1
|
Chen Y, Zhou Q, Pan F, Rong B, Xiao R, Wen Y, Song J, Tu Z, Liu S, Li Y, Zhang X. Synthesis and anti-influenza virus activity of substituted dibenzoxepine-based baloxavir derivatives. Eur J Med Chem 2024; 280:116922. [PMID: 39388905 DOI: 10.1016/j.ejmech.2024.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Seasonal influenza poses a significant threat to global public health, driving the need for effective anti-influenza agents. The PA protein, which captures the pre-mRNA cap structure, is crucial for the replication of the influenza virus and serves as an important target for developing such agents. Baloxavir, a PA inhibitor, has shown excellent activity against influenza A and B viruses. In this study, its structure was optimized using bioisosteric replacement to develop novel dibenzoxepine-based derivatives for combating influenza. As the lead compounds, ATV03 (EC50 = 0.78 ± 0.10 nM, SI > 64103) and ATV07 (EC50 = 0.78 ± 0.01 nM, SI = 31603) demonstrated excellent anti-influenza A (H3N2) activity and SI, and possessed favorable anti-influenza B activity, with 2.02 ± 0.40 nM and 2.32 ± 0.29 nM of EC50 respectively. They showed improved bioavailability and metabolic stability. Mechanism studies revealed that ATV03 and ATV07 both possessed significant activity in inhibiting PA and RdRp as well as disturbing NP. Consequently, ATV03 was selected for further investigation in the fight against seasonal and pandemic influenza due to its superior bioavailability, metabolic stability, and efficacy against multiple influenza A viruses.
Collapse
Affiliation(s)
- Yongzhi Chen
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Qifan Zhou
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, 518000, China.
| | - Fan Pan
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Binhao Rong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Renwei Xiao
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Yuanmei Wen
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Jingyuan Song
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, 518000, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510180, China
| | - Zhengchao Tu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China.
| | - Yingjun Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510180, China.
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, 518000, China.
| |
Collapse
|
2
|
Bessonne M, Morel J, Nevers Q, Da Costa B, Ballandras-Colas A, Chenavier F, Grange M, Roussel A, Crépin T, Delmas B. Antiviral activity of intracellular nanobodies targeting the influenza virus RNA-polymerase core. PLoS Pathog 2024; 20:e1011642. [PMID: 38875296 PMCID: PMC11210859 DOI: 10.1371/journal.ppat.1011642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 06/27/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024] Open
Abstract
Influenza viruses transcribe and replicate their genome in the nucleus of the infected cells, two functions that are supported by the viral RNA-dependent RNA-polymerase (FluPol). FluPol displays structural flexibility related to distinct functional states, from an inactive form to conformations competent for replication and transcription. FluPol machinery is constituted by a structurally-invariant core comprising the PB1 subunit stabilized with PA and PB2 domains, whereas the PA endonuclease and PB2 C-domains can pack in different configurations around the core. To get insights into the functioning of FluPol, we selected single-domain nanobodies (VHHs) specific of the influenza A FluPol core. When expressed intracellularly, some of them exhibited inhibitory activity on type A FluPol, but not on the type B one. The most potent VHH (VHH16) binds PA and the PA-PB1 dimer with an affinity below the nanomolar range. Ectopic intracellular expression of VHH16 in virus permissive cells blocks multiplication of different influenza A subtypes, even when induced at late times post-infection. VHH16 was found to interfere with the transport of the PA-PB1 dimer to the nucleus, without affecting its handling by the importin β RanBP5 and subsequent steps in FluPol assembly. Using FluPol mutants selected after passaging in VHH16-expressing cells, we identified the VHH16 binding site at the interface formed by PA residues with the N-terminus of PB1, overlapping or close to binding sites of two host proteins, ANP32A and RNA-polymerase II RPB1 subunit which are critical for virus replication and transcription, respectively. These data suggest that the VHH16 neutralization is likely due to several activities, altering the import of the PA-PB1 dimer into the nucleus as well as inhibiting specifically virus transcription and replication. Thus, the VHH16 binding site represents a new Achilles' heel for FluPol and as such, a potential target for antiviral development.
Collapse
Affiliation(s)
- Mélissa Bessonne
- Unité de Virologie et Immunologie moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jessica Morel
- Unité de Virologie et Immunologie moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Quentin Nevers
- Unité de Virologie et Immunologie moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bruno Da Costa
- Unité de Virologie et Immunologie moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Florian Chenavier
- Institut de biologie structurale, CNRS, Université de Grenoble, Grenoble, France
| | - Magali Grange
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), CNRS, Université d’Aix-Marseille, Marseille, France
| | - Alain Roussel
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), CNRS, Université d’Aix-Marseille, Marseille, France
| | - Thibaut Crépin
- Institut de biologie structurale, CNRS, Université de Grenoble, Grenoble, France
| | - Bernard Delmas
- Unité de Virologie et Immunologie moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
3
|
Liu L, Madhugiri R, Saul VV, Bacher S, Kracht M, Pleschka S, Schmitz ML. Phosphorylation of the PA subunit of influenza polymerase at Y393 prevents binding of the 5'-termini of RNA and polymerase function. Sci Rep 2023; 13:7042. [PMID: 37120635 PMCID: PMC10148841 DOI: 10.1038/s41598-023-34285-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/27/2023] [Indexed: 05/01/2023] Open
Abstract
The influenza A virus (IAV) polymerase is a multifunctional machine that can adopt alternative configurations to perform transcription and replication of the viral RNA genome in a temporally ordered manner. Although the structure of polymerase is well understood, our knowledge of its regulation by phosphorylation is still incomplete. The heterotrimeric polymerase can be regulated by posttranslational modifications, but the endogenously occurring phosphorylations at the PA and PB2 subunits of the IAV polymerase have not been studied. Mutation of phosphosites in PB2 and PA subunits revealed that PA mutants resembling constitutive phosphorylation have a partial (S395) or complete (Y393) defect in the ability to synthesize mRNA and cRNA. As PA phosphorylation at Y393 prevents binding of the 5' promoter of the genomic RNA, recombinant viruses harboring such a mutation could not be rescued. These data show the functional relevance of PA phosphorylations to control the activity of viral polymerase during the influenza infectious cycle.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Biochemistry, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Vera Vivian Saul
- Institute of Biochemistry, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Susanne Bacher
- Institute of Biochemistry, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen, Giessen, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
4
|
Ávila-Ramírez ML, Reyes-Reyes AL, Avila-Bonilla RG, Salas-Benito M, Cerecedo D, Ramírez-Moreno ME, Villagrán-Herrera ME, Mercado-Curiel RF, Salas-Benito JS. Differential Gene Expression Pattern of Importin β3 and NS5 in C6/36 Cells Acutely and Persistently Infected with Dengue Virus 2. Pathogens 2023; 12:pathogens12020191. [PMID: 36839463 PMCID: PMC9966734 DOI: 10.3390/pathogens12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The establishment of persistent dengue virus infection within the cells of the mosquito vector is an essential requirement for viral transmission to a new human host. The mechanisms involved in the establishment and maintenance of persistent infection are not well understood, but it has been suggested that both viral and cellular factors might play an important role. In the present work, we evaluated differential gene expression in Aedes albopictus cells acutely (C6/36-HT) and persistently infected (C6-L) with Dengue virus 2 by cDNA-AFLP. We observed that importin β3 was upregulated in noninfected cells compared with C6-L cells. Using RT-qPCR and plaque assays, we observed that Dengue virus levels in C6-L cells essentially do not vary over time, and peak viral titers in acutely infected cells are observed at 72 and 120 h postinfection. The expression level of importin β3 was higher in acutely infected cells than in persistently infected cells; this correlates with higher levels of NS5 in the nucleus of the cell. The differential pattern of importin β3 expression between acute and persistent infection with Dengue virus 2 could be a mechanism to maintain viral infection over time, reducing the antiviral response of the cell and the viral replicative rate.
Collapse
Affiliation(s)
- María Leticia Ávila-Ramírez
- Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Ana Laura Reyes-Reyes
- Campo Experimental Rosario Izapa, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuaria, Tuxtla Chico, Chis 30878, Mexico
| | - Rodolfo Gamaliel Avila-Bonilla
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Mariana Salas-Benito
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Doris Cerecedo
- Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - María Esther Ramírez-Moreno
- Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | | | - Ricardo Francisco Mercado-Curiel
- Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro 76176, Mexico
- Correspondence: (R.F.M.-C.); (J.S.S.-B.)
| | - Juan Santiago Salas-Benito
- Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Correspondence: (R.F.M.-C.); (J.S.S.-B.)
| |
Collapse
|
5
|
Staller E, Barclay WS. Host Cell Factors That Interact with Influenza Virus Ribonucleoproteins. Cold Spring Harb Perspect Med 2021; 11:a038307. [PMID: 32988980 PMCID: PMC8559542 DOI: 10.1101/cshperspect.a038307] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Influenza viruses hijack host cell factors at each stage of the viral life cycle. After host cell entry and endosomal escape, the influenza viral ribonucleoproteins (vRNPs) are released into the cytoplasm where the classical cellular nuclear import pathway is usurped for nuclear translocation of the vRNPs. Transcription takes place inside the nucleus at active host transcription sites, and cellular mRNA export pathways are subverted for export of viral mRNAs. Newly synthesized RNP components cycle back into the nucleus using various cellular nuclear import pathways and host-encoded chaperones. Replication of the negative-sense viral RNA (vRNA) into complementary RNA (cRNA) and back into vRNA requires complex interplay between viral and host factors. Progeny vRNPs assemble at the host chromatin and subsequently exit from the nucleus-processes orchestrated by sets of host and viral proteins. Finally, several host pathways appear to play a role in vRNP trafficking from the nuclear envelope to the plasma membrane for egress.
Collapse
Affiliation(s)
- Ecco Staller
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1NY, United Kingdom
| | - Wendy S Barclay
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1NY, United Kingdom
| |
Collapse
|
6
|
Sajidah ES, Lim K, Wong RW. How SARS-CoV-2 and Other Viruses Build an Invasion Route to Hijack the Host Nucleocytoplasmic Trafficking System. Cells 2021; 10:1424. [PMID: 34200500 PMCID: PMC8230057 DOI: 10.3390/cells10061424] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
The host nucleocytoplasmic trafficking system is often hijacked by viruses to accomplish their replication and to suppress the host immune response. Viruses encode many factors that interact with the host nuclear transport receptors (NTRs) and the nucleoporins of the nuclear pore complex (NPC) to access the host nucleus. In this review, we discuss the viral factors and the host factors involved in the nuclear import and export of viral components. As nucleocytoplasmic shuttling is vital for the replication of many viruses, we also review several drugs that target the host nuclear transport machinery and discuss their feasibility for use in antiviral treatment.
Collapse
Affiliation(s)
- Elma Sakinatus Sajidah
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
7
|
Terrier O, Slama-Schwok A. Anti-Influenza Drug Discovery and Development: Targeting the Virus and Its Host by All Possible Means. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:195-218. [PMID: 34258742 DOI: 10.1007/978-981-16-0267-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infections by influenza virus constitute a major and recurrent threat for human health. Together with vaccines, antiviral drugs play a key role in the prevention and treatment of influenza virus infection and disease. Today, the number of antiviral molecules approved for the treatment of influenza is relatively limited, and their use is threatened by the emergence of viral strains with resistance mutations. There is therefore a real need to expand the prophylactic and therapeutic arsenal. This chapter summarizes the state of the art in drug discovery and development for the treatment of influenza virus infections, with a focus on both virus-targeting and host cell-targeting strategies. Novel antiviral strategies targeting other viral proteins or targeting the host cell, some of which are based on drug repurposing, may be used in combination to strengthen our therapeutic arsenal against this major pathogen.
Collapse
Affiliation(s)
- Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Anny Slama-Schwok
- Sorbonne Université, Centre de Recherche Saint-Antoine, INSERM U938, Biologie et Thérapeutique du Cancer, Paris, France.
| |
Collapse
|
8
|
Differential Behaviours and Preferential Bindings of Influenza Nucleoproteins on Importins-α. Viruses 2020; 12:v12080834. [PMID: 32751671 PMCID: PMC7472415 DOI: 10.3390/v12080834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses are negative single-stranded RNA viruses with nuclear transcription and replication. They enter the nucleus by using the cellular importin-α/-β nuclear import machinery. Influenza nucleoproteins from influenza A, B, C and D viruses possess a nuclear localization signal (NLS) localized on an intrinsically disordered extremity (NPTAIL). In this paper, using size exclusion chromatography (SEC), SEC-multi-angle laser light scattering (SEC-MALLS) analysis, surface plasmon resonance (SPR) and fluorescence anisotropy, we provide the first comparative study designed to dissect the interaction between the four NPTAILs and four importins-α identified as partners. All interactions between NPTAILs and importins-α have high association and dissociation rates and present a distinct and specific behaviour. D/NPTAIL interacts strongly with all importins-α while B/NPTAIL shows weak affinity for importins-α. A/NPTAIL and C/NPTAIL present preferential importin-α partners. Mutations in B/NPTAIL and D/NPTAIL show a loss of importin-α binding, confirming key NLS residues. Taken together, our results provide essential highlights of this complex translocation mechanism.
Collapse
|
9
|
Micati DJ, Radhakrishnan K, Young JC, Rajpert‐De Meyts E, Hime GR, Abud HE, Loveland KL. ‘Snail factors in testicular germ cell tumours and their regulation by the BMP4 signalling pathway’. Andrology 2020; 8:1456-1470. [DOI: 10.1111/andr.12823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/20/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Diana J. Micati
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
| | - Karthika Radhakrishnan
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
| | - Julia C. Young
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| | - Ewa Rajpert‐De Meyts
- Department of Growth and Reproduction, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Gary R. Hime
- Department of Anatomy and Neuroscience University of Melbourne Melbourne Victoria Australia
| | - Helen E. Abud
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
- Stem Cells and Development Program Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| | - Kate L. Loveland
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Sciences Monash University Clayton Victoria Australia
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
| |
Collapse
|
10
|
Swale C, Da Costa B, Sedano L, Garzoni F, McCarthy AA, Berger I, Bieniossek C, Ruigrok RWH, Delmas B, Crépin T. X-ray Structure of the Human Karyopherin RanBP5, an Essential Factor for Influenza Polymerase Nuclear Trafficking. J Mol Biol 2020; 432:3353-3359. [PMID: 32222384 DOI: 10.1016/j.jmb.2020.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 12/15/2022]
Abstract
Here, we describe the crystal structures of two distinct isoforms of ligand-free human karyopherin RanBP5 and investigate its global propensity to interact with influenza A virus polymerase. Our results confirm the general architecture and mechanism of the IMB3 karyopherin-β subfamily whilst also highlighting differences with the yeast orthologue Kap121p. Moreover, our results provide insight into the structural flexibility of β-importins in the unbound state. Based on docking of a nuclear localisation sequence, point mutations were designed, which suppress influenza PA-PB1 subcomplex binding to RanBP5 in a binary protein complementation assay.
Collapse
Affiliation(s)
- Christopher Swale
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France; EMBL Grenoble Outstation, 71 Avenue des Martyrs, BP181, F-38042 Grenoble Cedex 9, France
| | - Bruno Da Costa
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Laura Sedano
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Frédéric Garzoni
- EMBL Grenoble Outstation, 71 Avenue des Martyrs, BP181, F-38042 Grenoble Cedex 9, France
| | - Andrew A McCarthy
- EMBL Grenoble Outstation, 71 Avenue des Martyrs, BP181, F-38042 Grenoble Cedex 9, France
| | - Imre Berger
- EMBL Grenoble Outstation, 71 Avenue des Martyrs, BP181, F-38042 Grenoble Cedex 9, France; Max Planck Centre for Minimal Biology, University of Bristol, Clifton BS8 1TD, United Kingdom
| | - Christoph Bieniossek
- Roche Innovation Centre, Basel, Switzerland F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Rob W H Ruigrok
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Bernard Delmas
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Thibaut Crépin
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France.
| |
Collapse
|
11
|
Mohl G, Liddle N, Nygaard J, Dorius A, Lyons N, Hodek J, Weber J, Michaelis DJ, Busath DD. Novel influenza inhibitors designed to target PB1 interactions with host importin RanBP5. Antiviral Res 2019; 164:81-90. [PMID: 30742842 DOI: 10.1016/j.antiviral.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 11/19/2022]
Abstract
In search of novel targets for influenza inhibitors, a site on PB1 was selected for its high conservation and probable interaction with a host protein, RanBP5, that is key to nuclear import of PB1, where it complexes with PB2, PA, and NP to transcribe viral RNA. Docking with libraries of drug-like compounds led to a selection of five candidates that bound tightly and with a pose likely to inhibit protein binding. These were purchased and tested in vitro, found to be active, and then one was synthetically expanded to explore the structure-activity relationship. The top candidates had a carboxylic acid converted to an ester and electron-withdrawing substituents added to a phenyl group in the original structure. Resistance was slow to develop, but cytotoxicity was moderately high. Nuclear localization of PB1 and in vitro polymerase activity were both strongly inhibited.
Collapse
Affiliation(s)
- Gregory Mohl
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Nathan Liddle
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Joseph Nygaard
- Department of Chemistry and Biochemistry, Brigham Young University, USA
| | - Alexander Dorius
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Nathan Lyons
- Department of Chemistry and Biochemistry, Brigham Young University, USA
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the CAS, Prague, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the CAS, Prague, Czech Republic
| | - David J Michaelis
- Department of Chemistry and Biochemistry, Brigham Young University, USA.
| | - David D Busath
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
12
|
Wang J, Wang Y, Zhou R, Zhao J, Zhang Y, Yi D, Li Q, Zhou J, Guo F, Liang C, Li X, Cen S. Host Long Noncoding RNA lncRNA-PAAN Regulates the Replication of Influenza A Virus. Viruses 2018; 10:v10060330. [PMID: 29914164 PMCID: PMC6024364 DOI: 10.3390/v10060330] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022] Open
Abstract
The productive infection of influenza A virus (IAV) depends on host factors. However, the involvement of long non-coding RNAs (lncRNAs) in IAV infection remains largely uninvestigated. In this work, we have discovered a human lncRNA, named lncRNA-PAAN (PA-associated noncoding RNA) that enhances IAV replication. The level of lncRNA-PAAN increases upon infection of IAV, but not other viruses, nor interferon treatment, suggesting specific up-regulation of lncRNA-PAAN expression by IAV. Silencing lncRNA-PAAN significantly decreases IAV replication through impairing the activity of viral RNA-dependent RNA polymerase (RdRp). This function of lncRNA-PAAN is a result of its association with viral PA protein, a key component of IAV RNA polymerase complex. Consequently, depletion of lncRNA-PAAN prevents the formation of functional RdRp. Together, these results suggest that lncRNA-PAAN promotes the assembly of viral RNA polymerase, thus warranting efficient viral RNA synthesis. Elucidating the functions of lncRNAs in IAV infection is expected to advance our understanding of IAV pathogenesis and open new avenues to the development of novel anti-IAV therapeutics.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Yujia Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Rui Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Jinming Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100730, China.
| | - Chen Liang
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada.
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| |
Collapse
|
13
|
Abstract
Influenza is a negative-sense single-stranded RNA virus with segmented genome. Each segment is encapsidated by a ribonucleoprotein (RNP) complex composed of RNA-dependent RNA polymerase (RdRP) and multiple copies of nucleoprotein (NP). The RNP complex plays a crucial role in viral life cycle, supporting and regulating transcription and replication of viral genome in infected cells. The structural characterization of RdRP and RNP in recent years has shed light on its functions and mechanism of action. In this review, we summarize current understanding on the structure of RNP complex, as well as the structure of each subunit. Crucial functions of RNP are also discussed.
Collapse
Affiliation(s)
- Chun-Yeung Lo
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China
| | - Yun-Sang Tang
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China.
| |
Collapse
|
14
|
Xing W, Barauskas O, Kirschberg T, Niedziela-Majka A, Clarke M, Birkus G, Weissburg P, Liu X, Schultz BE, Sakowicz R, Kwon H, Feng JY. Biochemical characterization of recombinant influenza A polymerase heterotrimer complex: Endonuclease activity and evaluation of inhibitors. PLoS One 2017; 12:e0181969. [PMID: 28809961 PMCID: PMC5557545 DOI: 10.1371/journal.pone.0181969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/10/2017] [Indexed: 12/23/2022] Open
Abstract
Influenza polymerase is a heterotrimer composed of polymerase acidic protein A (PA) and basic proteins 1 (PB1) and 2 (PB2). The endonuclease active site, located in the PA subunit, cleaves host mRNA to prime viral mRNA transcription, and is essential for viral replication. To date, the human influenza A endonuclease activity has only been studied on the truncated active-site containing N-terminal domain of PA (PAN) or full-length PA in the absence of PB1 or PB2. In this study, we characterized the endonuclease activity of recombinant proteins of influenza A/PR8 containing full length PA, PA/PB1 dimer, and PA/PB1/PB2 trimer, observing 8.3-, 265-, and 142-fold higher activity than PAN, respectively. Using the PA/PB1/PB2 trimer, we developed a robust endonuclease assay with a synthetic fluorogenic RNA substrate. The observed Km (150 ± 11 nM) and kcat [(1.4 ± 0.2) x 10-3s-1] values were consistent with previous reports using virion-derived replication complex. Two known influenza endonuclease phenylbutanoic acid inhibitors showed IC50 values of 10–20 nM, demonstrating the utility of this system for future high throughput screening.
Collapse
Affiliation(s)
- Weimei Xing
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Ona Barauskas
- Gilead Sciences, Inc., Foster City, California, United States of America
| | | | | | - Michael Clarke
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Gabriel Birkus
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Perry Weissburg
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Xiaohong Liu
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Brian E. Schultz
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Roman Sakowicz
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - HyockJoo Kwon
- Gilead Sciences, Inc., Foster City, California, United States of America
- * E-mail: (HJK); (JYF)
| | - Joy Y. Feng
- Gilead Sciences, Inc., Foster City, California, United States of America
- * E-mail: (HJK); (JYF)
| |
Collapse
|
15
|
Role of the PB2 627 Domain in Influenza A Virus Polymerase Function. J Virol 2017; 91:JVI.02467-16. [PMID: 28122973 PMCID: PMC5355620 DOI: 10.1128/jvi.02467-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/14/2017] [Indexed: 11/20/2022] Open
Abstract
The RNA genome of influenza A viruses is transcribed and replicated by the viral RNA-dependent RNA polymerase, composed of the subunits PA, PB1, and PB2. High-resolution structural data revealed that the polymerase assembles into a central polymerase core and several auxiliary highly flexible, protruding domains. The auxiliary PB2 cap-binding and the PA endonuclease domains are both involved in cap snatching, but the role of the auxiliary PB2 627 domain, implicated in host range restriction of influenza A viruses, is still poorly understood. In this study, we used structure-guided truncations of the PB2 subunit to show that a PB2 subunit lacking the 627 domain accumulates in the cell nucleus and assembles into a heterotrimeric polymerase with PB1 and PA. Furthermore, we showed that a recombinant viral polymerase lacking the PB2 627 domain is able to carry out cap snatching, cap-dependent transcription initiation, and cap-independent ApG dinucleotide extension in vitro, indicating that the PB2 627 domain of the influenza virus RNA polymerase is not involved in core catalytic functions of the polymerase. However, in a cellular context, the 627 domain is essential for both transcription and replication. In particular, we showed that the PB2 627 domain is essential for the accumulation of the cRNA replicative intermediate in infected cells. Together, these results further our understanding of the role of the PB2 627 domain in transcription and replication of the influenza virus RNA genome.IMPORTANCE Influenza A viruses are a major global health threat, not only causing disease in both humans and birds but also placing significant strains on economies worldwide. Avian influenza A virus polymerases typically do not function efficiently in mammalian hosts and require adaptive mutations to restore polymerase activity. These adaptations include mutations in the 627 domain of the PB2 subunit of the viral polymerase, but it still remains to be established how these mutations enable host adaptation on a molecular level. In this report, we characterize the role of the 627 domain in polymerase function and offer insights into the replication mechanism of influenza A viruses.
Collapse
|
16
|
Lin J, Xia J, Tu CZ, Zhang KY, Zeng Y, Yang Q. H9N2 Avian Influenza Virus Protein PB1 Enhances the Immune Responses of Bone Marrow-Derived Dendritic Cells by Down-Regulating miR375. Front Microbiol 2017; 8:287. [PMID: 28382020 PMCID: PMC5360757 DOI: 10.3389/fmicb.2017.00287] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/13/2017] [Indexed: 01/17/2023] Open
Abstract
Polymerase basic protein 1 (PB1), the catalytic core of the influenza A virus RNA polymerase complex, is essential for viral transcription and replication. Dendritic cells (DCs) possess important antigen presenting ability and a crucial role in recognizing and clearing virus. MicroRNA (miRNA) influence the development of DCs and their ability to present antigens as well as the ability of avian influenza virus (AIV) to infect host cells and replicate. Here, we studied the molecular mechanism underlying the miRNA-mediated regulation of immune function in mouse DCs. We first screened for and verified the induction of miRNAs in DCs after PB1 transfection. Results showed that the viral protein PB1 down-regulated the expression of miR375, miR146, miR339, and miR679 in DCs, consistent with the results of H9N2 virus treatment; however, the expression of miR222 and miR499, also reduced in the presence of PB1, was in contrast to the results of H9N2 virus treatment. Our results suggest that PB1 enhanced the ability of DCs to present antigens, activate lymphocytes, and secrete cytokines, while miR375 over-expression repressed activation of DC maturation. Nevertheless, PB1 could not promote DC maturation once miR375 was inhibited. Finally, we revealed that PB1 inhibited the P-Jnk/Jnk signaling pathway, but activated the p-Erk/Erk signaling pathway. While inhibition of miR375 -activated the p-Erk/Erk and p-p38/p38 signaling pathway, but repressed the P-Jnk/Jnk signaling pathway. Taken together, results of our studies shed new light on the roles and mechanisms of PB1 and miR375 in regulating DC function and suggest new strategies for combating AIV.
Collapse
Affiliation(s)
- Jian Lin
- Department of Zoology, College of Life Science, Nanjing Agricultural University Jiangsu, China
| | - Jing Xia
- Department of Zoology, College of Life Science, Nanjing Agricultural University Jiangsu, China
| | - Chong Z Tu
- Department of Histoembryology, College of Veterinary Medicine, Nanjing Agricultural University Jiangsu, China
| | - Ke Y Zhang
- Department of Zoology, College of Life Science, Nanjing Agricultural University Jiangsu, China
| | - Yan Zeng
- Department of Zoology, College of Life Science, Nanjing Agricultural University Jiangsu, China
| | - Qian Yang
- Department of Zoology, College of Life Science, Nanjing Agricultural University Jiangsu, China
| |
Collapse
|
17
|
Pflug A, Lukarska M, Resa-Infante P, Reich S, Cusack S. Structural insights into RNA synthesis by the influenza virus transcription-replication machine. Virus Res 2017; 234:103-117. [PMID: 28115197 DOI: 10.1016/j.virusres.2017.01.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/31/2016] [Accepted: 01/13/2017] [Indexed: 12/22/2022]
Abstract
Influenza virus is a segmented, negative strand RNA virus with each genome segment being packaged in a distinct ribonucleoprotein particle (RNP). The RNP consists of the heterotrimeric viral RNA-dependent RNA polymerase bound to the conserved 5' and 3' ends of the genome segment (the viral promoter) with the rest of the viral RNA (vRNA) being covered by multiple copies of nucleoprotein. This review focusses on the new insights that recent crystal structures have given into the detailed molecular mechanisms by which the polymerase performs both transcription and replication of the vRNA genome. Promoter binding, in particular that of 5' end, is essential to allosterically activate all polymerase functions. Transcription is initiated by the hijacking of nascent, capped host transcripts by the process of 'cap-snatching', for which the viral polymerase makes an essential interaction with the C-terminal domain (CTD) of cellular RNA polymerase II. The structures allow a coherent mechanistic model of the subsequent cap-snatching, cap-dependent priming, elongation and self-polyadenylation steps of viral mRNA synthesis. During replication, the vRNA is copied without modification into complementary RNA (cRNA) which is packaged into cRNPs. A priming loop located in the polymerase active site is required for the unprimed synthesis of cRNA from vRNA, but is not required for cRNA to vRNA replication due to differences in the mode of initiation of RNA synthesis. Overall a picture emerges of influenza polymerase being a highly complex, flexible and dynamic machine. The challenge remains to understand in more detail how it functions within the RNP and how interacting host factors modulate its activity in the cellular context. Finally, these detailed insights have opened up new opportunities for structure-based antiviral drug design targeting multiple aspects of polymerase function.
Collapse
Affiliation(s)
- Alexander Pflug
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Maria Lukarska
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Patricia Resa-Infante
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Stefan Reich
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France.
| |
Collapse
|
18
|
Stevaert A, Naesens L. The Influenza Virus Polymerase Complex: An Update on Its Structure, Functions, and Significance for Antiviral Drug Design. Med Res Rev 2016; 36:1127-1173. [PMID: 27569399 PMCID: PMC5108440 DOI: 10.1002/med.21401] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/18/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022]
Abstract
Influenza viruses cause seasonal epidemics and pandemic outbreaks associated with significant morbidity and mortality, and a huge cost. Since resistance to the existing anti‐influenza drugs is rising, innovative inhibitors with a different mode of action are urgently needed. The influenza polymerase complex is widely recognized as a key drug target, given its critical role in virus replication and high degree of conservation among influenza A (of human or zoonotic origin) and B viruses. We here review the major progress that has been made in recent years in unravelling the structure and functions of this protein complex, enabling structure‐aided drug design toward the core regions of the PA endonuclease, PB1 polymerase, or cap‐binding PB2 subunit. Alternatively, inhibitors may target a protein–protein interaction site, a cellular factor involved in viral RNA synthesis, the viral RNA itself, or the nucleoprotein component of the viral ribonucleoprotein. The latest advances made for these diverse pharmacological targets have yielded agents in advanced (i.e., favipiravir and VX‐787) or early clinical testing, besides several experimental inhibitors in various stages of development, which are all covered here.
Collapse
Affiliation(s)
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
19
|
Te Velthuis AJW, Fodor E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol 2016; 14:479-93. [PMID: 27396566 DOI: 10.1038/nrmicro.2016.87] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The genomes of influenza viruses consist of multiple segments of single-stranded negative-sense RNA. Each of these segments is bound by the heterotrimeric viral RNA-dependent RNA polymerase and multiple copies of nucleoprotein, which form viral ribonucleoprotein (vRNP) complexes. It is in the context of these vRNPs that the viral RNA polymerase carries out transcription of viral genes and replication of the viral RNA genome. In this Review, we discuss our current knowledge of the structure of the influenza virus RNA polymerase, and insights that have been gained into the molecular mechanisms of viral transcription and replication, and their regulation by viral and host factors. Furthermore, we discuss how advances in our understanding of the structure and function of polymerases could help in identifying new antiviral targets.
Collapse
Affiliation(s)
- Aartjan J W Te Velthuis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|