1
|
Becerra-Cervera A, Argoty-Pantoja AD, Aparicio-Bautista DI, López-Montoya P, Rivera-Paredez B, Hidalgo-Bravo A, Velázquez-Cruz R. Proteomic Biomarkers Associated with Low Bone Mineral Density: A Systematic Review. Int J Mol Sci 2024; 25:7526. [PMID: 39062769 PMCID: PMC11277462 DOI: 10.3390/ijms25147526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/07/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoporosis is a globally relevant public health issue. Our study aimed to summarize the knowledge on the proteomic biomarkers for low bone mineral density over the last years. We conducted a systematic review following the PRISMA guidelines; the scoured databases were PubMed, Web of Sciences, Scopus, and EBSCO, from inception to 2 June 2023. A total of 610 relevant studies were identified and 33 were assessed for eligibility. Finally, 29 studies met the criteria for this systematic review. The risk of bias was evaluated using the Joanna Briggs Institute Critical Appraisal Checklist tool. From the studies selected, 154 proteins were associated with changes of bone mineral density, from which only 10 were reported in at least two articles. The protein-protein network analysis indicated potential biomarkers involved in the skeletal system, immune system process, regulation of protein metabolic process, regulation of signaling, transport, cellular component assembly, cell differentiation, hemostasis, and extracellular matrix organization. Mass spectrometry-based proteomic profiling has allowed the discovery of new biomarkers with diagnostic potential. However, it is necessary to compare and validate the potential biomarkers in different populations to determine their association with bone metabolism and evaluate their translation to the clinical management of osteoporosis.
Collapse
Affiliation(s)
- Adriana Becerra-Cervera
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (A.B.-C.); (D.I.A.-B.); (P.L.-M.)
- National Council of Humanities, Science and Technology (CONAHCYT), Mexico City 03940, Mexico
| | - Anna D. Argoty-Pantoja
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (A.D.A.-P.); (B.R.-P.)
| | - Diana I. Aparicio-Bautista
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (A.B.-C.); (D.I.A.-B.); (P.L.-M.)
| | - Priscilla López-Montoya
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (A.B.-C.); (D.I.A.-B.); (P.L.-M.)
| | - Berenice Rivera-Paredez
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (A.D.A.-P.); (B.R.-P.)
| | - Alberto Hidalgo-Bravo
- Department of Genomic Medicine, National Institute of Rehabilitation, Mexico City 14389, Mexico;
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (A.B.-C.); (D.I.A.-B.); (P.L.-M.)
| |
Collapse
|
2
|
Piao M, Lee SH, Li Y, Choi JK, Yeo CY, Lee KY. Cyclophilin E (CypE) Functions as a Positive Regulator in Osteoblast Differentiation by Regulating the Transcriptional Activity of Runx2. Cells 2023; 12:2549. [PMID: 37947627 PMCID: PMC10648996 DOI: 10.3390/cells12212549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Cyclophilin E (CypE) belongs to the cyclophilin family and exhibits peptidyl-prolyl cis-trans isomerase (PPIase) activity. It participates in various biological processes through the regulation of peptidyl-prolyl isomerization. However, the specific role of CypE in osteoblast differentiation has not yet been elucidated. In this study, we first discovered the positive impact of CypE on osteoblast differentiation through gain or loss of function experiments. Mechanistically, CypE enhances the transcriptional activity of Runx2 through its PPIase activity. Furthermore, we identified the involvement of the Akt signaling pathway in CypE's function in osteoblast differentiation. Taken together, our findings indicate that CypE plays an important role in osteoblast differentiation as a positive regulator by increasing the transcriptional activity of Runx2.
Collapse
Affiliation(s)
- Meiyu Piao
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (M.P.); (S.H.L.); (Y.L.)
| | - Sung Ho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (M.P.); (S.H.L.); (Y.L.)
| | - Yuankuan Li
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (M.P.); (S.H.L.); (Y.L.)
| | - Joong-Kook Choi
- Division of Biochemistry, College of Medicine, Chungbuk National University, Cheong-Ju 28644, Republic of Korea;
| | - Chang-Yeol Yeo
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman’s University, Seoul 03760, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (M.P.); (S.H.L.); (Y.L.)
| |
Collapse
|
3
|
Pihlström S, Määttä K, Öhman T, Mäkitie RE, Aronen M, Varjosalo M, Mäkitie O, Pekkinen M. A multi-omics study to characterize the transdifferentiation of human dermal fibroblasts to osteoblast-like cells. Front Mol Biosci 2022; 9:1032026. [PMID: 36465561 PMCID: PMC9714459 DOI: 10.3389/fmolb.2022.1032026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/26/2022] [Indexed: 09/19/2023] Open
Abstract
Background: Various skeletal disorders display defects in osteoblast development and function. An in vitro model can help to understand underlying disease mechanisms. Currently, access to appropriate starting material for in vitro osteoblastic studies is limited. Native osteoblasts and their progenitors, the bone marrow mesenchymal stem cells, (MSCs) are problematic to isolate from affected patients and challenging to expand in vitro. Human dermal fibroblasts in vitro are a promising substitute source of cells. Method: We developed an in vitro culturing technique to transdifferentiate fibroblasts into osteoblast-like cells. We obtained human fibroblasts from forearm skin biopsy and differentiated them into osteoblast-like cells with ß-glycerophosphate, ascorbic acid, and dexamethasone treatment. Osteoblastic phenotype was confirmed by staining for alkaline phosphatase (ALP), calcium and phosphate deposits (Alizarin Red, Von Kossa) and by a multi-omics approach (transcriptomic, proteomic, and phosphoproteomic analyses). Result: After 14 days of treatment, both fibroblasts and MSCs (reference cells) stained positive for ALP together with a significant increase in bone specific ALP (p = 0.04 and 0.004, respectively) compared to untreated cells. At a later time point, both cell types deposited minerals, indicating mineralization. In addition, fibroblasts and MSCs showed elevated expression of several osteogenic genes (e.g. ALPL, RUNX2, BMPs and SMADs), and decreased expression of SOX9. Ingenuity Pathways Analysis of RNA sequencing data from fibroblasts and MSCs showed that the osteoarthritis pathway was activated in both cell types (p_adj. = 0.003 and 0.004, respectively). Discussion: These data indicate that our in vitro treatment induces osteoblast-like differentiation in fibroblasts and MSCs, producing an in vitro osteoblastic cell system. This culturing system provides an alternative tool for bone biology research and skeletal tissue engineering.
Collapse
Affiliation(s)
- Sandra Pihlström
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi Määttä
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Öhman
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Riikka E. Mäkitie
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mira Aronen
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Outi Mäkitie
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Minna Pekkinen
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Xin S, Liu L, Li Y, Yang J, Zuo L, Cao P, Yan Q, Li S, Yang L, Cui T, Lu J. Cyclophilin A binds to AKT1 and facilitates the tumorigenicity of Epstein-Barr virus by mediating the activation of AKT/mTOR/NF-κB positive feedback loop. Virol Sin 2022; 37:913-921. [PMID: 36075565 PMCID: PMC9797372 DOI: 10.1016/j.virs.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/31/2022] [Indexed: 01/19/2023] Open
Abstract
The AKT/mTOR and NF-κB signalings are crucial pathways activated in cancers including nasopharyngeal carcinoma (NPC), which is prevalent in southern China and closely related to Epstein-Barr virus (EBV) infection. How these master pathways are persistently activated in EBV-associated NPC remains to be investigated. Here we demonstrated that EBV-encoded latent membrane protein 1 (LMP1) promoted cyclophilin A (CYPA) expression through the activation of NF-κB. The depletion of CYPA suppressed cell proliferation and facilitated apoptosis. CYPA was able to bind to AKT1, thus activating AKT/mTOR/NF-κB signaling cascade. Moreover, the use of mTOR inhibitor, rapamycin, subverted the activation of the positive feedback loop, NF-κB/CYPA/AKT/mTOR. It is reasonable that LMP1 expression derived from initial viral infection is enough to assure the constant potentiation of AKT/mTOR and NF-κB signalings. This may partly explain the fact that EBV serves as a tumor-promoting factor with minimal expression of the viral oncoprotein LMP1 in malignancies. Our findings provide new insight into the understanding of causative role of EBV in tumorigenicity during latent infection.
Collapse
Affiliation(s)
- Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Lingzhi Liu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Jing Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Lielian Zuo
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Pengfei Cao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Qijia Yan
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Shen Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Taimei Cui
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China,Corresponding author.
| |
Collapse
|
5
|
Cyclophilin A Promotes Osteoblast Differentiation by Regulating Runx2. Int J Mol Sci 2022; 23:ijms23169244. [PMID: 36012517 PMCID: PMC9409320 DOI: 10.3390/ijms23169244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cyclophilin A (CypA) is a ubiquitously expressed and highly conserved protein with peptidyl-prolyl cis-trans isomerase activity that is involved in various biological activities by regulating protein folding and trafficking. Although CypA has been reported to positively regulate osteoblast differentiation, the mechanistic details remain largely unknown. In this study, we aimed to elucidate the mechanism of CypA-mediated regulation of osteoblast differentiation. Overexpression of CypA promoted osteoblast differentiation in bone morphogenic protein 4 (BMP4)-treated C2C12 cells, while knockdown of CypA inhibited osteoblast differentiation in BMP4-treated C2C12. CypA and Runx2 were shown to interact based on immunoprecipitation experiments and CypA increased Runx2 transcriptional activity in a dose-dependent manner. Our results indicate that this may be because CypA can increase the DNA binding affinity of Runx2 to Runx2 binding sites such as osteoblast-specific cis-acting element 2. Furthermore, to identify factors upstream of CypA in the regulation of osteoblast differentiation, various kinase inhibitors known to affect osteoblast differentiation were applied during osteogenesis. Akt inhibition resulted in the most significant suppression of osteogenesis in BMP4-induced C2C12 cells overexpressing CypA. Taken together, our results show that CypA positively regulates osteoblast differentiation by increasing the DNA binding affinity of Runx2, and Akt signaling is upstream of CypA.
Collapse
|
6
|
Kalinina AA, Kolesnikov AV, Kozyr AV, Kulikova NL, Zamkova MA, Kazansky DB, Khromykh LM. Preparative Production and Purification of Recombinant Human Cyclophilin A. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:259-268. [PMID: 35526853 DOI: 10.1134/s0006297922030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
In this work, we developed the method of preparative production of recombinant human cyclophilin A (rhCypA) in Escherichia coli. The full-length cDNA encoding the gene of human CypA (CYPA) was amplified by RT-PCR from the total RNA of human T cell lymphoma Jurkat. The nucleotide sequence of CYPA was optimized to provide highly effective translation in E. coli. Recombinant CYPA DNA was cloned into the pET22b(+) vector, and the resulted expression plasmid was used to transform E. coli strain BL21(DE3)Gold. The recombinant producer strain of E. coli produced soluble rhCypA in the bacterial cytoplasm. The synthesis efficiency of rhCypA was up to 50% of the total cell protein allowing to produce rhCypA in the amount of 1 g per liter of the culture. We also developed the method for rhCypA purification, consisting of a single-step tandem anion exchange chromatography on DEAE- and Q-Sepharose columns. The protein purity was 95% according to electrophoresis (SDS-PAGE), and its contamination with endotoxin did not exceed 0.05 ng per 1 mg of the protein that met the requirements of European pharmacopoeia for injectable preparations. The produced recombinant protein exhibited functional features of native CypA, i.e., isomerase activity and chemokine activity as assessed by stimulation of migration of mouse bone marrow hematopoietic stem cells in vivo. The generated producer strain of E. coli is a super-producer and could be used for large-scale experimental studies of rhCypA and in its preclinical and clinical trials as a drug.
Collapse
Affiliation(s)
- Anastasiia A Kalinina
- N. N. Blokhin National Medical Research Center of Oncology, the Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Alexander V Kolesnikov
- State Research Center of Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - Arina V Kozyr
- State Research Center of Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - Natalia L Kulikova
- Institute of Immunological Engineering, Lyubuchany, Moscow Region, 142380, Russia
| | - Maria A Zamkova
- N. N. Blokhin National Medical Research Center of Oncology, the Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Dmitry B Kazansky
- N. N. Blokhin National Medical Research Center of Oncology, the Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Ludmila M Khromykh
- N. N. Blokhin National Medical Research Center of Oncology, the Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| |
Collapse
|
7
|
Němcová L, Marková S, Kotlík P. Gene Expression Variation of Candidate Endogenous Control Genes Across Latitudinal Populations of the Bank Vole (Clethrionomys glareolus). Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.562065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Kalinina A, Zamkova M, Antoshina E, Trukhanova L, Gorkova T, Kazansky D, Khromykh L. Analyses of the toxic properties of recombinant human Cyclophilin A in mice. J Immunotoxicol 2020; 16:182-190. [PMID: 31646917 DOI: 10.1080/1547691x.2019.1665597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cyclophilin A (CypA), an 18 kDa multi-functional protein with cis-trans isomerase activity, is both a ligand for cyclosporine A and a proinflammatory factor. CypA is also a chemoattractant for hemopoietic stem cells and progenitors of different lineages, and can mediate regenerative processes in an organism. Accumulated experimental data have suggested there are practical applications for this protein in the treatment of several diseases (i.e. neutralization of cyclosporine A side effects, etc.). However, the range of CypA safe doses as well as its toxic effects remain unknown. The study here investigated the acute toxicity of a single intraperitoneal (IP) or subcutaneous (SC) dosing of recombinant human CypA (rhCypA) in both female and male mice and its effect on gene expression of acute phase proteins (APP) in the female mice after IP treatment. The results showed that toxicity of rhCypA was most evident in female and male mice dosed IP with 750 mg/kg, and manifested as kidney injury and increased granulocyte/lymphocyte ratios in the blood. Enhanced expression of Sаа1 and Sаа2 genes was induced with doses of 0.1-2 mg/mouse of rhCypA. Injection of the maximal dose (750 mg/kg) significantly stimulated expression of all the APP genes studied.
Collapse
Affiliation(s)
- Anastasiya Kalinina
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation , Moscow , Russia
| | - Mariya Zamkova
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation , Moscow , Russia
| | - Elena Antoshina
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation , Moscow , Russia
| | - Lubov Trukhanova
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation , Moscow , Russia
| | - Tatyana Gorkova
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation , Moscow , Russia
| | - Dmitriy Kazansky
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation , Moscow , Russia
| | - Ludmila Khromykh
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation , Moscow , Russia
| |
Collapse
|
9
|
Tsuda T, Imanishi M, Oogoshi M, Goda M, Kihira Y, Horinouchi Y, Zamami Y, Ishizawa K, Ikeda Y, Hashimoto I, Tamaki T, Izawa-Ishizawa Y. Rho-associated protein kinase and cyclophilin a are involved in inorganic phosphate-induced calcification signaling in vascular smooth muscle cells. J Pharmacol Sci 2019; 142:109-115. [PMID: 31882204 DOI: 10.1016/j.jphs.2019.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 01/27/2023] Open
Abstract
Arterial calcification, a risk factor of cardiovascular events, develops with differentiation of vascular smooth muscle cells (VSMCs) into osteoblast-like cells. Cyclophilin A (CypA) is a peptidyl-prolyl isomerase involved in cardiovascular diseases such as atherosclerosis and aortic aneurysms, and rho-associated protein kinase (ROCK) is involved in the pathogenesis of vascular calcification. CypA is secreted in a ROCK activity-dependent manner and works as a mitogen via autocrine or paracrine mechanisms in VSMCs. We examined the involvement of the ROCK-CypA axis in VSMC calcification induced by inorganic phosphate (Pi), a potent cell mineralization initiator. We found that Pi stimulated ROCK activity, CypA secretion, extracellular signal-regulated protein kinase (ERK) 1/2 phosphorylation, and runt-related transcription factor 2 expression, resulting in calcium accumulation in rat aortic smooth muscle cells (RASMCs). The ROCK inhibitor Y-27632 significantly suppressed Pi-induced CypA secretion, ERK1/2 phosphorylation, and calcium accumulation. Recombinant CypA was found to be associated with increased calcium accumulation in RASMCs. Based on these results, we suggest that autocrine CypA is mediated by ROCK activity and is involved in Pi-induced ERK1/2 phosphorylation following calcification signaling in RASMCs.
Collapse
Affiliation(s)
- Tatsuya Tsuda
- Department of Plastic and Reconstructive Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Masaki Imanishi
- Department of Pharmacy, Tokushima University Hospital, Japan
| | - Mizuho Oogoshi
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan; Student Lab, Tokushima University School of Medicine, Japan
| | - Mitsuhiro Goda
- Department of Pharmacy, Tokushima University Hospital, Japan
| | - Yoshitaka Kihira
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Japan
| | - Yuya Horinouchi
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Yoshito Zamami
- Department of Pharmacy, Tokushima University Hospital, Japan; Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Japan; Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Ichiro Hashimoto
- Department of Plastic and Reconstructive Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Toshiaki Tamaki
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan; Anan Medical Center, Japan
| | - Yuki Izawa-Ishizawa
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan; AWA Support Center, Tokushima University, Japan.
| |
Collapse
|
10
|
Kuo J, Bobardt M, Chatterji U, Mayo PR, Trepanier DJ, Foster RT, Gallay P, Ure DR. A Pan-Cyclophilin Inhibitor, CRV431, Decreases Fibrosis and Tumor Development in Chronic Liver Disease Models. J Pharmacol Exp Ther 2019; 371:231-241. [PMID: 31406003 PMCID: PMC6815936 DOI: 10.1124/jpet.119.261099] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Previous studies show that cyclophilins contribute to many pathologic processes, and cyclophilin inhibitors demonstrate therapeutic activities in many experimental models. However, no drug with cyclophilin inhibition as the primary mode of action has advanced completely through clinical development to market. In this study, we present findings on the cyclophilin inhibitor, CRV431, that highlight its potential as a drug candidate for chronic liver diseases. CRV431 was found to potently inhibit all cyclophilin isoforms tested—A, B, D, and G. Inhibitory constant or IC50 values ranged from 1 to 7 nM, which was up to 13 times more potent than the parent compound, cyclosporine A (CsA), from which CRV431 was derived. Other CRV431 advantages over CsA as a nontransplant drug candidate were significantly diminished immunosuppressive activity, less drug transporter inhibition, and reduced cytotoxicity potential. Oral dosing to mice and rats led to good blood exposures and a 5- to 15-fold accumulation of CRV431 in liver compared with blood concentrations across a wide range of CRV431 dosing levels. Most importantly, CRV431 decreased liver fibrosis in a 6-week carbon tetrachloride model and in a mouse model of nonalcoholic steatohepatitis (NASH). Additionally, CRV431 administration during a late, oncogenic stage of the NASH disease model resulted in a 50% reduction in the number and size of liver tumors. These findings are consistent with CRV431 targeting fibrosis and cancer through multiple, cyclophilin-mediated mechanisms and support the development of CRV431 as a safe and effective drug candidate for liver diseases.
Collapse
Affiliation(s)
- Joseph Kuo
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California (J.K., M.B., U.C., P.G.); and Hepion Pharmaceuticals, Edison, New Jersey (P.R.M., D.J.T., R.T.F., D.R.U.)
| | - Michael Bobardt
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California (J.K., M.B., U.C., P.G.); and Hepion Pharmaceuticals, Edison, New Jersey (P.R.M., D.J.T., R.T.F., D.R.U.)
| | - Udayan Chatterji
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California (J.K., M.B., U.C., P.G.); and Hepion Pharmaceuticals, Edison, New Jersey (P.R.M., D.J.T., R.T.F., D.R.U.)
| | - Patrick R Mayo
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California (J.K., M.B., U.C., P.G.); and Hepion Pharmaceuticals, Edison, New Jersey (P.R.M., D.J.T., R.T.F., D.R.U.)
| | - Daniel J Trepanier
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California (J.K., M.B., U.C., P.G.); and Hepion Pharmaceuticals, Edison, New Jersey (P.R.M., D.J.T., R.T.F., D.R.U.)
| | - Robert T Foster
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California (J.K., M.B., U.C., P.G.); and Hepion Pharmaceuticals, Edison, New Jersey (P.R.M., D.J.T., R.T.F., D.R.U.)
| | - Philippe Gallay
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California (J.K., M.B., U.C., P.G.); and Hepion Pharmaceuticals, Edison, New Jersey (P.R.M., D.J.T., R.T.F., D.R.U.)
| | - Daren R Ure
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California (J.K., M.B., U.C., P.G.); and Hepion Pharmaceuticals, Edison, New Jersey (P.R.M., D.J.T., R.T.F., D.R.U.)
| |
Collapse
|
11
|
Positive Correlation between Activated CypA/CD147 Signaling and MMP-9 Expression in Mice Inflammatory Periapical Lesion. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8528719. [PMID: 30949512 PMCID: PMC6425416 DOI: 10.1155/2019/8528719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/04/2019] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
Abstract
Aim Cyclophilin A (CypA)/CD147 signaling plays critical roles in the regulation of inflammation and bone metabolism. This study aimed to investigate the participation of CypA/CD147 in mice periapical lesions progression and its relationship with bone resorption. Methodology Periapical lesions were induced by pulp exposure in the first lower molars of 40 C57BL/6J mice. The mice were sacrificed on days 0, 7, 14, 21, 28, 35, 42, and 49. Mandibles were harvested for X-ray imaging, microcomputed tomography scanning, histologic observation, immunohistochemistry, enzyme histochemistry, and double immunofluorescence analysis. Western blot was employed to further detect the related molecular signaling pathways in LPS-stimulated RAW 264.7 cells treated with CypA inhibitor. Results The volume and area of the periapical lesions increased from day 0 to day 35 and remained comparably stable until day 49. Immunohistochemistry demonstrated that the CypA expression levels also increased from day 0 to day 35 and decreased until day 49, similar to CD147 expression (R2 = 0.4423, P < 0.05), osteoclast number (R2 = 0.5101, P < 0.01), and the expression of osteoclastogenesis-related matrix metalloproteinase 9 (MMP-9) (R2 = 0.4715, P < 0.05). Serial sections further confirmed the colocalization of CypA and CD147 on osteoclasts with immunohistochemistry. And the distribution of CypA-positive or CD147-positive cells was positively correlated with the dynamics of MMP-9-positive cells by using immunofluorescence analysis. Furthermore, CD147 and MMP-9 expression in RAW 264.7 cells were both downregulated with CypA inhibitor treatment (P < 0.05). Conclusions The present study reveals the positive correlation of CypA/CD147 signaling and osteoclast-related MMP-9 expression in mice inflammatory periapical lesions progression. Therefore, intervention of CypA/CD147 signaling could probably provide a potential therapeutic target for attenuating inflammatory bone resorption.
Collapse
|
12
|
Zhuang C, Hong X, Liu J, Luo X, Mo H. TRAF6 regulates the effects of polarized maturation of tolerability: Marrow-derived dendritic cells on collagen-induced arthritis in mice. Biomed Rep 2017; 6:206-210. [PMID: 28357074 DOI: 10.3892/br.2017.836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/28/2016] [Indexed: 11/05/2022] Open
Abstract
The study aimed to investigate the relationship between tumor necrosis factor receptor-associated factor 6 (TRAF6) and a differentially mature dendritic cell (mDC) in collagen-induced arthritis (CIA) mice and to determine whether or not TRAF6 regulates the activation of an immature dendritic cell (iDC) and inhibits iDC maturation to induce immune tolerance. The mouse bone marrow stem cells were induced with recombinant granulocyte-macrophage colony-stimulating factor (rmGM-CSF) and recombinant interleukin-4 (rmIL-4) to differentiate immature dendritic cells (DCs), which were divided into four groups with different maturation states: rmGM-CSF, rmIL-4; TNF-α; LPS; and FK506 group. The levels of the cell surfaces of CD80, CD86, and MHI-II were analyzed by flow cytometry to prove DCs at different levels of maturity. The expression of IL-12 in DCs at different maturation states was detected by enzyme-linked immunosorbent assay (ELISA). The expression of TRAF6 mRNA and protein in each group of DCs was detected by a reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. The results revealed that the differentiation of bone marrow cells into iDCs was significantly induced by cytokines (rmGM-CSF, IL-4). CD80, CD86, MHC-II were expressed in the four groups, and the difference between them was statistically significant (P<0.05). A higher degree of DC differentiation led to a gradual increase of IL-12 secretion in the four groups. The difference was statistically significant (P<0.05) for this secretion (group D, 10,620.73±276.73 pg/ml). The expression levels of TRAF6 mRNA were significantly higher in group D than those in the other three groups (P<0.01). Although there was no significant difference in the expression levels of TRAF6 mRNA between groups B and C, the expression levels of TRAF6 mRNA between groups B and C were higher than those of the control group. The TRAF6 protein expression was higher in group D than that in the other three groups (P<0.01), and the difference was statistically significant. There was a statistically significant difference in the TRAF6 protein expression between group A and groups B and C, but the expression in group C was higher than that in group B (P<0.01). In conclusion, the expression of co-stimulatory molecules gradually increased in the DCs of different maturation states, and the expression of IL-12, TRAF6 mRNA, and TRAF6 protein positively correlated with the degree of DC maturation. TRAF6 is important in iDC polarity and maturation.
Collapse
Affiliation(s)
- Chenchen Zhuang
- Department of Clinical Immunology and Rheumatology, Affiliated Hospital of The Guilin Medical University, Guilin 541004, P.R. China
| | - Xuezhi Hong
- Department of Clinical Immunology and Rheumatology, Affiliated Hospital of The Guilin Medical University, Guilin 541004, P.R. China
| | - Jia Liu
- Department of Clinical Immunology and Rheumatology, Affiliated Hospital of The Guilin Medical University, Guilin 541004, P.R. China
| | - Xiaohong Luo
- Department of Clinical Immunology and Rheumatology, Affiliated Hospital of The Guilin Medical University, Guilin 541004, P.R. China
| | - Hanyou Mo
- Department of Clinical Immunology and Rheumatology, Affiliated Hospital of The Guilin Medical University, Guilin 541004, P.R. China
| |
Collapse
|
13
|
Kuranaga T, Enomoto A, Tan H, Fujita K, Wakimoto T. Total Synthesis of Theonellapeptolide Id. Org Lett 2017; 19:1366-1369. [DOI: 10.1021/acs.orglett.7b00249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Takefumi Kuranaga
- Faculty of Pharmaceutical
Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Ayumu Enomoto
- Faculty of Pharmaceutical
Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hui Tan
- Faculty of Pharmaceutical
Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kazuto Fujita
- Faculty of Pharmaceutical
Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical
Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|