1
|
Wang J, Zhi Z, Ding J, Jia N, Hu Y, Cai J, Li H, Tang J, Tang W, Mao X. Suppression of PGE2/EP2 signaling alleviates Hirschsprung disease by upregulating p38 mitogen-activated protein kinase activity. J Mol Med (Berl) 2023; 101:1125-1139. [PMID: 37522903 DOI: 10.1007/s00109-023-02353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/11/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital disorder caused by the failure of enteric neural crest cells (ENCCs) to colonize the distal bowel, resulting in absence of enteric nervous system. While a range of molecules and signaling pathways have been found to contribute to HSCR development, the risk factors and pathogenesis of this disease in many patients remain unknown. We previously demonstrated that increased activity of the prostaglandin E2 (PGE2)/PGE2 receptor subtype EP2 pathway can be a risk factor for HSCR. In this study, an Ednrb-deficient mouse model of HSCR was generated and used to investigate if PGE2/EP2 pathway could be a potential therapeutic target for HSCR. We found that downregulation of PGE2/EP2 signaling by siRNA-mediated ablation of a PGE2 synthase or pharmacologic blockage of EP2 enhanced ENCC colonization in the distal bowel of Ednrb-/- mice and alleviated their HSCR-like symptoms. Furthermore, blockage of EP2 was shown to promote ENCC migration through upregulating p38 mitogen-activated protein kinase activity, which was downregulated in the colon of Ednrb-/- mice and in the distal aganglionic bowel of HSCR patients. These data provide evidence that maternal exposure during embryonic development to an environment with dysregulated activation of the PGE2/EP2 pathway may predispose genetically susceptible offspring to HSCR, and avoidance or early disruption of maternal events (e.g. inflammation) that possibly enhance PGE2/EP2 signaling during pregnancy would reduce the occurrence and severity of this disease. KEY MESSAGES : Knockdown of PTGES alleviates HSCR severity in Ednrb-/- mice. Blockage of EP2-mediated PGE2 signaling alleviates HSCR severity in Ednrb-/- mice. Blockage of EP2-mediated PGE2 signaling promotes ENCC migration via enhancing p38 activity.
Collapse
Affiliation(s)
- Jiao Wang
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zhengke Zhi
- Department of Pediatric Surgery, Childrens Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, China
| | - Jie Ding
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Na Jia
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Yuqing Hu
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jiali Cai
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hongxing Li
- Department of Pediatric Surgery, Childrens Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, China
| | - Jie Tang
- Department of Pediatric Surgery, Childrens Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, China
| | - Weibing Tang
- Department of Pediatric Surgery, Childrens Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, China.
| | - Xiaohua Mao
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210096, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
2
|
Ho KKY, Srivastava S, Kinnunen PC, Garikipati K, Luker GD, Luker KE. Oscillatory ERK Signaling and Morphology Determine Heterogeneity of Breast Cancer Cell Chemotaxis via MEK-ERK and p38-MAPK Signaling Pathways. Bioengineering (Basel) 2023; 10:bioengineering10020269. [PMID: 36829763 PMCID: PMC9952091 DOI: 10.3390/bioengineering10020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Chemotaxis, regulated by oscillatory signals, drives critical processes in cancer metastasis. Crucial chemoattractant molecules in breast cancer, CXCL12 and EGF, drive the activation of ERK and Akt. Regulated by feedback and crosstalk mechanisms, oscillatory signals in ERK and Akt control resultant changes in cell morphology and chemotaxis. While commonly studied at the population scale, metastasis arises from small numbers of cells that successfully disseminate, underscoring the need to analyze processes that cancer cells use to connect oscillatory signaling to chemotaxis at single-cell resolution. Furthermore, little is known about how to successfully target fast-migrating cells to block metastasis. We investigated to what extent oscillatory networks in single cells associate with heterogeneous chemotactic responses and how targeted inhibitors block signaling processes in chemotaxis. We integrated live, single-cell imaging with time-dependent data processing to discover oscillatory signal processes defining heterogeneous chemotactic responses. We identified that short ERK and Akt waves, regulated by MEK-ERK and p38-MAPK signaling pathways, determine the heterogeneous random migration of cancer cells. By comparison, long ERK waves and the morphological changes regulated by MEK-ERK signaling, determine heterogeneous directed motion. This study indicates that treatments against chemotaxis in consider must interrupt oscillatory signaling.
Collapse
Affiliation(s)
- Kenneth K. Y. Ho
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siddhartha Srivastava
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patrick C. Kinnunen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Krishna Garikipati
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gary D. Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (G.D.L.); (K.E.L.)
| | - Kathryn E. Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (G.D.L.); (K.E.L.)
| |
Collapse
|
3
|
Chen YC, Chen JH, Tsai CF, Wu CT, Wu MH, Chang PC, Yeh WL. Nicardipine Inhibits Breast Cancer Migration via Nrf2/HO-1 Axis and Matrix Metalloproteinase-9 Regulation. Front Pharmacol 2021; 12:710978. [PMID: 34483918 PMCID: PMC8414136 DOI: 10.3389/fphar.2021.710978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Metastasis represents an advanced stage of cancers, and matrix metalloproteinases are critical regulators. Calcium signal is crucial for appropriate cell behaviors. The efficacy and effects of calcium channel blockers in treating cancers are individually differ from each other. Here, we attempt to investigate the effects of nicardipine, a FDA-approved calcium channel blocker, in advanced breast cancers. Methods: We analyzed the influence of nicardipine on the colony-forming ability of triple negative breast cancer cell lines. Using cell culture inserts, cell migration was also examined. The expression of regulatory proteins was evaluated by real-time PCR, Western blot, and ELISA. Results: We have confirmed that nicardipine inhibits the breast cancer cells migration and colony formation. In addition, we also revealed that nicardipine increases the Nrf2 and HO-1 expression. The inhibition of HO-1 abrogates nicardipine-reduced matrix metalloproteinase-9 expression. Moreover, the end products of HO-1, namely, CO, Fe2+, and biliverdin (will converted to bilirubin), also decreases the expression of matrix metalloproteinase-9. Conclusion: These findings suggest that nicardipine-mediated matrix metalloproteinase-9 reduction is regulated by Nrf2/HO-1 axis and its catalytic end products. Therefore, nicardipine may be a potential candidate for repurposing against advanced breast cancers.
Collapse
Affiliation(s)
- Yen-Chang Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chen-Teng Wu
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Miao-Hsiang Wu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Höving AL, Schmitz J, Schmidt KE, Greiner JFW, Knabbe C, Kaltschmidt B, Grünberger A, Kaltschmidt C. Human Blood Serum Induces p38-MAPK- and Hsp27-Dependent Migration Dynamics of Adult Human Cardiac Stem Cells: Single-Cell Analysis via a Microfluidic-Based Cultivation Platform. BIOLOGY 2021; 10:biology10080708. [PMID: 34439941 PMCID: PMC8389316 DOI: 10.3390/biology10080708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary Adult human stem cells possess the ability to contribute to endogenous regeneration processes of injured tissue by migrating to specific locations. For stem cell-based clinical applications it is highly important to gain knowledge about the migration behavior of adult human stem cells and the underlying molecular mechanisms of this ability. Human blood serum has been shown to have beneficial effects on other regenerative capacities of adult human stem cells. Within this study we tested the effect of human blood serum on the migration behavior of stem cells from the human heart. We used a microfluidic cultivation device, which allowed us to monitor the living cells and their movement behavior in real time. After addition of human blood serum, the heart stem cells increased their speed of movement and covered distance. Further, we observed that this effect could be diminished by inhibition of a specific kinase, p38-MAPK. Thus, our data suggest beneficial effects of human blood serum on adult human heart stem cells dependent on p38-MAPK. Our study contributes to a deeper understanding of the dynamics of stem cell migration and introduces a new platform to monitor stem cell movement in real time. Abstract Migratory capabilities of adult human stem cells are vital for assuring endogenous tissue regeneration and stem cell-based clinical applications. Although human blood serum has been shown to be beneficial for cell migration and proliferation, little is known about its impact on the migratory behavior of cardiac stem cells and underlying signaling pathways. Within this study, we investigated the effects of human blood serum on primary human cardiac stem cells (hCSCs) from the adult heart auricle. On a technical level, we took advantage of a microfluidic cultivation platform, which allowed us to characterize cell morphologies and track migration of single hCSCs via live cell imaging over a period of up to 48 h. Our findings showed a significantly increased migration distance and speed of hCSCs after treatment with human serum compared to control. Exposure of blood serum-stimulated hCSCs to the p38 mitogen-activated protein kinase (p38-MAPK) inhibitor SB239063 resulted in significantly decreased migration. Moreover, we revealed increased phosphorylation of heat shock protein 27 (Hsp27) upon serum treatment, which was diminished by p38-MAPK-inhibition. In summary, we demonstrate human blood serum as a strong inducer of adult human cardiac stem cell migration dependent on p38-MAPK/Hsp27-signalling. Our findings further emphasize the great potential of microfluidic cultivation devices for assessing spatio-temporal migration dynamics of adult human stem cells on a single-cell level.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (K.E.S.); (J.F.W.G.); (B.K.); (C.K.)
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Correspondence:
| | - Julian Schmitz
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
| | - Kazuko E. Schmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (K.E.S.); (J.F.W.G.); (B.K.); (C.K.)
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
| | - Johannes F. W. Greiner
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (K.E.S.); (J.F.W.G.); (B.K.); (C.K.)
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
| | - Barbara Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (K.E.S.); (J.F.W.G.); (B.K.); (C.K.)
- Molecular Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (K.E.S.); (J.F.W.G.); (B.K.); (C.K.)
| |
Collapse
|
5
|
Krishnan M, Kumar S, Kangale LJ, Ghigo E, Abnave P. The Act of Controlling Adult Stem Cell Dynamics: Insights from Animal Models. Biomolecules 2021; 11:biom11050667. [PMID: 33946143 PMCID: PMC8144950 DOI: 10.3390/biom11050667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).
Collapse
Affiliation(s)
- Meera Krishnan
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Sahil Kumar
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Luis Johnson Kangale
- IRD, AP-HM, SSA, VITROME, Aix-Marseille University, 13385 Marseille, France;
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
| | - Eric Ghigo
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
- TechnoJouvence, 13385 Marseille, France
| | - Prasad Abnave
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
- Correspondence:
| |
Collapse
|
6
|
Abstract
Ecological fitness is the ability of individuals in a population to survive and reproduce. Individuals with increased fitness are better equipped to withstand the selective pressures of their environments. This paradigm pertains to all organismal life as we know it; however, it is also becoming increasingly clear that within multicellular organisms exist highly complex, competitive, and cooperative populations of cells under many of the same ecological and evolutionary constraints as populations of individuals in nature. In this review I discuss the parallels between populations of cancer cells and populations of individuals in the wild, highlighting how individuals in either context are constrained by their environments to converge on a small number of critical phenotypes to ensure survival and future reproductive success. I argue that the hallmarks of cancer can be distilled into key phenotypes necessary for cancer cell fitness: survival and reproduction. I posit that for therapeutic strategies to be maximally beneficial, they should seek to subvert these ecologically driven phenotypic responses.
Collapse
|
7
|
Moreno-Cugnon L, Arrizabalaga O, Llarena I, Matheu A. Elevated p38MAPK activity promotes neural stem cell aging. Aging (Albany NY) 2020; 12:6030-6036. [PMID: 32243258 PMCID: PMC7185101 DOI: 10.18632/aging.102994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/20/2020] [Indexed: 12/19/2022]
Abstract
Age-progressive neural stem cell (NSC) dysfunction leads to impaired neurogenesis, cognitive decline and the onset of age-related neurodegenerative pathologies. p38MAPK signalling pathway limits stem cell activity during aging in several tissues. Its role in NSCs remains controversial. In this work, we show that p38MAPK activity increases in NSCs with age in the subventricular zone (SVZ) and its pharmacological inhibition is sufficient to rejuvenate their activity in vitro. These data reveal a cell-autonomous role for p38MAPK increase in decreasing NSC homeostasis with age. This information shed light in the role of p38MAPK in NSC aging.
Collapse
Affiliation(s)
- Leire Moreno-Cugnon
- Biodonostia Health Research Institute, Group of Cellular Oncology, San Sebastian, Spain
| | - Olatz Arrizabalaga
- Biodonostia Health Research Institute, Group of Cellular Oncology, San Sebastian, Spain
| | - Irantzu Llarena
- Optical Spectroscopy Platform, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Ander Matheu
- Biodonostia Health Research Institute, Group of Cellular Oncology, San Sebastian, Spain.,CIBERfes, Madrid, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
8
|
Moreno‐Cugnon L, Revuelta M, Arrizabalaga O, Colie S, Moreno‐Valladares M, Jimenez‐Blasco D, Gil‐Bea F, Llarena I, Bolaños JP, Nebreda AR, Matheu A. Neuronal p38α mediates age-associated neural stem cell exhaustion and cognitive decline. Aging Cell 2019; 18:e13044. [PMID: 31560167 PMCID: PMC6826142 DOI: 10.1111/acel.13044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/22/2019] [Accepted: 08/17/2019] [Indexed: 11/29/2022] Open
Abstract
Neuronal activity regulates cognition and neural stem cell (NSC) function. The molecular pathways limiting neuronal activity during aging remain largely unknown. In this work, we show that p38MAPK activity increases in neurons with age. By using mice expressing p38α-lox and CamkII-Cre alleles (p38α∆-N), we demonstrate that genetic deletion of p38α in neurons suffices to reduce age-associated elevation of p38MAPK activity, neuronal loss and cognitive decline. Moreover, aged p38α∆-N mice present elevated numbers of NSCs in the hippocampus and the subventricular zone. These results reveal novel roles for neuronal p38MAPK in age-associated NSC exhaustion and cognitive decline.
Collapse
Affiliation(s)
| | - Miren Revuelta
- Cellular oncology group Biodonostia Institute San Sebastian Spain
| | | | - Sandra Colie
- Institute for Research in Biomedicine (IRB Barcelona) Barcelona Institute of Science and Technology Barcelona Spain
| | | | - Daniel Jimenez‐Blasco
- Institute of Functional Biology and Genomics (IBFG) Universidad de Salamanca CSIC Salamanca Spain
| | - Francisco Gil‐Bea
- Neurosciences Area Biodonostia Institute San Sebastián Spain
- CIBERNED Madrid Spain
| | - Irantzu Llarena
- Optical Spectroscopy Platform CIC biomaGUNE San Sebastian Spain
| | - Juan Pedro Bolaños
- Institute of Functional Biology and Genomics (IBFG) Universidad de Salamanca CSIC Salamanca Spain
- CIBERfes Madrid Spain
| | - Angel R. Nebreda
- Institute for Research in Biomedicine (IRB Barcelona) Barcelona Institute of Science and Technology Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Barcelona Spain
| | - Ander Matheu
- Cellular oncology group Biodonostia Institute San Sebastian Spain
- CIBERfes Madrid Spain
- IKERBASQUE Basque Foundation for Science Bilbao Spain
| |
Collapse
|
9
|
Shigiyama F, Hamanoue M, Kobayashi M, Takamatsu K. Cell-permeable p38 MAP kinase protects adult hippocampal neurons from cell death. Neurosci Lett 2019; 699:115-121. [PMID: 30735722 DOI: 10.1016/j.neulet.2019.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/18/2019] [Accepted: 02/02/2019] [Indexed: 10/27/2022]
Abstract
p38 mitogen-activated protein (MAP) kinase (p38) is a member of the MAP kinase family. Previous reports using p38 chemical inhibitors have suggested that its activation contributes to hippocampal neuronal cell death rather than cell survival. In this study, we used both a cell-permeable p38 protein containing the HIV protein transduction domain (PTD) and cultured adult hippocampal neurons, which were differentiated from cultured adult hippocampal neural stem/progenitor cells (NPCs), to evaluate the direct function of p38 on adult hippocampal neurons. Our immunocytochemical experiments demonstrated that wild-type cell-permeable p38 protein prevents cell death of adult hippocampal neurons induced by a low glucose condition. Our findings indicate that cell-permeable p38 protein may be useful in preventing the degeneration of higher brain function occurring through hippocampal neuronal cell death, and furthermore, that the maintenance of intracellular p38 levels could be another therapeutic target for neurodegenerative diseases such as Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Fumiko Shigiyama
- Department of Physiology, Toho University Graduate School of Medicine, 143-8540, Tokyo, Japan
| | - Makoto Hamanoue
- Department of Physiology, Toho University Graduate School of Medicine, 143-8540, Tokyo, Japan; Department of Physiology, Toho University School of Medicine, 143-8540, Tokyo, Japan.
| | - Masaaki Kobayashi
- Department of Physiology, Toho University Graduate School of Medicine, 143-8540, Tokyo, Japan; Department of Physiology, Toho University School of Medicine, 143-8540, Tokyo, Japan
| | - Ken Takamatsu
- Department of Physiology, Toho University Graduate School of Medicine, 143-8540, Tokyo, Japan; Department of Physiology, Toho University School of Medicine, 143-8540, Tokyo, Japan
| |
Collapse
|
10
|
Bolus DJ, Shanmugam G, Narasimhan M, Rajasekaran NS. Recurrent heat shock impairs the proliferation and differentiation of C2C12 myoblasts. Cell Stress Chaperones 2018; 23:399-410. [PMID: 29063376 PMCID: PMC5904084 DOI: 10.1007/s12192-017-0851-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 12/21/2022] Open
Abstract
Heat-related illness and injury are becoming a growing safety concern for the farmers, construction workers, miners, firefighters, manufacturing workers, and other outdoor workforces who are exposed to heat stress in their routine lives. A primary response by a cell to an acute heat shock (HS) exposure is the induction of heat-shock proteins (HSPs), which chaperone and facilitate cellular protein folding and remodeling processes. While acute HS is well studied, the effect of repeated bouts of hyperthermia and the sustained production of HSPs in the myoblast-myotube model system of C2C12 cells are poorly characterized. In C2C12 myoblasts, we found that robust HS (43 °C, dose/time) significantly decreased the proliferation by 50% as early as on day 1 and maintained at the same level on days 2 and 3 of HS. This was accompanied by an accumulation of cells at G2 phase with reduced cell number in G1 phase indicating cell cycle arrest. FACS analysis indicates that there was no apparent change in apoptosis (markers) and cell death upon repeated HS. Immunoblot analysis and qPCR demonstrated a significant increase in the baseline expression of HSP25, 70, and 90 (among others) in cells after a single HS (43 °C) for 60 min as a typical HS response. Importantly, the repeated HS for 60 min each on days 2 and 3 maintained the elevated levels of HSPs compared to the control cells. Further, the continuous HS exposure resulted in significant inhibition of the differentiation of C2C12 myocytes to myotubes and only 1/10th of the cells underwent differentiation in HS relative to control. This was associated with significantly higher levels of HSPs and reduced expression of myogenin and Myh2 (P < 0.05), the genes involved in the differentiation process. Finally, the cell migration (scratch) assay indicated that the wound closure was significantly delayed in HS cells relative to the control cells. Overall, these results suggest that a repeated HS may perturb the active process of proliferation, motility, and differentiation processes in an in vitro murine myoblast-myotube model.
Collapse
Affiliation(s)
- Daniel J Bolus
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, 35294-2180, USA
| | - Gobinath Shanmugam
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, 35294-2180, USA
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, 35294-2180, USA.
- Division of Cardiovascular Medicine, Department of Medicine, The University of Utah School of Medicine, Salt Lake City, UT, 84132, USA.
- Center for Free Radical Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294-2180, USA.
| |
Collapse
|
11
|
Mehdipour M, Liu Y, Liu C, Kumar B, Kim D, Gathwala R, Conboy IM. Key Age-Imposed Signaling Changes That Are Responsible for the Decline of Stem Cell Function. Subcell Biochem 2018; 90:119-143. [PMID: 30779008 DOI: 10.1007/978-981-13-2835-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This chapter analyzes recent developments in the field of signal transduction of ageing with the focus on the age-imposed changes in TGF-beta/pSmad, Notch, Wnt/beta-catenin, and Jak/Stat networks. Specifically, this chapter delineates how the above-mentioned evolutionary-conserved morphogenic signaling pathways operate in young versus aged mammalian tissues, with insights into how the age-specific broad decline of stem cell function is precipitated by the deregulation of these key cell signaling networks. This chapter also provides perspectives onto the development of defined therapeutic approaches that aim to calibrate intensity of the determinant signal transduction to health-youth, thereby rejuvenating multiple tissues in older people.
Collapse
Affiliation(s)
- Melod Mehdipour
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Yutong Liu
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Chao Liu
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Binod Kumar
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Daehwan Kim
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Ranveer Gathwala
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Irina M Conboy
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|