1
|
Ji S, Chen F, Li S, Zhou C, Liu C, Yu H. Dynamic brain entropy predicts risky decision-making across transdiagnostic dimensions of psychopathology. Behav Brain Res 2025; 476:115255. [PMID: 39326636 DOI: 10.1016/j.bbr.2024.115255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES Maladaptive risky decision-making is a common pathological behavior among patients with various psychiatric disorders. Brain entropy, which measures the complexity of brain time series signals, provides a novel approach to assessing brain health. Despite its potential, the dynamics of brain entropy have seldom been explored. This study aimed to construct a dynamic model of brain entropy and examine its predictive value for risky decision-making in patients with mental disorders, utilizing resting-state functional magnetic resonance imaging (rs-fMRI). METHODS This study analyzed the rs-fMRI data from a total of 198 subjects, including 48 patients with bipolar disorder (BD), 47 patients with schizophrenia (SZ), 40 patients with adult attention deficit hyperactivity disorder (ADHD), as well as 63 healthy controls (HC). Time series signals were extracted from 264 brain regions based on rs-fMRI. The traditional static entropy and dynamic entropy (coefficient of variation, CV; rate of change, Rate) were constructed, respectively. Support vector regression was employed to predict risky decision-making utilizing leave-one-out cross-validation within each group. RESULTS Our findings showed that CV achieved the best performances in HC and BD groups (r = -0.58, MAE = 6.43, R2 = 0.32; r = -0.78, MAE = 12.10, R2 = 0.61), while the Rate achieved the best in SZ and ADHD groups (r = -0.69, MAE = 10.20, R2 = 0.47; r = -0.78, MAE = 7.63, R2 = 0.60). For the dynamic entropy, the feature selection threshold rather than the time window length and overlapping ratio influenced predictive performance. CONCLUSIONS These results suggest that dynamic brain entropy could be a more effective predictor of risky decision-making than traditional static brain entropy. Our findings offer a novel perspective on exploring brain signal complexity and can serve as a reference for interventions targeting risky decision-making behaviors, particularly in individuals with psychiatric diagnoses.
Collapse
Affiliation(s)
- Shanling Ji
- Institute of Mental Health, Jining Medical University, Shandong, China
| | - Fujian Chen
- Medical Imaging Department, Shandong Daizhuang Hospital, Shandong, China
| | - Sen Li
- Institute of Mental Health, Jining Medical University, Shandong, China
| | - Cong Zhou
- Institute of Mental Health, Jining Medical University, Shandong, China
| | - Chuanxin Liu
- Institute of Mental Health, Jining Medical University, Shandong, China.
| | - Hao Yu
- Institute of Mental Health, Jining Medical University, Shandong, China.
| |
Collapse
|
2
|
Piskin D, Müller R, Büchel D, Lehmann T, Baumeister J. Behavioral and cortical dynamics underlying superior accuracy in short-distance passes. Behav Brain Res 2024; 471:115120. [PMID: 38905733 DOI: 10.1016/j.bbr.2024.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Improved pass accuracy is a prominent determinant of success in football. It demands an effective interaction of complex behavioral and cortical dynamics. Exploring differences in the ability to sustain an accurate pass behavior in a stable setting and the associated cortical dynamics at different expertise levels may provide an insight into skilled strategies contributing to superior accuracy in football. The aim of this study is to compare trial-to-trial variability of pass biomechanics and the corresponding cortical dynamics during short-distance passes between novices and experienced football players. Thirty participants (15 novices, 15 football players) performed 90 short-distance passes. The intertrial variability of pass biomechanics (foot acceleration, range of hip flexion, knee flexion and foot rotation) was assessed by means of multiscale entropy. The task-related cortical dynamics were analyzed via source-derived event-related spectral perturbations. Experienced players demonstrated higher accuracy and overall lower entropy values across multiple time scales which was significant for hip flexion. The electroencephalography data revealed group differences in parieto-occipital alpha desynchronization and frontal theta synchronization in successive phases of passes. The current findings suggest that experienced football players may show a skilled ability to recruit and retain pass biomechanics promoting higher accuracy, whereas novices may show an explorative behavior with higher spatial variability. This difference may be associated with distinctive visuospatial and attentional strategies acquired with expertise in football. Our study provides an insight into expertise-specific behavioral and cortical dynamics of superior accuracy in football and a basis for its prospective investigation in enriched contexts.
Collapse
Affiliation(s)
- Daghan Piskin
- Department Sports & Health, Exercise Science & Neuroscience Unit, Paderborn University, Paderborn 33098, Germany.
| | - Romina Müller
- Department Sports & Health, Exercise Science & Neuroscience Unit, Paderborn University, Paderborn 33098, Germany
| | - Daniel Büchel
- Department Sports & Health, Exercise Science & Neuroscience Unit, Paderborn University, Paderborn 33098, Germany
| | - Tim Lehmann
- Department Sports & Health, Exercise Science & Neuroscience Unit, Paderborn University, Paderborn 33098, Germany
| | - Jochen Baumeister
- Department Sports & Health, Exercise Science & Neuroscience Unit, Paderborn University, Paderborn 33098, Germany
| |
Collapse
|
3
|
Wehrheim MH, Faskowitz J, Schubert A, Fiebach CJ. Reliability of variability and complexity measures for task and task-free BOLD fMRI. Hum Brain Mapp 2024; 45:e26778. [PMID: 38980175 PMCID: PMC11232465 DOI: 10.1002/hbm.26778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/06/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Brain activity continuously fluctuates over time, even if the brain is in controlled (e.g., experimentally induced) states. Recent years have seen an increasing interest in understanding the complexity of these temporal variations, for example with respect to developmental changes in brain function or between-person differences in healthy and clinical populations. However, the psychometric reliability of brain signal variability and complexity measures-which is an important precondition for robust individual differences as well as longitudinal research-is not yet sufficiently studied. We examined reliability (split-half correlations) and test-retest correlations for task-free (resting-state) BOLD fMRI as well as split-half correlations for seven functional task data sets from the Human Connectome Project to evaluate their reliability. We observed good to excellent split-half reliability for temporal variability measures derived from rest and task fMRI activation time series (standard deviation, mean absolute successive difference, mean squared successive difference), and moderate test-retest correlations for the same variability measures under rest conditions. Brain signal complexity estimates (several entropy and dimensionality measures) showed moderate to good reliabilities under both, rest and task activation conditions. We calculated the same measures also for time-resolved (dynamic) functional connectivity time series and observed moderate to good reliabilities for variability measures, but poor reliabilities for complexity measures derived from functional connectivity time series. Global (i.e., mean across cortical regions) measures tended to show higher reliability than region-specific variability or complexity estimates. Larger subcortical regions showed similar reliability as cortical regions, but small regions showed lower reliability, especially for complexity measures. Lastly, we also show that reliability scores are only minorly dependent on differences in scan length and replicate our results across different parcellation and denoising strategies. These results suggest that the variability and complexity of BOLD activation time series are robust measures well-suited for individual differences research. Temporal variability of global functional connectivity over time provides an important novel approach to robustly quantifying the dynamics of brain function. PRACTITIONER POINTS: Variability and complexity measures of BOLD activation show good split-half reliability and moderate test-retest reliability. Measures of variability of global functional connectivity over time can robustly quantify neural dynamics. Length of fMRI data has only a minor effect on reliability.
Collapse
Affiliation(s)
- Maren H. Wehrheim
- Department of PsychologyGoethe University FrankfurtFrankfurtGermany
- Department of Computer Science and MathematicsGoethe University FrankfurtFrankfurtGermany
- Frankfurt Institute for Advanced Studies (FIAS)FrankfurtGermany
| | - Joshua Faskowitz
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUSA
| | - Anna‐Lena Schubert
- Department of PsychologyJohannes Gutenberg‐Universität MainzMainzGermany
| | - Christian J. Fiebach
- Department of PsychologyGoethe University FrankfurtFrankfurtGermany
- Brain Imaging CenterGoethe University FrankfurtFrankfurtGermany
| |
Collapse
|
4
|
Williams CL, Belkowitz AR, Nance MG, Mortman ET, Bae S, Ahmed SB, Puglia M. Parent attention-orienting behavior is associated with neural entropy in infancy. INFANCY 2024:10.1111/infa.12595. [PMID: 38676934 PMCID: PMC11512688 DOI: 10.1111/infa.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/26/2024] [Accepted: 04/01/2024] [Indexed: 04/29/2024]
Abstract
Parents use joint attention to direct infants to environmental stimuli. We hypothesized that infants whose parents provide more bids for joint attention will display a more complex neural response when viewing social scenes. Sixty-one 8-month-old infants underwent electroencephalography (EEG) while viewing videos of joint- and parallel-play and participated in a free play interaction. EEG data was analyzed using multiscale entropy, which quantifies neural variability. Free play interactions assessed parent alternating gaze, a behavioral mechanism for directing attention to environmental cues. We found a significant positive association between parent alternating gaze and neural entropy in frontal and central regions. These results suggest a relationship between parent behavior and infant neural mechanisms that regulate social attention, underlying the importance of parental cues in forming neural networks.
Collapse
Affiliation(s)
| | | | | | | | - Sonie Bae
- University of Virginia, Department of Neurology
| | | | - Meghan Puglia
- University of Virginia, Department of Psychology
- University of Virginia, Department of Neurology
| |
Collapse
|
5
|
Williams CL, Belkowitz AR, Nance MG, Mortman ET, Bae S, Ahmed SB, Puglia MH. Parent attention-orienting behavior is associated with neural entropy in infancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585061. [PMID: 38562688 PMCID: PMC10983866 DOI: 10.1101/2024.03.14.585061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Parents play a significant role in directing infant's attention to environmental stimuli via joint attention. We hypothesized that infants whose parents provide more bids for joint attention will display a more complex neural response when viewing social scenes. Sixty-one 8-month-old infants underwent electroencephalography (EEG) while viewing videos of joint- and parallel-play and participated in a parent-infant free play interaction. EEG data was analyzed using multiscale entropy, which quantifies moment-to-moment neural variability. Free play interactions were coded for parent alternating gaze, a behavioral mechanism for directing attention to environmental cues. We found a significant positive association between parent alternating gaze and neural entropy in frontal and central brain regions. These results suggest a relationship between parent behavior and infant neural mechanisms that regulate social attention, underlying the importance of parent cues in the formation of neural networks in infancy.
Collapse
Affiliation(s)
| | | | | | | | - Soni Bae
- University of Virginia, Department of Neurology
| | | | - Meghan H. Puglia
- University of Virginia, Department of Psychology
- University of Virginia, Department of Neurology
| |
Collapse
|
6
|
Roediger DJ, Butts J, Falke C, Fiecas MB, Klimes-Dougan B, Mueller BA, Cullen KR. Optimizing the measurement of sample entropy in resting-state fMRI data. Front Neurol 2024; 15:1331365. [PMID: 38426165 PMCID: PMC10902163 DOI: 10.3389/fneur.2024.1331365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction The complexity of brain signals may hold clues to understand brain-based disorders. Sample entropy, an index that captures the predictability of a signal, is a promising tool to measure signal complexity. However, measurement of sample entropy from fMRI signals has its challenges, and numerous questions regarding preprocessing and parameter selection require research to advance the potential impact of this method. For one example, entropy may be highly sensitive to the effects of motion, yet standard approaches to addressing motion (e.g., scrubbing) may be unsuitable for entropy measurement. For another, the parameters used to calculate entropy need to be defined by the properties of data being analyzed, an issue that has frequently been ignored in fMRI research. The current work sought to rigorously address these issues and to create methods that could be used to advance this field. Methods We developed and tested a novel windowing approach to select and concatenate (ignoring connecting volumes) low-motion windows in fMRI data to reduce the impact of motion on sample entropy estimates. We created utilities (implementing autoregressive models and a grid search function) to facilitate selection of the matching length m parameter and the error tolerance r parameter. We developed an approach to apply these methods at every grayordinate of the brain, creating a whole-brain dense entropy map. These methods and tools have been integrated into a publicly available R package ("powseR"). We demonstrate these methods using data from the ABCD study. After applying the windowing procedure to allow sample entropy calculation on the lowest-motion windows from runs 1 and 2 (combined) and those from runs 3 and 4 (combined), we identified the optimal m and r parameters for these data. To confirm the impact of the windowing procedure, we compared entropy values and their relationship with motion when entropy was calculated using the full set of data vs. those calculated using the windowing procedure. We then assessed reproducibility of sample entropy calculations using the windowed procedure by calculating the intraclass correlation between the earlier and later entropy measurements at every grayordinate. Results When applying these optimized methods to the ABCD data (from the subset of individuals who had enough windows of continuous "usable" volumes), we found that the novel windowing procedure successfully mitigated the large inverse correlation between entropy values and head motion seen when using a standard approach. Furthermore, using the windowed approach, entropy values calculated early in the scan (runs 1 and 2) are largely reproducible when measured later in the scan (runs 3 and 4), although there is some regional variability in reproducibility. Discussion We developed an optimized approach to measuring sample entropy that addresses concerns about motion and that can be applied across datasets through user-identified adaptations that allow the method to be tailored to the dataset at hand. We offer preliminary results regarding reproducibility. We also include recommendations for fMRI data acquisition to optimize sample entropy measurement and considerations for the field.
Collapse
Affiliation(s)
- Donovan J. Roediger
- Department of Psychiatry and Behavioral Sciences, Medical School, University of Minnesota (UMN), Minneapolis, MN, United States
| | - Jessica Butts
- Division of Biostatistics and Health Data Science, School of Public Health, UMN, Minneapolis, MN, United States
| | - Chloe Falke
- Division of Biostatistics and Health Data Science, School of Public Health, UMN, Minneapolis, MN, United States
| | - Mark B. Fiecas
- Division of Biostatistics and Health Data Science, School of Public Health, UMN, Minneapolis, MN, United States
| | - Bonnie Klimes-Dougan
- Psychology Department, College of Liberal Arts, UMN, Minneapolis, MN, United States
| | - Bryon A. Mueller
- Department of Psychiatry and Behavioral Sciences, Medical School, University of Minnesota (UMN), Minneapolis, MN, United States
| | - Kathryn R. Cullen
- Department of Psychiatry and Behavioral Sciences, Medical School, University of Minnesota (UMN), Minneapolis, MN, United States
| |
Collapse
|
7
|
Camargo A, Del Mauro G, Wang Z. Task-induced changes in brain entropy. J Neurosci Res 2024; 102:e25310. [PMID: 38400553 PMCID: PMC10947426 DOI: 10.1002/jnr.25310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/21/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Entropy indicates irregularity of a dynamic system, with higher entropy indicating higher irregularity and more transit states. In the human brain, regional brain entropy (BEN) has been increasingly assessed using resting state fMRI (rs-fMRI), while changes of regional BEN during task-based fMRI have been scarcely studied. The purpose of this study is to characterize task-induced regional BEN alterations using the large Human Connectome Project (HCP) data. To control the potential modulation by the block design, BEN of task-fMRI was calculated from the fMRI images acquired during the task conditions only (task BEN) and then compared to BEN of rs-fMRI (resting BEN). Moreover, BEN was separately calculated from the control blocks of the task-fMRI runs (control BEN) and compared to task BEN. Finally, control BEN was compared to resting BEN to test for residual task effects in the control condition. With respect to resting state, task performance unanimously induced BEN reduction in the peripheral cortical area and BEN increase in the centric part of the sensorimotor and perception networks. Control compared to resting BEN showed similar entropy alterations, suggesting large residual task effects. Task compared to control BEN was characterized by reduced entropy in occipital, orbitofrontal, and parietal regions.
Collapse
Affiliation(s)
- Aldo Camargo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine
| | - Gianpaolo Del Mauro
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine
| |
Collapse
|
8
|
Kim HG, Cho KH, Recknagel F. Time-series modelling of harmful cyanobacteria blooms by convolutional neural networks and wavelet generated time-frequency images of environmental driving variables. WATER RESEARCH 2023; 246:120662. [PMID: 37804805 DOI: 10.1016/j.watres.2023.120662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Early warning systems for harmful cyanobacterial blooms (HCBs) that enable precautional control measures within water bodies and in water works are largely based on inferential time-series modelling. Among deep learning techniques, convolutional neural networks (CNNs) are widely applied for recognition of pictorial, acoustic and thermal images. Time-frequency images of environmental drivers generated by wavelets may provide crucial signals for modelling of HCBs to be recognized by CNNs. This study applies CNNs for time-series modelling of HCBs of Microcystis sp. in four South Korean rivers between 2016 and 2022 by means of time-frequency images of environmental drivers within the lead time of HCBs. After estimating the cardinal dates of beginning, peak, and ending of HCBs, wavelet analysis identified key drivers by phase analysis and generated time-frequency images of the drivers within the cardinal dates for 3, 4 and 5 years. Performances of CNNs were compared in terms of four determinants of input images: methods of estimating critical timings, the number of segments, time-series continuity, and image size. The resulting CNNs predicted high or low intensities of HCBs with a mean accuracy of 97.79 ± 0.06% and F1-score 97.49 ± 0.06% for training dataset, and a mean accuracy of 95.01 ± 0.06% and F1-score 93.30 ± 0.07% for testing dataset. Predictions of Microcystis abundances by CNNs achieved a mean MSE of 2.58 ± 2.46 and a mean R2 of 0.78 ± 0.20 for training, and a mean MSE of 2.76 ± 2.42 and a mean R2 of 0.55 ± 0.20 for testing dataset. Precipitation and discharge appeared to be the best performing drivers for qualitative and quantitative predictions of HCBs pointing at the nonstationary nature of river habitats. This study highlights the opportunities of time-series modelling by CNNs driven by wavelet generated time-frequency images of key environmental variables for forecasting of HCBs.
Collapse
Affiliation(s)
- Hyo Gyeom Kim
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia; School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, 02841, The Republic of Korea.
| | - Kyung Hwa Cho
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, 02841, The Republic of Korea
| | - Friedrich Recknagel
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
9
|
Frohlich J, Chiang JN, Mediano PAM, Nespeca M, Saravanapandian V, Toker D, Dell'Italia J, Hipp JF, Jeste SS, Chu CJ, Bird LM, Monti MM. Neural complexity is a common denominator of human consciousness across diverse regimes of cortical dynamics. Commun Biol 2022; 5:1374. [PMID: 36522453 PMCID: PMC9755290 DOI: 10.1038/s42003-022-04331-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
What is the common denominator of consciousness across divergent regimes of cortical dynamics? Does consciousness show itself in decibels or in bits? To address these questions, we introduce a testbed for evaluating electroencephalogram (EEG) biomarkers of consciousness using dissociations between neural oscillations and consciousness caused by rare genetic disorders. Children with Angelman syndrome (AS) exhibit sleep-like neural dynamics during wakefulness. Conversely, children with duplication 15q11.2-13.1 syndrome (Dup15q) exhibit wake-like neural dynamics during non-rapid eye movement (NREM) sleep. To identify highly generalizable biomarkers of consciousness, we trained regularized logistic regression classifiers on EEG data from wakefulness and NREM sleep in children with AS using both entropy measures of neural complexity and spectral (i.e., neural oscillatory) EEG features. For each set of features, we then validated these classifiers using EEG from neurotypical (NT) children and abnormal EEGs from children with Dup15q. Our results show that the classification performance of entropy-based EEG biomarkers of conscious state is not upper-bounded by that of spectral EEG features, which are outperformed by entropy features. Entropy-based biomarkers of consciousness may thus be highly adaptable and should be investigated further in situations where spectral EEG features have shown limited success, such as detecting covert consciousness or anesthesia awareness.
Collapse
Affiliation(s)
- Joel Frohlich
- Department of Psychology, University of California Los Angeles, 90095, Pritzker Hall, Los Angeles, CA, USA.
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany.
| | - Jeffrey N Chiang
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Mark Nespeca
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
- Department of Neurology, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Vidya Saravanapandian
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Daniel Toker
- Department of Psychology, University of California Los Angeles, 90095, Pritzker Hall, Los Angeles, CA, USA
| | - John Dell'Italia
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA
| | - Joerg F Hipp
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Shafali S Jeste
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA, USA
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Genetics/Dysmorphology, Rady Children's Hospital - San Diego, San Diego, CA, USA
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, 90095, Pritzker Hall, Los Angeles, CA, USA
- Deptment of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
10
|
Puglia MH, Slobin JS, Williams CL. The automated preprocessing pipe-line for the estimation of scale-wise entropy from EEG data (APPLESEED): Development and validation for use in pediatric populations. Dev Cogn Neurosci 2022; 58:101163. [PMID: 36270100 PMCID: PMC9586850 DOI: 10.1016/j.dcn.2022.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023] Open
Abstract
It is increasingly understood that moment-to-moment brain signal variability - traditionally modeled out of analyses as mere "noise" - serves a valuable functional role related to development, cognitive processing, and psychopathology. Multiscale entropy (MSE) - a measure of signal irregularity across temporal scales - is an increasingly popular analytic technique in human neuroscience calculated from time series such as electroencephalography (EEG) signals. MSE provides insight into the time-structure and (non)linearity of fluctuations in neural activity and network dynamics, capturing the brain's moment-to-moment complexity as it operates on multiple time scales. MSE is emerging as a powerful predictor of developmental processes and outcomes. However, differences in data preprocessing and MSE computation make it challenging to compare results across studies. Here, we (1) provide an introduction to MSE for developmental researchers, (2) demonstrate the effect of preprocessing procedures on scale-wise entropy estimates, and (3) establish a standardized EEG preprocessing and entropy estimation pipeline that adapts a critical modification to the original MSE algorithm, and generates reliable scale-wise entropy estimates capable of differentiating developmental stages and cognitive states. This novel pipeline - the Automated Preprocessing Pipe-Line for the Estimation of Scale-wise Entropy from EEG Data (APPLESEED) is fully automated, customizable, and freely available for download from https://github.com/mhpuglia/APPLESEED.
Collapse
Affiliation(s)
- Meghan H. Puglia
- Correspondence to: University of Virginia Department of Neurology, PO Box 800834, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
11
|
Ji S, Zhang Y, Chen N, Liu X, Li Y, Shao X, Yang Z, Yao Z, Hu B. Shared increased entropy of brain signals across patients with different mental illnesses: A coordinate-based activation likelihood estimation meta-analysis. Brain Imaging Behav 2022; 16:336-343. [PMID: 34997426 DOI: 10.1007/s11682-021-00507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 11/25/2022]
Abstract
Entropy is a measurement of brain signal complexity. Studies have found increased/decreased entropy of brain signals in psychiatric patients. There is no consistent conclusion regarding the relationship between the entropy of brain signals and mental illness. Therefore, this meta-analysis aimed to identify consistent abnormalities in the brain signal entropy in patients with different mental illnesses. We conducted a systematic search to collect resting-state functional magnetic resonance imaging (rs-fMRI) studies in patients with psychiatric disorders. This work identified 9 eligible rs-fMRI studies, which included a total of 14 experiments, 67 activation foci, and 1383 subjects. We tested the convergence across their findings by using the activation likelihood estimation method. P-value maps were corrected by using cluster-level family-wise error p < 0.05 and permuting 2000 times. Results showed that patients with different psychiatric disorders shared commonly increased entropy of brain signals in the left inferior and middle frontal gyri, and the right fusiform gyrus, cuneus, precuneus. No shared alterations were found in the subcortical regions and cerebellum in the patient group. Our findings suggested that the increased entropy of brain signals in the cortex, not subcortical regions and cerebellum, might have associations with the pathophysiology across mental illnesses. This meta-analysis study provided the first comprehensive understanding of the abnormality in brain signal complexity across patients with different psychiatric disorders.
Collapse
Affiliation(s)
- Shanling Ji
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Gansu Province, 730000, Lanzhou, China
| | - Yinghui Zhang
- Mental Health Center Hospital of Guangyuan, Guangyuan, China
| | - Nan Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Gansu Province, 730000, Lanzhou, China
| | - Xia Liu
- School of Computer Science, Qinghai Normal University, Xining, China
| | - Yongchao Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Gansu Province, 730000, Lanzhou, China
| | - Xuexiao Shao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Gansu Province, 730000, Lanzhou, China
| | - Zhengwu Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Gansu Province, 730000, Lanzhou, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Gansu Province, 730000, Lanzhou, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Gansu Province, 730000, Lanzhou, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, China.
- Engineering Research Center of Open Source Software and Real-Time System, (Lanzhou University), Ministry of Education, Lanzhou, Gansu Province, 730000, China.
| |
Collapse
|
12
|
Integrating Optimized Multiscale Entropy Model with Machine Learning for the Localization of Epileptogenic Hemisphere in Temporal Lobe Epilepsy Using Resting-State fMRI. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1834123. [PMID: 34745491 PMCID: PMC8566056 DOI: 10.1155/2021/1834123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
The bottleneck associated with the validation of the parameters of the entropy model has limited the application of this model to modern functional imaging technologies such as the resting-state functional magnetic resonance imaging (rfMRI). In this study, an optimization algorithm that could choose the parameters of the multiscale entropy (MSE) model was developed, while the optimized effectiveness for localizing the epileptogenic hemisphere was validated through the classification rate with a supervised machine learning method. The rfMRI data of 20 mesial temporal lobe epilepsy patients with positive indicators (the indicators of epileptogenic hemisphere in clinic) in the hippocampal formation on either left or right hemisphere (equally divided into two groups) on the structural MRI were collected and preprocessed. Then, three parameters in the MSE model were statistically optimized by both receiver operating characteristic (ROC) curve and the area under the ROC curve value in the sensitivity analysis, and the intergroup significance of optimized entropy values was utilized to confirm the biomarked brain areas sensitive to the epileptogenic hemisphere. Finally, the optimized entropy values of these biomarked brain areas were regarded as the feature vectors input for a support vector machine to classify the epileptogenic hemisphere, and the classification effectiveness was cross-validated. Nine biomarked brain areas were confirmed by the optimized entropy values, including medial superior frontal gyrus and superior parietal gyrus (p < .01). The mean classification accuracy was greater than 90%. It can be concluded that combination of the optimized MSE model with the machine learning model can accurately confirm the epileptogenic hemisphere by rfMRI. With the powerful information interaction capabilities of 5G communication, the epilepsy side-fixing algorithm that requires computing power can be integrated into a cloud platform. The demand side only needs to upload patient data to the service platform to realize the preoperative assessment of epilepsy.
Collapse
|
13
|
Whiteside DJ, Jones PS, Ghosh BCP, Coyle-Gilchrist I, Gerhard A, Hu MT, Klein JC, Leigh PN, Church A, Burn DJ, Morris HR, Rowe JB, Rittman T. Altered network stability in progressive supranuclear palsy. Neurobiol Aging 2021; 107:109-117. [PMID: 34419788 PMCID: PMC8599965 DOI: 10.1016/j.neurobiolaging.2021.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/15/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023]
Abstract
We investigated network dynamics in the tauopathy progressive supranuclear palsy Abnormal temporal properties of large-scale networks are related to phenotype Progressive supranuclear palsy paradoxically increases frontoparietal state time Reductions in neural signal complexity relate to altered network dynamics Dynamic network and topological changes occur distally to primary sites of atrophy
The clinical syndromes of Progressive Supranuclear Palsy (PSP) may be mediated by abnormal temporal dynamics of brain networks, due to the impact of atrophy, synapse loss and neurotransmitter deficits. We tested the hypothesis that alterations in signal complexity in neural networks influence short-latency state transitions. Ninety-four participants with PSP and 64 healthy controls were recruited from two independent cohorts. All participants underwent clinical and neuropsychological testing and resting-state functional MRI. Network dynamics were assessed using hidden Markov models and neural signal complexity measured in terms of multiscale entropy. In both cohorts, PSP increased the proportion of time in networks associated with higher cognitive functions. This effect correlated with clinical severity as measured by the PSP-rating-scale, and with reduced neural signal complexity. Regional atrophy influenced abnormal brain-state occupancy, but abnormal network topology and dynamics were not restricted to areas of atrophy. Our findings show that the pathology of PSP causes clinically relevant changes in neural temporal dynamics, leading to a greater proportion of time in inefficient brain-states.
Collapse
Affiliation(s)
- David J Whiteside
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK.
| | - P Simon Jones
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| | - Boyd C P Ghosh
- Wessex Neurological Centre, University Hospital Southampton, Southampton, UK
| | | | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Michele T Hu
- Oxford Parkinson's Disease Centre and Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Johannes C Klein
- Oxford Parkinson's Disease Centre and Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - P Nigel Leigh
- Department of Neuroscience, Brighton and Sussex Medical School, Brighton, UK
| | | | - David J Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, University College London. Queen Square Institute of Neurology, London, UK
| | - James B Rowe
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| | - Timothy Rittman
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| |
Collapse
|
14
|
Yun S, Jeong B. Aberrant EEG signal variability at a specific temporal scale in major depressive disorder. Clin Neurophysiol 2021; 132:1866-1877. [PMID: 34147011 DOI: 10.1016/j.clinph.2021.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/17/2021] [Accepted: 05/18/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Signal variability is linked to irregularities in time series caused by intrinsic nonlinearities of the neural system and can be measured on variable temporal scales over short time series. By measuring refined complex multiscale permutation entropy (RCMPE) from resting-state electroencephalography (EEG) data, we investigated the presence of a specific range of time scales characterizing major depressive disorder (MDD). METHOD We used an EEG dataset acquired from 22 MDD patients and 22 healthy controls in the eyes-closed (EC) and eyes-open (EO) states available on the PRED + CT website. Signal variability in both the EC and EO states was compared between the two groups, and their relationship to depressive symptom severity was examined. RESULTS In the EC state, the RCMPE was higher in the MDD group than in the control group on a coarse temporal scale, approximately 20-32 ms, at almost all sensors. It also showed a negative correlation with depressive symptom severity on a fine temporal scale, approximately 2-26 ms, in the frontal, right temporal, and left parietal sensor areas in MDD. The EO state revealed a group difference but no relationship with depressive symptom severity. CONCLUSION Our results suggested that the diagnosis of MDD as a trait and the severity of depressive symptoms as a state are linked to EEG signal variability on the coarse temporal scale and the fine scale in the resting state, respectively. SIGNIFICANCE Signal variability reflects different characteristics of depression depending on the temporal scale.
Collapse
Affiliation(s)
- Seokho Yun
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Bumseok Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
15
|
Kosciessa JQ, Lindenberger U, Garrett DD. Thalamocortical excitability modulation guides human perception under uncertainty. Nat Commun 2021; 12:2430. [PMID: 33893294 PMCID: PMC8065126 DOI: 10.1038/s41467-021-22511-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/05/2021] [Indexed: 12/29/2022] Open
Abstract
Knowledge about the relevance of environmental features can guide stimulus processing. However, it remains unclear how processing is adjusted when feature relevance is uncertain. We hypothesized that (a) heightened uncertainty would shift cortical networks from a rhythmic, selective processing-oriented state toward an asynchronous ("excited") state that boosts sensitivity to all stimulus features, and that (b) the thalamus provides a subcortical nexus for such uncertainty-related shifts. Here, we had young adults attend to varying numbers of task-relevant features during EEG and fMRI acquisition to test these hypotheses. Behavioral modeling and electrophysiological signatures revealed that greater uncertainty lowered the rate of evidence accumulation for individual stimulus features, shifted the cortex from a rhythmic to an asynchronous/excited regime, and heightened neuromodulatory arousal. Crucially, this unified constellation of within-person effects was dominantly reflected in the uncertainty-driven upregulation of thalamic activity. We argue that neuromodulatory processes involving the thalamus play a central role in how the brain modulates neural excitability in the face of momentary uncertainty.
Collapse
Affiliation(s)
- Julian Q Kosciessa
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
16
|
Waschke L, Kloosterman NA, Obleser J, Garrett DD. Behavior needs neural variability. Neuron 2021; 109:751-766. [PMID: 33596406 DOI: 10.1016/j.neuron.2021.01.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 01/22/2021] [Indexed: 01/26/2023]
Abstract
Human and non-human animal behavior is highly malleable and adapts successfully to internal and external demands. Such behavioral success stands in striking contrast to the apparent instability in neural activity (i.e., variability) from which it arises. Here, we summon the considerable evidence across scales, species, and imaging modalities that neural variability represents a key, undervalued dimension for understanding brain-behavior relationships at inter- and intra-individual levels. We believe that only by incorporating a specific focus on variability will the neural foundation of behavior be comprehensively understood.
Collapse
Affiliation(s)
- Leonhard Waschke
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, 14195 Berlin, Germany; Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany.
| | - Niels A Kloosterman
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, 14195 Berlin, Germany; Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany; Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, 14195 Berlin, Germany; Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| |
Collapse
|
17
|
Dreszer J, Grochowski M, Lewandowska M, Nikadon J, Gorgol J, Bałaj B, Finc K, Duch W, Kałamała P, Chuderski A, Piotrowski T. Spatiotemporal complexity patterns of resting-state bioelectrical activity explain fluid intelligence: Sex matters. Hum Brain Mapp 2020; 41:4846-4865. [PMID: 32808732 PMCID: PMC7643359 DOI: 10.1002/hbm.25162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 11/11/2022] Open
Abstract
Neural complexity is thought to be associated with efficient information processing but the exact nature of this relation remains unclear. Here, the relationship of fluid intelligence (gf) with the resting-state EEG (rsEEG) complexity over different timescales and different electrodes was investigated. A 6-min rsEEG blocks of eyes open were analyzed. The results of 119 subjects (57 men, mean age = 22.85 ± 2.84 years) were examined using multivariate multiscale sample entropy (mMSE) that quantifies changes in information richness of rsEEG in multiple data channels at fine and coarse timescales. gf factor was extracted from six intelligence tests. Partial least square regression analysis revealed that mainly predictors of the rsEEG complexity at coarse timescales in the frontoparietal network (FPN) and the temporo-parietal complexities at fine timescales were relevant to higher gf. Sex differently affected the relationship between fluid intelligence and EEG complexity at rest. In men, gf was mainly positively related to the complexity at coarse timescales in the FPN. Furthermore, at fine and coarse timescales positive relations in the parietal region were revealed. In women, positive relations with gf were mostly observed for the overall and the coarse complexity in the FPN, whereas negative associations with gf were found for the complexity at fine timescales in the parietal and centro-temporal region. These outcomes indicate that two separate time pathways (corresponding to fine and coarse timescales) used to characterize rsEEG complexity (expressed by mMSE features) are beneficial for effective information processing.
Collapse
Affiliation(s)
- Joanna Dreszer
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Faculty of Philosophy and Social SciencesInstitute of Psychology, Nicolaus Copernicus UniversityToruńPoland
| | - Marek Grochowski
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Department of Informatics, Faculty of Physics, Astronomy, and InformaticsNicolaus Copernicus UniversityToruńPoland
| | - Monika Lewandowska
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Faculty of Philosophy and Social SciencesInstitute of Psychology, Nicolaus Copernicus UniversityToruńPoland
| | - Jan Nikadon
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
| | - Joanna Gorgol
- Faculty of PsychologyUniversity of WarsawWarsawPoland
| | - Bibianna Bałaj
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Faculty of Philosophy and Social SciencesInstitute of Psychology, Nicolaus Copernicus UniversityToruńPoland
| | - Karolina Finc
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
| | - Włodzisław Duch
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Department of Informatics, Faculty of Physics, Astronomy, and InformaticsNicolaus Copernicus UniversityToruńPoland
| | - Patrycja Kałamała
- Department of Cognitive ScienceInstitute of Philosophy, Jagiellonian UniversityKrakowPoland
| | - Adam Chuderski
- Department of Cognitive ScienceInstitute of Philosophy, Jagiellonian UniversityKrakowPoland
| | - Tomasz Piotrowski
- Centre for Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityToruńPoland
- Department of Informatics, Faculty of Physics, Astronomy, and InformaticsNicolaus Copernicus UniversityToruńPoland
| |
Collapse
|
18
|
Wang Y, Ao Y, Yang Q, Liu Y, Ouyang Y, Jing X, Pang Y, Cui Q, Chen H. Spatial variability of low frequency brain signal differentiates brain states. PLoS One 2020; 15:e0242330. [PMID: 33180843 PMCID: PMC7660497 DOI: 10.1371/journal.pone.0242330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022] Open
Abstract
Temporal variability of the neural signal has been demonstrated to be closely related to healthy brain function. Meanwhile, the evolving brain functions are supported by dynamic relationships among brain regions. We hypothesized that the spatial variability of brain signal might provide important information about brain function. Here we used the spatial sample entropy (SSE) to investigate the spatial variability of neuroimaging signal during a steady-state presented face detection task. Lower SSE was found during task state than during resting state, associating with more repetitive functional interactions between brain regions. The standard deviation (SD) of SSE during the task was negatively related to the SD of reaction time, suggesting that the spatial pattern of neural activity is reorganized according to particular cognitive function and supporting the previous theory that greater variability is associated with better task performance. These results were replicated with reordered data, implying the reliability of SSE in measuring the spatial organization of neural activity. Overall, the present study extends the research scope of brain signal variability from the temporal dimension to the spatial dimension, improving our understanding of the spatiotemporal characteristics of brain activities and the theory of brain signal variability.
Collapse
Affiliation(s)
- Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
- * E-mail: (YW); (HC)
| | - Yujia Ao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Qi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Liu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yujie Ouyang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xiujuan Jing
- Tianfu College of Southwestern University of Finance and Economics, Chengdu, China
| | - Yajing Pang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- * E-mail: (YW); (HC)
| |
Collapse
|
19
|
Puglia MH, Krol KM, Missana M, Williams CL, Lillard TS, Morris JP, Connelly JJ, Grossmann T. Epigenetic tuning of brain signal entropy in emergent human social behavior. BMC Med 2020; 18:244. [PMID: 32799881 PMCID: PMC7429788 DOI: 10.1186/s12916-020-01683-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND How the brain develops accurate models of the external world and generates appropriate behavioral responses is a vital question of widespread multidisciplinary interest. It is increasingly understood that brain signal variability-posited to enhance perception, facilitate flexible cognitive representations, and improve behavioral outcomes-plays an important role in neural and cognitive development. The ability to perceive, interpret, and respond to complex and dynamic social information is particularly critical for the development of adaptive learning and behavior. Social perception relies on oxytocin-regulated neural networks that emerge early in development. METHODS We tested the hypothesis that individual differences in the endogenous oxytocinergic system early in life may influence social behavioral outcomes by regulating variability in brain signaling during social perception. In study 1, 55 infants provided a saliva sample at 5 months of age for analysis of individual differences in the oxytocinergic system and underwent electroencephalography (EEG) while listening to human vocalizations at 8 months of age for the assessment of brain signal variability. Infant behavior was assessed via parental report. In study 2, 60 infants provided a saliva sample and underwent EEG while viewing faces and objects and listening to human speech and water sounds at 4 months of age. Infant behavior was assessed via parental report and eye tracking. RESULTS We show in two independent infant samples that increased brain signal entropy during social perception is in part explained by an epigenetic modification to the oxytocin receptor gene (OXTR) and accounts for significant individual differences in social behavior in the first year of life. These results are measure-, context-, and modality-specific: entropy, not standard deviation, links OXTR methylation and infant behavior; entropy evoked during social perception specifically explains social behavior only; and only entropy evoked during social auditory perception predicts infant vocalization behavior. CONCLUSIONS Demonstrating these associations in infancy is critical for elucidating the neurobiological mechanisms accounting for individual differences in cognition and behavior relevant to neurodevelopmental disorders. Our results suggest that an epigenetic modification to the oxytocin receptor gene and brain signal entropy are useful indicators of social development and may hold potential diagnostic, therapeutic, and prognostic value.
Collapse
Affiliation(s)
- Meghan H Puglia
- Department of Psychology, University of Virginia, Charlottesville, VA, 22904, USA.
- Department of Neurology, University of Virginia, P.O. Box 800834, Charlottesville, VA, 22908, USA.
| | - Kathleen M Krol
- Department of Psychology, University of Virginia, Charlottesville, VA, 22904, USA
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - Manuela Missana
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Department of Early Child Development and Culture, Leipzig University, 04109, Leipzig, Germany
| | - Cabell L Williams
- Department of Psychology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Travis S Lillard
- Department of Psychology, University of Virginia, Charlottesville, VA, 22904, USA
| | - James P Morris
- Department of Psychology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jessica J Connelly
- Department of Psychology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Tobias Grossmann
- Department of Psychology, University of Virginia, Charlottesville, VA, 22904, USA
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| |
Collapse
|
20
|
Kloosterman NA, Kosciessa JQ, Lindenberger U, Fahrenfort JJ, Garrett DD. Boosts in brain signal variability track liberal shifts in decision bias. eLife 2020; 9:54201. [PMID: 32744502 PMCID: PMC7398662 DOI: 10.7554/elife.54201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
Adopting particular decision biases allows organisms to tailor their choices to environmental demands. For example, a liberal response strategy pays off when target detection is crucial, whereas a conservative strategy is optimal for avoiding false alarms. Using conventional time-frequency analysis of human electroencephalographic (EEG) activity, we previously showed that bias setting entails adjustment of evidence accumulation in sensory regions (Kloosterman et al., 2019), but the presumed prefrontal signature of a conservative-to-liberal bias shift has remained elusive. Here, we show that a liberal bias shift is reflected in a more unconstrained neural regime (boosted entropy) in frontal regions that is suited to the detection of unpredictable events. Overall EEG variation, spectral power and event-related potentials could not explain this relationship, highlighting that moment-to-moment neural variability uniquely tracks bias shifts. Neural variability modulation through prefrontal cortex appears instrumental for permitting an organism to adapt its biases to environmental demands.
Collapse
Affiliation(s)
- Niels A Kloosterman
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Julian Q Kosciessa
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Johannes Jacobus Fahrenfort
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
21
|
Kosciessa JQ, Kloosterman NA, Garrett DD. Standard multiscale entropy reflects neural dynamics at mismatched temporal scales: What's signal irregularity got to do with it? PLoS Comput Biol 2020; 16:e1007885. [PMID: 32392250 PMCID: PMC7241858 DOI: 10.1371/journal.pcbi.1007885] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/21/2020] [Accepted: 04/18/2020] [Indexed: 01/10/2023] Open
Abstract
Multiscale Entropy (MSE) is used to characterize the temporal irregularity of neural time series patterns. Due to its' presumed sensitivity to non-linear signal characteristics, MSE is typically considered a complementary measure of brain dynamics to signal variance and spectral power. However, the divergence between these measures is often unclear in application. Furthermore, it is commonly assumed (yet sparingly verified) that entropy estimated at specific time scales reflects signal irregularity at those precise time scales of brain function. We argue that such assumptions are not tenable. Using simulated and empirical electroencephalogram (EEG) data from 47 younger and 52 older adults, we indicate strong and previously underappreciated associations between MSE and spectral power, and highlight how these links preclude traditional interpretations of MSE time scales. Specifically, we show that the typical definition of temporal patterns via "similarity bounds" biases coarse MSE scales-that are thought to reflect slow dynamics-by high-frequency dynamics. Moreover, we demonstrate that entropy at fine time scales-presumed to indicate fast dynamics-is highly sensitive to broadband spectral power, a measure dominated by low-frequency contributions. Jointly, these issues produce counterintuitive reflections of frequency-specific content on MSE time scales. We emphasize the resulting inferential problems in a conceptual replication of cross-sectional age differences at rest, in which scale-specific entropy age effects could be explained by spectral power differences at mismatched temporal scales. Furthermore, we demonstrate how such problems may be alleviated, resulting in the indication of scale-specific age differences in rhythmic irregularity. By controlling for narrowband contributions, we indicate that spontaneous alpha rhythms during eyes open rest transiently reduce broadband signal irregularity. Finally, we recommend best practices that may better permit a valid estimation and interpretation of neural signal irregularity at time scales of interest.
Collapse
Affiliation(s)
- Julian Q. Kosciessa
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Niels A. Kloosterman
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Douglas D. Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
22
|
Shafiei G, Zeighami Y, Clark CA, Coull JT, Nagano-Saito A, Leyton M, Dagher A, Mišic B. Dopamine Signaling Modulates the Stability and Integration of Intrinsic Brain Networks. Cereb Cortex 2020; 29:397-409. [PMID: 30357316 PMCID: PMC6294404 DOI: 10.1093/cercor/bhy264] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 11/24/2022] Open
Abstract
Dopaminergic projections are hypothesized to stabilize neural signaling and neural representations, but how they shape regional information processing and large-scale network interactions remains unclear. Here we investigated effects of lowered dopamine levels on within-region temporal signal variability (measured by sample entropy) and between-region functional connectivity (measured by pairwise temporal correlations) in the healthy brain at rest. The acute phenylalanine and tyrosine depletion (APTD) method was used to decrease dopamine synthesis in 51 healthy participants who underwent resting-state functional MRI (fMRI) scanning. Functional connectivity and regional signal variability were estimated for each participant. Multivariate partial least squares (PLS) analysis was used to statistically assess changes in signal variability following APTD as compared with the balanced control treatment. The analysis captured a pattern of increased regional signal variability following dopamine depletion. Changes in hemodynamic signal variability were concomitant with changes in functional connectivity, such that nodes with greatest increase in signal variability following dopamine depletion also experienced greatest decrease in functional connectivity. Our results suggest that dopamine may act to stabilize neural signaling, particularly in networks related to motor function and orienting attention towards behaviorally-relevant stimuli. Moreover, dopamine-dependent signal variability is critically associated with functional embedding of individual areas in large-scale networks.
Collapse
Affiliation(s)
- Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yashar Zeighami
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Crystal A Clark
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jennifer T Coull
- Laboratoire des Neurosciences Cognitives UMR 7291, Federation 3C, Aix-Marseille University, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Atsuko Nagano-Saito
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, Canada.,Department of Psychiatry, McGill University, Montréal, Canada
| | - Marco Leyton
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montréal, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bratislav Mišic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Liu M, Song C, Liang Y, Knöpfel T, Zhou C. Assessing spatiotemporal variability of brain spontaneous activity by multiscale entropy and functional connectivity. Neuroimage 2019; 198:198-220. [PMID: 31091474 DOI: 10.1016/j.neuroimage.2019.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 01/24/2023] Open
Abstract
Brain signaling occurs across a wide range of spatial and temporal scales, and analysis of brain signal variability and synchrony has attracted recent attention as markers of intelligence, cognitive states, and brain disorders. However, current technologies to measure brain signals in humans have limited resolutions either in space or in time and cannot fully capture spatiotemporal variability, leaving it untested whether temporal variability and spatiotemporal synchrony are valid and reliable proxy of spatiotemporal variability in vivo. Here we used optical voltage imaging in mice under anesthesia and wakefulness to monitor cortical voltage activity at both high spatial and temporal resolutions to investigate functional connectivity (FC, a measure of spatiotemporal synchronization), Multi-Scale Entropy (MSE, a measure of temporal variability), and their relationships to Regional Entropy (RE, a measure of spatiotemporal variability). We observed that across cortical space, MSE pattern can largely explain RE pattern at small and large temporal scales with high positive and negative correlation respectively, while FC pattern strongly negatively associated with RE pattern. The time course of FC and small scale MSE tightly followed that of RE, while large scale MSE was more loosely coupled to RE. fMRI and EEG data simulated by reducing spatiotemporal resolution of the voltage imaging data or considering hemodynamics yielded MSE and FC measures that still contained information about RE based on the high resolution voltage imaging data. This suggested that MSE and FC could still be effective measures to capture spatiotemporal variability under limitation of imaging modalities applicable to human subjects. Our results support the notion that FC and MSE are effective biomarkers for brain states, and provide a promising viewpoint to unify these two principal domains in human brain data analysis.
Collapse
Affiliation(s)
- Mianxin Liu
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Chenchen Song
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London, UK
| | - Yuqi Liang
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London, UK.
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research Centre, HKBU Institute of Research and Continuing Education, Virtual University Park Building, South Area Hi-tech Industrial Park, Shenzhen, China; Beijing Computational Science Research Center, Beijing, China; Department of Physics, Zhejiang University, 38 Zheda Road, Hangzhou, China.
| |
Collapse
|
24
|
Vanderwal T, Eilbott J, Castellanos FX. Movies in the magnet: Naturalistic paradigms in developmental functional neuroimaging. Dev Cogn Neurosci 2019; 36:100600. [PMID: 30551970 PMCID: PMC6969259 DOI: 10.1016/j.dcn.2018.10.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/13/2018] [Accepted: 10/08/2018] [Indexed: 11/28/2022] Open
Abstract
The use of movie-watching as an acquisition state for functional connectivity (FC) MRI has recently enabled multiple groups to obtain rich data sets in younger children with both substantial sample sizes and scan durations. Using naturalistic paradigms such as movies has also provided analytic flexibility for these developmental studies that extends beyond conventional resting state approaches. This review highlights the advantages and challenges of using movies for developmental neuroimaging and explores some of the methodological issues involved in designing pediatric studies with movies. Emerging themes from movie-watching studies are discussed, including an emphasis on intersubject correlations, developmental changes in network interactions under complex naturalistic conditions, and dynamic age-related changes in both sensory and higher-order network FC even in narrow age ranges. Converging evidence suggests an enhanced ability to identify brain-behavior correlations in children when using movie-watching data relative to both resting state and conventional tasks. Future directions and cautionary notes highlight the potential and the limitations of using movies to study FC in pediatric populations.
Collapse
Affiliation(s)
- Tamara Vanderwal
- University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 2A1, Canada; Yale Child Study Center, 230 South Frontage Road, New Haven CT, 06519, United States.
| | - Jeffrey Eilbott
- Yale Child Study Center, 230 South Frontage Road, New Haven CT, 06519, United States
| | - F Xavier Castellanos
- The Child Study Center at New York University Langone Medical Center, 1 Park Avenue, New York, NY, 10016, United States; Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, United States
| |
Collapse
|
25
|
Wang Y, Wang X, Ye L, Yang Q, Cui Q, He Z, Li L, Yang X, Zou Q, Yang P, Liu D, Chen H. Spatial complexity of brain signal is altered in patients with generalized anxiety disorder. J Affect Disord 2019; 246:387-393. [PMID: 30597300 DOI: 10.1016/j.jad.2018.12.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Is it healthy to be chaotic? Recent studies have argued that mental disorders are associated with more orderly neural activities, corresponding to a less flexible functional system. These conclusions were derived from altered temporal complexity. However, the relationship between spatial complexity and health is unknown, although spatial configuration is of importance for normal brain function. METHODS Based on resting-state functional magnetic resonance imaging data, we used Sample entropy (SampEn) to evaluate the altered spatial complexity in patients with generalized anxiety disorder (GAD; n = 47) compared to healthy controls (HCs; n = 38) and the relationship between spatial complexity and anxiety level. RESULTS Converging results showed increased spatial complexity in patients with GAD, indicating more chaotic spatial configuration. Interestingly, inverted-U relationship was revealed between spatial complexity and anxiety level, suggesting complex relationship between health and the chaos of human brain. LIMITATIONS Anxiety-related alteration of spatial complexity should be verified at voxel level in a larger sample and compared with results of other indices to clarify the mechanism of spatial chaotic of anxiety. CONCLUSIONS Altered spatial complexity in the brain of GAD patients mirrors inverted-U relationship between anxiety and behavioral performance, which may reflect an important characteristic of anxiety. These results indicate that SampEn is a good reflection of human health or trait mental characteristic.
Collapse
Affiliation(s)
- Yifeng Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinqi Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liangkai Ye
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liyuan Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuezhi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qijun Zou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Pu Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongfeng Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
26
|
Hasegawa C, Takahashi T, Yoshimura Y, Nobukawa S, Ikeda T, Saito DN, Kumazaki H, Minabe Y, Kikuchi M. Developmental Trajectory of Infant Brain Signal Variability: A Longitudinal Pilot Study. Front Neurosci 2018; 12:566. [PMID: 30154695 PMCID: PMC6102372 DOI: 10.3389/fnins.2018.00566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
The infant brain shows rapid neural network development that considerably influences cognitive and behavioral abilities in later life. Reportedly, this neural development process can be indexed by estimating neural signal complexity. However, the precise developmental trajectory of brain signal complexity during infancy remains elusive. This study was conducted to ascertain the trajectory of magnetoencephalography (MEG) signal complexity from 2 months to 3 years of age in five infants using multiscale entropy (MSE), which captures signal complexity at multiple temporal scales. Analyses revealed scale-dependent developmental trajectories. Specifically, signal complexity predominantly increased from 5 to 15 months of age at higher temporal scales, whereas the complexity at lower temporal scales was constant across age, except in one infant who showed decreased complexity. Despite a small sample size limiting this study’s power, this is the first report of a longitudinal investigation of changes in brain signal complexity during early infancy and is unique in its application of MSE analysis of longitudinal MEG data during infancy. The results of this pilot study may serve to further our understanding of the longitudinal changes in the neural dynamics of the developing infant brain.
Collapse
Affiliation(s)
- Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | | | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan.,Faculty of Education, Kanazawa University, Kanazawa, Japan
| | - Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, Narashino, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Daisuke N Saito
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Hirokazu Kumazaki
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
27
|
Kuntzelman K, Jack Rhodes L, Harrington LN, Miskovic V. A practical comparison of algorithms for the measurement of multiscale entropy in neural time series data. Brain Cogn 2018; 123:126-135. [PMID: 29562207 DOI: 10.1016/j.bandc.2018.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 01/22/2023]
Abstract
There is a broad family of statistical methods for capturing time series regularity, with increasingly widespread adoption by the neuroscientific community. A common feature of these methods is that they permit investigators to quantify the entropy of brain signals - an index of unpredictability/complexity. Despite the proliferation of algorithms for computing entropy from neural time series data there is scant evidence concerning their relative stability and efficiency. Here we evaluated several different algorithmic implementations (sample, fuzzy, dispersion and permutation) of multiscale entropy in terms of their stability across sessions, internal consistency and computational speed, accuracy and precision using a combination of electroencephalogram (EEG) and synthetic 1/ƒ noise signals. Overall, we report fair to excellent internal consistency and longitudinal stability over a one-week period for the majority of entropy estimates, with several caveats. Computational timing estimates suggest distinct advantages for dispersion and permutation entropy over other entropy estimates. Considered alongside the psychometric evidence, we suggest several ways in which researchers can maximize computational resources (without sacrificing reliability), especially when working with high-density M/EEG data or multivoxel BOLD time series signals.
Collapse
Affiliation(s)
- Karl Kuntzelman
- Department of Psychology, State University of New York at Binghamton, USA; Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, USA
| | - L Jack Rhodes
- Department of Psychology, State University of New York at Binghamton, USA
| | | | - Vladimir Miskovic
- Department of Psychology, State University of New York at Binghamton, USA.
| |
Collapse
|
28
|
Altered Brain Complexity in Women with Primary Dysmenorrhea: A Resting-State Magneto-Encephalography Study Using Multiscale Entropy Analysis. ENTROPY 2017. [DOI: 10.3390/e19120680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Accelerating the Computation of Entropy Measures by Exploiting Vectors with Dissimilarity. ENTROPY 2017. [DOI: 10.3390/e19110598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
|