signaling, intracellular second messengers and cellular pressure regulation. An excessive storage of fats, as seen in NPC1, can cause permanent damage to cells and tissues in the brain and peripheral nervous system, but also in other parts of the body. Here, we summarize the impact of NPC1 pathology on several organ systems, as revealed in experimental animal models and humans, and give an overview of current available treatment options.
Collapse
Affiliation(s)
- Anja U Bräuer
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, D-26129 Oldenburg, Germany.
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, D-26129 Oldenburg, Germany.
| | - Angela Kuhla
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057 Rostock, Germany.
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany.
| | - Carsten Holzmann
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany.
- Institute of Medical Genetics, Rostock University Medical Center, D-18057 Rostock, Germany.
| | - Andreas Wree
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany.
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany.
| | - Martin Witt
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany.
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany.
| |
Collapse
|
24
|
Panchaprateep R, Pisitkun T, Kalpongnukul N. Quantitative proteomic analysis of dermal papilla from male androgenetic alopecia comparing before and after treatment with low-level laser therapy. Lasers Surg Med 2019; 51:600-608. [PMID: 30843235 DOI: 10.1002/lsm.23074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Currently, low-level laser therapy (LLLT) has been approved as a new treatment for androgenetic alopecia (AGA). However, it has not been elucidated how LLLT promotes hair growth in vivo. OBJECTIVES To investigate the change in protein expression from dermal papilla (DP) tissues in male AGA patients after LLLT treatment using liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. METHODS This is an open-label, prospective, single-arm study obtained punch scalp biopsy specimens from patients with AGA before and after LLLT treatment. Each subject was self-treated with helmet type of LLLT (655 nm, 5 mW) device at home for 25 minutes per treatment every other day for 24 weeks. LC-MS/MS analysis based on the dimethyl labeling strategy for protein quantification was used to identify proteins expressed in DP tissues from AGA patients. RESULTS Proteomic analysis revealed 11 statistically significant up-regulated and 2 down-regulated proteins in LLLT treated DP compared with baseline (P < 0.05). A bioinformatic analysis signifies that these proteins are involved in several biological processes such as regulation of cellular transcription, protein biosynthesis, cell energy, lipid homeostasis, extracellular matrix (ECM), ECM structural constituent, cell-cell/cell-matrix adhesion as well as angiogenesis. ATP-binding cassette sub-family G member, a transporter involved in cellular lipid homeostasis, was the most up-regulated protein. Additionally, LLLT increased the main ECM proteins in DP which results in a bigger volume of DP and a clinical improvement of hair diameter in AGA patients. CONCLUSION We identified the proteome set of DP proteins of male patients with AGA treated with LLLT which implicates the role of LLLT in promoting hair growth and reversing of miniaturization process of AGA by enhancing DP cell function. Our results strongly support the benefit of LLLT in the treatment of AGA. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ratchathorn Panchaprateep
- Faculty of Medicine, Division of Dermatology, Department of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nuttiya Kalpongnukul
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
25
|
Lee MY, Kabara LL, Swiderski DL, Raphael Y, Duncan RK, Kim YH. ROS Scavenger, Ebselen, Has No Preventive Effect in New Hearing Loss Model Using a Cholesterol-Chelating Agent. J Audiol Otol 2019; 23:69-75. [PMID: 30727719 PMCID: PMC6468279 DOI: 10.7874/jao.2018.00255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/19/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The antioxidant ebselen will be able to limit or prevent the ototoxicity arising from 2-hydroxypropyl-β-cyclodextrin (HPβCD). Niemann-Pick Type C (NPC) disease is a disorder of lysosomal storage manifested in sphingolipidosis. Recently, it was noted that experimental use of HPβCD could partially resolve the symptoms in both animals and human patients. Despite its desirable effect, HPβCD can induce hearing loss, which is the only major side effect noted to date. Understanding of the pathophysiology of hearing impairment after administration of HPβCD and further development of preventive methods are essential to reduce the ototoxic side effect. The mechanisms of HPβCD-induced ototoxicity remain unknown, but the resulting pathology bears some resemblance to other ototoxic agents, which involves oxidative stress pathways. To indirectly determine the involvement of oxidative stress in HPβCD-induced ototoxicity, we tested the efficacy of an antioxidant reagent, ebselen, on the extent of inner ear side effects caused by HPβCD. MATERIALS AND METHODS Ebselen was applied prior to administration of HPβCD in mice. Auditory brainstem response thresholds and otopathology were assessed one week later. Bilateral effects of the drug treatments also were examined. RESULTS HPβCD-alone resulted in bilateral, severe, and selective loss of outer hair cells from base to apex with an abrupt transition between lesions and intact areas. Ebselen co-treatment did not ameliorate HPβCD-induced hearing loss or alter the resulting histopathology. CONCLUSIONS The results indirectly suggest that cochlear damage by HPβCD is unrelated to reactive oxygen species formation. However, further research into the mechanism(s) of HPβCD otopathology is necessary.
Collapse
Affiliation(s)
- Min Young Lee
- Department of Otorhinolaryngology and Head & Neck Surgery, Dankook University Hospital, Cheonan, Korea
| | - Lisa L Kabara
- Kresge Hearing Research Institute, Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - R Keith Duncan
- Kresge Hearing Research Institute, Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - Young Ho Kim
- Department of Otorhinolaryngology, Boramae Medical Center, Seoul Metropolitan Government-Seoul National University, Seoul, Korea
| |
Collapse
|
26
|
Zhou Y, Takahashi S, Homma K, Duan C, Zheng J, Cheatham MA, Zheng J. The susceptibility of cochlear outer hair cells to cyclodextrin is not related to their electromotile activity. Acta Neuropathol Commun 2018; 6:98. [PMID: 30249300 PMCID: PMC6151916 DOI: 10.1186/s40478-018-0599-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/13/2018] [Indexed: 11/26/2022] Open
Abstract
Niemann-Pick Type C1 (NPC1) disease is a fatal neurovisceral disorder caused by dysfunction of NPC1 protein, which plays a role in intracellular cholesterol trafficking. The cholesterol-chelating agent, 2-hydroxypropyl-β-cyclodextrin (HPβCD), is currently undergoing clinical trials for treatment of this disease. Though promising in alleviating neurological symptoms, HPβCD causes irreversible hearing loss in NPC1 patients and outer hair cell (OHC) death in animal models. We recently found that HPβCD-induced OHC death can be significantly alleviated in a mouse model lacking prestin, an OHC-specific motor protein required for the high sensitivity and sharp frequency selectivity of mammalian hearing. Since cholesterol status is known to influence prestin’s electromotility, we examined how prestin contributes to HPβCD-induced OHC death in the disease context using the NPC1 knockout (KO) mouse model (NPC1-KO). We found normal expression and localization of prestin in NPC1-KO OHCs. Whole-cell patch-clamp recordings revealed a significant depolarization of the voltage-operating point of prestin in NPC1-KO mice, suggesting reduced levels of cholesterol in the lateral membrane of OHCs that lack NPC1. OHC loss and elevated thresholds were found for high frequency regions in NPC1-KO mice, whose OHCs retained their sensitivity to HPβCD. To investigate whether prestin’s electromotile function contributes to HPβCD-induced OHC death, the prestin inhibitor salicylate was co-administered with HPβCD to WT and NPC1-KO mice. Neither oral nor intraperitoneal administration of salicylate mitigated HPβCD-induced OHC loss. To further determine the contribution of prestin’s electromotile function, a mouse model expressing a virtually nonelectromotile prestin protein (499-prestin) was subjected to HPβCD treatment. 499-prestin knockin mice showed no resistance to HPβCD-induced OHC loss. As 499-prestin maintains its ability to bind cholesterol, our data imply that HPβCD-induced OHC death is ascribed to the structural role of prestin in maintaining the OHC’s lateral membrane, rather than its motor function.
Collapse
|
27
|
Takahashi S, Sun W, Zhou Y, Homma K, Kachar B, Cheatham MA, Zheng J. Prestin Contributes to Membrane Compartmentalization and Is Required for Normal Innervation of Outer Hair Cells. Front Cell Neurosci 2018; 12:211. [PMID: 30079013 PMCID: PMC6062617 DOI: 10.3389/fncel.2018.00211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/27/2018] [Indexed: 12/16/2022] Open
Abstract
Outer hair cells (OHC) act as amplifiers and their function is modified by medial olivocochlear (MOC) efferents. The unique OHC motor protein, prestin, provides the molecular basis for somatic electromotility, which is required for sensitivity and frequency selectivity, the hallmarks of mammalian hearing. Prestin proteins are the major component of the lateral membrane of mature OHCs, which separates apical and basal domains. To investigate the contribution of prestin to this unique arrangement, we compared the distribution of membrane proteins in OHCs of wildtype (WT) and prestin-knockout (KO) mice. In WT, the apical protein PMCA2 was exclusively localized to the hair bundles, while it was also found at the lateral membrane in KOs. Similarly, a basal protein KCNQ4 did not coalesce at the base of OHCs but was widely dispersed in mice lacking prestin. Since the expression levels of PMCA2 and KCNQ4 remained unchanged in KOs, the data indicate that prestin is required for the normal distribution of apical and basal membrane proteins in OHCs. Since OHC synapses predominate in the basal subnuclear region, we also examined the synaptic architecture in prestin-KO mice. Although neurite densities were not affected, MOC efferent terminals in prestin-KO mice were no longer constrained to the basal pole as in WT. This trend was evident as early as at postnatal day 12. Furthermore, terminals were often enlarged and frequently appeared as singlets when compared to the multiple clusters of individual terminals in WT. This abnormality in MOC synaptic morphology in prestin-KO mice is similar to defects in mice lacking MOC pathway proteins such as α9/α10 nicotinic acetylcholine receptors and BK channels, indicating a role for prestin in the proper establishment of MOC synapses. To investigate the contribution of prestin’s electromotility, we also examined OHCs from a mouse model that expresses non-functional prestin (499-prestin). We found no changes in PMCA2 localization and MOC synaptic morphology in OHCs from 499-prestin mice. Taken together, these results indicate that prestin, independent of its motile function, plays an important structural role in membrane compartmentalization, which is required for the formation of normal efferent-OHC synapses in mature OHCs.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Willy Sun
- Section on Structural Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Yingjie Zhou
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,The Knowles Hearing Center, Northwestern University, Evanston, IL, United States
| | - Bechara Kachar
- Section on Structural Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Mary Ann Cheatham
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States.,The Knowles Hearing Center, Northwestern University, Evanston, IL, United States
| | - Jing Zheng
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States.,The Knowles Hearing Center, Northwestern University, Evanston, IL, United States
| |
Collapse
|
28
|
Wittkowski KM, Dadurian C, Seybold MP, Kim HS, Hoshino A, Lyden D. Complex polymorphisms in endocytosis genes suggest alpha-cyclodextrin as a treatment for breast cancer. PLoS One 2018; 13:e0199012. [PMID: 29965997 PMCID: PMC6028090 DOI: 10.1371/journal.pone.0199012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 05/17/2018] [Indexed: 02/06/2023] Open
Abstract
Most breast cancer deaths are caused by metastasis and treatment options beyond radiation and cytotoxic drugs, which have severe side effects, and hormonal treatments, which are or become ineffective for many patients, are urgently needed. This study reanalyzed existing data from three genome-wide association studies (GWAS) using a novel computational biostatistics approach (muGWAS), which had been validated in studies of 600-2000 subjects in epilepsy and autism. MuGWAS jointly analyzes several neighboring single nucleotide polymorphisms while incorporating knowledge about genetics of heritable diseases into the statistical method and about GWAS into the rules for determining adaptive genome-wide significance. Results from three independent GWAS of 1000-2000 subjects each, which were made available under the National Institute of Health's "Up For A Challenge" (U4C) project, not only confirmed cell-cycle control and receptor/AKT signaling, but, for the first time in breast cancer GWAS, also consistently identified many genes involved in endo-/exocytosis (EEC), most of which had already been observed in functional and expression studies of breast cancer. In particular, the findings include genes that translocate (ATP8A1, ATP8B1, ANO4, ABCA1) and metabolize (AGPAT3, AGPAT4, DGKQ, LPPR1) phospholipids entering the phosphatidylinositol cycle, which controls EEC. These novel findings suggest scavenging phospholipids as a novel intervention to control local spread of cancer, packaging of exosomes (which prepare distant microenvironment for organ-specific metastases), and endocytosis of β1 integrins (which are required for spread of metastatic phenotype and mesenchymal migration of tumor cells). Beta-cyclodextrins (βCD) have already been shown to be effective in in vitro and animal studies of breast cancer, but exhibits cholesterol-related ototoxicity. The smaller alpha-cyclodextrins (αCD) also scavenges phospholipids, but cannot fit cholesterol. An in-vitro study presented here confirms hydroxypropyl (HP)-αCD to be twice as effective as HPβCD against migration of human cells of both receptor negative and estrogen-receptor positive breast cancer. If the previous successful animal studies with βCDs are replicated with the safer and more effective αCDs, clinical trials of adjuvant treatment with αCDs are warranted. Ultimately, all breast cancer are expected to benefit from treatment with HPαCD, but women with triple-negative breast cancer (TNBC) will benefit most, because they have fewer treatment options and their cancer advances more aggressively.
Collapse
Affiliation(s)
- Knut M. Wittkowski
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, United States of America
| | - Christina Dadurian
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, United States of America
| | - Martin P. Seybold
- Institut für Formale Methoden der Informatik, Universität Stuttgart, Stuttgart, Germany
| | - Han Sang Kim
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| | - Ayuko Hoshino
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| | - David Lyden
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| |
Collapse
|
29
|
Garcia EJ, Vevea JD, Pon LA. Lipid droplet autophagy during energy mobilization, lipid homeostasis and protein quality control. Front Biosci (Landmark Ed) 2018; 23:1552-1563. [PMID: 29293450 DOI: 10.2741/4660] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipid droplets (LDs) have well-established functions as sites for lipid storage and energy mobilization to meet the metabolic demands of cells. However, recent studies have expanded the roles of LDs to protein quality control. Lipophagy, or LD degradation by autophagy, plays a vital role not only in the mobilization of free fatty acids (FFAs) and lipid homeostasis at LDs, but also in the adaptation of cells to certain forms of stress including lipid imbalance. Recent studies have provided new mechanistic insights about the diverse types of lipophagy, in particular microlipophagy. This review summarizes key findings about the mechanisms and functions of lipophagy and highlights a novel function of LD microlipophagy as a mechanism to maintain endoplasmic reticulum (ER) proteostasis under conditions of lipid imbalance.
Collapse
Affiliation(s)
- Enrique J Garcia
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032 USA
| | - Jason D Vevea
- HHMI and Dept. of Neuroscience, University of Wisconsin, Madison, WI, 53705 USA
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032 USA,
| |
Collapse
|
30
|
Rathinam R, Rosati R, Jamesdaniel S. CRISPR/Cas9-mediated knockout of Lim-domain only four retards organ of Corti cell growth. J Cell Biochem 2018; 119:3545-3553. [PMID: 29143984 DOI: 10.1002/jcb.26529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/13/2017] [Indexed: 01/04/2023]
Abstract
Lim-domain only 4 (LMO4) plays a critical role in mediating the ototoxic side-effects of cisplatin, a highly effective anti-cancer drug. However, the signaling mechanism by which cochlear LMO4 mediates otopathology is yet to be fully understood. Knockout cell culture models are useful tools for investigating the functional roles of novel genes and delineating associated signaling pathways. Therefore, LMO4 knockout organ of Corti cells were generated by using the CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9) system. Successful knockout of LMO4 in UB/OC1 cells was verified by the absence of LMO4 protein bands in immunoblots. Though the Knockout of LMO4 retarded the growth rate and the migratory potential of the cells it did not inhibit their long-term viability as the LMO4 knockout UB/OC1 cells were able to survive, proliferate, and form colonies. In addition, the knockout of LMO4 did not alter the expression of myosin VIIa, a biomarker of hair cells, suggesting that the knockout cells retain important characteristic features of cochlear sensory receptor cells. Thus, the findings of this study indicate that CRISPR/Cas9 system is a simple and versatile method for knocking out genes of interest in organ of Corti cells and that LMO4 knockout UB/OC1 cells are viable experimental models for studying the functional role of LMO4 in ototoxicity.
Collapse
Affiliation(s)
- Rajamani Rathinam
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Rita Rosati
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Samson Jamesdaniel
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan.,Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
31
|
|
32
|
Crumling MA, King KA, Duncan RK. Cyclodextrins and Iatrogenic Hearing Loss: New Drugs with Significant Risk. Front Cell Neurosci 2017; 11:355. [PMID: 29163061 PMCID: PMC5676048 DOI: 10.3389/fncel.2017.00355] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Cyclodextrins are a family of cyclic oligosaccharides with widespread usage in medicine, industry and basic sciences owing to their ability to solubilize and stabilize guest compounds. In medicine, cyclodextrins primarily act as a complexing vehicle and consequently serve as powerful drug delivery agents. Recently, uncomplexed cyclodextrins have emerged as potent therapeutic compounds in their own right, based on their ability to sequester and mobilize cellular lipids. In particular, 2-hydroxypropyl-β-cyclodextrin (HPβCD) has garnered attention because of its cholesterol chelating properties, which appear to treat a rare neurodegenerative disorder and to promote atherosclerosis regression related to stroke and heart disease. Despite the potential health benefits, use of HPβCD has been linked to significant hearing loss in several species, including humans. Evidence in mice supports a rapid onset of hearing loss that is dose-dependent. Ototoxicity can occur following central or peripheral drug delivery, with either route resulting in the preferential loss of cochlear outer hair cells (OHCs) within hours of dosing. Inner hair cells and spiral ganglion cells are spared at doses that cause ~85% OHC loss; additionally, no other major organ systems appear adversely affected. Evidence from a first-to-human phase 1 clinical trial mirrors animal studies to a large extent, indicating rapid onset and involvement of OHCs. All patients in the trial experienced some permanent hearing loss, although a temporary loss of function can be observed acutely following drug delivery. The long-term impact of HPβCD use as a maintenance drug, and the mechanism(s) of ototoxicity, are unknown. β-cyclodextrins preferentially target membrane cholesterol, but other lipid species and proteins may be directly or indirectly involved. Moreover, as cholesterol is ubiquitous in cell membranes, it remains unclear why OHCs are preferentially susceptible to HPβCD. It is possible that HPβCD acts upon several targets—for example, ion channels, tight junctions (TJ), membrane integrity, and bioenergetics—that collectively increase the sensitivity of OHCs over other cell types.
Collapse
Affiliation(s)
- Mark A Crumling
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, United States
| | - Kelly A King
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - R Keith Duncan
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
33
|
Mendelsohn AR, Larrick JW. Preclinical Reversal of Atherosclerosis by FDA-Approved Compound that Transforms Cholesterol into an Anti-Inflammatory "Prodrug". Rejuvenation Res 2017; 19:252-5. [PMID: 27241174 DOI: 10.1089/rej.2016.1849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although atherosclerosis is treatable with lipid-lowering drugs, not all patients respond. Hydroxypropyl-beta-cyclodextrin (CD) is an FDA-approved compound for solubilizing, capturing, and delivering lipophilic drugs in humans. Zimmer et al. report that CD mediates regression of atherosclerotic plaques in two mouse models by solubilizing cholesterol crystals (CCs), and promoting metabolism of CCs into water-soluble 27-hydroxycholesterol, which, in turn, activates anti-inflammatory LXR receptor target genes, promotes active and passive efflux of cholesterol from macrophages, and increases metabolic processing of cholesterol. In effect, CD inverts the role of its cargo, cholesterol, from inflammatory to anti-inflammatory by converting cholesterol into a "prodrug" that when modified to 27-hydroxycholesterol reduces atherosclerosis. This mechanism defines a new class of pharmaceuticals, "inverters": compounds that cause innate biomolecules to act opposite to their normal function. However, chronic CD treatment in animal models damages auditory cells, which must be addressed before CD can be developed as a systemic drug for atherosclerosis.
Collapse
Affiliation(s)
- Andrew R Mendelsohn
- 1 Panorama Research Institute , Sunnyvale, California.,2 Regenerative Sciences Institute , Sunnyvale, California
| | - James W Larrick
- 1 Panorama Research Institute , Sunnyvale, California.,2 Regenerative Sciences Institute , Sunnyvale, California
| |
Collapse
|
34
|
PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder. Sci Rep 2016; 6:31750. [PMID: 27572704 PMCID: PMC5004151 DOI: 10.1038/srep31750] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/25/2016] [Indexed: 01/19/2023] Open
Abstract
2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1−/−) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1−/− cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders.
Collapse
|
35
|
Tamura A, Nishida K, Yui N. Lysosomal pH-inducible supramolecular dissociation of polyrotaxanes possessing acid-labile N-triphenylmethyl end groups and their therapeutic potential for Niemann-Pick type C disease. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:361-374. [PMID: 27877888 PMCID: PMC5101866 DOI: 10.1080/14686996.2016.1200948] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/02/2016] [Accepted: 06/09/2016] [Indexed: 05/23/2023]
Abstract
Niemann-Pick type C (NPC) disease is characterized by the accumulation of cholesterol in lysosomes. We have previously reported that biocleavable polyrotaxanes (PRXs) composed of β-cyclodextrins (β-CDs) threaded onto a linear polymer capped with bulky stopper molecules via intracellularly cleavable linkers show remarkable cholesterol reducing effects in NPC disease patient-derived fibroblasts owing to the stimuli-responsive intracellular dissociation of PRXs and subsequent β-CD release from the PRXs. Herein, we describe a series of novel acid-labile 2-(2-hydroxyethoxy)ethyl group-modified PRXs (HEE-PRXs) bearing terminal N-triphenylmethyl (N-Trt) groups as a cleavable component for the treatment of NPC disease. The N-Trt end groups of the HEE-PRXs underwent acidic pH-induced cleavage and led to the dissociation of their supramolecular structure. A kinetic study revealed that the number of HEE groups on the PRX did not affect the cleavage kinetics of the N-Trt end groups of the HEE-PRXs. The effect of the number of HEE groups of the HEE-PRXs, which was modified to impart water solubility to the PRXs, on cellular internalization efficiency, lysosomal localization efficiency, and cholesterol reduction ability in NPC disease-derived fibroblasts (NPC1 fibroblasts) was also investigated. The cellular uptake and lysosomal localization efficiency were almost equivalent for HEE-PRXs with different numbers of HEE groups. However, the cholesterol reducing ability of the HEE-PRXs in NPC1 fibroblasts was affected by the number of HEE groups, and HEE-PRXs with a high number of HEE groups were unable to reduce lysosomal cholesterol accumulation. This deficiency is most likely due to the cholesterol-solubilizing ability of HEE-modified β-CDs released from the HEE-PRXs. We conclude that the N-Trt group acts as a cleavable component to induce the lysosomal dissociation of HEE-PRXs, and acid-labile HEE-PRXs with an optimal number of HEE groups (4.1 to 5.4 HEE groups per single β-CD threaded onto the PRX) have great therapeutic potential for treating NPC disease.
Collapse
Affiliation(s)
- Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei Nishida
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|