1
|
Rangaraj S, Agarwal A, Banerjee S. Bird's Eye View on Mycobacterium tuberculosis-HIV Coinfection: Understanding the Molecular Synergism, Challenges, and New Approaches to Therapeutics. ACS Infect Dis 2025. [PMID: 40229972 DOI: 10.1021/acsinfecdis.4c00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), is the most common secondary infection in the Human Immunodeficiency Virus (HIV) infected population, accounting for more than one-fourth of deaths in people living with HIV (PLWH). Reciprocally, HIV infection increases the susceptibility to primary TB or reactivation of latent TB by several folds. The synergistic interactions between M.tb and HIV not only potentiate their deleterious impact but also complicate the clinical management of both the diseases. M.tb-HIV coinfected patients have a high risk of failure of accurate diagnosis, treatment inefficiency for both TB and HIV, concurrent nontuberculous mycobacterial infections, other comorbidities such as diabetes mellitus, severe cytotoxicity due to drug overburden, and immune reconstitution inflammatory syndrome (IRIS). The need of the hour is to understand M.tb-HIV coinfection biology and their collective impact on the host immunocompetence and to think of out-of-the-box treatment perspectives, including host-directed therapy under the rising view of homeostatic medicines. This review aims to highlight the molecular players, both from the pathogens and host, that facilitate the synergistic interactions and host-associated proteins/enzymes regulating immunometabolism, underlining potential targets for designing and screening chemical inhibitors to reduce the burden of both pathogens concomitantly during M.tb-HIV coinfection. To appreciate the necessity of revisiting therapeutic approaches and research priorities, we provide a glimpse of anti-TB and antiretroviral drug-drug interactions, project the gaps in our understanding of coinfection biology, and also enlist some key research initiatives that will help us deal with the synergistic epidemic of M.tb-HIV coinfection.
Collapse
Affiliation(s)
- Siranjeevi Rangaraj
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Anushka Agarwal
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Sharmistha Banerjee
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
2
|
Yandrapally S, Agarwal A, Chatterjee A, Sarkar S, Mohareer K, Banerjee S. Mycobacterium tuberculosis EspR modulates Th1-Th2 shift by transcriptionally regulating IL-4, steering increased mycobacterial persistence and HIV propagation during co-infection. Front Immunol 2023; 14:1276817. [PMID: 37928551 PMCID: PMC10621737 DOI: 10.3389/fimmu.2023.1276817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) and HIV are known to mutually support each other during co-infection by multiple mechanisms. This synergistic influence could be either by direct interactions or indirectly through secreted host or pathogen factors that work in trans. Mtb secretes several virulence factors to modulate the host cellular environment for its persistence and escaping cell-intrinsic immune responses. We hypothesized that secreted Mtb transcription factors that target the host nucleus can directly interact with host DNA element(s) or HIV LTR during co-infection, thereby modulating immune gene expression, or driving HIV transcription, helping the synergistic existence of Mtb and HIV. Here, we show that the Mtb-secreted protein, EspR, a transcription regulator, increased mycobacterial persistence and HIV propagation during co-infection. Mechanistically, EspR localizes to the nucleus of the host cells during infection, binds to its putative cognate motif on the promoter region of the host IL-4 gene, activating IL-4 gene expression, causing high IL-4 titers that induce a Th2-type microenvironment, shifting the macrophage polarization to an M2 state as evident from CD206 dominant population over CD64. This compromised the clearance of the intracellular mycobacteria and enhanced HIV propagation. It was interesting to note that EspR did not bind to HIV LTR, although its transient expression increased viral propagation. This is the first report of an Mtb transcription factor directly regulating a host cytokine gene. This augments our understanding of the evolution of Mtb immune evasion strategies and unveils how Mtb aggravates comorbidities, such as HIV co-infection, by modulating the immune microenvironment.
Collapse
|
3
|
Taghipour A, Malih N, Köksal F, Jokelainen P, Ghaffarifar F. Toxoplasma gondii seroprevalence among tuberculosis patients: A systematic review and meta-analysis. Microb Pathog 2021; 159:105083. [PMID: 34246749 DOI: 10.1016/j.micpath.2021.105083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 11/26/2022]
Abstract
Toxoplasma gondii and Mycobacterium tuberculosis are intracellular pathogens, both infecting a substantial proportion of human population. We conducted a systematic review and meta-analysis to estimate the pooled T. gondii seroprevalence in tuberculosis patients. Three international databases were systematically searched for literature on prevalence of T. gondii in tuberculosis patients. A total of 1389 documents were identified, and eight papers were eligible to be included in the systematic review and meta-analysis. Geographical data gaps were evident, as no studies were identified from many countries where both infections are important. The pooled seroprevalence of IgG, IgM, and both IgG and IgM antibodies against T. gondii in tuberculosis patients were estimated to be 35.9% (95% confidence interval [CI], 19.3-56.7%), 35.0% (95% CI, 3.0-90.3%), and 13.4% (95% CI, 2.4-49.0%), respectively. In the included case-control studies, the pooled T. gondii seroprevalence (proportion anti- T. gondii IgG antibody positive) was higher in tuberculosis patients than in their controls, with an odds ratio by random effects model of 1.63 (95% CI, 1.28-2.08). The results of our work suggest an association between T. gondii seropositivity and being a tuberculosis patient, which should however be interpreted with caution because the timeline of the infections and the disease process are not accounted for. Our work showed that T. gondii seropositivity, indicating chronic infection with the zoonotic parasite, was relatively common among tuberculosis patients.
Collapse
Affiliation(s)
- Ali Taghipour
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Malih
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatih Köksal
- Department of Clinical Bacteriology, Faculty of Medicine, Çukurova University, Adana, Turkey; TR Ministry of Health Regional Tuberculosis Laboratories and the Director of the Tropical Diseases Research and Application Center, Turkey
| | - Pikka Jokelainen
- Department of Bacteria, Parasites & Fungi, Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark.
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Mohareer K, Medikonda J, Vadankula GR, Banerjee S. Mycobacterial Control of Host Mitochondria: Bioenergetic and Metabolic Changes Shaping Cell Fate and Infection Outcome. Front Cell Infect Microbiol 2020; 10:457. [PMID: 33102245 PMCID: PMC7554303 DOI: 10.3389/fcimb.2020.00457] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondria, are undoubtedly critical organelle of a eukaryotic cell, which provide energy and offer a platform for most of the cellular signaling pathways that decide cell fate. The role of mitochondria in immune-metabolism is now emerging as a crucial process governing several pathological states, including infection, cancer, and diabetes. Mitochondria have therefore been a vulnerable target for several bacterial and viral pathogens to control host machinery for their survival, replication, and dissemination. Mycobacterium tuberculosis, a highly successful human pathogen, persists inside alveolar macrophages at the primary infection site, applying several strategies to circumvent macrophage defenses, including control of host mitochondria. The infection perse and specific mycobacterial factors that enter the host mitochondrial milieu perturb mitochondrial dynamics and function by disturbing mitochondrial membrane potential, shifting bioenergetics parameters such as ATP and ROS, orienting the host cell fate and thereby infection outcome. In the present review, we attempt to integrate the available information and emerging dogmas to get a holistic view of Mycobacterium tuberculosis infection vis-a-vis mycobacterial factors that target host mitochondria and changes therein in terms of morphology, dynamics, proteomic, and bioenergetic alterations that lead to a differential cell fate and immune response determining the disease outcome. We also discuss critical host factors and processes that are overturned by Mycobacterium tuberculosis, such as cAMP-mediated signaling, redox homeostasis, and lipid droplet formation. Further, we also present alternate dogmas as well as the gaps and limitations in understanding some of the present research areas, which can be further explored by understanding some critical processes during Mycobacterium tuberculosis infection and the reasons thereof. Toward the end, we propose to have a set of guidelines for pursuing investigations to maintain uniformity in terms of early and late phase, MOI of infection, infection duration and incubation periods, the strain of mycobacteria, passage numbers, and so on, which all work as probable variables toward different readouts. Such a setup would, therefore, help in the smooth integration of information across laboratories toward a better understanding of the disease and possibilities of host-directed therapy.
Collapse
Affiliation(s)
- Krishnaveni Mohareer
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Jayashankar Medikonda
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Govinda Raju Vadankula
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sharmistha Banerjee
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
5
|
Taunk K, Kalita B, Kale V, Chanukuppa V, Naiya T, Zingde SM, Rapole S. The development and clinical applications of proteomics: an Indian perspective. Expert Rev Proteomics 2020; 17:433-451. [PMID: 32576061 DOI: 10.1080/14789450.2020.1787157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Proteomic research has been extensively used to identify potential biomarkers or targets for various diseases. Advances in mass spectrometry along with data analytics have led proteomics to become a powerful tool for exploring the critical molecular players associated with diseases, thereby, playing a significant role in the development of proteomic applications for the clinic. AREAS COVERED This review presents recent advances in the development and clinical applications of proteomics in India toward understanding various diseases including cancer, metabolic diseases, and reproductive diseases. Keywords combined with 'clinical proteomics in India' 'proteomic research in India' and 'mass spectrometry' were used to search PubMed. EXPERT OPINION The past decade has seen a significant increase in research in clinical proteomics in India. This approach has resulted in the development of proteomics-based marker technologies for disease management in the country. The majority of these investigations are still in the discovery phase and efforts have to be made to address the intended clinical use so that the identified potential biomarkers reach the clinic. To move toward this necessity, there is a pressing need to establish some key infrastructure requirements and meaningful collaborations between the clinicians and scientists which will enable more effective solutions to address health issues specific to India.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India.,Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Bhargab Kalita
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | - Vaikhari Kale
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | | | - Tufan Naiya
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Surekha M Zingde
- CH3-53, Kendriya Vihar, Sector 11, Kharghar , Navi Mumbai, Maharashtra, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| |
Collapse
|
6
|
de Sá NBR, Ribeiro-Alves M, da Silva TP, Pilotto JH, Rolla VC, Giacoia-Gripp CBW, Scott-Algara D, Morgado MG, Teixeira SLM. Clinical and genetic markers associated with tuberculosis, HIV-1 infection, and TB/HIV-immune reconstitution inflammatory syndrome outcomes. BMC Infect Dis 2020; 20:59. [PMID: 31959123 PMCID: PMC6971853 DOI: 10.1186/s12879-020-4786-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 01/09/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) and AIDS are the leading causes of infectious disease death worldwide. In some TB-HIV co-infected individuals treated for both diseases simultaneously, a pathological inflammatory reaction termed immune reconstitution inflammatory syndrome (IRIS) may occur. The risk factors for IRIS are not fully defined. We investigated the association of HLA-B, HLA-C, and KIR genotypes with TB, HIV-1 infection, and IRIS onset. METHODS Patients were divided into four groups: Group 1- TB+/HIV+ (n = 88; 11 of them with IRIS), Group 2- HIV+ (n = 24), Group 3- TB+ (n = 24) and Group 4- healthy volunteers (n = 26). Patients were followed up at INI/FIOCRUZ and HGNI (Rio de Janeiro/Brazil) from 2006 to 2016. The HLA-B and HLA-C loci were typed using SBT, NGS, and KIR genes by PCR-SSP. Unconditional logistic regression models were performed for Protection/risk estimation. RESULTS Among the individuals with TB as the outcome, KIR2DS2 was associated with increased risk for TB onset (aOR = 2.39, P = 0.04), whereas HLA-B*08 and female gender were associated with protection against TB onset (aOR = 0.23, P = 0.03, and aOR = 0.33, P = 0.01, respectively). Not carrying KIR2DL3 (aOR = 0.18, P = 0.03) and carrying HLA-C*07 (aOR = 0.32, P = 0.04) were associated with protection against TB onset among HIV-infected patients. An increased risk for IRIS onset was associated with having a CD8 count ≤500 cells/mm3 (aOR = 18.23, P = 0.016); carrying the KIR2DS2 gene (aOR = 27.22, P = 0.032), the HLA-B*41 allele (aOR = 68.84, P = 0.033), the KIR2DS1 + HLA-C2 pair (aOR = 28.58, P = 0.024); and not carrying the KIR2DL3 + HLA-C1/C2 pair (aOR = 43.04, P = 0.034), and the KIR2DL1 + HLA-C1/C2 pair (aOR = 43.04, P = 0.034), CONCLUSIONS: These results suggest the participation of these genes in the immunopathogenic mechanisms related to the conditions studied. This is the first study demonstrating an association of HLA-B*41, KIR2DS2, and KIR + HLA-C pairs with IRIS onset among TB-HIV co-infected individuals.
Collapse
Affiliation(s)
- Nathalia Beatriz Ramos de Sá
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil
| | - Marcelo Ribeiro-Alves
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectious Diseases Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tatiana Pereira da Silva
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil
| | - Jose Henrique Pilotto
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil
- Nova Iguaçu General Hospital, Nova Iguaçu, Rio de Janeiro, Brazil
| | - Valeria Cavalcanti Rolla
- Clinical Research Laboratory on Mycobacteria, National Institute of Infectious Diseases Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Carmem B W Giacoia-Gripp
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil
| | - Daniel Scott-Algara
- Unité de Biologie Cellulaire des Lymphocytes, Institut Pasteur, Paris, France
| | - Mariza Gonçalves Morgado
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil.
| | - Sylvia Lopes Maia Teixeira
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ. Av. Brasil 4365, Leonidas Deane Building, room 401, Rio de Janeiro, 21040-360, Brazil
| |
Collapse
|
7
|
Shukla E, Chauhan R. Host-HIV-1 Interactome: A Quest for Novel Therapeutic Intervention. Cells 2019; 8:cells8101155. [PMID: 31569640 PMCID: PMC6830350 DOI: 10.3390/cells8101155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
The complex nature and structure of the human immunodeficiency virus has rendered the cure for HIV infections elusive. The advances in antiretroviral treatment regimes and the development of highly advanced anti-retroviral therapy, which primarily targets the HIV enzymes, have dramatically changed the face of the HIV epidemic worldwide. Despite this remarkable progress, patients treated with these drugs often witness inadequate efficacy, compound toxicity and non-HIV complications. Considering the limited inventory of druggable HIV proteins and their susceptibility to develop drug resistance, recent attempts are focussed on targeting HIV-host interactomes that are essential for viral reproduction. Noticeably, unlike other viruses, HIV subverts the host nuclear pore complex to enter into and exit through the nucleus. Emerging evidence suggests a crucial role of interactions between HIV-1 proteins and host nucleoporins that underlie the import of the pre-integration complex into the nucleus and export of viral RNAs into the cytoplasm during viral replication. Nevertheless, the interaction of HIV-1 with nucleoporins has been poorly described and the role of nucleoporins during nucleocytoplasmic transport of HIV-1 still remains unclear. In this review, we highlight the advances and challenges in developing a more effective antiviral arsenal by exploring critical host-HIV interactions with a special focus on nuclear pore complex (NPC) and nucleoporins.
Collapse
Affiliation(s)
- Ekta Shukla
- National Center for Cell Science, S.P Pune University, Pune-411007, Maharashtra, India.
| | - Radha Chauhan
- National Center for Cell Science, S.P Pune University, Pune-411007, Maharashtra, India.
| |
Collapse
|
8
|
Metabolomics Studies To Decipher Stress Responses in Mycobacterium smegmatis Point to a Putative Pathway of Methylated Amine Biosynthesis. J Bacteriol 2019; 201:JB.00707-18. [PMID: 31138627 DOI: 10.1128/jb.00707-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/15/2019] [Indexed: 01/11/2023] Open
Abstract
Mycobacterium smegmatis, the saprophytic soil mycobacterium, is routinely used as a surrogate system to study the human pathogen Mycobacterium tuberculosis It has also been reported as an opportunistic pathogen in immunocompromised hosts. In addition, it can exist in several ecological setups, thereby suggesting its capacity to adapt to a variety of environmental cues. In this study, we employed untargeted proton nuclear magnetic resonance (1H-NMR)-based metabolomics to identify metabolites and metabolic pathways critical for early adaptive responses to acidic stress, oxidative stress, and nutrient starvation in Mycobacterium smegmatis We identified 31, 20, and 46 metabolites that showed significant changes in levels in response to acidic, oxidative, and nutrient starvation stresses, respectively. Pathway analyses showed significant perturbations in purine-pyrimidine, amino-acid, nicotinate-nicotinamide, and energy metabolism pathways. Besides these, differential levels of intermediary metabolites involved in α-glucan biosynthesis pathway were observed. We also detected high levels of organic osmolytes, methylamine, and betaine during nutrient starvation and oxidative stress. Further, tracing the differential levels of these osmolytes through computational search tools, gene expression studies (using reverse transcription-PCR [RT-PCR]), and enzyme assays, we detected the presence of a putative pathway of biosynthesis of betaine, methylamine, and dimethylamine previously unreported in Mycobacterium smegmatis IMPORTANCE Alterations in metabolite levels provide fast and direct means to regulate enzymatic reactions and, therefore, metabolic pathways. This study documents, for the first time, the metabolic changes that occur in Mycobacterium smegmatis as a response to three stresses, namely, acidic stress, oxidative stress, and nutrient starvation. These stresses are also faced by intracellular mycobacteria during infection and therefore may be extended to frame therapeutic interventions for pathogenic mycobacteria. In addition to the purine-pyrimidine, amino acid, nicotinate-nicotinamide, and energy metabolism pathways that were found to be affected in response to different stresses, a novel putative methylamine biosynthesis pathway was identified to be present in Mycobacterium smegmatis.
Collapse
|
9
|
Queirós J, Villar M, Hernández-Jarguín A, López V, Fernández de Mera I, Vicente J, Alves PC, Gortazar C, Fuente JDL. A metaproteomics approach reveals changes in mandibular lymph node microbiota of wild boar naturally exposed to an increasing trend of Mycobacterium tuberculosis complex infection. Tuberculosis (Edinb) 2018; 114:103-112. [PMID: 30711148 DOI: 10.1016/j.tube.2018.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/14/2018] [Accepted: 12/16/2018] [Indexed: 12/19/2022]
Abstract
Constraints in the characterization of microbiota community that circulates in the host have limited the extent of co-infection studies in natural populations. In this study, we used a metaproteomics approach to characterize the mandibular lymph nodes microbiota of wild boar (Sus scrofa) naturally exposed to an increasing trend of Mycobacterium tuberculosis complex (MTC) infection. Our results showed a reduction in microbiota diversity and changes in the composition, structure and functionality of the microbiota community associated with an increase in tuberculosis prevalence, from 45% in 2002/06 to 83% in 2009/12. These temporal changes were accompanied by an increase in the relative abundance of Babesia, Theileria and Pestivirus genera and a decrease in the Ascogregarina and Chlorella. A positive association was also evidenced between the prevalence of tuberculosis and the presence of microbial proteins responsible for carbohydrate transport and metabolism. Our findings suggest MTC-host-microbiota interactions at the population level, which may occur in order to ensure sufficient metabolic resources for MTC survival, growth and transmission. We strongly recommend the use of metaproteomics when studying microbiota communities in wildlife populations, for which traditional diagnostic techniques are limited and in which new organisms with a pathogenic potential for domestic animals and humans may appear.
Collapse
Affiliation(s)
- João Queirós
- Centro de Investigacão em Biodiversidade e Recursos Genéticos (CIBIO)/InBio Laboratório Associado, Universidade do Porto, Campus de Vairão, R. Monte-Crasto, 4485-661, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s⁄n, 4169-007, Porto, Portugal; SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain.
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain.
| | - Angélica Hernández-Jarguín
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain.
| | - Vladimir López
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain.
| | - Isabel Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain.
| | - Joaquín Vicente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain.
| | - Paulo C Alves
- Centro de Investigacão em Biodiversidade e Recursos Genéticos (CIBIO)/InBio Laboratório Associado, Universidade do Porto, Campus de Vairão, R. Monte-Crasto, 4485-661, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s⁄n, 4169-007, Porto, Portugal; Wildlife Biology Program, University of Montana, Missoula, MT, 59812, USA.
| | - Christian Gortazar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain.
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
10
|
Zaychikova MV, Mikheecheva NE, Belay YO, Alekseeva MG, Melerzanov AV, Danilenko VN. Single nucleotide polymorphisms of Beijing lineage Mycobacterium tuberculosis toxin-antitoxin system genes: Their role in the changes of protein activity and evolution. Tuberculosis (Edinb) 2018; 112:11-19. [PMID: 30205962 DOI: 10.1016/j.tube.2018.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 11/26/2022]
Abstract
The article investigates SNP in genes of toxin-antitoxin systems type II in Mycobacterium tuberculosis Beijing lineage strains and their possible role in the development and formation of new sublineages. We established the catalog of SNPs in 142 TA systems genes in 1349 sequenced genomes of the M. tuberculosis Beijing lineage. Based on the catalog, 15 new sublineages were identified as part of Beijing lineages by non-synonymous SNP in 21 genes of TA systems. We discovered three toxin genes with mutations specific for epidemiologically dangerous sublineages Beijing-modern (vapC37 A46G, vapC38 T143C) and Beijing-B0/W148 (vapC12 A95G). We proved the functional significance of these polymorphisms by cloning these genes wild-type and with marker mutations for the Beijing lineage vapC12 (A95G), vapC37 (A46G), vapC38 (T143C). In vitro study of their activities revealed effect of mutations on the RNase activity of toxin proteins. Mutations in vapC37 and vapC38 decreased toxin activity, and mutation in the vapC12 increased it. We cloned the toxin vapC37 gene of Mycobacterium smegmatis mc2 155 in both allelic variants: without mutation and with A46G mutation, specific for the Beijing-modern lineage. It was shown that this mutation leads to a loss of toxicity.
Collapse
Affiliation(s)
- M V Zaychikova
- Vavilov Institute of General Genetics, Gubkina Str. 3, Moscow, 119333, Russian Federation.
| | - N E Mikheecheva
- Vavilov Institute of General Genetics, Gubkina Str. 3, Moscow, 119333, Russian Federation; Moscow Institute of Physics and Technology, 9 Institutskiy per, Dolgoprudny, Moscow Region, 141701, Russian Federation.
| | - Y O Belay
- Vavilov Institute of General Genetics, Gubkina Str. 3, Moscow, 119333, Russian Federation.
| | - M G Alekseeva
- Vavilov Institute of General Genetics, Gubkina Str. 3, Moscow, 119333, Russian Federation.
| | - A V Melerzanov
- Moscow Institute of Physics and Technology, 9 Institutskiy per, Dolgoprudny, Moscow Region, 141701, Russian Federation.
| | - V N Danilenko
- Vavilov Institute of General Genetics, Gubkina Str. 3, Moscow, 119333, Russian Federation.
| |
Collapse
|
11
|
Banaei-Esfahani A, Nicod C, Aebersold R, Collins BC. Systems proteomics approaches to study bacterial pathogens: application to Mycobacterium tuberculosis. Curr Opin Microbiol 2017; 39:64-72. [PMID: 29032348 DOI: 10.1016/j.mib.2017.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/15/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
Significant developments and improvements in basic and clinical research notwithstanding, infectious diseases still claim at least 13 million lives annually. Classical research approaches have deciphered many molecular mechanisms underlying infection. Today it is increasingly recognized that multiple molecular mechanisms cooperate to constitute a complex system that is used by a given pathogen to interfere with the biochemical processes of the host. Therefore, systems-level approaches now complement the standard molecular biology techniques to investigate pathogens and their interactions with the human host. Here we review omic studies in Mycobacterium tuberculosis, the causative agent of tuberculosis, with a particular focus on proteomic methods and their application to the bacilli. Likewise, the discussed methods are directly portable to other bacterial pathogens.
Collapse
Affiliation(s)
- Amir Banaei-Esfahani
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; PhD Program in Systems Biology, Life Science Zurich Graduate School, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Charlotte Nicod
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; PhD Program in Systems Biology, Life Science Zurich Graduate School, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland.
| | - Ben C Collins
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Abstract
Viral infections are a major burden to human and animal health. Immune response against viruses consists of innate and adaptive immunity which are both critical for the eradication of the viral infection. The innate immune system is the first line of defense against viral infections. Proper innate immune response is required for the activation of adaptive, humoral and cell-mediated immunity. Macrophages are innate immune cells which have a central role in detecting viral infections including influenza A and human immunodeficiency viruses. Macrophages and other host cells respond to viral infection by modulating their protein expression levels, proteins' posttranslational modifications, as well as proteins' intracellular localization and secretion. Therefore the detailed characterization how viruses dynamically manipulate host proteome is needed for understanding the molecular mechanisms of viral infection. It is critical to identify cellular host factors which are exploited by different viruses, and which are less prone for mutations and could serve as potential targets for novel antiviral compounds. Here, we review how proteomics studies have enhanced our understanding of macrophage response to viral infection with special focus on Influenza A and Human immunodeficiency viruses, and virus infections of swine. SIGNIFICANCE Influenza A viruses (IAVs) and human immunodeficiency viruses (HIV) infect annually millions of people worldwide and they form a severe threat to human health. Both IAVs and HIV-1 can efficiently antagonize host response and develop drug-resistant variants. Most current antiviral drugs are directed against viral proteins, and there is a constant need to develop new next-generation drugs targeting host proteins that are essential for viral replication. Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) are economically important swine pathogens. Both PRRSV and PCV2 cause severe respiratory tract illnesses in swine. IAVs, HIV-1, and swine viruses infect macrophages activating antiviral response against these viruses. Macrophages also have a central role in the replication and spread of these viruses. However, macrophage response to these viruses is incompletely understood. Current proteomics methods can provide a global view of host-response to viral infection which is needed for in-depth understanding the molecular mechanisms of viral infection. Here we review the current proteomics studies on macrophage response to viral infection and provide insight into the global host proteome changes upon viral infection.
Collapse
Affiliation(s)
- Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway.
| | - Sampsa Matikainen
- University of Helsinki and Helsinki University Hospital, Rheumatology, Helsinki, Finland
| |
Collapse
|
13
|
Abstract
The importance of mycobacteria as opportunistic pathogens, particularly members of the M. avium complex (MAC), in patients with progressive HIV infection was recognized early in the AIDS epidemic. It took longer to appreciate the global impact and devastation that would result from the deadly synergy that exists between HIV and M. tuberculosis. This HIV/M. tuberculosis co-pandemic is ongoing and claiming millions of lives every year. In addition to MAC, a number of other non-tuberculous mycobacteria have been recognized as opportunistic pathogens in HIV-infected individuals; some of these are more commonly encountered (e.g., M. kansasii) than others (M. haemophilum and M. genevense). Finally, there are challenges to concomitantly treating the HIV and the infecting Mycobacterium species, because of antimicrobial resistance, therapeutic side-effects and the complex pharmacologic interactions of the antiretroviral and antimycobacterial multidrug therapy.
Collapse
Affiliation(s)
- Gary W Procop
- Staff, Pathology and Clinical Microbiology, Cleveland Clinic, 9500 Euclid Avenue/LL2-2, Cleveland, OH 44195, United States.
| |
Collapse
|
14
|
Mycobacterium tuberculosis Rv1474c is a TetR-like transcriptional repressor that regulates aconitase, an essential enzyme and RNA-binding protein, in an iron-responsive manner. Tuberculosis (Edinb) 2017; 103:71-82. [PMID: 28237036 DOI: 10.1016/j.tube.2017.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/04/2017] [Accepted: 01/15/2017] [Indexed: 11/21/2022]
Abstract
Mycobacterium tuberculosis (M.tb), tuberculosis (TB) causing bacteria, employs several mechanisms to maintain iron homeostasis which is critical for its survival and pathogenesis. M.tb aconitase (Acn), a [4Fe-4S] cluster-containing essential protein, apart from participating in energy cycle, also binds to predicted iron-responsive RNA elements. In this study, we identified Rv1474c as a regulator of its operonic partner acn and carried out its biochemical and functional characterization. The binding motif for Rv1474c in the upstream region of acn (Rv1475c)-Rv1474c operon was verified by gel-shift assays. Reporter assays in E. coli followed by over-expression studies in mycobacteria, using both wild type and a DNA-binding defective mutant, demonstrated Rv1474c as a Tet-R like repressor of acn. Rv1474c, besides binding tetracycline, could also bind iron which negatively influenced its DNA binding activity. Further, a consistent decrease in the relative transcript levels of acn when M.tb was grown in iron-deficient conditions as compared to either normal or other stress conditions, indicated regulation of acn by Rv1474c in an iron-responsive manner in vivo. The absence of homologs in the human host and its association with indispensable iron homeostasis makes Rv1474c an attractive target for designing novel anti-mycobacterials.
Collapse
|
15
|
Vemula MH, Medisetti R, Ganji R, Jakkala K, Sankati S, Chatti K, Banerjee S. Mycobacterium tuberculosis Zinc Metalloprotease-1 Assists Mycobacterial Dissemination in Zebrafish. Front Microbiol 2016; 7:1347. [PMID: 27621726 PMCID: PMC5002425 DOI: 10.3389/fmicb.2016.01347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/15/2016] [Indexed: 11/15/2022] Open
Abstract
Zinc metalloprotease-1 (Zmp1) from Mycobacterium tuberculosis (M.tb), the tuberculosis (TB) causing bacillus, is a virulence factor involved in inflammasome inactivation and phagosome maturation arrest. We earlier reported that Zmp1 was secreted under granuloma-like stress conditions, induced Th2 cytokine microenvironment and was highly immunogenic in TB patients as evident from high anti-Zmp1 antibody titers in their sera. In this study, we deciphered a new physiological role of Zmp1 in mycobacterial dissemination. Exogenous treatment of THP-1 cells with 500 nM and 1 μM of recombinant Zmp1 (rZmp1) resulted in necrotic cell death. Apart from inducing secretion of necrotic cytokines, TNFα, IL-6, and IL-1β, it also induced the release of chemotactic chemokines, MCP-1, MIP-1β, and IL-8, suggesting its likely function in cell migration and mycobacterial dissemination. This was confirmed by Gap closure and Boyden chamber assays, where Zmp1 treated CHO or THP-1 cells showed ∼2 fold increased cell migration compared to the untreated cells. Additionally, Zebrafish-M. marinum based host–pathogen model was used to study mycobacterial dissemination in vivo. Td-Tomato labeled M. marinum (TdM. marinum) when injected with rZmp1 showed increased dissemination to tail region from the site of injection as compared to the untreated control fish in a dose-dependent manner. Summing up these observations along with the earlier reports, we propose that Zmp1, a multi-faceted protein, when released by mycobacteria in granuloma, may lead to necrotic cell damage and release of chemotactic chemokines by surrounding infected macrophages, attracting new immune cells, which in turn may lead to fresh cellular infections, thus assisting mycobacterial dissemination.
Collapse
Affiliation(s)
- Mani H Vemula
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | | | - Rakesh Ganji
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Kiran Jakkala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Swetha Sankati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Kiranam Chatti
- Biology Department, Dr. Reddy's Institute of Life Sciences Hyderabad, India
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| |
Collapse
|
16
|
Ramaprasad EVV, Rizvi A, Banerjee S, Sasikala C, Ramana CV. Mycobacterium oryzae sp. nov., a scotochromogenic, rapidly growing species is able to infect human macrophage cell line. Int J Syst Evol Microbiol 2016; 66:4530-4536. [PMID: 27499106 DOI: 10.1099/ijsem.0.001386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Gram-stain-positive, acid-fast-positive, rapidly growing, rod-shaped bacteria (designated as strains JC290T, JC430 and JC431) were isolated from paddy cultivated soils on the Western Ghats of India. Phylogenetic analysis placed the three strains among the rapidly growing mycobacteria, being most closely related to Mycobacterium tokaiense 47503T (98.8 % 16S rRNA gene sequence similarity), Mycobacterium murale MA112/96T (98.8 %) and a few other Mycobacterium species. The level of DNA-DNA reassociation of the three strains with M. tokaiense DSM 44635T was 23.4±4 % (26.1±3 %, reciprocal analysis) and 21.4±2 % (22.1±4 %, reciprocal analysis). The three novel strains shared >99.9 % 16S rRNA gene sequence similarity and DNA-DNA reassociation values >85 %. Furthermore, phylogenetic analysis based on concatenated sequences (3071 bp) of four housekeeping genes (16S rRNA, hsp65, rpoB and sodA) revealed that strain JC290T is clearly distinct from all other Mycobacteriumspecies. The three strains had diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositolmannosides, unidentified phospholipids, unidentified glycolipids and an unidentified lipid as polar lipids. The predominant isoprenoid quinone for all three strains was MK-9(H2). Fatty acids were C17 : 1ω7c, C16 : 0, C18 : 1ω9c, C16 : 1ω7c/C16 : 1ω6c and C19 : 1ω7c/C19 : 1ω6c for all the three strains. On the basis of phenotypic, chemotaxonomic and phylogenetic data, it was concluded that strains JC290T, JC430 and JC431 are members of a novel species within the genus Mycobacterium and for which the name Mycobacterium oryzae sp. nov. is proposed. The type strain is JC290T (=KCTC 39560T=LMG 28809T).
Collapse
Affiliation(s)
- E V V Ramaprasad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - A Rizvi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India
| | - S Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India
| | - Ch Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J. N. T. University Hyderabad, Kukatpally, Hyderabad 500 085, India
| | - Ch V Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| |
Collapse
|