1
|
Izumi T. Multiple pathways and independent functional pools in insulin granule exocytosis. Genes Cells 2023; 28:471-481. [PMID: 37070774 PMCID: PMC11448364 DOI: 10.1111/gtc.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
In contrast to synaptic vesicle exocytosis, secretory granule exocytosis follows a much longer time course, and thus allows for different prefusion states prior to stimulation. Indeed, total internal reflection fluorescence microscopy in living pancreatic β cells reveals that, prior to stimulation, either visible or invisible granules fuse in parallel during both early (first) and late (second) phases after glucose stimulation. Therefore, fusion occurs not only from granules predocked to the plasma membrane but also from those translocated from the cell interior during ongoing stimulation. Recent findings suggest that such heterogeneous exocytosis is conducted by a specific set of multiple Rab27 effectors that appear to operate on the same granule; namely, exophilin-8, granuphilin, and melanophilin play differential roles in distinct secretory pathways to final fusion. Furthermore, the exocyst, which is known to tether secretory vesicles to the plasma membrane in constitutive exocytosis, cooperatively functions with these Rab27 effectors in regulated exocytosis. In this review, the basic nature of insulin granule exocytosis will be described as a representative example of secretory granule exocytosis, followed by a discussion of the means by which different Rab27 effectors and the exocyst coordinate to regulate the entire exocytic processes in β cells.
Collapse
Affiliation(s)
- Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
2
|
Yeh AR, Hoeprich GJ, Goode BL, Martin AC. Bitesize bundles F-actin and influences actin remodeling in syncytial Drosophila embryo development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537198. [PMID: 37131807 PMCID: PMC10153138 DOI: 10.1101/2023.04.17.537198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Actin networks undergo rearrangements that influence cell and tissue shape. Actin network assembly and organization is regulated in space and time by a host of actin binding proteins. The Drosophila Synaptotagmin-like protein, Bitesize (Btsz), is known to organize actin at epithelial cell apical junctions in a manner that depends on its interaction with the actin-binding protein, Moesin. Here, we showed that Btsz functions in actin reorganization at earlier, syncytial stages of Drosophila embryo development. Btsz was required for the formation of stable metaphase pseudocleavage furrows that prevented spindle collisions and nuclear fallout prior to cellularization. While previous studies focused on Btsz isoforms containing the Moesin Binding Domain (MBD), we found that isoforms lacking the MBD also function in actin remodeling. Consistent with this, we found that the C-terminal half of BtszB cooperatively binds to and bundles F-actin, suggesting a direct mechanism for Synaptotagmin-like proteins regulating actin organization during animal development.
Collapse
|
3
|
Harada K, Takashima M, Kitaguchi T, Tsuboi T. F-actin determines the time-dependent shift in docking dynamics of glucagon-like peptide-1 granules upon stimulation of secretion. FEBS Lett 2023; 597:657-671. [PMID: 36694275 DOI: 10.1002/1873-3468.14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
Although exocytosis can be categorized into several forms based on docking dynamics, temporal regulatory mechanisms of the exocytotic forms are unclear. We explored the dynamics of glucagon-like peptide-1 (GLP-1) exocytosis in murine GLUTag cells (GLP-1-secreting enteroendocrine L-cells) upon stimulation with deoxycholic acid (DCA) or high K+ to elucidate the mechanisms regulating the balance between the different types of exocytotic forms (pre-docked with the plasma membrane before stimulation; docked after stimulation and subsequently fused; or rapidly recruited and fused after stimulation, without stable docking). GLP-1 exocytosis showed a biphasic pattern, and we found that most exocytosis was from the pre-docked granules with the plasma membrane before stimulation, or granules rapidly fused to the plasma membrane without docking after stimulation. In contrast, granules docked with the plasma membrane after stimuli and eventually fused were predominant thereafter. Inhibition of actin polymerization suppressed exocytosis of the pre-docked granules. These results suggest that the docking dynamics of GLP-1 granules shows a time-dependent biphasic shift, which is determined by interaction with F-actin.
Collapse
Affiliation(s)
- Kazuki Harada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Maoko Takashima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| |
Collapse
|
4
|
Zhao K, Matsunaga K, Mizuno K, Wang H, Okunishi K, Izumi T. Functional hierarchy among different Rab27 effectors involved in secretory granule exocytosis. eLife 2023; 12:82821. [PMID: 36803984 PMCID: PMC9988257 DOI: 10.7554/elife.82821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/21/2023] [Indexed: 02/23/2023] Open
Abstract
The Rab27 effectors are known to play versatile roles in regulated exocytosis. In pancreatic beta cells, exophilin-8 anchors granules in the peripheral actin cortex, whereas granuphilin and melanophilin mediate granule fusion with and without stable docking to the plasma membrane, respectively. However, it is unknown whether these coexisting effectors function in parallel or in sequence to support the whole insulin secretory process. Here, we investigate their functional relationships by comparing the exocytic phenotypes in mouse beta cells simultaneously lacking two effectors with those lacking just one of them. Analyses of prefusion profiles by total internal reflection fluorescence microscopy suggest that melanophilin exclusively functions downstream of exophilin-8 to mobilize granules for fusion from the actin network to the plasma membrane after stimulation. The two effectors are physically linked via the exocyst complex. Downregulation of the exocyst component affects granule exocytosis only in the presence of exophilin-8. The exocyst and exophilin-8 also promote fusion of granules residing beneath the plasma membrane prior to stimulation, although they differentially act on freely diffusible granules and those stably docked to the plasma membrane by granuphilin, respectively. This is the first study to diagram the multiple intracellular pathways of granule exocytosis and the functional hierarchy among different Rab27 effectors within the same cell.
Collapse
Affiliation(s)
- Kunli Zhao
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Kouichi Mizuno
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Hao Wang
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Katsuhide Okunishi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| |
Collapse
|
5
|
Mizuno K, Izumi T. Munc13b stimulus-dependently accumulates on granuphilin-mediated, docked granules prior to fusion. Cell Struct Funct 2022; 47:31-41. [PMID: 35387942 PMCID: PMC10511056 DOI: 10.1247/csf.22005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/11/2022] Open
Abstract
The Rab27 effector granuphilin plays an indispensable role in stable docking of secretory granules to the plasma membrane by interacting with the complex of Munc18-1 and the fusion-incompetent, closed form of syntaxins-1~3. Although this process prevents spontaneous granule exocytosis, those docked granules actively fuse in parallel with other undocked granules after stimulation. Therefore, it is postulated that the closed form of syntaxins must be converted into the fusion-competent open form in a stimulus-dependent manner. Although Munc13 family proteins are generally thought to prime docked vesicles by facilitating conformational change in syntaxins, it is unknown which isoform acts in granuphilin-mediated, docked granule exocytosis. In the present study, we show that, although both Munc13a and Munc13b are expressed in mouse pancreatic islets and their beta-cell line MIN6, the silencing of Munc13b, but not that of Munc13a, severely affects glucose-induced insulin secretion. Furthermore, Munc13b accumulates on a subset of granules beneath the plasma membrane just prior to fusion during stimulation, whereas Munc13a is translocated to the plasma membrane where granules do not exist. When fluorescently labeled granuphilin was introduced to discriminate between molecularly docked granules and other undocked granules in living cells, Munc13b downregulation was observed to preferentially decrease the fusion of granuphilin-positive granules immobilized to the plasma membrane. These findings suggest that Munc13b promotes insulin exocytosis by clustering on molecularly docked granules in a stimulus-dependent manner.Key words: docking, insulin, live cell imaging, priming, TIRF microscopy.
Collapse
Affiliation(s)
- Kouichi Mizuno
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| |
Collapse
|
6
|
Munc18-dependent and -independent clustering of syntaxin in the plasma membrane of cultured endocrine cells. Proc Natl Acad Sci U S A 2021; 118:2025748118. [PMID: 34857632 DOI: 10.1073/pnas.2025748118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Syntaxin helps in catalyzing membrane fusion during exocytosis. It also forms clusters in the plasma membrane, where both its transmembrane and SNARE domains are thought to homo-oligomerize. To study syntaxin clustering in live PC12 cells, we labeled granules with neuropeptide-Y-mCherry and syntaxin clusters with syntaxin-1a green fluorescent protein (GFP). Abundant clusters appeared under total internal reflection (TIRF) illumination, and some of them associated with granules ("on-granule clusters"). Syntaxin-1a-GFP or its mutants were expressed at low levels and competed with an excess of endogenous syntaxin for inclusion into clusters. On-granule inclusion was diminished by mutations known to inhibit binding to Munc18-1 in vitro. Knock-down of Munc18-1 revealed Munc18-dependent and -independent on-granule clustering. Clustering was inhibited by mutations expected to break salt bridges between syntaxin's Hb and SNARE domains and was rescued by additional mutations expected to restore them. Most likely, syntaxin is in a closed conformation when it clusters on granules, and its SNARE and Hb domains approach to within atomic distances. Pairwise replacements of Munc18-contacting residues with alanines had only modest effects, except that the pair R114A/I115A essentially abolished on-granule clustering. In summary, an on-granule cluster arises from the specific interaction between a granule and a dense cluster of syntaxin-Munc18-1 complexes. Off-granule clusters, by contrast, were resistant to even the strongest mutations we tried and required neither Munc18-1 nor the presence of a SNARE domain. They may well form through the nonstoichiometric interactions with membrane lipids that others have observed in cell-free systems.
Collapse
|
7
|
Yau B, Hocking S, Andrikopoulos S, Kebede MA. Targeting the insulin granule for modulation of insulin exocytosis. Biochem Pharmacol 2021; 194:114821. [PMID: 34748819 DOI: 10.1016/j.bcp.2021.114821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
The pancreatic β-cells control insulin secretion in the body to regulate glucose homeostasis, and β-cell stress and dysfunction is characteristic of Type 2 Diabetes. Pharmacological targeting of the β-cell to increase insulin secretion is typically utilised, however, extended use of common drugs such as sulfonylureas are known to result in secondary failure. Moreover, there is evidence they may induce β-cell failure in the long term. Within β-cells, insulin secretory granules (ISG) serve as compartments to store, process and traffic insulin for exocytosis. There is now growing evidence that ISG exist in multiple populations, distinct in their protein composition, motility, age, and capacity for secretion. In this review, we discuss the implications of a heterogenous ISG population in β-cells and highlight the need for more understanding into how unique ISG populations may be targeted in anti-diabetic therapies.
Collapse
Affiliation(s)
- Belinda Yau
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
| | - Samantha Hocking
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia; Central Clinical School, Faculty of Medicine and Health and Department of Endocrinology Royal Prince Alfred Hospital, NSW, Australia
| | | | - Melkam A Kebede
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
8
|
Izumi T. In vivo Roles of Rab27 and Its Effectors in Exocytosis. Cell Struct Funct 2021; 46:79-94. [PMID: 34483204 PMCID: PMC10511049 DOI: 10.1247/csf.21043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
The monomeric GTPase Rab27 regulates exocytosis of a broad range of vesicles in multicellular organisms. Several effectors bind GTP-bound Rab27a and/or Rab27b on secretory vesicles to execute a series of exocytic steps, such as vesicle maturation, movement along microtubules, anchoring within the peripheral F-actin network, and tethering to the plasma membrane, via interactions with specific proteins and membrane lipids in a local milieu. Although Rab27 effectors generally promote exocytosis, they can also temporarily restrict it when they are involved in the rate-limiting step. Genetic alterations in Rab27-related molecules cause discrete diseases manifesting pigment dilution and immunodeficiency, and can also affect common diseases such as diabetes and cancer in complex ways. Although the function and mechanism of action of these effectors have been explored, it is unclear how multiple effectors act in coordination within a cell to regulate the secretory process as a whole. It seems that Rab27 and various effectors constitutively reside on individual vesicles to perform consecutive exocytic steps. The present review describes the unique properties and in vivo roles of the Rab27 system, and the functional relationship among different effectors coexpressed in single cells, with pancreatic beta cells used as an example.Key words: membrane trafficking, regulated exocytosis, insulin granules, pancreatic beta cells.
Collapse
Affiliation(s)
- Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
9
|
Isolation and Proteomics of the Insulin Secretory Granule. Metabolites 2021; 11:metabo11050288. [PMID: 33946444 PMCID: PMC8147143 DOI: 10.3390/metabo11050288] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/21/2022] Open
Abstract
Insulin, a vital hormone for glucose homeostasis is produced by pancreatic beta-cells and when secreted, stimulates the uptake and storage of glucose from the blood. In the pancreas, insulin is stored in vesicles termed insulin secretory granules (ISGs). In Type 2 diabetes (T2D), defects in insulin action results in peripheral insulin resistance and beta-cell compensation, ultimately leading to dysfunctional ISG production and secretion. ISGs are functionally dynamic and many proteins present either on the membrane or in the lumen of the ISG may modulate and affect different stages of ISG trafficking and secretion. Previously, studies have identified few ISG proteins and more recently, proteomics analyses of purified ISGs have uncovered potential novel ISG proteins. This review summarizes the proteins identified in the current ISG proteomes from rat insulinoma INS-1 and INS-1E cell lines. Here, we also discuss techniques of ISG isolation and purification, its challenges and potential future directions.
Collapse
|
10
|
Alnaas AA, Watson-Siriboe A, Tran S, Negussie M, Henderson JA, Osterberg JR, Chon NL, Harrott BM, Oviedo J, Lyakhova T, Michel C, Reisdorph N, Reisdorph R, Shearn CT, Lin H, Knight JD. Multivalent lipid targeting by the calcium-independent C2A domain of synaptotagmin-like protein 4/granuphilin. J Biol Chem 2020; 296:100159. [PMID: 33277360 PMCID: PMC7857503 DOI: 10.1074/jbc.ra120.014618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/03/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Synaptotagmin-like protein 4 (Slp-4), also known as granuphilin, is a Rab effector responsible for docking secretory vesicles to the plasma membrane before exocytosis. Slp-4 binds vesicular Rab proteins via an N-terminal Slp homology domain, interacts with plasma membrane SNARE complex proteins via a central linker region, and contains tandem C-terminal C2 domains (C2A and C2B) with affinity for phosphatidylinositol-(4,5)-bisphosphate (PIP2). The Slp-4 C2A domain binds with low nanomolar apparent affinity to PIP2 in lipid vesicles that also contain background anionic lipids such as phosphatidylserine but much weaker when either the background anionic lipids or PIP2 is removed. Through computational and experimental approaches, we show that this high-affinity membrane binding arises from concerted interaction at multiple sites on the C2A domain. In addition to a conserved PIP2-selective lysine cluster, a larger cationic surface surrounding the cluster contributes substantially to the affinity for physiologically relevant lipid compositions. Although the K398A mutation in the lysine cluster blocks PIP2 binding, this mutated protein domain retains the ability to bind physiological membranes in both a liposome-binding assay and MIN6 cells. Molecular dynamics simulations indicate several conformationally flexible loops that contribute to the nonspecific cationic surface. We also identify and characterize a covalently modified variant that arises through reactivity of the PIP2-binding lysine cluster with endogenous bacterial compounds and binds weakly to membranes. Overall, multivalent lipid binding by the Slp-4 C2A domain provides selective recognition and high-affinity docking of large dense core secretory vesicles to the plasma membrane.
Collapse
Affiliation(s)
- Aml A Alnaas
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | | | - Sherleen Tran
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Mikias Negussie
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Jack A Henderson
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - J Ryan Osterberg
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Nara L Chon
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Beckston M Harrott
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Julianna Oviedo
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Tatyana Lyakhova
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Cole Michel
- Department of Pharmaceutical Sciences, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Colin T Shearn
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hai Lin
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA.
| | - Jefferson D Knight
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA.
| |
Collapse
|
11
|
Wang H, Mizuno K, Takahashi N, Kobayashi E, Shirakawa J, Terauchi Y, Kasai H, Okunishi K, Izumi T. Melanophilin Accelerates Insulin Granule Fusion without Predocking to the Plasma Membrane. Diabetes 2020; 69:2655-2666. [PMID: 32994278 DOI: 10.2337/db20-0069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Direct observation of fluorescence-labeled secretory granule exocytosis in living pancreatic β-cells has revealed heterogeneous prefusion behaviors: some granules dwell beneath the plasma membrane before fusion, while others fuse immediately once they are recruited to the plasma membrane. Although the former mode seems to follow sequential docking-priming-fusion steps as found in synaptic vesicle exocytosis, the latter mode, which is unique to secretory granule exocytosis, has not been explored well. Here, we show that melanophilin, one of the effectors of the monomeric guanosine-5'-triphosphatase Rab27 on the granule membrane, is involved in such an accelerated mode of exocytosis. Melanophilin-mutated leaden mouse and melanophilin-downregulated human pancreatic β-cells both exhibit impaired glucose-stimulated insulin secretion, with a specific reduction in fusion events that bypass stable docking to the plasma membrane. Upon stimulus-induced [Ca2+]i rise, melanophilin mediates this type of fusion by dissociating granules from myosin-Va and actin in the actin cortex and by associating them with a fusion-competent, open form of syntaxin-4 on the plasma membrane. These findings provide the hitherto unknown mechanism to support sustainable exocytosis by which granules are recruited from the cell interior and fuse promptly without stable predocking to the plasma membrane.
Collapse
Affiliation(s)
- Hao Wang
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Kouichi Mizuno
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Noriko Takahashi
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Eri Kobayashi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Jun Shirakawa
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuhide Okunishi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
12
|
Wang Y, Sun J, Lin Z, Zhang W, Wang S, Wang W, Wang Q, Ning G. m 6A mRNA Methylation Controls Functional Maturation in Neonatal Murine β-Cells. Diabetes 2020; 69:1708-1722. [PMID: 32404350 DOI: 10.2337/db19-0906] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/08/2020] [Indexed: 11/13/2022]
Abstract
The N 6-methyladenosine (m6A) RNA modification is essential during embryonic development of various organs. However, its role in embryonic and early postnatal islet development remains unknown. Mice in which RNA methyltransferase-like 3/14 (Mettl3/14) were deleted in Ngn3+ endocrine progenitors (Mettl3/14 nKO ) developed hyperglycemia and hypoinsulinemia at 2 weeks after birth. We found that Mettl3/14 specifically regulated both functional maturation and mass expansion of neonatal β-cells before weaning. Transcriptome and m6A methylome analyses provided m6A-dependent mechanisms in regulating cell identity, insulin secretion, and proliferation in neonatal β-cells. Importantly, we found that Mettl3/14 were dispensable for β-cell differentiation but directly regulated essential transcription factor MafA expression at least partially via modulating its mRNA stability. Failure to maintain this modification impacted the ability to fulfill β-cell functional maturity. In both diabetic db/db mice and patients with type 2 diabetes (T2D), decreased Mettl3/14 expression in β-cells was observed, suggesting its possible role in T2D. Our study unraveled the essential role of Mettl3/14 in neonatal β-cell development and functional maturation, both of which determined functional β-cell mass and glycemic control in adulthood.
Collapse
Affiliation(s)
- Yanqiu Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Sun
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Science, Peking University Health Science Center, Beijing, China
| | - Shu Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Carrat GR, Haythorne E, Tomas A, Haataja L, Müller A, Arvan P, Piunti A, Cheng K, Huang M, Pullen TJ, Georgiadou E, Stylianides T, Amirruddin NS, Salem V, Distaso W, Cakebread A, Heesom KJ, Lewis PA, Hodson DJ, Briant LJ, Fung AC, Sessions RB, Alpy F, Kong AP, Benke PI, Torta F, Teo AKK, Leclerc I, Solimena M, Wigley DB, Rutter GA. The type 2 diabetes gene product STARD10 is a phosphoinositide-binding protein that controls insulin secretory granule biogenesis. Mol Metab 2020; 40:101015. [PMID: 32416313 PMCID: PMC7322359 DOI: 10.1016/j.molmet.2020.101015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVE Risk alleles for type 2 diabetes at the STARD10 locus are associated with lowered STARD10 expression in the β-cell, impaired glucose-induced insulin secretion, and decreased circulating proinsulin:insulin ratios. Although likely to serve as a mediator of intracellular lipid transfer, the identity of the transported lipids and thus the pathways through which STARD10 regulates β-cell function are not understood. The aim of this study was to identify the lipids transported and affected by STARD10 in the β-cell and the role of the protein in controlling proinsulin processing and insulin granule biogenesis and maturation. METHODS We used isolated islets from mice deleted selectively in the β-cell for Stard10 (βStard10KO) and performed electron microscopy, pulse-chase, RNA sequencing, and lipidomic analyses. Proteomic analysis of STARD10 binding partners was executed in the INS1 (832/13) cell line. X-ray crystallography followed by molecular docking and lipid overlay assay was performed on purified STARD10 protein. RESULTS βStard10KO islets had a sharply altered dense core granule appearance, with a dramatic increase in the number of "rod-like" dense cores. Correspondingly, basal secretion of proinsulin was increased versus wild-type islets. The solution of the crystal structure of STARD10 to 2.3 Å resolution revealed a binding pocket capable of accommodating polyphosphoinositides, and STARD10 was shown to bind to inositides phosphorylated at the 3' position. Lipidomic analysis of βStard10KO islets demonstrated changes in phosphatidylinositol levels, and the inositol lipid kinase PIP4K2C was identified as a STARD10 binding partner. Also consistent with roles for STARD10 in phosphoinositide signalling, the phosphoinositide-binding proteins Pirt and Synaptotagmin 1 were amongst the differentially expressed genes in βStard10KO islets. CONCLUSION Our data indicate that STARD10 binds to, and may transport, phosphatidylinositides, influencing membrane lipid composition, insulin granule biosynthesis, and insulin processing.
Collapse
Affiliation(s)
- Gaelle R. Carrat
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Elizabeth Haythorne
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany,Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alexandra Piunti
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK,Lille 1 University-Science and Technology, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - Kaiying Cheng
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
| | - Mutian Huang
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Timothy J. Pullen
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK,Department of Diabetes, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Theodoros Stylianides
- Loughborough University, Centre of Innovative and Collaborative Construction Engineering, Leicestershire, LE11 3TU, UK
| | - Nur Shabrina Amirruddin
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A∗STAR, Proteos, Singapore, 138673, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Victoria Salem
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK,Section of Investigative Medicine, Department of Medicine, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Walter Distaso
- Imperial College Business School, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Andrew Cakebread
- London Metallomics Facility, King's College London, Strand, London, WC2R 2LS, UK
| | | | | | - David J. Hodson
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK,Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, UK,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Linford J. Briant
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Annie C.H. Fung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Richard B. Sessions
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Centre National de la Recherche Scientifique (CNRS), UMR 7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Alice P.S. Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Peter I. Benke
- Singapore Lipidomics Incubator, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Mdical Drive, Singapore, 117596, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Mdical Drive, Singapore, 117596, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A∗STAR, Proteos, Singapore, 138673, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany,Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Dale B. Wigley
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK,Corresponding author. +44 (0)20 7594 3340.
| |
Collapse
|
14
|
Rorsman P, Ashcroft FM. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol Rev 2018; 98:117-214. [PMID: 29212789 PMCID: PMC5866358 DOI: 10.1152/physrev.00008.2017] [Citation(s) in RCA: 475] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Chen YD, Fang YT, Cheng YL, Lin CF, Hsu LJ, Wang SY, Anderson R, Chang CP, Lin YS. Exophagy of annexin A2 via RAB11, RAB8A and RAB27A in IFN-γ-stimulated lung epithelial cells. Sci Rep 2017; 7:5676. [PMID: 28720835 PMCID: PMC5516008 DOI: 10.1038/s41598-017-06076-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/07/2017] [Indexed: 12/09/2022] Open
Abstract
Annexin A2 (ANXA2), a phospholipid-binding protein, has multiple biological functions depending on its cellular localization. We previously demonstrated that IFN-γ-triggered ANXA2 secretion is associated with exosomal release. Here, we show that IFN-γ-induced autophagy is essential for the extracellular secretion of ANXA2 in lung epithelial cells. We observed colocalization of ANXA2-containing autophagosomes with multivesicular bodies (MVBs) after IFN-γ stimulation, followed by exosomal release. IFN-γ-induced exophagic release of ANXA2 could not be observed in ATG5-silenced or mutant RAB11-expressing cells. Furthermore, knockdown of RAB8A and RAB27A, but not RAB27B, reduced IFN-γ-triggered ANXA2 secretion. Surface translocation of ANXA2 enhanced efferocytosis by epithelial cells, and inhibition of different exophagic steps, including autophagosome formation, fusion of autophagosomes with MVBs, and fusion of amphisomes with plasma membrane, reduced ANXA2-mediated efferocytosis. Our data reveal a novel route of IFN-γ-induced exophagy of ANXA2.
Collapse
Affiliation(s)
- Ying-Da Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Fang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiou-Feng Lin
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Jin Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ying Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Robert Anderson
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Departments of Microbiology & Immunology and Pediatrics, and Canadian Center for Vaccinology, Dalhousie University, Halifax, Canada
| | - Chih-Peng Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yee-Shin Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
16
|
Fan F, Matsunaga K, Wang H, Ishizaki R, Kobayashi E, Kiyonari H, Mukumoto Y, Okunishi K, Izumi T. Exophilin-8 assembles secretory granules for exocytosis in the actin cortex via interaction with RIM-BP2 and myosin-VIIa. eLife 2017; 6. [PMID: 28673385 PMCID: PMC5496739 DOI: 10.7554/elife.26174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/04/2017] [Indexed: 12/15/2022] Open
Abstract
Exophilin-8 has been reported to play a role in anchoring secretory granules within the actin cortex, due to its direct binding activities to Rab27 on the granule membrane and to F-actin and its motor protein, myosin-Va. Here, we show that exophilin-8 accumulates granules in the cortical F-actin network not by direct interaction with myosin-Va, but by indirect interaction with a specific form of myosin-VIIa through its previously unknown binding partner, RIM-BP2. RIM-BP2 also associates with exocytic machinery, Cav1.3, RIM, and Munc13-1. Disruption of the exophilin-8-RIM-BP2-myosin-VIIa complex by ablation or knockdown of each component markedly decreases both the peripheral accumulation and exocytosis of granules. Furthermore, exophilin-8-null mouse pancreatic islets lose polarized granule localization at the β-cell periphery and exhibit impaired insulin secretion. This newly identified complex acts as a physical and functional scaffold and provides a mechanism supporting a releasable pool of granules within the F-actin network beneath the plasma membrane.
Collapse
Affiliation(s)
- Fushun Fan
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hao Wang
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Ray Ishizaki
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Eri Kobayashi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Yoshiko Mukumoto
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Katsuhide Okunishi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.,Research Program for Signal Transduction, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| |
Collapse
|
17
|
Matsunaga K, Taoka M, Isobe T, Izumi T. Rab2a and Rab27a cooperatively regulate the transition from granule maturation to exocytosis through the dual effector Noc2. J Cell Sci 2016; 130:541-550. [PMID: 27927751 DOI: 10.1242/jcs.195479] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022] Open
Abstract
Exocytosis of secretory granules entails budding from the trans-Golgi network, sorting and maturation of cargo proteins, and trafficking and fusion to the plasma membrane. Rab27a regulates the late steps in this process, such as granule recruitment to the fusion site, whereas Rab2a functions in the early steps, such as granule biogenesis and maturation. Here, we demonstrate that these two small GTPases simultaneously bind to Noc2 (also known as RPH3AL) in a GTP-dependent manner, although Rab2a binds only after Rab27a has bound. In pancreatic β-cells, the ternary Rab2a-Noc2-Rab27a complex specifically localizes on perinuclear immature granules, whereas the binary Noc2-Rab27a complex localizes on peripheral mature granules. In contrast to the wild type, Noc2 mutants defective in binding to Rab2a or Rab27a fail to promote glucose-stimulated insulin secretion. Although knockdown of any component of the ternary complex markedly inhibits insulin secretion, only knockdown of Rab2a or Noc2, and not that of Rab27a, impairs cargo processing from proinsulin to insulin. These results suggest that the dual effector, Noc2, regulates the transition from Rab2a-mediated granule biogenesis to Rab27a-mediated granule exocytosis.
Collapse
Affiliation(s)
- Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan .,Research Program for Signal Transduction, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Gunma University, Maebashi 371-8512, Japan
| |
Collapse
|