1
|
Lau NS, McCaughan G, Ly M, Liu K, Crawford M, Pulitano C. Long-term machine perfusion of human split livers: a new model for regenerative and translational research. Nat Commun 2024; 15:9809. [PMID: 39532864 PMCID: PMC11557707 DOI: 10.1038/s41467-024-54024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Recent advances in machine perfusion have revolutionised the field of transplantation by prolonging preservation, permitting evaluation of viability prior to implant and rescue of discarded organs. Long-term perfusion for days-to-weeks provides time to modify these organs prior to transplantation. By using long-term normothermic machine perfusion to facilitate liver splitting and subsequent perfusion of both partial organs, possibilities even outside the clinical arena become possible. This model remains in its infancy but in the future, could allow for detailed study of liver injury and regeneration, and ex-situ treatment strategies such as defatting, genetic modulation and stem-cell therapies. Here we provide insight into this new model for research and highlight its great potential and current limitations.
Collapse
Affiliation(s)
- Ngee-Soon Lau
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Geoffrey McCaughan
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mark Ly
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ken Liu
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael Crawford
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Carlo Pulitano
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia.
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Ozgur OS, Taggart M, Mojoudi M, Pendexter C, Filz von Reiterdank I, Kharga A, Yeh H, Toner M, Longchamp A, Tessier SN, Uygun K. Optimized partial freezing protocol enables 10-day storage of rat livers. Sci Rep 2024; 14:25260. [PMID: 39448774 PMCID: PMC11502795 DOI: 10.1038/s41598-024-76674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Preserving organs at subzero temperatures with halted metabolic activity holds the potential to prolong preservation and expand the donor organ pool for transplant. Our group recently introduced partial freezing, a novel approach in high-subzero storage at -15 °C, enabling 5-day storage of rodent livers through precise control over ice nucleation and unfrozen fraction. However, increased vascular resistance and tissue edema suggested a need for improvements to extend viable preservation. Here, we describe an optimized partial freezing protocol with key optimizations, including an increased concentration of polyethylene glycol (PEG) to enhance membrane stability while minimizing shear stress during cryoprotectant unloading with an acclimation period and a maintained osmotic balance through an increase in bovine serum albumin (BSA). These approaches ensured the viability during preservation and recovery processes, promoting liver function and ensuring optimal preservation. This was evidenced by increased oxygen consumption, decreased vascular resistance, and edema. Ultimately, we show that using the optimized protocol, livers can be stored for 10 days with comparable vascular resistance and lactate levels to 5 days, outperforming the viability of time-matched static cold stored (SCS) livers as the current gold standard. This study represents a significant advancement in expanding organ availability through prolonged preservation, thereby revolutionizing transplant medicine.
Collapse
Affiliation(s)
- Ozge Sila Ozgur
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Mclean Taggart
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Mohammedreza Mojoudi
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Casie Pendexter
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Irina Filz von Reiterdank
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Anil Kharga
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Heidi Yeh
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Alban Longchamp
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Shriners Hospitals for Children, Boston, MA, USA.
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Shriners Hospitals for Children, Boston, MA, USA.
| |
Collapse
|
3
|
Schulz Pauly JA, Kalvass JC. How predictive are isolated perfused liver data of in vivo hepatic clearance? A meta-analysis of isolated perfused rat liver data. Xenobiotica 2024; 54:658-669. [PMID: 39279675 DOI: 10.1080/00498254.2024.2404170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Isolated perfused rat liver (IPRL) experiments have been used to answer clearance-related questions, including evaluating the impact of pathological and physiological processes on hepatic clearance (CLH). However, to date, IPRL data has not been evaluated for in vivo CLH prediction accuracy.In addition to a detailed overview of available IPRL literature, we present an in-depth analysis of the performance of IPRL in CLH prediction.While the entire dataset poorly predicted CLH (GAFE = 3.2; 64% within 3-fold), IPRL conducted under optimal experimental conditions, such as in the presence of plasma proteins and with a perfusion rate within 2-fold of physiological liver blood flow and corrected for unbound fraction in the presence of red blood cells, can accurately predict rat CLH (GAFE = 2.0; 78% within 3-fold). Careful consideration of experimental conditions is needed to allow proper data analysis.Further, isolated perfused liver experiments in other species, including human livers, may allow us to address the current in vitro-in vivo disconnects of hepatic metabolic clearance and improve our methodology for CLH predictions.
Collapse
Affiliation(s)
- Julia A Schulz Pauly
- Quantitative, Translational, & ADME Sciences (QTAS), Abbvie Inc., North Chicago, IL, USA
| | - J Cory Kalvass
- Quantitative, Translational, & ADME Sciences (QTAS), Abbvie Inc., North Chicago, IL, USA
| |
Collapse
|
4
|
Goto T, Noguchi Y, Linares I, Mazilescu L, Nogueira E, Hobeika C, Ray S, Parmentier C, Ganesh S, Peranantharuban J, Chan HH, Reichman T, Selzner N, Selzner M. Indocyanine green fluorescence quantification during normothermic ex situ perfusion for the assessment of porcine liver grafts after circulatory death. Liver Transpl 2024; 30:907-917. [PMID: 38869990 PMCID: PMC11332378 DOI: 10.1097/lvt.0000000000000416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
Current graft evaluation during normothermic ex situ liver perfusion lacks real-time parameters for predicting posttransplant hepatocyte and biliary function. Indocyanine green (ICG) imaging has been widely used in liver surgery, enabling the visualization of hepatic uptake and excretion through bile using near-infrared light. In this research, porcine livers under various ischemic conditions were examined during a 5-hour normothermic ex situ liver perfusion procedure, introducing ICG at 1 hour through the hepatic artery. These conditions included livers from heart-beating donors, donation after circulatory death (DCD) with warm ischemic durations of 60 minutes (DCD60) and 120 minutes (DCD120), as well as interventions utilizing tissue plasminogen activator in DCD120 cases (each n = 5). Distinct hepatic fluorescence patterns correlated with different degrees of ischemic injury ( p = 0.01). Low ICG uptake in the parenchyma (less than 40% of maximum intensity) was more prevalent in DCD120 (21.4%) compared to heart-beating donors (6.2%, p = 0.06) and DCD60 (3.0%, p = 0.02). Moreover, ICG clearance from 60 minutes to 240 minutes was significantly higher in heart-beating donors (69.3%) than in DCD60 (17.5%, p < 0.001) and DCD120 (32.1%, p = 0.01). Furthermore, thrombolytic intervention using tissue plasminogen activator in DCD120 resulted in noteworthy outcomes, including significantly reduced ALP levels ( p = 0.04) and improved ICG clearance ( p = 0.02) with a trend toward mitigating fibrin deposition similar to DCD60, as well as enhancements in bile production ( p = 0.09). In conclusion, ICG fluorescence imaging during normothermic ex situ liver perfusion provides real-time classification of hepatic vascular and biliary injuries, offering valuable insights for the more accurate selection and postintervention evaluation of marginal livers in transplantation.
Collapse
Affiliation(s)
- Toru Goto
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, Divisions of Hepato-biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Noguchi
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Ivan Linares
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Laura Mazilescu
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Emmanuel Nogueira
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Christian Hobeika
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Samrat Ray
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Catherine Parmentier
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Sujani Ganesh
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Jathuya Peranantharuban
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Harley H.L. Chan
- TECHNA Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Trevor Reichman
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Nazia Selzner
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Markus Selzner
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Ozgur OS, Taggart MS, Mojoudi M, Pendexter C, Kharga A, Yeh H, Toner M, Longchamp A, Tessier SN, Uygun K. Optimized Partial Freezing Protocol Enables 10-Day Storage of Rat Livers. RESEARCH SQUARE 2024:rs.3.rs-4584242. [PMID: 39011100 PMCID: PMC11247935 DOI: 10.21203/rs.3.rs-4584242/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Preserving organs at subzero temperatures with halted metabolic activity holds the potential to prolong preservation and expand the donor organ pool for transplant. Our group recently introduced partial freezing, a novel approach in high-subzero storage at -15°C, enabling 5 days storage of rodent livers through precise control over ice nucleation and unfrozen fraction. However, increased vascular resistance and tissue edema suggested a need for improvements to extend viable preservation. Here, we describe an optimized partial freezing protocol with key optimizations including increased concentration of propylene glycol to reduce ice recrystallization and maintained osmotic balance through an increase in bovine serum albumin, all while minimizing sheer stress during cryoprotectant unloading with an acclimation period. These approaches ensured the viability during preservation and recovery processes, promoting liver function and ensuring optimal preservation. This was evidenced by increased oxygen consumption, decreased vascular resistance and edema. Ultimately, we show that using the optimized protocol, livers can be stored for 10 days with comparable vascular resistance and lactate levels to 5 days, outperforming the viability of time-matched cold stored livers as the current gold standard. This study represents a significant advancement in expanding organ availability through prolonged preservation and thereby revolutionizing transplant medicine.
Collapse
Affiliation(s)
| | | | | | | | - Anil Kharga
- Massachusetts General Hospital, Harvard Medical School
| | - Heidi Yeh
- Massachusetts General Hospital, Harvard Medical School
| | - Mehmet Toner
- Massachusetts General Hospital, Harvard Medical School
| | | | | | - Korkut Uygun
- Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
6
|
de Haan MJA, Jacobs ME, Witjas FMR, de Graaf AMA, Sánchez-López E, Kostidis S, Giera M, Calderon Novoa F, Chu T, Selzner M, Maanaoui M, de Vries DK, Kers J, Alwayn IPJ, van Kooten C, Heijs B, Wang G, Engelse MA, Rabelink TJ. A cell-free nutrient-supplemented perfusate allows four-day ex vivo metabolic preservation of human kidneys. Nat Commun 2024; 15:3818. [PMID: 38740760 DOI: 10.1038/s41467-024-47106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/20/2024] [Indexed: 05/16/2024] Open
Abstract
The growing disparity between the demand for transplants and the available donor supply, coupled with an aging donor population and increasing prevalence of chronic diseases, highlights the urgent need for the development of platforms enabling reconditioning, repair, and regeneration of deceased donor organs. This necessitates the ability to preserve metabolically active kidneys ex vivo for days. However, current kidney normothermic machine perfusion (NMP) approaches allow metabolic preservation only for hours. Here we show that human kidneys discarded for transplantation can be preserved in a metabolically active state up to 4 days when perfused with a cell-free perfusate supplemented with TCA cycle intermediates at subnormothermia (25 °C). Using spatially resolved isotope tracing we demonstrate preserved metabolic fluxes in the kidney microenvironment up to Day 4 of perfusion. Beyond Day 4, significant changes were observed in renal cell populations through spatial lipidomics, and increases in injury markers such as LDH, NGAL and oxidized lipids. Finally, we demonstrate that perfused kidneys maintain functional parameters up to Day 4. Collectively, these findings provide evidence that this approach enables metabolic and functional preservation of human kidneys over multiple days, establishing a solid foundation for future clinical investigations.
Collapse
Affiliation(s)
- Marlon J A de Haan
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Marleen E Jacobs
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Franca M R Witjas
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemarie M A de Graaf
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Sánchez-López
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Giera
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Tunpang Chu
- Ajmera Transplant Centre, Department of Surgery, University Health Network, Toronto, ON, Canada
| | - Markus Selzner
- Ajmera Transplant Centre, Department of Surgery, University Health Network, Toronto, ON, Canada
| | - Mehdi Maanaoui
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, Lille, France
| | - Dorottya K de Vries
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jesper Kers
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ian P J Alwayn
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Cees van Kooten
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Bram Heijs
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gangqi Wang
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| | - Marten A Engelse
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
7
|
Stryjak I, Warmuzińska N, Łuczykowski K, Jaroch K, Urbanellis P, Selzner M, Bojko B. Metabolomic and lipidomic landscape of porcine kidney associated with kidney perfusion in heart beating donors and donors after cardiac death. Transl Res 2024; 267:79-90. [PMID: 38052298 DOI: 10.1016/j.trsl.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/23/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Transplant centers are currently facing a lack of tools to ensure adequate evaluation of the quality of the available organs, as well as a significant shortage of kidney donors. Therefore, efforts are being made to facilitate the effective use of available organs and expand the donor pool, particularly with expanded criteria donors. Fulfilling a need, we aim to present an innovative analytical method based on solid-phase microextraction (SPME) - chemical biopsy. In order to track changes affecting the organ throughout the entire transplant procedure, porcine kidneys were subjected to multiple samplings at various time points. The application of small-diameter SPME probes assured the minimal invasiveness of the procedure. Porcine model kidney autotransplantation was executed for the purpose of simulating two types of donor scenarios: donors with a beating heart (HBD) and donors after cardiac death (DCD). All renal grafts were exposed to continuous normothermic ex vivo perfusion. Following metabolomic and lipidomic profiling using high-performance liquid chromatography coupled to a mass spectrometer, we observed differences in the profiles of HBD and DCD kidneys. The alterations were predominantly related to energy and glucose metabolism, and differences in the levels of essential amino acids, purine nucleosides, lysophosphocholines, phosphoethanolamines, and triacylglycerols were noticed. Our results indicate the potential of implementing chemical biopsy in the evaluation of graft quality and monitoring of renal function during perfusion.
Collapse
Affiliation(s)
- Iga Stryjak
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Natalia Warmuzińska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Kamil Łuczykowski
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Karol Jaroch
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Peter Urbanellis
- Ajmera Transplant Center, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Markus Selzner
- Ajmera Transplant Center, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada; Department of Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.
| |
Collapse
|
8
|
Lau NS, Ly M, Ewenson K, Toomath S, Ly H, Mestrovic N, Liu K, McCaughan G, Crawford M, Pulitano C. Indocyanine green: A novel marker for assessment of graft quality during ex situ normothermic machine perfusion of human livers. Artif Organs 2024; 48:472-483. [PMID: 38132848 DOI: 10.1111/aor.14696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Ex situ machine perfusion facilitates the assessment of livers prior to transplantation. However, currently available markers of liver function poorly predict long-term graft function. Indocyanine green (ICG) is a liver-specific dye which, although common in vivo, has never been comprehensively evaluated for the assessment of graft quality during ex situ machine perfusion. This study aimed to assess the utility of ICG in the ex situ setting. METHODS Using a customized long-term perfusion system, human livers that were not suitable for transplantation were perfused using a red cell-based perfusate. ICG was delivered into the perfusate on days 0, 1, and 4 to assess ICG clearance (spectrophotometric absorbance at 805 nm) and ICG fluorescence (near-infrared camera). RESULTS Sixteen partial livers were perfused for a median duration of 172 h (7.2 days). On day 0, the median ICG perfusate disappearance rate (PDR) was 7.5%/min and the median ICG retention at 15 min was 9.9%. Grafts that survived ≥7 days had a significantly higher median ICG PDR on day 0 (14.5%/min vs. 6.5%/min, p = 0.005) but not on days 1 or 4. ICG perfusion demonstrated that long-surviving grafts had a significantly lower median red-value (89.8 vs. 118.6, p = 0.011) and a significantly lower median blue-value (12.9 vs. 22.6, p = 0.045) than short-surviving grafts. CONCLUSION ICG is a novel marker for the assessment of liver function during ex situ normothermic machine perfusion. ICG PDR and quantitative ICG perfusion can distinguish between long- and short-surviving grafts and demonstrate the utility of ICG in the assessment of graft quality prior to transplant.
Collapse
Affiliation(s)
- Ngee-Soon Lau
- Centre for Organ Assessment, Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mark Ly
- Centre for Organ Assessment, Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Kasper Ewenson
- Centre for Organ Assessment, Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Shamus Toomath
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Hayden Ly
- Centre for Organ Assessment, Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Nicole Mestrovic
- Centre for Organ Assessment, Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Ken Liu
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Geoff McCaughan
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Michael Crawford
- Centre for Organ Assessment, Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Carlo Pulitano
- Centre for Organ Assessment, Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Longchamp A, Nakamura T, Uygun K, Markmann JF. Role of Machine Perfusion in Liver Transplantation. Surg Clin North Am 2024; 104:45-65. [PMID: 37953040 DOI: 10.1016/j.suc.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Given the current severe shortage of available livers for transplantation, there is an urgent need to maximize the utilization of donor organs. One of the strategies to increase the number of available livers for transplantation is to improve organ utilization through the use of elderly, overweight, or organs donated after circulatory death. However, the utilization of these "marginal" organs was associated with an increased risk of early allograft dysfunction, primary nonfunction, ischemic biliary complications, or even re-transplantation. Ischemia-reperfusion injury is a key mechanism in the pathogenesis of these complications.
Collapse
Affiliation(s)
- Alban Longchamp
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tsukasa Nakamura
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Korkut Uygun
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James F Markmann
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Iske J, Schroeter A, Knoedler S, Nazari-Shafti TZ, Wert L, Roesel MJ, Hennig F, Niehaus A, Kuehn C, Ius F, Falk V, Schmelzle M, Ruhparwar A, Haverich A, Knosalla C, Tullius SG, Vondran FWR, Wiegmann B. Pushing the boundaries of innovation: the potential of ex vivo organ perfusion from an interdisciplinary point of view. Front Cardiovasc Med 2023; 10:1272945. [PMID: 37900569 PMCID: PMC10602690 DOI: 10.3389/fcvm.2023.1272945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Ex vivo machine perfusion (EVMP) is an emerging technique for preserving explanted solid organs with primary application in allogeneic organ transplantation. EVMP has been established as an alternative to the standard of care static-cold preservation, allowing for prolonged preservation and real-time monitoring of organ quality while reducing/preventing ischemia-reperfusion injury. Moreover, it has paved the way to involve expanded criteria donors, e.g., after circulatory death, thus expanding the donor organ pool. Ongoing improvements in EVMP protocols, especially expanding the duration of preservation, paved the way for its broader application, in particular for reconditioning and modification of diseased organs and tumor and infection therapies and regenerative approaches. Moreover, implementing EVMP for in vivo-like preclinical studies improving disease modeling raises significant interest, while providing an ideal interface for bioengineering and genetic manipulation. These approaches can be applied not only in an allogeneic and xenogeneic transplant setting but also in an autologous setting, where patients can be on temporary organ support while the diseased organs are treated ex vivo, followed by reimplantation of the cured organ. This review provides a comprehensive overview of the differences and similarities in abdominal (kidney and liver) and thoracic (lung and heart) EVMP, focusing on the organ-specific components and preservation techniques, specifically on the composition of perfusion solutions and their supplements and perfusion temperatures and flow conditions. Novel treatment opportunities beyond organ transplantation and limitations of abdominal and thoracic EVMP are delineated to identify complementary interdisciplinary approaches for the application and development of this technique.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Schroeter
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timo Z. Nazari-Shafti
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonard Wert
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian J. Roesel
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Felix Hennig
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adelheid Niehaus
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Christian Kuehn
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Fabio Ius
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Volkmar Falk
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
- Department of Health Science and Technology, Translational Cardiovascular Technology, ETH Zurich, Zürich, Switzerland
| | - Moritz Schmelzle
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Arjang Ruhparwar
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Axel Haverich
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Florian W. R. Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
11
|
Wu WK, Ukita R, Patel YJ, Cortelli M, Trinh VQ, Ziogas IA, Francois SA, Mentz M, Cardwell NL, Talackine JR, Grogan WM, Stokes JW, Lee YA, Kim J, Alexopoulos SP, Bacchetta M. Xenogeneic cross-circulation for physiological support and recovery of ex vivo human livers. Hepatology 2023; 78:820-834. [PMID: 36988383 PMCID: PMC10440302 DOI: 10.1097/hep.0000000000000357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND AND AIMS The scarcity of suitable donor livers highlights a continuing need for innovation to recover organs with reversible injuries in liver transplantation. APPROACH AND RESULTS Explanted human donor livers (n = 5) declined for transplantation were supported using xenogeneic cross-circulation of whole blood between livers and xeno-support swine. Livers and swine were assessed over 24 hours of xeno-support. Livers maintained normal global appearance, uniform perfusion, and preservation of histologic and subcellular architecture. Oxygen consumption increased by 75% ( p = 0.16). Lactate clearance increased from -0.4 ± 15.5% to 31.4 ± 19.0% ( p = 0.02). Blinded histopathologic assessment demonstrated improved injury scores at 24 hours compared with 12 hours. Vascular integrity and vasoconstrictive function were preserved. Bile volume and cholangiocellular viability markers improved for all livers. Biliary structural integrity was maintained. CONCLUSIONS Xenogeneic cross-circulation provided multisystem physiological regulation of ex vivo human livers that enabled functional rehabilitation, histopathologic recovery, and improvement of viability markers. We envision xenogeneic cross-circulation as a complementary technique to other organ-preservation technologies in the recovery of marginal donor livers or as a research tool in the development of advanced bioengineering and pharmacologic strategies for organ recovery and rehabilitation.
Collapse
Affiliation(s)
- Wei Kelly Wu
- Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rei Ukita
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yatrik J. Patel
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael Cortelli
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Vincent Q. Trinh
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ioannis A. Ziogas
- Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sean A. Francois
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Meredith Mentz
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nancy L. Cardwell
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer R. Talackine
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William M. Grogan
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John W. Stokes
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Youngmin A. Lee
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Sophoclis P. Alexopoulos
- Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University; Nashville, Tennessee, USA
| |
Collapse
|
12
|
Lau NS, Ly M, Dennis C, Jacques A, Cabanes-Creus M, Toomath S, Huang J, Mestrovic N, Yousif P, Chanda S, Wang C, Lisowski L, Liu K, Kench JG, McCaughan G, Crawford M, Pulitano C. Long-term ex situ normothermic perfusion of human split livers for more than 1 week. Nat Commun 2023; 14:4755. [PMID: 37553343 PMCID: PMC10409852 DOI: 10.1038/s41467-023-40154-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
Current machine perfusion technology permits livers to be preserved ex situ for short periods to assess viability prior to transplant. Long-term normothermic perfusion of livers is an emerging field with tremendous potential for the assessment, recovery, and modification of organs. In this study, we aimed to develop a long-term model of ex situ perfusion including a surgical split and simultaneous perfusion of both partial organs. Human livers declined for transplantation were perfused using a red blood cell-based perfusate under normothermic conditions (36 °C) and then split and simultaneously perfused on separate machines. Ten human livers were split, resulting in 20 partial livers. The median ex situ viability was 125 h, and the median ex situ survival was 165 h. Long-term survival was demonstrated by lactate clearance, bile production, Factor-V production, and storage of adenosine triphosphate. Here, we report the long-term ex situ perfusion of human livers and demonstrate the ability to split and perfuse these organs using a standardised protocol.
Collapse
Affiliation(s)
- Ngee-Soon Lau
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Mark Ly
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Claude Dennis
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, 2006, Australia
| | - Andrew Jacques
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, Sydney, New South Wales, 2145, Australia
| | - Shamus Toomath
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
| | - Joanna Huang
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Nicole Mestrovic
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Paul Yousif
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
| | - Sumon Chanda
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
| | - Chuanmin Wang
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, Sydney, New South Wales, 2145, Australia
- Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, 04-141, Warsaw, Poland
- Australian Genome Therapeutics Centre, Children's Medical Research Institute and Sydney Children's Hospitals Network, Westmead, NSW, 2145, Australia
| | - Ken Liu
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - James G Kench
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, 2006, Australia
| | - Geoffrey McCaughan
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Centenary Institute, Sydney, New South Wales, Australia
| | - Michael Crawford
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Carlo Pulitano
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia.
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
13
|
Rother T, Horgby C, Schmalkuche K, Burgmann JM, Nocke F, Jägers J, Schmitz J, Bräsen JH, Cantore M, Zal F, Ferenz KB, Blasczyk R, Figueiredo C. Oxygen carriers affect kidney immunogenicity during ex-vivo machine perfusion. FRONTIERS IN TRANSPLANTATION 2023; 2:1183908. [PMID: 38993849 PMCID: PMC11235266 DOI: 10.3389/frtra.2023.1183908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/29/2023] [Indexed: 07/13/2024]
Abstract
Normothermic ex-vivo machine perfusion provides a powerful tool to improve donor kidney preservation and a route for the delivery of pharmacological or gene therapeutic interventions prior to transplantation. However, perfusion at normothermic temperatures requires adequate tissue oxygenation to meet the physiological metabolic demand. For this purpose, the addition of appropriate oxygen carriers (OCs) to the perfusion solution is essential to ensure a sufficient oxygen supply and reduce the risk for tissue injury due to hypoxia. It is crucial that the selected OCs preserve the integrity and low immunogenicity of the graft. In this study, the effect of two OCs on the organ's integrity and immunogenicity was evaluated. Porcine kidneys were perfused ex-vivo for four hours using perfusion solutions supplemented with red blood cells (RBCs) as conventional OC, perfluorocarbon (PFC)-based OC, or Hemarina-M101 (M101), a lugworm hemoglobin-based OC named HEMO2life®, recently approved in Europe (i.e., CE obtained in October 2022). Perfusions with all OCs led to decreased lactate levels. Additionally, none of the OCs negatively affected renal morphology as determined by histological analyses. Remarkably, all OCs improved the perfusion solution by reducing the expression of pro-inflammatory mediators (IL-6, IL-8, TNFα) and adhesion molecules (ICAM-1) on both transcript and protein level, suggesting a beneficial effect of the OCs in maintaining the low immunogenicity of the graft. Thus, PFC-based OCs and M101 may constitute a promising alternative to RBCs during normothermic ex-vivo kidney perfusion.
Collapse
Affiliation(s)
- Tamina Rother
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Carina Horgby
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Katharina Schmalkuche
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Jonathan M. Burgmann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Fabian Nocke
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Jägers
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jessica Schmitz
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Jan Hinrich Bräsen
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Miriam Cantore
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Franck Zal
- Hemarina SA, Aéropôle Centre, Morlaix, France
| | - Katja B. Ferenz
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- CeNIDE (Center for Nanointegration Duisburg-Essen), University of Duisburg-Essen, Duisburg, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
Parente A, Flores Carvalho M, Schlegel A. Endothelial Cells and Mitochondria: Two Key Players in Liver Transplantation. Int J Mol Sci 2023; 24:10091. [PMID: 37373238 DOI: 10.3390/ijms241210091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Building the inner layer of our blood vessels, the endothelium forms an important line communicating with deeper parenchymal cells in our organs. Previously considered passive, endothelial cells are increasingly recognized as key players in intercellular crosstalk, vascular homeostasis, and blood fluidity. Comparable to other cells, their metabolic function strongly depends on mitochondrial health, and the response to flow changes observed in endothelial cells is linked to their mitochondrial metabolism. Despite the direct impact of new dynamic preservation concepts in organ transplantation, the impact of different perfusion conditions on sinusoidal endothelial cells is not yet explored well enough. This article therefore describes the key role of liver sinusoidal endothelial cells (LSECs) together with their mitochondrial function in the context of liver transplantation. The currently available ex situ machine perfusion strategies are described with their effect on LSEC health. Specific perfusion conditions, including perfusion pressure, duration, and perfusate oxygenation are critically discussed considering the metabolic function and integrity of liver endothelial cells and their mitochondria.
Collapse
Affiliation(s)
- Alessandro Parente
- HPB and Transplant Unit, Department of Surgical Science, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Hepatobiliary and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | | | - Andrea Schlegel
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
- Transplantation Center, Digestive Disease and Surgery Institute, Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Ozgur OS, Namsrai BE, Pruett TL, Bischof JC, Toner M, Finger EB, Uygun K. Current practice and novel approaches in organ preservation. FRONTIERS IN TRANSPLANTATION 2023; 2:1156845. [PMID: 38993842 PMCID: PMC11235303 DOI: 10.3389/frtra.2023.1156845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/16/2023] [Indexed: 07/13/2024]
Abstract
Organ transplantation remains the only treatment option for patients with end-stage organ failure. The last decade has seen a flurry of activity in improving organ preservation technologies, which promise to increase utilization in a dramatic fashion. They also bring the promise of extending the preservation duration significantly, which opens the doors to sharing organs across local and international boundaries and transforms the field. In this work, we review the recent literature on machine perfusion of livers across various protocols in development and clinical use, in the context of extending the preservation duration. We then review the next generation of technologies that have the potential to further extend the limits and open the door to banking organs, including supercooling, partial freezing, and nanowarming, and outline the opportunities arising in the field for researchers in the short and long term.
Collapse
Affiliation(s)
- Ozge Sila Ozgur
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Research Department, Shriners Children’s Boston, Boston, MA, United States
| | - Bat-Erdene Namsrai
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Timothy L. Pruett
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - John C. Bischof
- Departments of Mechanical and Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Mehmet Toner
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Research Department, Shriners Children’s Boston, Boston, MA, United States
| | - Erik B. Finger
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Korkut Uygun
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Research Department, Shriners Children’s Boston, Boston, MA, United States
| |
Collapse
|
16
|
Hughes CB, Nigmet Y, Villanueva FS, Chen X, Demetris AJ, Stolz DB, Pacella JJ, Humar A. Ultrasound-Targeted Microbubble Cavitation During Machine Perfusion Reduces Microvascular Thrombi and Graft Injury in a Rat Liver Model of Donation After Circulatory Death. Transplant Proc 2023; 55:485-495. [PMID: 36878745 DOI: 10.1016/j.transproceed.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/15/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Ischemic cholangiopathy is a process of bile duct injury that might result from peribiliary vascular plexus (PBP) thrombosis and remains a dreaded complication in liver transplantation from donors after circulatory death (DCD). The aim of this study was to propose a mechanical method of clot destruction to clear microvascular thrombi in DCD livers before transplantation. METHODS Sonothrombolysis (STL) is a process by which inertial cavitation of circulating microbubbles entering an ultrasound field create a high-energy shockwave at a microbubble-thrombus interface, causing mechanical clot destruction. The effectiveness of STL in DCD liver treatment remains unclear. We carried out STL treatment during normothermic, oxygenated, ex vivo machine perfusion (NMP), introducing microbubbles into the perfusate with the liver enveloped in an ultrasound field. RESULTS The STL livers showed reduction in hepatic arterial and PBP thrombus and decreases in hepatic arterial and portal venous flow resistance, reduced parenchymal injury as measured by aspartate transaminase release and oxygen consumption, and improved cholangiocyte function. Light and electron microscopy showed reduction of hepatic arterial and PBP thrombus in STL livers compared with controls and preserved hepatocyte structure, sinusoid endothelial morphology, and biliary epithelial microvilli. CONCLUSION In this model, STL improved flow and functional measures in DCD livers undergoing NMP. These data suggest a novel therapeutic approach to treat PBP injury in DCD livers, which may ultimately increase the pool of grafts available to patients awaiting liver transplantation.
Collapse
Affiliation(s)
- Christopher B Hughes
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | - Yermek Nigmet
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical, Pittsburgh, Pennsylvania
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical, Pittsburgh, Pennsylvania
| | - Anthony J Demetris
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Donna B Stolz
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical, Pittsburgh, Pennsylvania
| | - Abhinav Humar
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Metabolomics Differences of the Donor Livers Between In Situ and Ex Situ Conditions During Ischemia-free Liver Transplantation. Transplantation 2023; 107:e139-e151. [PMID: 36857152 PMCID: PMC10125122 DOI: 10.1097/tp.0000000000004529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND Ischemia-free liver transplantation (IFLT) has been innovated to avoid graft ischemia during organ procurement, preservation, and implantation. However, the metabolism activity of the donor livers between in the in situ and ex situ normothermic machine perfusion (NMP) conditions, and between standard criteria donor and extend criteria donor remains unknown. METHODS During IFLT, plasma samples were collected both at the portal vein and hepatic vein of the donor livers in situ during procurement and ex situ during NMP. An ultra-high performance liquid chromatography-mass spectrometry was conducted to investigate the common and distinct intraliver metabolite exchange. RESULTS Profound cysteine and methionine metabolism, and aminoacyl-tRNA biosynthesis were found in both in situ and ex situ conditions. However, obvious D-arginine and D-ornithine metabolism, arginine and proline metabolism were only found in the in situ condition. The suppressed activities of the urea cycle pathway during ex situ condition were confirmed in an RNA expression level. In addition, compared with extend criteria donor group, standard criteria donor group had more active intraliver metabolite exchange in metabonomics level. Furthermore, we found that the relative concentration of p-cresol, allocystathionine, L-prolyl-L-proline in the ex situ group was strongly correlated with peak alanine aminotransferase and aspartate aminotransferase at postoperative days 1-7. CONCLUSIONS In the current study, we show the common and distinct metabolism activities during IFLT. These findings might provide insights on how to modify the design of NMP device, improve the perfusate components, and redefine the criteria of graft viability.
Collapse
|
18
|
Solid Phase Microextraction—A Promising Tool for Graft Quality Monitoring in Solid Organ Transplantation. SEPARATIONS 2023. [DOI: 10.3390/separations10030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Solid organ transplantation is a life-saving intervention for patients suffering from end-stage organ failure. Although improvements in surgical techniques, standards of care, and immunosuppression have been observed over the last few decades, transplant centers have to face the problem of an insufficient number of organs for transplantation concerning the growing demand. An opportunity to increase the pool of organs intended for transplantation is the more frequent use of organs from extended criteria and the development of analytical methods allowing for a better assessment of the quality of organs to minimize the risk of post-transplant organ injury and rejection. Therefore, solid-phase microextraction (SPME) has been proposed in various studies as an effective tool for determining compounds of significance during graft function assessment or for the chemical profiling of grafts undergoing various preservation protocols. This review summarizes how SPME addresses the analytical challenges associated with different matrices utilized in the peri-transplant period and discusses its potential as a diagnostic tool in future work.
Collapse
|
19
|
Kanani T, Isherwood J, Issa E, Chung WY, Ravaioli M, Oggioni MR, Garcea G, Dennison A. A Narrative Review of the Applications of Ex-vivo Human Liver Perfusion. Cureus 2023; 15:e34804. [PMID: 36915839 PMCID: PMC10008027 DOI: 10.7759/cureus.34804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 02/11/2023] Open
Abstract
Ex-vivo perfusion describes the extra-corporeal delivery of fluid to an organ or tissue. Although it has been widely studied in the context of organ preservation and transplantation, it has also proven to be an invaluable tool in the development of novel models for translational pre-clinical research. Here, we review the literature reporting ex-vivo human liver perfusion experiments to further understand current perfusion techniques and protocols together with their applications. A computerised search was made of Ovid, MEDLINE, and Embase using the search words "ex-vivo liver or hepatic perfusion". All relevant studies in English describing experiments using ex-vivo perfusion of human livers between 2016 and 2021, inclusive, were included. Of 21 reviewed studies, 19 used ex-vivo human liver perfusion in the context of allogeneic liver transplantation. The quality and size of the studies varied considerably. Human liver perfusion was almost exclusively limited to whole organs and "split" livers, although one study did describe the successful perfusion of tissue sections following a partial hepatectomy. This review of recent literature involving ex-vivo human liver perfusion demonstrates that the technique is not limited to whole liver perfusion. Split-liver perfusion is extremely valuable allowing one lobe to act as a control and increasing the number available for research. This review also highlights the present lack of any reports of segmental liver perfusion. The discarded donor liver is a scarce resource, and the successful use of segmental perfusion has the potential to expand the available experimental models to facilitate pre-clinical experimentation.
Collapse
Affiliation(s)
- Trisha Kanani
- Department of Hepato-Pancreato-Biliary Surgery, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - John Isherwood
- Department of Hepato-Pancreato-Biliary Surgery, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Eyad Issa
- Department of Hepato-Pancreato-Biliary Surgery, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Wen Y Chung
- Department of Hepato-Pancreato-Biliary Surgery, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Matteo Ravaioli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, ITA
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, GBR
| | - Giuseppe Garcea
- Department of Hepato-Pancreato-Biliary Surgery, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Ashley Dennison
- Department of Hepato-Pancreato-Biliary Surgery, University Hospitals of Leicester NHS Trust, Leicester, GBR
| |
Collapse
|
20
|
Gao Z, Zhou W, Lv X, Wang X. Metabolomics as a Critical Tool for Studying Clinical Surgery. Crit Rev Anal Chem 2023; 54:2245-2258. [PMID: 36592066 DOI: 10.1080/10408347.2022.2162810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metabolomics enables the analysis of metabolites within an organism, which offers the closest direct measurement of the physiological activity of the organism, and has advanced efforts to characterize metabolic states, identify biomarkers, and investigate metabolic pathways. A high degree of innovation in analytical techniques has promoted the application of metabolomics, especially in the study of clinical surgery. Metabolomics can be employed as a clinical testing method to maximize therapeutic outcomes, and has been applied in rapid diagnosis of diseases, timely postoperative monitoring, prognostic assessment, and personalized medicine. This review focuses on the use of mass spectrometry and nuclear magnetic resonance-based metabolomics in clinical surgery, including identifying metabolic changes before and after surgery, finding disease-associated biomarkers, and exploring the potential of personalized therapy. Challenges and opportunities of metabolomics in organ transplantation are also discussed, with a particular emphasis on metabolomics in donor organ evaluation and protection, prognostic outcome prediction, as well as postoperative adverse reaction monitoring. In the end, current limitations of metabolomics in clinical surgery and future research directions are presented.
Collapse
Affiliation(s)
- Zhenye Gao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Wenxiu Zhou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xiaoyuan Lv
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xin Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
21
|
Moosburner S, Wiering L, Roschke NN, Winter A, Demir M, Gaßner JM, Zimmer M, Ritschl P, Globke B, Lurje G, Tacke F, Schöning W, Pratschke J, Öllinger R, Sauer IM, Raschzok N. Validation of risk scores for allograft failure after liver transplantation in Germany: a retrospective cohort analysis. Hepatol Commun 2023; 7:e0012. [PMID: 36633496 PMCID: PMC9833444 DOI: 10.1097/hc9.0000000000000012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 01/13/2023] Open
Abstract
A growing number of clinical risk scores have been proposed to predict allograft failure after liver transplantation. However, validation of currently available scores in the Eurotransplant region is still lacking. We aimed to analyze all clinically relevant donor and recipient risk scores on a large German liver transplantation data set and performed a retrospective cohort analysis of liver transplantations performed at the Charité-Universitätsmedizin Berlin from January 2007 until December 2021 with organs from donation after brain death. We analyzed 9 previously published scores in 906 liver transplantations [Eurotransplant donor risk index (ET-DRI/DRI), donor age and model for end-stage liver disease (D-MELD), balance of risk (BAR), early allograft dysfunction (EAD), model for early allograft function (MEAF), liver graft assessment following transplantation (L-GrAFT7), early allograft failure simplified estimation (EASE), and a score by Rhu and colleagues). The EASE score had the best predictive value for 3-month, 6-month, and 12-month graft survival with a c-statistic of 0.8, 0.77, and 0.78, respectively. In subgroup analyses, the EASE score was suited best for male recipients with a high-MELD (>25) and an EAD organ. Scores only based on pretransplant data performed worse compared to scores including postoperative data (eg, ET-DRI vs. EAD, p<0.001 at 3-month graft survival). Out of these, the BAR score performed best with a c-statistic of 0.6. This a comprehensive comparison of the clinical utility of risk scores after liver transplantation. The EASE score sufficiently predicted 12-month graft and patient survival. Despite a relatively complex calculation, the EASE score provides significant prognostic value for patients and health care professionals in the Eurotransplant region.
Collapse
Affiliation(s)
- Simon Moosburner
- Department of Surgery, Experimental Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Universität zu Berlin and Berlin Institute of Health
- BIH Charité Clinician Scientist Program, Berlin Institute of Health (BIH)
| | - Leke Wiering
- Department of Hepatology and Gastroenterology, Campus Charité Mitte|Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Nathalie N. Roschke
- Department of Surgery, Experimental Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Universität zu Berlin and Berlin Institute of Health
| | - Axel Winter
- Department of Surgery, Experimental Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Universität zu Berlin and Berlin Institute of Health
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Charité Mitte|Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Joseph M.G.V. Gaßner
- Department of Surgery, Experimental Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Universität zu Berlin and Berlin Institute of Health
- BIH Charité Clinician Scientist Program, Berlin Institute of Health (BIH)
| | - Maximilian Zimmer
- Department of Surgery, Experimental Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Universität zu Berlin and Berlin Institute of Health
| | - Paul Ritschl
- Department of Surgery, Experimental Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Universität zu Berlin and Berlin Institute of Health
- BIH Charité Clinician Scientist Program, Berlin Institute of Health (BIH)
| | - Brigitta Globke
- Department of Surgery, Experimental Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Universität zu Berlin and Berlin Institute of Health
- BIH Charité Clinician Scientist Program, Berlin Institute of Health (BIH)
| | - Georg Lurje
- Department of Surgery, Experimental Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Universität zu Berlin and Berlin Institute of Health
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Charité Mitte|Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Wenzel Schöning
- Department of Surgery, Experimental Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Universität zu Berlin and Berlin Institute of Health
| | - Johann Pratschke
- Department of Surgery, Experimental Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Universität zu Berlin and Berlin Institute of Health
| | - Robert Öllinger
- Department of Surgery, Experimental Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Universität zu Berlin and Berlin Institute of Health
| | - Igor M. Sauer
- Department of Surgery, Experimental Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Universität zu Berlin and Berlin Institute of Health
| | - Nathanael Raschzok
- Department of Surgery, Experimental Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Universität zu Berlin and Berlin Institute of Health
- BIH Charité Clinician Scientist Program, Berlin Institute of Health (BIH)
| |
Collapse
|
22
|
Azizieh Y, Westhaver LP, Badrudin D, Boudreau JE, Gala-Lopez BL. Changing liver utilization and discard rates in clinical transplantation in the ex-vivo machine preservation era. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1079003. [PMID: 36908294 PMCID: PMC9996101 DOI: 10.3389/fmedt.2023.1079003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Liver transplantation is a well-established treatment for many with end-stage liver disease. Unfortunately, the increasing organ demand has surpassed the donor supply, and approximately 30% of patients die while waiting for a suitable liver. Clinicians are often forced to consider livers of inferior quality to increase organ donation rates, but ultimately, many of those organs end up being discarded. Extensive testing in experimental animals and humans has shown that ex-vivo machine preservation allows for a more objective characterization of the graft outside the body, with particular benefit for suboptimal organs. This review focuses on the history of the implementation of ex-vivo liver machine preservation and how its enactment may modify our current concept of organ acceptability. We provide a brief overview of the major drivers of organ discard (age, ischemia time, steatosis, etc.) and how this technology may ultimately revert such a trend. We also discuss future directions for this technology, including the identification of new markers of injury and repair and the opportunity for other ex-vivo regenerative therapies. Finally, we discuss the value of this technology, considering current and future donor characteristics in the North American population that may result in a significant organ discard.
Collapse
Affiliation(s)
- Yara Azizieh
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | - David Badrudin
- Department of Surgery, Université de Montréal, Montréal, QC, Canada
| | - Jeanette E Boudreau
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Boris L Gala-Lopez
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada.,Department of Surgery, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
23
|
Meszaros AT, Hofmann J, Buch ML, Cardini B, Dunzendorfer-Matt T, Nardin F, Blumer MJ, Fodor M, Hermann M, Zelger B, Otarashvili G, Schartner M, Weissenbacher A, Oberhuber R, Resch T, Troppmair J, Öfner D, Zoller H, Tilg H, Gnaiger E, Hautz T, Schneeberger S. Mitochondrial respiration during normothermic liver machine perfusion predicts clinical outcome. EBioMedicine 2022; 85:104311. [PMID: 36374770 PMCID: PMC9626552 DOI: 10.1016/j.ebiom.2022.104311] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022] Open
Abstract
Background Reliable biomarkers for organ quality assessment during normothermic machine perfusion (NMP) are desired. ATP (adenosine triphosphate) production by oxidative phosphorylation plays a crucial role in the bioenergetic homeostasis of the liver. Thus, detailed analysis of the aerobic mitochondrial performance may serve as predictive tool towards the outcome after liver transplantation. Methods In a prospective clinical trial, 50 livers were subjected to NMP (OrganOx Metra) for up to 24 h. Biopsy and perfusate samples were collected at the end of cold storage, at 1 h, 6 h, end of NMP, and 1 h after reperfusion. Mitochondrial function and integrity were characterized by high-resolution respirometry (HRR), AMP, ADP, ATP and glutamate dehydrogenase analysis and correlated with the clinical outcome (L-GrAFT score). Real-time confocal microscopy was performed to assess tissue viability. Structural damage was investigated by histology, immunohistochemistry and transmission electron microscopy. Findings A considerable variability in tissue viability and mitochondrial respiration between individual livers at the end of cold storage was observed. During NMP, mitochondrial respiration with succinate and tissue viability remained stable. In the multivariate analysis of the 35 transplanted livers (15 were discarded), area under the curve (AUC) of LEAK respiration, cytochrome c control efficiency (mitochondrial outer membrane damage), and efficacy of the mitochondrial ATP production during the first 6 h of NMP correlated with L-GrAFT. Interpretations Bioenergetic competence during NMP plays a pivotal role in addition to tissue injury markers. The AUC for markers of outer mitochondrial membrane damage, ATP synthesis efficiency and dissipative respiration (LEAK) predict the clinical outcome upon liver transplantation. Funding This study was funded by a Grant from the In Memoriam Dr. Gabriel Salzner Stiftung awarded to SS and the 10.13039/501100009968Tiroler Wissenschaftsfond granted to TH.
Collapse
Key Words
- liver
- transplantation
- normothermic machine perfusion
- mitochondria
- high-resolution respirometry
- adp, adenosine diphosphate
- alt, alanine aminotransferase
- amp, adenosine monophosphate
- ast, aspartate aminotransferase
- atp, adenosine triphosphate
- auc, area under the curve
- bmi, body mass index
- ccasp3, cleaved caspase 3
- dbd, donation after brain death
- dcd, donation after cardiocirculatory death
- dri, donor risk index
- ead, early allograft dysfunction
- ecd, extended criteria donor
- et, electron transfer
- fao, fatty acid oxidation
- fcr, flux control ratio
- fmn, flavin mononucleotide
- gldh, glutamate dehydrogenase
- h&e, haematoxylin and eosin
- hope, hypothermic oxygenated machine perfusion
- hrr, high-resolution respirometry
- ihc, immunohistochemistry
- il-6, interleukin 6
- iri, ischemia-reperfusion injury
- ldh, lactate dehydrogenase
- l-graft, liver graft assessment following transplantation
- lt, liver transplantation
- meaf, model for early allograft function
- meld, model of end stage liver disease
- mp, machine perfusion
- mtim, mitochondrial inner membrane
- mtom, mitochondrial outer membrane
- nafld, non-alcoholic fatty liver disease
- nmp, normothermic machine perfusion
- oxphos, oxidative phosphorylation
- pi, propidium iodidide
- rtcm, real-time confocal microscopy
- scs, static cold storage
- sd, standard deviation
- suit, substrate-uncoupler-inhibitor titration
- tem, transmission electron microscopy
- tlr4, toll-like receptor 4
- tnfα, tumor necrosis factor alpha
- wga, wheat germ agglutinin
Collapse
Affiliation(s)
- Andras T. Meszaros
- Department of Visceral, Transplant and Thoracic Surgery, organLife™ Laboratory and Daniel Swarovski Research Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Hofmann
- Department of Visceral, Transplant and Thoracic Surgery, organLife™ Laboratory and Daniel Swarovski Research Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Madita L. Buch
- Department of Visceral, Transplant and Thoracic Surgery, organLife™ Laboratory and Daniel Swarovski Research Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Benno Cardini
- Department of Visceral, Transplant and Thoracic Surgery, organLife™ Laboratory and Daniel Swarovski Research Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Florian Nardin
- Department of Visceral, Transplant and Thoracic Surgery, organLife™ Laboratory and Daniel Swarovski Research Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria,Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael J. Blumer
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Margot Fodor
- Department of Visceral, Transplant and Thoracic Surgery, organLife™ Laboratory and Daniel Swarovski Research Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- Department of Visceral, Transplant and Thoracic Surgery, organLife™ Laboratory and Daniel Swarovski Research Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Zelger
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Giorgi Otarashvili
- Department of Visceral, Transplant and Thoracic Surgery, organLife™ Laboratory and Daniel Swarovski Research Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Melanie Schartner
- Department of Visceral, Transplant and Thoracic Surgery, organLife™ Laboratory and Daniel Swarovski Research Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Annemarie Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, organLife™ Laboratory and Daniel Swarovski Research Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, organLife™ Laboratory and Daniel Swarovski Research Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Resch
- Department of Visceral, Transplant and Thoracic Surgery, organLife™ Laboratory and Daniel Swarovski Research Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Troppmair
- Department of Visceral, Transplant and Thoracic Surgery, organLife™ Laboratory and Daniel Swarovski Research Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, organLife™ Laboratory and Daniel Swarovski Research Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Theresa Hautz
- Department of Visceral, Transplant and Thoracic Surgery, organLife™ Laboratory and Daniel Swarovski Research Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, organLife™ Laboratory and Daniel Swarovski Research Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria,Corresponding author. Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| |
Collapse
|
24
|
Subnormothermic Ex Vivo Porcine Kidney Perfusion Improves Energy Metabolism: Analysis Using 31P Magnetic Resonance Spectroscopic Imaging. Transplant Direct 2022; 8:e1354. [PMID: 36176724 PMCID: PMC9514833 DOI: 10.1097/txd.0000000000001354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
The ideal preservation temperature for donation after circulatory death kidney grafts is unknown. We investigated whether subnormothermic (22 °C) ex vivo kidney machine perfusion could improve kidney metabolism and reduce ischemia-reperfusion injury.
Collapse
|
25
|
Krüger M, Ruppelt A, Kappler B, Van Soest E, Samsom RA, Grinwis GCM, Geijsen N, Helms JB, Stijnen M, Kock LM, Rasponi M, Kooistra HS, Spee B. Normothermic Ex Vivo Liver Platform Using Porcine Slaughterhouse Livers for Disease Modeling. Bioengineering (Basel) 2022; 9:bioengineering9090471. [PMID: 36135018 PMCID: PMC9495507 DOI: 10.3390/bioengineering9090471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic and toxic liver disorders, such as fatty liver disease (steatosis) and drug-induced liver injury, are highly prevalent and potentially life-threatening. To allow for the study of these disorders from the early stages onward, without using experimental animals, we collected porcine livers in a slaughterhouse and perfused these livers normothermically. With our simplified protocol, the perfused slaughterhouse livers remained viable and functional over five hours of perfusion, as shown by hemodynamics, bile production, indocyanine green clearance, ammonia metabolism, gene expression and histology. As a proof-of-concept to study liver disorders, we show that an infusion of free fatty acids and acetaminophen results in early biochemical signs of liver damage, including reduced functionality. In conclusion, the present platform offers an accessible system to perform research in a functional, relevant large animal model while avoiding using experimental animals. With further improvements to the model, prolonged exposure could make this model a versatile tool for studying liver diseases and potential treatments.
Collapse
Affiliation(s)
- Melanie Krüger
- LifeTec Group BV, 5611 ZS Eindhoven, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Alicia Ruppelt
- LifeTec Group BV, 5611 ZS Eindhoven, The Netherlands
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
- Correspondence:
| | | | | | - Roos Anne Samsom
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Guy C. M. Grinwis
- Veterinary Pathology Diagnostic Centre, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Niels Geijsen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - J. Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Marco Stijnen
- LifeTec Group BV, 5611 ZS Eindhoven, The Netherlands
| | - Linda M. Kock
- LifeTec Group BV, 5611 ZS Eindhoven, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Marco Rasponi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Hans S. Kooistra
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
26
|
Tessier SN, de Vries RJ, Pendexter CA, Cronin SEJ, Ozer S, Hafiz EOA, Raigani S, Oliveira-Costa JP, Wilks BT, Lopera Higuita M, van Gulik TM, Usta OB, Stott SL, Yeh H, Yarmush ML, Uygun K, Toner M. Partial freezing of rat livers extends preservation time by 5-fold. Nat Commun 2022; 13:4008. [PMID: 35840553 PMCID: PMC9287450 DOI: 10.1038/s41467-022-31490-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
The limited preservation duration of organs has contributed to the shortage of organs for transplantation. Recently, a tripling of the storage duration was achieved with supercooling, which relies on temperatures between -4 and -6 °C. However, to achieve deeper metabolic stasis, lower temperatures are required. Inspired by freeze-tolerant animals, we entered high-subzero temperatures (-10 to -15 °C) using ice nucleators to control ice and cryoprotective agents (CPAs) to maintain an unfrozen liquid fraction. We present this approach, termed partial freezing, by testing gradual (un)loading and different CPAs, holding temperatures, and storage durations. Results indicate that propylene glycol outperforms glycerol and injury is largely influenced by storage temperatures. Subsequently, we demonstrate that machine perfusion enhancements improve the recovery of livers after freezing. Ultimately, livers that were partially frozen for 5-fold longer showed favorable outcomes as compared to viable controls, although frozen livers had lower cumulative bile and higher liver enzymes.
Collapse
Affiliation(s)
- Shannon N. Tessier
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Reinier J. de Vries
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.7177.60000000084992262Department of Surgery, Amsterdam University Medical Centers – location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Casie A. Pendexter
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,Present Address: Sylvatica Biotech Inc., North Charleston, SC USA
| | - Stephanie E. J. Cronin
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Sinan Ozer
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Ehab O. A. Hafiz
- grid.420091.e0000 0001 0165 571XDepartment of Electron Microscopy Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - Siavash Raigani
- grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.32224.350000 0004 0386 9924Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Boston, MA USA
| | - Joao Paulo Oliveira-Costa
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA USA
| | - Benjamin T. Wilks
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Manuela Lopera Higuita
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Thomas M. van Gulik
- grid.7177.60000000084992262Department of Surgery, Amsterdam University Medical Centers – location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Osman Berk Usta
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Shannon L. Stott
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA USA
| | - Heidi Yeh
- grid.32224.350000 0004 0386 9924Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Boston, MA USA
| | - Martin L. Yarmush
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.430387.b0000 0004 1936 8796Department of Biomedical Engineering, Rutgers University, Piscataway, NJ USA
| | - Korkut Uygun
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Mehmet Toner
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| |
Collapse
|
27
|
Olkowicz M, Ribeiro RVP, Yu F, Alvarez JS, Xin L, Yu M, Rosales R, Adamson MB, Bissoondath V, Smolenski RT, Billia F, Badiwala MV, Pawliszyn J. Dynamic Metabolic Changes During Prolonged Ex Situ Heart Perfusion Are Associated With Myocardial Functional Decline. Front Immunol 2022; 13:859506. [PMID: 35812438 PMCID: PMC9267769 DOI: 10.3389/fimmu.2022.859506] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Ex situ heart perfusion (ESHP) was developed to preserve and evaluate donated hearts in a perfused beating state. However, myocardial function declines during ESHP, which limits the duration of perfusion and the potential to expand the donor pool. In this research, we combine a novel, minimally-invasive sampling approach with comparative global metabolite profiling to evaluate changes in the metabolomic patterns associated with declines in myocardial function during ESHP. Biocompatible solid-phase microextraction (SPME) microprobes serving as chemical biopsy were used to sample heart tissue and perfusate in a translational porcine ESHP model and a small cohort of clinical cases. In addition, six core-needle biopsies of the left ventricular wall were collected to compare the performance of our SPME sampling method against that of traditional tissue-collection. Our state-of-the-art metabolomics platform allowed us to identify a large number of significantly altered metabolites and lipid species that presented comparable profile of alterations to conventional biopsies. However, significant discrepancies in the pool of identified analytes using two sampling methods (SPME vs. biopsy) were also identified concerning mainly compounds susceptible to dynamic biotransformation and most likely being a result of low-invasive nature of SPME. Overall, our results revealed striking metabolic alterations during prolonged 8h-ESHP associated with uncontrolled inflammation not counterbalanced by resolution, endothelial injury, accelerated mitochondrial oxidative stress, the disruption of mitochondrial bioenergetics, and the accumulation of harmful lipid species. In conclusion, the combination of perfusion parameters and metabolomics can uncover various mechanisms of organ injury and recovery, which can help differentiate between donor hearts that are transplantable from those that should be discarded.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Roberto Vanin Pinto Ribeiro
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Cardiac Surgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Frank Yu
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Juglans Souto Alvarez
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Liming Xin
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Miao Yu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roizar Rosales
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Mitchell Brady Adamson
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Ved Bissoondath
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | | | - Filio Billia
- Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Ted Roger’s Center for Heart Research, University Health Network, Toronto, ON, Canada
| | - Mitesh Vallabh Badiwala
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Ted Roger’s Center for Heart Research, University Health Network, Toronto, ON, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Janusz Pawliszyn,
| |
Collapse
|
28
|
Brüggenwirth IMA, van Leeuwen OB, Porte RJ, Martins PN. The Emerging Role of Viability Testing During Liver Machine Perfusion. Liver Transpl 2022; 28:876-886. [PMID: 33963657 DOI: 10.1002/lt.26092] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/30/2021] [Indexed: 12/23/2022]
Abstract
The transplant community continues to be challenged by the disparity between the need for liver transplantation and the shortage of suitable donor organs. At the same time, the number of unused donor livers continues to increase, most likely attributed to the worsening quality of these organs. To date, there is no reliable marker of liver graft viability that can predict good posttransplant outcomes. Ex situ machine perfusion offers additional data to assess the viability of donor livers before transplantation. Hence, livers initially considered unsuitable for transplantation can be assessed during machine perfusion in terms of appearance and consistency, hemodynamics, and metabolic and excretory function. In addition, postoperative complications such as primary nonfunction or posttransplant cholangiopathy may be predicted and avoided. A variety of viability criteria have been used in machine perfusion, and to date there is no widely accepted composition of criteria for clinical use. This review discusses potential viability markers for hepatobiliary function during machine perfusion, describes current limitations, and provides future recommendations for the use of viability criteria in clinical liver transplantation.
Collapse
Affiliation(s)
- Isabel M A Brüggenwirth
- Department of Surgery, Section of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Division of Organ Transplantation, Department of Surgery, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA
| | - Otto B van Leeuwen
- Department of Surgery, Section of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Department of Surgery, Section of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paulo N Martins
- Division of Organ Transplantation, Department of Surgery, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA
| |
Collapse
|
29
|
Abraham N, Zhang M, Cray P, Gao Q, Samy KP, Neill R, Cywinska G, Migaly J, Kahan R, Pontula A, Halpern SE, Rush C, Penaflor J, Kesseli SJ, Krischak M, Song M, Hartwig MG, Pollara JJ, Barbas AS. Two Compartment Evaluation of Liver Grafts During Acellular Room Temperature Machine Perfusion (acRTMP) in a Rat Liver Transplant Model. Front Med (Lausanne) 2022; 9:804834. [PMID: 35280912 PMCID: PMC8907827 DOI: 10.3389/fmed.2022.804834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Subnormothermic machine perfusion (SNMP) of liver grafts is currently less clinically developed than normothermic and hypothermic approaches, but may have logistical advantages. At intermediate temperatures, the oxygen demand of the graft is low enough to be satisfied with an acellular perfusate, obviating the need for oxygen carrying molecules. This intermediate metabolic rate, however, is sufficient to support the production of bile, which is emerging as an important indicator of graft injury and viability. In this study, we hypothesized that the biliary compartment would be more sensitive than perfusate in detecting graft injury during SNMP. Methods To test this hypothesis in a rat model, we performed liver transplants with DCD and control liver grafts after 1 h of acellular room temperature machine perfusion (acRTMP) or static cold storage (SCS). Point of care liver function tests were measured in biliary and perfusate samples after 1 h of machine perfusion. Following transplantation, rats were sacrificed at 24 h for assessment of post-transplant graft function and histology. Results All point-of-care liver function tests were significantly more concentrated in the biliary compartment than the perfusate compartment during acRTMP. DCD liver grafts could be distinguished from control liver grafts by significantly higher markers of hepatocyte injury (AST, ALT) in the biliary compartment, but not in the perfusate compartment. Classical markers of cholangiocyte injury, such as gammy-glut amyl transferase (GGT), amylase (AML), and alkaline phosphatase were detectable in the biliary compartment, but not in the perfusate compartment. In comparison to SCS, graft preservation by acRTMP produced a significant survival benefit in DCD liver transplantation (75 vs. 0%, p < 0.0030). Conclusion Together, these findings demonstrate that during acRTMP, the biliary compartment may be a more sensitive indicator of graft injury than the perfusate compartment. Moreover, acRTMP provides superior graft preservation to SCS in rat DCD liver transplantation.
Collapse
Affiliation(s)
- Nader Abraham
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Min Zhang
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Paul Cray
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Qimeng Gao
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Kannan P Samy
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Ryan Neill
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Greta Cywinska
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - JonCarlo Migaly
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Riley Kahan
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Arya Pontula
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Samantha E Halpern
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Caroline Rush
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Jude Penaflor
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Samuel J Kesseli
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Madison Krischak
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Mingqing Song
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Matthew G Hartwig
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Justin J Pollara
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| | - Andrew S Barbas
- Duke Ex-Vivo Organ Lab (DEVOL) - Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| |
Collapse
|
30
|
Quantitative Metabolomics of Tissue, Perfusate, and Bile from Rat Livers Subjected to Normothermic Machine Perfusion. Biomedicines 2022; 10:biomedicines10030538. [PMID: 35327340 PMCID: PMC8945564 DOI: 10.3390/biomedicines10030538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Machine perfusion (MP) allows the maintenance of liver cells in a metabolically active state ex vivo and can potentially revert metabolic perturbations caused by donor warm ischemia, procurement, and static cold storage (SCS). The present preclinical research investigated the metabolic outcome of the MP procedure by analyzing rat liver tissue, bile, and perfusate samples by means of high-field (600 MHz) nuclear magnetic resonance (NMR) spectroscopy. An established rat model of normothermic MP (NMP) was used. Experiments were carried out with the addition of an oxygen carrier (OxC) to the perfusion fluid (OxC-NMP, n = 5) or without (h-NMP, n = 5). Bile and perfusate samples were collected throughout the procedure, while biopsies were only taken at the end of NMP. Two additional groups were: (1) Native, in which tissue or bile specimens were collected from rats in resting conditions; and (2) SCS, in which biopsies were taken from cold-stored livers. Generally, NMP groups showed a distinctive metabolomic signature in all the analyzed biological matrices. In particular, many of the differentially expressed metabolites were involved in mitochondrial biochemical pathways. Succinate, acetate, 3-hydroxybutyrate, creatine, and O-phosphocholine were deeply modulated in ex vivo perfused livers compared to both the Native and SCS groups. These novel results demonstrate a broad modulation of mitochondrial metabolism during NMP that exceeds energy production and redox balance maintenance.
Collapse
|
31
|
Sommer F, Sun B, Fischer J, Goldammer M, Thiele C, Malberg H, Markgraf W. Hyperspectral Imaging during Normothermic Machine Perfusion—A Functional Classification of Ex Vivo Kidneys Based on Convolutional Neural Networks. Biomedicines 2022; 10:biomedicines10020397. [PMID: 35203605 PMCID: PMC8962340 DOI: 10.3390/biomedicines10020397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/18/2022] Open
Abstract
Facing an ongoing organ shortage in transplant medicine, strategies to increase the use of organs from marginal donors by objective organ assessment are being fostered. In this context, normothermic machine perfusion provides a platform for ex vivo organ evaluation during preservation. Consequently, analytical tools are emerging to determine organ quality. In this study, hyperspectral imaging (HSI) in the wavelength range of 550–995 nm was applied. Classification of 26 kidneys based on HSI was established using KidneyResNet, a convolutional neural network (CNN) based on the ResNet-18 architecture, to predict inulin clearance behavior. HSI preprocessing steps were implemented, including automated region of interest (ROI) selection, before executing the KidneyResNet algorithm. Training parameters and augmentation methods were investigated concerning their influence on the prediction. When classifying individual ROIs, the optimized KidneyResNet model achieved 84% and 62% accuracy in the validation and test set, respectively. With a majority decision on all ROIs of a kidney, the accuracy increased to 96% (validation set) and 100% (test set). These results demonstrate the feasibility of HSI in combination with KidneyResNet for non-invasive prediction of ex vivo kidney function. This knowledge of preoperative renal quality may support the organ acceptance decision.
Collapse
|
32
|
Hamelink TL, Ogurlu B, De Beule J, Lantinga VA, Pool MBF, Venema LH, Leuvenink HGD, Jochmans I, Moers C. Renal Normothermic Machine Perfusion: The Road Toward Clinical Implementation of a Promising Pretransplant Organ Assessment Tool. Transplantation 2022; 106:268-279. [PMID: 33979315 DOI: 10.1097/tp.0000000000003817] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The increased utilization of high-risk renal grafts for transplantation requires optimization of pretransplant organ assessment strategies. Current decision-making methods to accept an organ for transplantation lack overall predictive power and always contain an element of subjectivity. Normothermic machine perfusion (NMP) creates near-physiological conditions, which might facilitate a more objective assessment of organ quality before transplantation. NMP is rapidly gaining popularity, with various transplant centers developing their own NMP protocols and renal viability criteria. However, to date, no validated sets of on-pump viability markers exist nor are there unified NMP protocols. This review provides a critical overview of the fundamentals of current renal NMP protocols and proposes a framework to approach further development of ex vivo organ evaluation. We also comment on the potential logistical implications of routine clinical use of NMP, which is a more complex procedure compared with static cold storage or even hypothermic machine perfusion.
Collapse
Affiliation(s)
- Tim L Hamelink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Baran Ogurlu
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Julie De Beule
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Veerle A Lantinga
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonie H Venema
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ina Jochmans
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
33
|
Mao XL, Cai Y, Chen YH, Wang Y, Jiang XX, Ye LP, Li SW. Novel Targets and Therapeutic Strategies to Protect Against Hepatic Ischemia Reperfusion Injury. Front Med (Lausanne) 2022; 8:757336. [PMID: 35059411 PMCID: PMC8764312 DOI: 10.3389/fmed.2021.757336] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatic ischemia reperfusion injury (IRI), a fascinating topic that has drawn a lot of interest in the last few years, is a major complication caused by a variety of clinical situations, such as liver transplantation, severe trauma, vascular surgery, and hemorrhagic shock. The IRI process involves a series of complex events, including mitochondrial deenergization, metabolic acidosis, adenosine-5'-triphosphate depletion, Kupffer cell activation, calcium overload, oxidative stress, and the upregulation of pro-inflammatory cytokine signal transduction. A number of protective strategies have been reported to ameliorate IRI, including pharmacological therapy, ischemic pre-conditioning, ischemic post-conditioning, and machine reperfusion. However, most of these strategies are only at the stage of animal model research at present, and the potential mechanisms and exact therapeutic targets have yet to be clarified. IRI remains a main cause of postoperative liver dysfunction, often leading to postoperative morbidity or even mortality. Very recently, it was reported that the activation of peroxisome proliferator-activated receptor γ (PPARγ), a member of a superfamily of nuclear transcription factors activated by agonists, can attenuate IRI in the liver, and FAM3A has been confirmed to mediate the protective effect of PPARγ in hepatic IRI. In addition, non-coding RNAs, like LncRNAs and miRNAs, have also been reported to play a pivotal role in the liver IRI process. In this review, we presented an overview of the latest advances of treatment strategies and proposed potential mechanisms behind liver IRI. We also highlighted the role of several important molecules (PPARγ, FAM3A, and non-coding RNAs) in protecting against hepatic IRI. Only after achieving a comprehensive understanding of potential mechanisms and targets behind IRI can we effectively ameliorate IRI in the liver and achieve better therapeutic effects.
Collapse
Affiliation(s)
- Xin-Li Mao
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yue Cai
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ya-Hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yi Wang
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiu-Xiu Jiang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li-Ping Ye
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-Wei Li
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
34
|
Current and Potential Applications for Indocyanine Green in Liver Transplantation. Transplantation 2021; 106:1339-1350. [PMID: 34966106 DOI: 10.1097/tp.0000000000004024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Indocyanine green (ICG) is a fluorescent dye taken up and almost exclusively cleared by the liver. Measurement of its clearance and visualization of its fluorescence make it suitable for a number of potential applications in liver transplantation including assessment of liver function and real-time assessment of arterial, venous, and biliary structures. ICG clearance can be used to assess donor graft quality before procurement and graft metabolic function before transplant using normothermic ex vivo machine perfusion. ICG clearance in the post-liver transplantation period is able to predict recipient outcomes with correlations to early allograft dysfunction and postoperative complications. After absorbing light in the near-infrared spectrum, ICG also emits fluorescence at 835 nm. This allows the assessment of vascular patency after reconstruction and patterns of liver perfusion in real time. ICG perfusion patterns after revascularization are also associated with posttransplant graft function and survival. ICG fluorescence cholangiography is routine in a number of centers and acts as an aid to identifying the optimal point of bile duct division during living donor liver transplantation to optimize safety for both donor and recipient. In summary, ICG is a versatile tool and has a number of useful applications in the liver transplantation journey including assessment of liver function, perfusion assessment, and cholangiography. Further research and clinical trials are required to validate and standardize its routine use in liver transplantation.
Collapse
|
35
|
de Vries RJ, Cronin SEJ, Romfh P, Pendexter CA, Jain R, Wilks BT, Raigani S, van Gulik TM, Chen P, Yeh H, Uygun K, Tessier SN. Non-invasive quantification of the mitochondrial redox state in livers during machine perfusion. PLoS One 2021; 16:e0258833. [PMID: 34705828 PMCID: PMC8550443 DOI: 10.1371/journal.pone.0258833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is a critical problem in liver transplantation that can lead to life-threatening complications and substantially limit the utilization of livers for transplantation. However, because there are no early diagnostics available, fulminant injury may only become evident post-transplant. Mitochondria play a central role in IRI and are an ideal diagnostic target. During ischemia, changes in the mitochondrial redox state form the first link in the chain of events that lead to IRI. In this study we used resonance Raman spectroscopy to provide a rapid, non-invasive, and label-free diagnostic for quantification of the hepatic mitochondrial redox status. We show this diagnostic can be used to significantly distinguish transplantable versus non-transplantable ischemically injured rat livers during oxygenated machine perfusion and demonstrate spatial differences in the response of mitochondrial redox to ischemia reperfusion. This novel diagnostic may be used in the future to predict the viability of human livers for transplantation and as a tool to better understand the mechanisms of hepatic IRI.
Collapse
Affiliation(s)
- Reinier J. de Vries
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
- Department of Surgery, Amsterdam University Medical Centers–Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Stephanie E. J. Cronin
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Padraic Romfh
- Pendar Technologies, Cambridge, MA, United States of America
| | - Casie A. Pendexter
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Rohil Jain
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Benjamin T. Wilks
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Siavash Raigani
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States of America
| | - Thomas M. van Gulik
- Department of Surgery, Amsterdam University Medical Centers–Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peili Chen
- Pendar Technologies, Cambridge, MA, United States of America
| | - Heidi Yeh
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States of America
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Shannon N. Tessier
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| |
Collapse
|
36
|
van Beekum CJ, Vilz TO, Glowka TR, von Websky MW, Kalff JC, Manekeller S. Normothermic Machine Perfusion (NMP) of the Liver - Current Status and Future Perspectives. Ann Transplant 2021; 26:e931664. [PMID: 34426566 PMCID: PMC8400594 DOI: 10.12659/aot.931664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
A shortage of available organs for liver transplantation has led transplant surgeons and researchers to seek for innovative approaches in hepatoprotection and improvement of marginal allografts. The most exciting development in the past decade has been continuous mechanical perfusion of livers with blood or preservation solution to mitigate ischemia-reperfusion injury in contrast to the current standard of static cold storage. Two variations of machine perfusion have emerged in clinical practice. During hypothermic oxygenated perfusion the liver is perfused using a red blood cell-free perfusate at 2-10°C. In contrast, normothermic machine perfusion mimics physiologic liver perfusion using a red blood cell-based solution at 35.5-037.5°C, offering a multitude of potential advantages. Putative effects of normothermic perfusion include abrogation of hyperfibrinolysis after reperfusion and inflammation, glycogen repletion, and regeneration of adenosine triphosphate. Research in normothermic machine perfusion focuses on development of biomarkers predicting allograft quality and susceptibility to ischemia-reperfusion injury. Moreover, normothermic perfusion of marginal allografts allows for application of a variety of therapeutic interventions potentially enhancing organ quality. Both methods need to be subjected to translational investigation and evaluation in clinical trials. A clear advantage is transformation of an emergency procedure at night into a planned daytime surgery. Current clinical trials suggest that normothermic perfusion not only increases the use of hepatic allografts but is also associated with milder ischemia-reperfusion injury, resulting in a reduced risk of early allograft dysfunction and less biliary complications, including ischemic cholangiopathy, compared to static cold storage. The aim of this review is to give a concise overview of normothermic machine perfusion and its current applications, benefits, and possible advances in the future.
Collapse
|
37
|
Huang H, He X, Yarmush ML. Advanced technologies for the preservation of mammalian biospecimens. Nat Biomed Eng 2021; 5:793-804. [PMID: 34426675 PMCID: PMC8765766 DOI: 10.1038/s41551-021-00784-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
The three classical core technologies for the preservation of live mammalian biospecimens-slow freezing, vitrification and hypothermic storage-limit the biomedical applications of biospecimens. In this Review, we summarize the principles and procedures of these three technologies, highlight how their limitations are being addressed via the combination of microfabrication and nanofabrication, materials science and thermal-fluid engineering and discuss the remaining challenges.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States.
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
38
|
Current review of machine perfusion in liver transplantation from the Japanese perspective. Surg Today 2021; 52:359-368. [PMID: 33754175 DOI: 10.1007/s00595-021-02265-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Abstract
In light of the present evidence, machine perfusion is opening up new horizons in the field of liver transplantation. Although many advances have been made in liver transplantation, organ preservation methods have so far changed very little. Static cold storage is universally used for graft preservation in liver transplantation; however, there is a need for better preservation methods, such as ex vivo machine perfusion, to improve the outcomes by decreasing warm ischemic damage. Based on the findings of basic and clinical trials, hypothermic and normothermic machine perfusion techniques are now commercially available and include the OrganOx metra, Liver Assist, Cleveland NMP device, Organ Care System, and LifePort Liver. Recent clinical trials have provided further evidence for the potential role of normothermic machine perfusion to resuscitate and subsequently improve utilization of marginal or currently discarded livers. Further studies are required to explore the longer-term outcomes, late biliary complications, outcomes in specific high-risk groups, viability biomarkers, optimum and maximum perfusion duration, perfusate composition, and liver-directed therapeutic interventions during normothermic machine perfusion. The use of organs from marginal donors after brain death, such as fatty livers and the livers from elderly donors with multiple comorbidities, may be accepted for machine perfusion in Japan in the near future.
Collapse
|
39
|
OuYang Q, Liang G, Tan X, He X, Zhang L, Kuang W, Chen J, Wang S, Liang M, Huo F. Evaluation of the ex vivo liver viability using a nuclear magnetic resonance relaxation time-based assay in a porcine machine perfusion model. Sci Rep 2021; 11:4117. [PMID: 33603011 PMCID: PMC7892848 DOI: 10.1038/s41598-021-83202-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/27/2021] [Indexed: 01/07/2023] Open
Abstract
There is a dearth of effective parameters for selecting potentially transplantable liver grafts from expanded-criteria donors. In this study, we used a nuclear magnetic resonance (NMR) relaxation analyzer-based assay to assess the viability of ex vivo livers obtained via porcine donation after circulatory death (DCD). Ex situ normothermic machine perfusion (NMP) was utilized as a platform for viability test of porcine DCD donor livers. A liver-targeted contrast agent, gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA), was injected into the perfusate during NMP, and the dynamic biliary excretion of the Gd-EOB-DTPA was monitored by measuring the longitudinal relaxation time (T1). The longitudinal relaxation rate (R1) of the bile was served as a parameter. The delay of increase in biliary R1 during early stage of NMP indicated the impaired function of liver grafts in both warm and cold ischemia injury, which was correlated with the change of alanine aminotransferase. The preservative superiority in cold ischemia of dual hypothermic oxygenated machine perfusion could also be verified by assessing biliary R1 and other biochemical parameters. This study allows for the dynamic assessment of the viability of porcine DCD donor livers by combined usage of ex situ NMP and NMR relaxation time based assay, which lays a foundation for further clinical application.
Collapse
Affiliation(s)
- Qing OuYang
- Department of Hepatobiliary Surgery and Liver Transplant Center, The General Hospital of Southern Theater, Guangzhou, China
| | - Guohai Liang
- The MOE Key Laboratory of Laser Life Science, South China Normal University, Guangzhou, China
| | - Xiaoyu Tan
- Department of Hepatobiliary Surgery and Liver Transplant Center, The General Hospital of Southern Theater, Guangzhou, China
| | - Xiran He
- Guangdong Shunde Industry Design Institute (Guangdong Shunde Innovative Design Institute), Shunde, Guangdong, China
| | - Lin Zhang
- Guangdong Devocean Medical Instrument Co., Ltd., Shunde, Guangdong, China
| | - Weijian Kuang
- Guangdong Shunde Industry Design Institute (Guangdong Shunde Innovative Design Institute), Shunde, Guangdong, China
| | - Jianxiong Chen
- Department of Hepatobiliary Surgery and Liver Transplant Center, The General Hospital of Southern Theater, Guangzhou, China
| | - Shaoping Wang
- Department of Hepatobiliary Surgery and Liver Transplant Center, The General Hospital of Southern Theater, Guangzhou, China
| | - Mingju Liang
- Guangdong Shunde Industry Design Institute (Guangdong Shunde Innovative Design Institute), Shunde, Guangdong, China.
| | - Feng Huo
- Department of Hepatobiliary Surgery and Liver Transplant Center, The General Hospital of Southern Theater, Guangzhou, China.
| |
Collapse
|
40
|
Brüggenwirth IMA, de Meijer VE, Porte RJ, Martins PN. Viability criteria assessment during liver machine perfusion. Nat Biotechnol 2020; 38:1260-1262. [PMID: 33106683 DOI: 10.1038/s41587-020-0720-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Isabel M A Brüggenwirth
- Section of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Surgery, Division of Organ Transplantation, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Vincent E de Meijer
- Section of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Section of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paulo N Martins
- Department of Surgery, Division of Organ Transplantation, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
41
|
Ex Vivo Analysis of Kidney Graft Viability Using 31P Magnetic Resonance Imaging Spectroscopy. Transplantation 2020; 104:1825-1831. [PMID: 32675744 DOI: 10.1097/tp.0000000000003323] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The lack of organs for kidney transplantation is a growing concern. Expansion in organ supply has been proposed through the use of organs after circulatory death (donation after circulatory death [DCD]). However, many DCD grafts are discarded because of long warm ischemia times, and the absence of reliable measure of kidney viability. P magnetic resonance imaging (pMRI) spectroscopy is a noninvasive method to detect high-energy phosphate metabolites, such as ATP. Thus, pMRI could predict kidney energy state, and its viability before transplantation. METHODS To mimic DCD, pig kidneys underwent 0, 30, or 60 min of warm ischemia, before hypothermic machine perfusion. During the ex vivo perfusion, we assessed energy metabolites using pMRI. In addition, we performed Gadolinium perfusion sequences. Each sample underwent histopathological analyzing and scoring. Energy status and kidney perfusion were correlated with kidney injury. RESULTS Using pMRI, we found that in pig kidney, ATP was rapidly generated in presence of oxygen (100 kPa), which remained stable up to 22 h. Warm ischemia (30 and 60 min) induced significant histological damages, delayed cortical and medullary Gadolinium elimination (perfusion), and reduced ATP levels, but not its precursors (AMP). Finally, ATP levels and kidney perfusion both inversely correlated with the severity of kidney histological injury. CONCLUSIONS ATP levels, and kidney perfusion measurements using pMRI, are biomarkers of kidney injury after warm ischemia. Future work will define the role of pMRI in predicting kidney graft and patient's survival.
Collapse
|
42
|
Kvietkauskas M, Zitkute V, Leber B, Strupas K, Stiegler P, Schemmer P. The Role of Metabolomics in Current Concepts of Organ Preservation. Int J Mol Sci 2020; 21:ijms21186607. [PMID: 32927605 PMCID: PMC7555311 DOI: 10.3390/ijms21186607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
In solid organ transplantation (Tx), both survival rates and quality of life have improved dramatically over the last few decades. Each year, the number of people on the wait list continues to increase, widening the gap between organ supply and demand. Therefore, the use of extended criteria donor grafts is growing, despite higher susceptibility to ischemia-reperfusion injury (IRI) and consecutive inferior Tx outcomes. Thus, tools to characterize organ quality prior to Tx are crucial components for Tx success. Innovative techniques of metabolic profiling revealed key pathways and mechanisms involved in IRI occurring during organ preservation. Although large-scale trials are needed, metabolomics appears to be a promising tool to characterize potential biomarkers, for the assessment of graft quality before Tx and evaluate graft-related outcomes. In this comprehensive review, we summarize the currently available literature on the use of metabolomics in solid organ Tx, with a special focus on metabolic profiling during graft preservation to assess organ quality prior to Tx.
Collapse
Affiliation(s)
- Mindaugas Kvietkauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Viktorija Zitkute
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
- Correspondence: ; Tel.: +43-316-385-84094
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
| |
Collapse
|
43
|
Zhang A, Carroll C, Raigani S, Karimian N, Huang V, Nagpal S, Beijert I, Porte RJ, Yarmush M, Uygun K, Yeh H. Tryptophan Metabolism via the Kynurenine Pathway: Implications for Graft Optimization during Machine Perfusion. J Clin Med 2020; 9:E1864. [PMID: 32549246 PMCID: PMC7355886 DOI: 10.3390/jcm9061864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Access to liver transplantation continues to be hindered by the severe organ shortage. Extended-criteria donor livers could be used to expand the donor pool but are prone to ischemia-reperfusion injury (IRI) and post-transplant graft dysfunction. Ex situ machine perfusion may be used as a platform to rehabilitate discarded or extended-criteria livers prior to transplantation, though there is a lack of data guiding the utilization of different perfusion modalities and therapeutics. Since amino acid derivatives involved in inflammatory and antioxidant pathways are critical in IRI, we analyzed differences in amino acid metabolism in seven discarded non-steatotic human livers during normothermic- (NMP) and subnormothermic-machine perfusion (SNMP) using data from untargeted metabolomic profiling. We found notable differences in tryptophan, histamine, and glutathione metabolism. Greater tryptophan metabolism via the kynurenine pathway during NMP was indicated by significantly higher kynurenine and kynurenate tissue concentrations compared to pre-perfusion levels. Livers undergoing SNMP demonstrated impaired glutathione synthesis indicated by depletion of reduced and oxidized glutathione tissue concentrations. Notably, ATP and energy charge ratios were greater in livers during SNMP compared to NMP. Given these findings, several targeted therapeutic interventions are proposed to mitigate IRI during liver machine perfusion and optimize marginal liver grafts during SNMP and NMP.
Collapse
Affiliation(s)
- Anna Zhang
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Tufts University School of Medicine, Boston, MA 02111, USA
| | - Cailah Carroll
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Siavash Raigani
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Negin Karimian
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Viola Huang
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Sonal Nagpal
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Irene Beijert
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Division of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, 9700 Groningen, The Netherlands;
| | - Robert J. Porte
- Division of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, 9700 Groningen, The Netherlands;
| | - Martin Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Heidi Yeh
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
44
|
Butler JR, O'Brien DC, Kays JK, Kubal CA, Ekser B, Fridell JA, Mangus RS, Powelson JA. Incisional Hernia After Orthotopic Liver Transplantation: A Systematic Review and Meta-analysis. Transplant Proc 2020; 53:255-259. [PMID: 32532557 DOI: 10.1016/j.transproceed.2020.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Incisional hernia (IH) is a well-known complication of orthotopic liver transplantation. Despite wide recognition of the impact of this problem, the incidence remains imprecisely known. METHODS The MEDLINE, EMBASE, Cochrane Central Register of Clinical Trials and Cochrane Database of Systematic Reviews databases were searched from their inception to November 2017 for abstracts documenting IH after orthotropic liver transplantation (OLT). The primary endpoint of this study was incidence of IH, secondary endpoints were time to hernia and recurrence. Three reviewers independently graded abstracts for inclusion in this review. Heterogeneity in combining data was assumed prior to pooling. Random-effects meta-analyses were performed to estimate percentages and 95% CIs. RESULTS After a review of 77 abstracts, 18 studies were graded as relevant. The methodological quality of studies was assessed with a minimum Oxford Centre for Evidence-Based Medicine level of 2B. These represent a cohort of 981 patients with IH after OLT reported in the literature. A meta-analysis of studies meeting inclusion criteria shows mean incidence of 15.1% (CI 12.1%-18.2%). Aggregate recurrence rate reported in the literature is 12.4% (CI 4.3%-20.5%). Overall reported time to IH after OLT was 42.9 months. CONCLUSIONS Although reported incidences of IH after OLT vary widely across studies, an overall incidence of 15.1% is reported. This is a relatively late complication after transplantation. Recurrence of hernia after initial repair is 12.4% within this patient population.
Collapse
Affiliation(s)
- James R Butler
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Daniel C O'Brien
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joshua K Kays
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chandrashekhar A Kubal
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Burcin Ekser
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jonathan A Fridell
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard S Mangus
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - John A Powelson
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
45
|
de Vries RJ, Tessier SN, Banik PD, Nagpal S, Cronin SEJ, Ozer S, Hafiz EOA, van Gulik TM, Yarmush ML, Markmann JF, Toner M, Yeh H, Uygun K. Subzero non-frozen preservation of human livers in the supercooled state. Nat Protoc 2020; 15:2024-2040. [PMID: 32433625 DOI: 10.1038/s41596-020-0319-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/10/2020] [Indexed: 12/20/2022]
Abstract
Preservation of human organs at subzero temperatures has been an elusive goal for decades. The major complication hindering successful subzero preservation is the formation of ice at temperatures below freezing. Supercooling, or subzero non-freezing, preservation completely avoids ice formation at subzero temperatures. We previously showed that rat livers can be viably preserved three times longer by supercooling as compared to hypothermic preservation at +4 °C. Scalability of supercooling preservation to human organs was intrinsically limited because of volume-dependent stochastic ice formation at subzero temperatures. However, we recently adapted the rat preservation approach so it could be applied to larger organs. Here, we describe a supercooling protocol that averts freezing of human livers by minimizing air-liquid interfaces as favorable sites of ice nucleation and uses preconditioning with cryoprotective agents to depress the freezing point of the liver tissue. Human livers are homogeneously preconditioned during multiple machine perfusion stages at different temperatures. Including preparation, the protocol takes 31 h to complete. Using this protocol, human livers can be stored free of ice at -4 °C, which substantially extends the ex vivo life of the organ. To our knowledge, this is the first detailed protocol describing how to perform subzero preservation of human organs.
Collapse
Affiliation(s)
- Reinier J de Vries
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Surgery, Amsterdam University Medical Centers-location AMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Shannon N Tessier
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Peony D Banik
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Sonal Nagpal
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Stephanie E J Cronin
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Sinan Ozer
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Ehab O A Hafiz
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA.,Department of Electron Microscopy Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - Thomas M van Gulik
- Department of Surgery, Amsterdam University Medical Centers-location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin L Yarmush
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - James F Markmann
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Heidi Yeh
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA. .,Department of Research, Shriners Hospitals for Children-Boston, Boston, MA, USA.
| |
Collapse
|
46
|
Resch T, Cardini B, Oberhuber R, Weissenbacher A, Dumfarth J, Krapf C, Boesmueller C, Oefner D, Grimm M, Schneeberger S. Transplanting Marginal Organs in the Era of Modern Machine Perfusion and Advanced Organ Monitoring. Front Immunol 2020; 11:631. [PMID: 32477321 PMCID: PMC7235363 DOI: 10.3389/fimmu.2020.00631] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Organ transplantation is undergoing profound changes. Contraindications for donation have been revised in order to better meet the organ demand. The use of lower-quality organs and organs with greater preoperative damage, including those from donation after cardiac death (DCD), has become an established routine but increases the risk of graft malfunction. This risk is further aggravated by ischemia and reperfusion injury (IRI) in the process of transplantation. These circumstances demand a preservation technology that ameliorates IRI and allows for assessment of viability and function prior to transplantation. Oxygenated hypothermic and normothermic machine perfusion (MP) have emerged as valid novel modalities for advanced organ preservation and conditioning. Ex vivo prolonged lung preservation has resulted in successful transplantation of high-risk donor lungs. Normothermic MP of hearts and livers has displayed safe (heart) and superior (liver) preservation in randomized controlled trials (RCT). Normothermic kidney preservation for 24 h was recently established. Early clinical outcomes beyond the market entry trials indicate bioenergetics reconditioning, improved preservation of structures subject to IRI, and significant prolongation of the preservation time. The monitoring of perfusion parameters, the biochemical investigation of preservation fluids, and the assessment of tissue viability and bioenergetics function now offer a comprehensive assessment of organ quality and function ex situ. Gene and protein expression profiling, investigation of passenger leukocytes, and advanced imaging may further enhance the understanding of the condition of an organ during MP. In addition, MP offers a platform for organ reconditioning and regeneration and hence catalyzes the clinical realization of tissue engineering. Organ modification may include immunological modification and the generation of chimeric organs. While these ideas are not conceptually new, MP now offers a platform for clinical realization. Defatting of steatotic livers, modulation of inflammation during preservation in lungs, vasodilatation of livers, and hepatitis C elimination have been successfully demonstrated in experimental and clinical trials. Targeted treatment of lesions and surgical treatment or graft modification have been attempted. In this review, we address the current state of MP and advanced organ monitoring and speculate about logical future steps and how this evolution of a novel technology can result in a medial revolution.
Collapse
Affiliation(s)
- Thomas Resch
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Benno Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Annemarie Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Dumfarth
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Krapf
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Boesmueller
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Oefner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Grimm
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
47
|
Arterial Lactate Concentration at the End of Liver Transplantation Is an Early Predictor of Primary Graft Dysfunction. Ann Surg 2020; 270:131-138. [PMID: 29509585 DOI: 10.1097/sla.0000000000002726] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although many prognostic factors of primary graft dysfunction after liver transplantation (LT) are available, it remains difficult to predict failure in a given recipient. OBJECTIVE We aimed to determine whether the intraoperative assay of arterial lactate concentration at the end of LT (LCEOT) might constitute a reliable biological test to predict early outcomes [primary nonfunction (PNF), early graft dysfunction (EAD)]. METHODS We reviewed data from a prospective database in a single center concerning patients transplanted between January 2015 and December 2016 (n = 296). RESULTS There was no statistical imbalance between the training (year 2015) and validation groups (year 2016) for epidemiological and perioperative feature. Ten patients (3.4%) presented with PNF, and EAD occurred in 62 patients (20.9%); 9 patients died before postoperative day (POD) 90. LCEOT ≥5 mmol/L was the best cut-off point to predict PNF (Se=83.3%, SP=74.3%, positive likelihood ratio (LR+)=3.65, negative likelihood ratio (LR-)=0.25, diagnostic odds ratio (DOR)=14.44) and was predictive of PNF (P = 0.02), EAD (P = 0.05), and death ≤ POD90 (P = 0.06). Added to the validated BAR-score, LCEOT improved its predictive value regarding POD 90 survival with a better AUC (0.87) than BAR score (0.74). The predictive value of LCEOT was confirmed in the validation cohort. CONCLUSION As a reflection of both hypoperfusion and tissue damage, the assay of arterial LCEOT ≥5 mmol/L appears to be a strong predictor of early graft outcomes and may be used as an endpoint in studies assessing the impact of perioperative management. Its accessibility and low cost could impose it as a reliable parameter to anticipate postoperative management and help clinicians for decision-making in the first PODs.
Collapse
|
48
|
Raigani S, Karimian N, Huang V, Zhang AM, Beijert I, Geerts S, Nagpal S, Hafiz EOA, Fontan FM, Aburawi MM, Mahboub P, Markmann JF, Porte RJ, Uygun K, Yarmush M, Yeh H. Metabolic and lipidomic profiling of steatotic human livers during ex situ normothermic machine perfusion guides resuscitation strategies. PLoS One 2020; 15:e0228011. [PMID: 31978172 PMCID: PMC6980574 DOI: 10.1371/journal.pone.0228011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
There continues to be a significant shortage of donor livers for transplantation. One impediment is the discard rate of fatty, or steatotic, livers because of their poor post-transplant function. Steatotic livers are prone to significant ischemia-reperfusion injury (IRI) and data regarding how best to improve the quality of steatotic livers is lacking. Herein, we use normothermic (37°C) machine perfusion in combination with metabolic and lipidomic profiling to elucidate deficiencies in metabolic pathways in steatotic livers, and to inform strategies for improving their function. During perfusion, energy cofactors increased in steatotic livers to a similar extent as non-steatotic livers, but there were significant deficits in anti-oxidant capacity, efficient energy utilization, and lipid metabolism. Steatotic livers appeared to oxidize fatty acids at a higher rate but favored ketone body production rather than energy regeneration via the tricyclic acid cycle. As a result, lactate clearance was slower and transaminase levels were higher in steatotic livers. Lipidomic profiling revealed ω-3 polyunsaturated fatty acids increased in non-steatotic livers to a greater extent than in steatotic livers. The novel use of metabolic and lipidomic profiling during ex situ normothermic machine perfusion has the potential to guide the resuscitation and rehabilitation of steatotic livers for transplantation.
Collapse
Affiliation(s)
- Siavash Raigani
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Negin Karimian
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Viola Huang
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Anna M. Zhang
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Irene Beijert
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sharon Geerts
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sonal Nagpal
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Ehab O. A. Hafiz
- Electron Microscopy Research Division, Theodor Bilharz Research Institute, Giza, Egypt
| | - Fermin M. Fontan
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Mohamed M. Aburawi
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Paria Mahboub
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - James F. Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert J. Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Korkut Uygun
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Martin Yarmush
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Heidi Yeh
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
49
|
Cell release during perfusion reflects cold ischemic injury in rat livers. Sci Rep 2020; 10:1102. [PMID: 31980677 PMCID: PMC6981218 DOI: 10.1038/s41598-020-57589-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/28/2019] [Indexed: 12/13/2022] Open
Abstract
The global shortage of donor organs has made it crucial to deeply understand and better predict donor liver viability. However, biomarkers that effectively assess viability of marginal grafts for organ transplantation are currently lacking. Here, we showed that hepatocytes, sinusoidal endothelial, stellate, and liver-specific immune cells were released into perfusates from Lewis rat livers as a result of cold ischemia and machine perfusion. Perfusate comparison analysis of fresh livers and cold ischemic livers showed that the released cell profiles were significantly altered by the duration of cold ischemia. Our findings show for the first time that parenchymal cells are released from organs under non-proliferative pathological conditions, correlating with the degree of ischemic injury. Thus, perfusate cell profiles could serve as potential biomarkers of graft viability and indicators of specific injury mechanisms during organ handling and transplantation. Further, parenchymal cell release may have applications in other pathological conditions beyond organ transplantation.
Collapse
|
50
|
Huang V, Karimian N, Detelich D, Raigani S, Geerts S, Beijert I, Fontan FM, Aburawi MM, Ozer S, Banik P, Lin F, Karabacak M, Hafiz EO, Porte RJ, Uygun K, Markmann JF, Yeh H. Split-Liver Ex Situ Machine Perfusion: A Novel Technique for Studying Organ Preservation and Therapeutic Interventions. J Clin Med 2020; 9:E269. [PMID: 31963739 PMCID: PMC7019984 DOI: 10.3390/jcm9010269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
Ex situ machine perfusion is a promising technology to help improve organ viability prior to transplantation. However, preclinical studies using discarded human livers to evaluate therapeutic interventions and optimize perfusion conditions are limited by significant graft heterogeneity. In order to improve the efficacy and reproducibility of future studies, a split-liver perfusion model was developed to allow simultaneous perfusion of left and right lobes, allowing one lobe to serve as a control for the other. Eleven discarded livers were surgically split, and both lobes perfused simultaneously on separate perfusion devices for 3 h at subnormothermic temperatures. Lobar perfusion parameters were also compared with whole livers undergoing perfusion. Similar to whole-liver perfusions, each lobe in the split-liver model exhibited a progressive decrease in arterial resistance and lactate levels throughout perfusion, which were not significantly different between right and left lobes. Split liver lobes also demonstrated comparable energy charge ratios. Ex situ split-liver perfusion is a novel experimental model that allows each graft to act as its own control. This model is particularly well suited for preclinical studies by avoiding the need for large numbers of enrolled livers necessary due to the heterogenous nature of discarded human liver research.
Collapse
Affiliation(s)
- Viola Huang
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (V.H.); (N.K.); (D.D.); (S.R.); (F.M.F.); (M.M.A.); (K.U.); (J.F.M.)
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; (S.G.); (S.O.); (P.B.); (F.L.); (M.K.)
| | - Negin Karimian
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (V.H.); (N.K.); (D.D.); (S.R.); (F.M.F.); (M.M.A.); (K.U.); (J.F.M.)
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; (S.G.); (S.O.); (P.B.); (F.L.); (M.K.)
| | - Danielle Detelich
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (V.H.); (N.K.); (D.D.); (S.R.); (F.M.F.); (M.M.A.); (K.U.); (J.F.M.)
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; (S.G.); (S.O.); (P.B.); (F.L.); (M.K.)
| | - Siavash Raigani
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (V.H.); (N.K.); (D.D.); (S.R.); (F.M.F.); (M.M.A.); (K.U.); (J.F.M.)
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; (S.G.); (S.O.); (P.B.); (F.L.); (M.K.)
| | - Sharon Geerts
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; (S.G.); (S.O.); (P.B.); (F.L.); (M.K.)
| | - Irene Beijert
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, 9700 Groningen, The Netherlands; (I.B.); (R.J.P.)
| | - Fermin M. Fontan
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (V.H.); (N.K.); (D.D.); (S.R.); (F.M.F.); (M.M.A.); (K.U.); (J.F.M.)
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; (S.G.); (S.O.); (P.B.); (F.L.); (M.K.)
| | - Mohamed M. Aburawi
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (V.H.); (N.K.); (D.D.); (S.R.); (F.M.F.); (M.M.A.); (K.U.); (J.F.M.)
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; (S.G.); (S.O.); (P.B.); (F.L.); (M.K.)
| | - Sinan Ozer
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; (S.G.); (S.O.); (P.B.); (F.L.); (M.K.)
| | - Peony Banik
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; (S.G.); (S.O.); (P.B.); (F.L.); (M.K.)
| | - Florence Lin
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; (S.G.); (S.O.); (P.B.); (F.L.); (M.K.)
| | - Murat Karabacak
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; (S.G.); (S.O.); (P.B.); (F.L.); (M.K.)
| | - Ehab O.A. Hafiz
- Electron Microscopy Department, Theodor Bilharz Research Institute, Giza 12411, Egypt;
| | - Robert J. Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, 9700 Groningen, The Netherlands; (I.B.); (R.J.P.)
| | - Korkut Uygun
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (V.H.); (N.K.); (D.D.); (S.R.); (F.M.F.); (M.M.A.); (K.U.); (J.F.M.)
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; (S.G.); (S.O.); (P.B.); (F.L.); (M.K.)
| | - James F. Markmann
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (V.H.); (N.K.); (D.D.); (S.R.); (F.M.F.); (M.M.A.); (K.U.); (J.F.M.)
| | - Heidi Yeh
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (V.H.); (N.K.); (D.D.); (S.R.); (F.M.F.); (M.M.A.); (K.U.); (J.F.M.)
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; (S.G.); (S.O.); (P.B.); (F.L.); (M.K.)
| |
Collapse
|