1
|
Huang S, Huang G. The utilization of quantum dot labeling as a burgeoning technique in the field of biological imaging. RSC Adv 2024; 14:20884-20897. [PMID: 38957578 PMCID: PMC11217725 DOI: 10.1039/d4ra04402a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Quantum dots (QDs), with their unique optical and physical properties, have revolutionized the field of biological imaging, providing researchers with tools to explore cellular processes and molecular interactions in unprecedented detail. This review explores the diverse properties of QDs, emphasizing their application in biological imaging and addressing both their advantages and challenges. We discuss the developments in QD technology that have facilitated their integration into bioimaging, highlighting the role of surface modifications in enhancing their biocompatibility and functionality. The varied applications of QDs in both in vitro and in vivo imaging settings are examined, showcasing their capacity to deliver brighter, more stable, and multiplexed imaging solutions compared to traditional fluorescent dyes. Furthermore, we delve into the challenges associated with QD use, particularly concerns regarding their potential toxicity and long-term effects on biological systems, and explore ongoing research aimed at mitigating these issues. Finally, we discuss future directions in QD technology, anticipating advancements that will further solidify their role in biological imaging and open up new avenues for scientific exploration.
Collapse
Affiliation(s)
- Shiyu Huang
- School of Chemistry and Chemical Engineering, Southwest University Chongqing 400700 China
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University Chongqing 401331 China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University Chongqing 401331 China
| |
Collapse
|
2
|
Grigoryeva MS, Kutlubulatova IA, Lukashenko SY, Fronya AA, Ivanov DS, Kanavin AP, Timoshenko VY, Zavestovskaya IN. Modeling of Short-Pulse Laser Interactions with Monolithic and Porous Silicon Targets with an Atomistic-Continuum Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2809. [PMID: 37887962 PMCID: PMC10609206 DOI: 10.3390/nano13202809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
The acquisition of reliable knowledge about the mechanism of short laser pulse interactions with semiconductor materials is an important step for high-tech technologies towards the development of new electronic devices, the functionalization of material surfaces with predesigned optical properties, and the manufacturing of nanorobots (such as nanoparticles) for bio-medical applications. The laser-induced nanostructuring of semiconductors, however, is a complex phenomenon with several interplaying processes occurring on a wide spatial and temporal scale. In this work, we apply the atomistic-continuum approach for modeling the interaction of an fs-laser pulse with a semiconductor target, using monolithic crystalline silicon (c-Si) and porous silicon (Si). This model addresses the kinetics of non-equilibrium laser-induced phase transitions with atomic resolution via molecular dynamics, whereas the effect of the laser-generated free carriers (electron-hole pairs) is accounted for via the dynamics of their density and temperature. The combined model was applied to study the microscopic mechanism of phase transitions during the laser-induced melting and ablation of monolithic crystalline (c-Si) and porous Si targets in a vacuum. The melting thresholds for the monolithic and porous targets were found to be 0.32 J/cm2 and 0.29 J/cm2, respectively. The limited heat conduction mechanism and the absence of internal stress accumulation were found to be involved in the processes responsible for the lowering of the melting threshold in the porous target. The results of this modeling were validated by comparing the melting thresholds obtained in the simulations to the experimental values. A difference in the mechanisms of ablation of the c-Si and porous Si targets was considered. Based on the simulation results, a prediction regarding the mechanism of the laser-assisted production of Si nanoparticles with the desired properties is drawn.
Collapse
Affiliation(s)
- Maria S. Grigoryeva
- Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospect 53, 119991 Moscow, Russia; (M.S.G.); (I.A.K.); (S.Y.L.); (A.A.F.); (A.P.K.); (I.N.Z.)
| | - Irina A. Kutlubulatova
- Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospect 53, 119991 Moscow, Russia; (M.S.G.); (I.A.K.); (S.Y.L.); (A.A.F.); (A.P.K.); (I.N.Z.)
- Institute of Engineering Physics for Biomedicine (PhysBio Institute), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia
| | - Stanislav Yu. Lukashenko
- Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospect 53, 119991 Moscow, Russia; (M.S.G.); (I.A.K.); (S.Y.L.); (A.A.F.); (A.P.K.); (I.N.Z.)
- Institute for Analytical Instrumentation of the Russian Academy of Sciences, Rizhsky Prospect, 26, 190103 St. Petersburg, Russia
| | - Anastasia A. Fronya
- Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospect 53, 119991 Moscow, Russia; (M.S.G.); (I.A.K.); (S.Y.L.); (A.A.F.); (A.P.K.); (I.N.Z.)
- Institute of Engineering Physics for Biomedicine (PhysBio Institute), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia
| | - Dmitry S. Ivanov
- Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospect 53, 119991 Moscow, Russia; (M.S.G.); (I.A.K.); (S.Y.L.); (A.A.F.); (A.P.K.); (I.N.Z.)
| | - Andrey P. Kanavin
- Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospect 53, 119991 Moscow, Russia; (M.S.G.); (I.A.K.); (S.Y.L.); (A.A.F.); (A.P.K.); (I.N.Z.)
| | - Victor Yu. Timoshenko
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia;
| | - Irina N. Zavestovskaya
- Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospect 53, 119991 Moscow, Russia; (M.S.G.); (I.A.K.); (S.Y.L.); (A.A.F.); (A.P.K.); (I.N.Z.)
- Institute of Engineering Physics for Biomedicine (PhysBio Institute), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia
| |
Collapse
|
3
|
Li H, Xu M, Shi R, Zhang A, Zhang J. Advances in Electrostatic Spinning of Polymer Fibers Functionalized with Metal-Based Nanocrystals and Biomedical Applications. Molecules 2022; 27:5548. [PMID: 36080317 PMCID: PMC9458223 DOI: 10.3390/molecules27175548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Considering the metal-based nanocrystal (NC) hierarchical structure requirements in many real applications, starting from basic synthesis principles of electrostatic spinning technology, the formation of functionalized fibrous materials with inorganic metallic and semiconductor nanocrystalline materials by electrostatic spinning synthesis technology in recent years was reviewed. Several typical electrostatic spinning synthesis methods for nanocrystalline materials in polymers are presented. Finally, the specific applications and perspectives of such electrostatic spun nanofibers in the biomedical field are reviewed in terms of antimicrobial fibers, biosensing and so on.
Collapse
Affiliation(s)
- Haojun Li
- Institute of Medical-Industrial Integration, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Meng Xu
- Institute of Medical-Industrial Integration, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Rui Shi
- Jishuitan Hospital, Beijing 100035, China
| | - Aiying Zhang
- Institute of Medical-Industrial Integration, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiatao Zhang
- Institute of Medical-Industrial Integration, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Fronya AA, Antonenko SV, Karpov NV, Pokryshkin NS, Eremina AS, Yakunin VG, Kharin AY, Syuy AV, Volkov VS, Dombrovska Y, Garmash AA, Kargin NI, Klimentov SM, Timoshenko VY, Kabashin AV. Germanium Nanoparticles Prepared by Laser Ablation in Low Pressure Helium and Nitrogen Atmosphere for Biophotonic Applications. MATERIALS 2022; 15:ma15155308. [PMID: 35955245 PMCID: PMC9369467 DOI: 10.3390/ma15155308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
Abstract
Due to particular physico-chemical characteristics and prominent optical properties, nanostructured germanium (Ge) appears as a promising material for biomedical applications, but its use in biological systems has been limited so far due to the difficulty of preparation of Ge nanostructures in a pure, uncontaminated state. Here, we explored the fabrication of Ge nanoparticles (NPs) using methods of pulsed laser ablation in ambient gas (He or He-N2 mixtures) maintained at low residual pressures (1–5 Torr). We show that the ablated material can be deposited on a substrate (silicon wafer in our case) to form a nanostructured thin film, which can then be ground in ethanol by ultrasound to form a stable suspension of Ge NPs. It was found that these formed NPs have a wide size dispersion, with sizes between a few nm and hundreds of nm, while a subsequent centrifugation step renders possible the selection of one or another NP size fraction. Structural characterization of NPs showed that they are composed of aggregations of Ge crystals, covered by an oxide shell. Solutions of the prepared NPs exhibited largely dominating photoluminescence (PL) around 450 nm, attributed to defects in the germanium oxide shell, while a separated fraction of relatively small (5–10 nm) NPs exhibited a red-shifted PL band around 725 nm under 633 nm excitation, which could be attributed to quantum confinement effects. It was also found that the formed NPs exhibit high absorption in the visible and near-IR spectral ranges and can be strongly heated under photoexcitation in the region of relative tissue transparency, which opens access to phototherapy functionality. Combining imaging and therapy functionalities in the biological transparency window, laser-synthesized Ge NPs present a novel promising object for cancer theranostics.
Collapse
Affiliation(s)
- Anastasiya A. Fronya
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (N.V.K.); (N.S.P.); (A.S.E.); (A.Y.K.); (Y.D.); (A.A.G.); (S.M.K.)
- Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Pr. 53, 119991 Moscow, Russia
| | - Sergey V. Antonenko
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (N.V.K.); (N.S.P.); (A.S.E.); (A.Y.K.); (Y.D.); (A.A.G.); (S.M.K.)
- MEPHI, Institute of Nanoengineering in Electronics, Spintronics and Photonics, Kashirskoe sh. 31, 115409 Moscow, Russia;
| | - Nikita V. Karpov
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (N.V.K.); (N.S.P.); (A.S.E.); (A.Y.K.); (Y.D.); (A.A.G.); (S.M.K.)
| | - Nikolay S. Pokryshkin
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (N.V.K.); (N.S.P.); (A.S.E.); (A.Y.K.); (Y.D.); (A.A.G.); (S.M.K.)
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia;
| | - Anna S. Eremina
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (N.V.K.); (N.S.P.); (A.S.E.); (A.Y.K.); (Y.D.); (A.A.G.); (S.M.K.)
| | - Valery G. Yakunin
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia;
| | - Alexander Yu. Kharin
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (N.V.K.); (N.S.P.); (A.S.E.); (A.Y.K.); (Y.D.); (A.A.G.); (S.M.K.)
| | - Alexander V. Syuy
- Moscow Institute of Physics and Technology (MIPT), Center for Photonics and 2D Materials, 141700 Dolgoprudny, Russia; (A.V.S.); (V.S.V.)
| | - Valentin S. Volkov
- Moscow Institute of Physics and Technology (MIPT), Center for Photonics and 2D Materials, 141700 Dolgoprudny, Russia; (A.V.S.); (V.S.V.)
| | - Yaroslava Dombrovska
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (N.V.K.); (N.S.P.); (A.S.E.); (A.Y.K.); (Y.D.); (A.A.G.); (S.M.K.)
| | - Alexander A. Garmash
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (N.V.K.); (N.S.P.); (A.S.E.); (A.Y.K.); (Y.D.); (A.A.G.); (S.M.K.)
| | - Nikolay I. Kargin
- MEPHI, Institute of Nanoengineering in Electronics, Spintronics and Photonics, Kashirskoe sh. 31, 115409 Moscow, Russia;
| | - Sergey M. Klimentov
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (N.V.K.); (N.S.P.); (A.S.E.); (A.Y.K.); (Y.D.); (A.A.G.); (S.M.K.)
| | - Victor Yu. Timoshenko
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (N.V.K.); (N.S.P.); (A.S.E.); (A.Y.K.); (Y.D.); (A.A.G.); (S.M.K.)
- Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Pr. 53, 119991 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia;
- Correspondence: (V.Y.T.); (A.V.K.)
| | - Andrei V. Kabashin
- LP3 Laboratory, Aix-Marseille University, CNRS, 13288 Marseille, France
- Correspondence: (V.Y.T.); (A.V.K.)
| |
Collapse
|
5
|
Advances in Electrospun Hybrid Nanofibers for Biomedical Applications. NANOMATERIALS 2022; 12:nano12111829. [PMID: 35683685 PMCID: PMC9181850 DOI: 10.3390/nano12111829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Electrospun hybrid nanofibers, based on functional agents immobilized in polymeric matrix, possess a unique combination of collective properties. These are beneficial for a wide range of applications, which include theranostics, filtration, catalysis, and tissue engineering, among others. The combination of functional agents in a nanofiber matrix offer accessibility to multifunctional nanocompartments with significantly improved mechanical, electrical, and chemical properties, along with better biocompatibility and biodegradability. This review summarizes recent work performed for the fabrication, characterization, and optimization of different hybrid nanofibers containing varieties of functional agents, such as laser ablated inorganic nanoparticles (NPs), which include, for instance, gold nanoparticles (Au NPs) and titanium nitride nanoparticles (TiNPs), perovskites, drugs, growth factors, and smart, inorganic polymers. Biocompatible and biodegradable polymers such as chitosan, cellulose, and polycaprolactone are very promising macromolecules as a nanofiber matrix for immobilizing such functional agents. The assimilation of such polymeric matrices with functional agents that possess wide varieties of characteristics require a modified approach towards electrospinning techniques such as coelectrospinning and template spinning. Additional focus within this review is devoted to the state of the art for the implementations of these approaches as viable options for the achievement of multifunctional hybrid nanofibers. Finally, recent advances and challenges, in particular, mass fabrication and prospects of hybrid nanofibers for tissue engineering and biomedical applications have been summarized.
Collapse
|
6
|
Numerical Simulation of Enhancement of Superficial Tumor Laser Hyperthermia with Silicon Nanoparticles. PHOTONICS 2021. [DOI: 10.3390/photonics8120580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biodegradable and low-toxic silicon nanoparticles (SiNPs) have potential in different biomedical applications. Previous experimental studies revealed the efficiency of some types of SiNPs in tumor hyperthermia. To analyse the feasibility of employing SiNPs produced by the laser ablation of silicon nanowire arrays in water and ethanol as agents for laser tumor hyperthermia, we numerically simulated effects of heating a millimeter-size nodal basal-cell carcinoma with embedded nanoparticles by continuous-wave laser radiation at 633 nm. Based on scanning electron microscopy data for the synthesized SiNPs size distributions, we used Mie theory to calculate their optical properties and carried out Monte Carlo simulations of light absorption inside the tumor, with and without the embedded nanoparticles, followed by an evaluation of local temperature increase based on the bioheat transfer equation. Given the same mass concentration, SiNPs obtained by the laser ablation of silicon nanowires in ethanol (eSiNPs) are characterized by smaller absorption and scattering coefficients compared to those synthesized in water (wSiNPs). In contrast, wSiNPs embedded in the tumor provide a lower overall temperature increase than eSiNPs due to the effect of shielding the laser irradiation by the highly absorbing wSiNPs-containing region at the top of the tumor. Effective tumor hyperthermia (temperature increase above 42 °C) can be performed with eSiNPs at nanoparticle mass concentrations of 3 mg/mL and higher, provided that the neighboring healthy tissues remain underheated at the applied irradiation power. The use of a laser beam with the diameter fitting the size of the tumor allows to obtain a higher temperature contrast between the tumor and surrounding normal tissues compared to the case when the beam diameter exceeds the tumor size at the comparable power.
Collapse
|
7
|
Nanoparticles Produced via Laser Ablation of Porous Silicon and Silicon Nanowires for Optical Bioimaging. SENSORS 2020; 20:s20174874. [PMID: 32872209 PMCID: PMC7506952 DOI: 10.3390/s20174874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
Modern trends in optical bioimaging require novel nanoproducts combining high image contrast with efficient treatment capabilities. Silicon nanoparticles are a wide class of nanoobjects with tunable optical properties, which has potential as contrasting agents for fluorescence imaging and optical coherence tomography. In this paper we report on developing a novel technique for fabricating silicon nanoparticles by means of picosecond laser ablation of porous silicon films and silicon nanowire arrays in water and ethanol. Structural and optical properties of these particles were studied using scanning electron and atomic force microscopy, Raman scattering, spectrophotometry, fluorescence, and optical coherence tomography measurements. The essential features of the fabricated silicon nanoparticles are sizes smaller than 100 nm and crystalline phase presence. Effective fluorescence and light scattering of the laser-ablated silicon nanoparticles in the visible and near infrared ranges opens new prospects of their employment as contrasting agents in biophotonics, which was confirmed by pilot experiments on optical imaging.
Collapse
|
8
|
Al-Kattan A, M. A. Ali L, Daurat M, Mattana E, Gary-Bobo M. Biological Assessment of Laser-Synthesized Silicon Nanoparticles Effect in Two-Photon Photodynamic Therapy on Breast Cancer MCF-7 Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1462. [PMID: 32722568 PMCID: PMC7466460 DOI: 10.3390/nano10081462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Driven by their distinctive physiological activities, biological properties and unique theranostic modalities, silicon nanoparticles (SiNPs) are one of the promising materials for the development of novel multifunctional nanoplatforms for biomedical applications. In this work, we assessed the possibility to use laser-synthesized Si NPs as photosensitizers in two-photon excited photodynamic therapy (TPE-PDT) modality. Herein, we used an easy strategy to synthesize ultraclean and monodispersed SiNPs using laser ablation and fragmentation sequences of silicon wafer in aqueous solution, which prevent any specific purification step. Structural analysis revealed the spherical shape of the nanoparticles with a narrow size distribution centered at the mean size diameter of 62 nm ± 0.42 nm, while the negative surface charge of -40 ± 0.3 mV ensured a great stability without sedimentation over a long period of time. In vitro studies on human cancer cell lines (breast and liver) and healthy cells revealed their low cytotoxicity without any light stimulus and their therapeutic potential under TPE-PDT mode at 900 nm with a promising cell death of 45% in case of MCF-7 breast cancer cells, as a consequence of intracellular reactive oxygen species release. Their luminescence emission inside the cells was clearly observed at UV-Vis region. Compared to Si nanoparticles synthesized via chemical routes, which are often linked to additional modules with photochemical and photobiological properties to boost photodynamic effect, laser-synthesized SiNPs exhibit promising intrinsic therapeutic and imaging properties to develop advanced strategy in nanomedicine field.
Collapse
Affiliation(s)
- Ahmed Al-Kattan
- Aix Marseille University, CNRS, LP3 UMR 7341, Campus de Luminy, Case 917, 13288 Marseille, France
| | - Lamiaa M. A. Ali
- IBMM, Univ Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.M.A.A.); (E.M.); (M.G.-B.)
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria 21561, Egypt
| | - Morgane Daurat
- NanoMedSyn, 15 avenue Charles Flahault, 34093 Montpellier, France;
| | - Elodie Mattana
- IBMM, Univ Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.M.A.A.); (E.M.); (M.G.-B.)
| | - Magali Gary-Bobo
- IBMM, Univ Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.M.A.A.); (E.M.); (M.G.-B.)
| |
Collapse
|
9
|
Advances in Laser Ablation Synthesized Silicon-Based Nanomaterials for the Prevention of Bacterial Infection. NANOMATERIALS 2020; 10:nano10081443. [PMID: 32722023 PMCID: PMC7466518 DOI: 10.3390/nano10081443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022]
Abstract
Nanomaterials have unique properties and characteristics derived from their shape and small size that are not present in bulk materials. If size and shape are decisive, the synthesis method used, which determines the above parameters, is equally important. Among the different nanomaterial’s synthesis methods, we can find chemical methods (microemulsion, sol-gel, hydrothermal treatments, etc.), physical methods (evaporation-condensation, laser treatment, etc.) and biosynthesis. Among all of them, the use of laser ablation that allows obtaining non-toxic nanomaterials (absence of foreign compounds) with a controlled 3D size, has emerged in recent years as a simple and versatile alternative for the synthesis of a wide variety of nanomaterials with numerous applications. This manuscript reviews the latest advances in the use of laser ablation for the synthesis of silicon-based nanomaterials, highlighting its usefulness in the prevention of bacterial infection.
Collapse
|
10
|
Singh A, Kutscher HL, Bulmahn JC, Mahajan SD, He GS, Prasad PN. Laser ablation for pharmaceutical nanoformulations: Multi-drug nanoencapsulation and theranostics for HIV. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2020; 25:102172. [PMID: 32061722 PMCID: PMC7176552 DOI: 10.1016/j.nano.2020.102172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/06/2020] [Accepted: 01/31/2020] [Indexed: 02/08/2023]
Abstract
We introduce the use of laser ablation to develop a multi-drug encapsulating theranostic nanoformulation for HIV-1 antiretroviral therapy. Laser ablated nanoformulations of ritonavir, atazanavir, and curcumin, a natural product that has both optical imaging and pharmacologic properties, were produced in an aqueous media containing Pluronic® F127. Cellular uptake was confirmed with the curcumin fluorescence signal localized in the cytoplasm. Formulations produced with F127 had improved water dispersibility, are ultrasmall in size (20-25 nm), exhibit enhanced cellular uptake in microglia, improve blood-brain barrier (BBB) crossing in an in vitro BBB model, and reduce viral p24 by 36 fold compared to formulations made without F127. This work demonstrates that these ultrasmall femtosecond laser-ablated nanoparticles are effective in delivering drugs across the BBB for brain therapy and show promise as an effective method to formulate nanoparticles for brain theranostics, reducing the need for organic solvents during preparation.
Collapse
Affiliation(s)
- Ajay Singh
- Institute for Lasers, Photonics and Biophotonics,
Department of Chemistry, University at Buffalo, The State University of New York,
Buffalo, NY 14260, USA
| | - Hilliard L. Kutscher
- Institute for Lasers, Photonics and Biophotonics,
Department of Chemistry, University at Buffalo, The State University of New York,
Buffalo, NY 14260, USA.,Department of Anesthesiology, University at Buffalo, The
State University of New York, Buffalo, NY 14203, USA.,Department of Medicine, Division of Allergy, Immunology,
and Rheumatology, State University of New York at Buffalo, Clinical Translational
Research Center, Buffalo, NY 14203, USA
| | - Julia C. Bulmahn
- Institute for Lasers, Photonics and Biophotonics,
Department of Chemistry, University at Buffalo, The State University of New York,
Buffalo, NY 14260, USA
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology,
and Rheumatology, State University of New York at Buffalo, Clinical Translational
Research Center, Buffalo, NY 14203, USA
| | - Guang S. He
- Institute for Lasers, Photonics and Biophotonics,
Department of Chemistry, University at Buffalo, The State University of New York,
Buffalo, NY 14260, USA
| | - Paras N. Prasad
- Institute for Lasers, Photonics and Biophotonics,
Department of Chemistry, University at Buffalo, The State University of New York,
Buffalo, NY 14260, USA.,Corresponding Author Paras N. Prasad, 427 Natural
Sciences Complex., Buffalo New York 14260-3000, Phone: 716-645-4148, Fax:
716-645-6945,
| |
Collapse
|
11
|
Fronya AA, Antonenko SV, Kharin AY, Muratov AV, Aleschenko YA, Derzhavin SI, Karpov NV, Dombrovska YI, Garmash AA, Kargin NI, Klimentov SM, Timoshenko VY, Kabashin AV. Tailoring Photoluminescence from Si-Based Nanocrystals Prepared by Pulsed Laser Ablation in He-N 2 Gas Mixtures. Molecules 2020; 25:E440. [PMID: 31973084 PMCID: PMC7037818 DOI: 10.3390/molecules25030440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 11/16/2022] Open
Abstract
Using methods of pulsed laser ablation from a silicon target in helium (He)-nitrogen (N2) gas mixtures maintained at reduced pressures (0.5-5 Torr), we fabricated substrate-supported silicon (Si) nanocrystal-based films exhibiting a strong photoluminescence (PL) emission, which depended on the He/N2 ratio. We show that, in the case of ablation in pure He gas, Si nanocrystals exhibit PL bands centered in the "red - near infrared" (maximum at 760 nm) and "green" (centered at 550 nm) spectral regions, which can be attributed to quantum-confined excitonic states in small Si nanocrystals and to local electronic states in amorphous silicon suboxide (a-SiOx) coating, respectively, while the addition of N2 leads to the generation of an intense "green-yellow" PL band centered at 580 nm. The origin of the latter band is attributed to a radiative recombination in amorphous oxynitride (a-SiNxOy) coating of Si nanocrystals. PL transients of Si nanocrystals with SiOx and a-SiNxOy coatings demonstrate nonexponential decays in the micro- and submicrosecond time scales with rates depending on nitrogen content in the mixture. After milling by ultrasound and dispersing in water, Si nanocrystals can be used as efficient non-toxic markers for bioimaging, while the observed spectral tailoring effect makes possible an adjustment of the PL emission of such markers to a concrete bioimaging task.
Collapse
Affiliation(s)
- Anastasiya A. Fronya
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
- Lebedev Physical Institute of the Russian Acad. Sci., Leninskiy Pr. 53, 119991 Moscow, Russia;
| | - Sergey V. Antonenko
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
- MEPHI, Institute of Nanoengineering in Electronics, Spintronics and Photonics, Kashirskoe sh. 31, 115409 Moscow, Russia;
| | - Alexander Yu. Kharin
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
| | - Andrei V. Muratov
- Lebedev Physical Institute of the Russian Acad. Sci., Leninskiy Pr. 53, 119991 Moscow, Russia;
| | - Yury A. Aleschenko
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
- Lebedev Physical Institute of the Russian Acad. Sci., Leninskiy Pr. 53, 119991 Moscow, Russia;
| | - Sergey I. Derzhavin
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
- Prokhorov General Physics Institute of the Russian Acad. Sci., Vavilova St. 38, 117942 Moscow, Russia
| | - Nikita V. Karpov
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
| | - Yaroslava I. Dombrovska
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
| | - Alexander A. Garmash
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
- MEPHI, Institute of Nanoengineering in Electronics, Spintronics and Photonics, Kashirskoe sh. 31, 115409 Moscow, Russia;
| | - Nikolay I. Kargin
- MEPHI, Institute of Nanoengineering in Electronics, Spintronics and Photonics, Kashirskoe sh. 31, 115409 Moscow, Russia;
| | - Sergey M. Klimentov
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
| | - Victor Yu. Timoshenko
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
- Lebedev Physical Institute of the Russian Acad. Sci., Leninskiy Pr. 53, 119991 Moscow, Russia;
- Lomonosov Moscow State University, Physics Dep., Leninskie Gory 1, 119991 Moscow, Russia
| | - Andrei V. Kabashin
- MEPHI, Institute of Engineering Physics for Biomedicine (PhysBio), Kashirskoe sh. 31, 115409 Moscow, Russia; (A.A.F.); (S.V.A.); (A.Y.K.); (Y.A.A.); (S.I.D.); (N.V.K.); (Y.I.D.); (A.A.G.)
- Aix Marseille Univ, CNRS, LP3, Campus de Luminy, Case 917, 13288 Marseille, France
| |
Collapse
|
12
|
Canham L. Introductory lecture: origins and applications of efficient visible photoluminescence from silicon-based nanostructures. Faraday Discuss 2020; 222:10-81. [DOI: 10.1039/d0fd00018c] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review highlights many spectroscopy-based studies and selected phenomenological studies of silicon-based nanostructures that provide insight into their likely PL mechanisms, and also covers six application areas.
Collapse
Affiliation(s)
- Leigh Canham
- School of Physics and Astronomy
- University of Birmingham
- Birmingham
- UK
| |
Collapse
|
13
|
Ivanov DS, Izgin T, Maiorov AN, Veiko VP, Rethfeld B, Dombrovska YI, Garcia ME, Zavestovskaya IN, Klimentov SM, Kabashin AV. Numerical Investigation of Ultrashort Laser-Ablative Synthesis of Metal Nanoparticles in Liquids Using the Atomistic-Continuum Model. Molecules 2019; 25:molecules25010067. [PMID: 31878215 PMCID: PMC6982913 DOI: 10.3390/molecules25010067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
We present a framework based on the atomistic continuum model, combining the Molecular Dynamics (MD) and Two Temperature Model (TTM) approaches, to characterize the growth of metal nanoparticles (NPs) under ultrashort laser ablation from a solid target in water ambient. The model is capable of addressing the kinetics of fast non-equilibrium laser-induced phase transition processes at atomic resolution, while in continuum it accounts for the effect of free carriers, playing a determinant role during short laser pulse interaction processes with metals. The results of our simulations clarify possible mechanisms, which can be responsible for the observed experimental data, including the presence of two populations of NPs, having a small (5–15 nm) and larger (tens of nm) mean size. The formed NPs are of importance for a variety of applications in energy, catalysis and healthcare.
Collapse
Affiliation(s)
- Dmitry S. Ivanov
- Department of Physics and OPTIMAS Research Center, TU Kaiserslautern, 67663 Kaiserslautern, Germany;
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, 34125 Kassel, Germany; (T.I.); (M.E.G.)
- Institute of Engineering Physics for Biomedicine (PhysBio), MEPHI, 115409 Moscow, Russia; (A.N.M.); (Y.I.D.); (I.N.Z.); (S.M.K.)
- Physics Department, ITMO University, 197101 St. Petersburg, Russia;
- Correspondence: (D.S.I.); (A.V.K.)
| | - Thomas Izgin
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, 34125 Kassel, Germany; (T.I.); (M.E.G.)
| | - Alexey N. Maiorov
- Institute of Engineering Physics for Biomedicine (PhysBio), MEPHI, 115409 Moscow, Russia; (A.N.M.); (Y.I.D.); (I.N.Z.); (S.M.K.)
| | - Vadim P. Veiko
- Physics Department, ITMO University, 197101 St. Petersburg, Russia;
| | - Baerbel Rethfeld
- Department of Physics and OPTIMAS Research Center, TU Kaiserslautern, 67663 Kaiserslautern, Germany;
| | - Yaroslava I. Dombrovska
- Institute of Engineering Physics for Biomedicine (PhysBio), MEPHI, 115409 Moscow, Russia; (A.N.M.); (Y.I.D.); (I.N.Z.); (S.M.K.)
| | - Martin E. Garcia
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, 34125 Kassel, Germany; (T.I.); (M.E.G.)
| | - Irina N. Zavestovskaya
- Institute of Engineering Physics for Biomedicine (PhysBio), MEPHI, 115409 Moscow, Russia; (A.N.M.); (Y.I.D.); (I.N.Z.); (S.M.K.)
- P. N. Lebedev Physical Institute of Russian Acad. Sci., Leninskiy Pr. 53, 119991 Moscow, Russia
| | - Sergey M. Klimentov
- Institute of Engineering Physics for Biomedicine (PhysBio), MEPHI, 115409 Moscow, Russia; (A.N.M.); (Y.I.D.); (I.N.Z.); (S.M.K.)
| | - Andrei V. Kabashin
- Department of Physics and OPTIMAS Research Center, TU Kaiserslautern, 67663 Kaiserslautern, Germany;
- LP3, Aix Marseille Univ, CNRS, LP3, Campus de Luminy, Case 917, 13288 Marseille, France
- Correspondence: (D.S.I.); (A.V.K.)
| |
Collapse
|
14
|
Kabashin AV, Singh A, Swihart MT, Zavestovskaya IN, Prasad PN. Laser-Processed Nanosilicon: A Multifunctional Nanomaterial for Energy and Healthcare. ACS NANO 2019; 13:9841-9867. [PMID: 31490658 DOI: 10.1021/acsnano.9b04610] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review describes promising laser-based approaches to produce silicon nanostructures, including laser ablation of solid Si targets in residual gases and liquids and laser pyrolysis of silane. These methods are different from, and complementary to, widely used porous silicon technology and alternative synthesis routes. One can use these methods to make stable colloidal dispersions of silicon nanoparticles in both organic and aqueous media, which are suitable for a multitude of applications across the important fields of energy and healthcare. Size tailoring allows production of Si quantum dots with efficient photoluminescence that can be tuned across a broad spectral range from the visible to near-IR by varying particle size and surface functionalization. These nanoparticles can also be integrated with other nanomaterials to make multifunctional composites incorporating magnetic and/or plasmonic components. In the energy domain, this review highlights applications to photovoltaics and photodetectors, nanostructured silicon anodes for lithium ion batteries, and hydrogen generation from water. Application to nanobiophotonics and nanomedicine profits from the excellent biocompatibility and biodegradability of nanosilicon. These applications encompass several types of bioimaging and various therapies, including photodynamic therapy, RF thermal therapy, and radiotherapy. The review concludes with a discussion of challenges and opportunities in the applications of laser-processed nanosilicon.
Collapse
Affiliation(s)
- Andrei V Kabashin
- Aix-Marseille Univ , CNRS, LP3, Marseille 13288 , France
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio) , 31 Kashirskoe sh. , 115409 Moscow , Russia
| | - Ajay Singh
- Institute for Lasers, Photonics, and Biophotonics , University at Buffalo, The State University of New York , Buffalo , New York 14260-3000 , United States
| | - Mark T Swihart
- Institute for Lasers, Photonics, and Biophotonics , University at Buffalo, The State University of New York , Buffalo , New York 14260-3000 , United States
- Department of Chemical and Biological Engineering and RENEW Institute , University at Buffalo, The State University of New York , Buffalo , New York 14260-4200 , United States
| | - Irina N Zavestovskaya
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio) , 31 Kashirskoe sh. , 115409 Moscow , Russia
| | - Paras N Prasad
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio) , 31 Kashirskoe sh. , 115409 Moscow , Russia
- Institute for Lasers, Photonics, and Biophotonics , University at Buffalo, The State University of New York , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
15
|
Olenin AY, Lisichkin GV. Surface-Modified Oxide Nanoparticles: Synthesis and Application. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219070168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Nirwan VP, Al-Kattan A, Fahmi A, Kabashin AV. Fabrication of Stable Nanofiber Matrices for Tissue Engineering via Electrospinning of Bare Laser-Synthesized Au Nanoparticles in Solutions of High Molecular Weight Chitosan. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1058. [PMID: 31344823 PMCID: PMC6724408 DOI: 10.3390/nano9081058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022]
Abstract
We report a methodology for the fabrication of neutralized chitosan-based nanofiber matrices decorated with bare Au nanoparticles, which demonstrate stable characteristics even after prolonged contact with a biological environment. The methodology consists of electrospinning of a mixture of bare (ligand-free) laser-synthesized Au nanoparticles (AuNPs) and solutions of chitosan/polyethylene oxide (ratio 1/3) containing chitosan of a relatively high molecular weight (200 kDa) and concentration of 3% (w/v). Our studies reveal a continuous morphology of hybrid nanofibers with the mean fiber diameter of 189 nm ± 86 nm, which demonstrate a high thermal stability. Finally, we describe a protocol for the neutralization of nanofibers, which enabled us to achieve their structural stability in phosphate-buffered saline (PBS) for more than six months, as confirmed by microscopy and FTIR measurements. The formed hybrid nanofibers exhibit unique physicochemical properties essential for the development of future tissue engineering platforms.
Collapse
Affiliation(s)
- Viraj P Nirwan
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Science, Marie-Curie-Straβe 1, 47533 Kleve, Germany
- Aix Marseille University, CNRS, LP3 (UMR 7341), 13288 Marseille, France
| | - Ahmed Al-Kattan
- Aix Marseille University, CNRS, LP3 (UMR 7341), 13288 Marseille, France.
| | - Amir Fahmi
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Science, Marie-Curie-Straβe 1, 47533 Kleve, Germany.
| | - Andrei V Kabashin
- Aix Marseille University, CNRS, LP3 (UMR 7341), 13288 Marseille, France
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
| |
Collapse
|
17
|
Phatvej W, Datta HK, Wilkinson SC, Mutch E, Daly AK, Horrocks BR. Endocytosis and Lack of Cytotoxicity of Alkyl-Capped Silicon Quantum Dots Prepared from Porous Silicon. MATERIALS 2019; 12:ma12101702. [PMID: 31130663 PMCID: PMC6566257 DOI: 10.3390/ma12101702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 12/16/2022]
Abstract
Freely-dissolved silicon quantum dots were prepared by thermal hydrosilation of 1-undecene at high-porosity porous silicon under reflux in toluene. This reaction produces a suspension of alkyl-capped silicon quantum dots (alkyl SiQDs) with bright orange luminescence, a core Si nanocrystal diameter of about 2.5 nm and a total particle diameter of about 5 nm. Previous work has shown that these particles are rapidly endocytosed by malignant cell lines and have little or no acute toxicity as judged by the standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for viability and the Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis. We have extended this work to the CACO-2 cell line, an established model for the human small intestinal mucosa, and demonstrate that neither acute nor chronic (14 days) toxicity is observed as judged by cell morphology, viability, ATP production, ROS production and DNA damage (single cell gel electrophoresis) at doses of 50–200 μg mL−1. Quantitative assessment of the extent of uptake of alkyl SiQDs by CACO-2, HeLa, HepG2, and Huh7 cell lines by flow cytometry showed a wide variation. The liver cell lines (HepG2 and Huh7) were the most active and HeLa and CACO-2 showed comparable activity. Previous work has reported a cholesterol-sensitivity of the endocytosis (HeLa), which suggests a caveolin-mediated pathway. However, gene expression analysis by quantitative real–time polymerase chain reaction (RT-PCR) indicates very low levels of caveolins 1 and 2 in HepG2 and much higher levels in HeLa. The data suggest that the mechanism of endocytosis of the alkyl SiQDs is cell-line dependent.
Collapse
Affiliation(s)
- Wipaporn Phatvej
- Thailand Institute of Scientific and Technological Research, Bangkok 10900, Thailand.
| | - Harish K Datta
- The James Cook University Hospital, Marton Road, Middlesbrough TS4 3BW, UK.
| | - Simon C Wilkinson
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle NE1 7RU, UK.
| | - Elaine Mutch
- Toxicology Unit, Medical School, Newcastle University, Newcastle NE1 7RU, UK.
| | - Ann K Daly
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle NE1 7RU, UK.
| | - Benjamin R Horrocks
- Chemical Nanoscience Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK.
| |
Collapse
|
18
|
Petriev VM, Tischenko VK, Mikhailovskaya AA, Popov AA, Tselikov G, Zelepukin I, Deyev SM, Kaprin AD, Ivanov S, Timoshenko VY, Prasad PN, Zavestovskaya IN, Kabashin AV. Nuclear nanomedicine using Si nanoparticles as safe and effective carriers of 188Re radionuclide for cancer therapy. Sci Rep 2019; 9:2017. [PMID: 30765778 PMCID: PMC6376125 DOI: 10.1038/s41598-018-38474-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/19/2018] [Indexed: 11/25/2022] Open
Abstract
Nuclear nanomedicine, with its targeting ability and heavily loading capacity, along with its enhanced retention to avoid rapid clearance as faced with molecular radiopharmaceuticals, provides unique opportunities to treat tumors and metastasis. Despite these promises, this field has seen limited activities, primarily because of a lack of suitable nanocarriers, which are safe, excretable and have favorable pharmacokinetics to efficiently deliver and retain radionuclides in a tumor. Here, we introduce biodegradable laser-synthesized Si nanoparticles having round shape, controllable low-dispersion size, and being free of any toxic impurities, as highly suitable carriers of therapeutic 188Re radionuclide. The conjugation of the polyethylene glycol-coated Si nanoparticles with radioactive 188Re takes merely 1 hour, compared to its half-life of 17 hours. When intravenously administered in a Wistar rat model, the conjugates demonstrate free circulation in the blood stream to reach all organs and target tumors, which is radically in contrast with that of the 188Re salt that mostly accumulates in the thyroid gland. We also show that the nanoparticles ensure excellent retention of 188Re in tumor, not possible with the salt, which enables one to maximize the therapeutic effect, as well as exhibit a complete time-delayed conjugate bioelimination. Finally, our tests on rat survival demonstrate excellent therapeutic effect (72% survival compared to 0% of the control group). Combined with a series of imaging and therapeutic functionalities based on unique intrinsic properties of Si nanoparticles, the proposed biodegradable complex promises a major advancement in nuclear nanomedicine.
Collapse
Affiliation(s)
- V M Petriev
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - V K Tischenko
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - A A Mikhailovskaya
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - A A Popov
- Aix Marseille Univ, CNRS, LP3, Campus de Luminy - Case 917, 13288, Marseille, France
| | - G Tselikov
- Aix Marseille Univ, CNRS, LP3, Campus de Luminy - Case 917, 13288, Marseille, France
| | - I Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St, Moscow, 117997, Russia
| | - S M Deyev
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St, Moscow, 117997, Russia
- National Research Tomsk Polytechnic University, Tomsk, Russia
| | - A D Kaprin
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - S Ivanov
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - V Yu Timoshenko
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
- Lomonosov Moscow State University, Physics Department, Leninskie Gory 1, 119991, Moscow, Russia
| | - P N Prasad
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia.
- Department of Chemistry and Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, New York, 14260, United States.
| | - I N Zavestovskaya
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| | - A V Kabashin
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia.
- Aix Marseille Univ, CNRS, LP3, Campus de Luminy - Case 917, 13288, Marseille, France.
| |
Collapse
|
19
|
Goodilin E, Semenova A, Eremina O, Brazhe N, Goodilinа E, Danzanova T, Maksimov G, Veselova I. Promising methods for noninvasive medical diagnosis based on the use of nanoparticles: surface-enhanced raman spectroscopy in the study of cells, cell organelles and neurotransmitter metabolism markers. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2018. [DOI: 10.24075/brsmu.2018.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Application of advances in nanomedicine and materials science to medical diagnostics is a promising area of research. Surface-enhanced Raman spectroscopy (SERS) is an innovative analytical method that exploits noble metal nanoparticles to noninvasively study cells, cell organelles and protein molecules. Below, we summarize the literature on the methods for early clinical diagnosis of some neurodegenerative and neuroendocrine diseases. We discuss the specifics, advantages and limitations of different diagnostic techniques based on the use of low- and high molecular weight biomarkers. We talk about the prospects of optical methods for rapid diagnosis of neurotransmitter metabolism disorders. Special attention is paid to new approaches to devising optical systems that expand the analytical potential of SERS, the tool that demonstrates remarkable sensitivity, selectivity and reproducibility of the results in determining target analytes in complex biological matrices.
Collapse
Affiliation(s)
- E.A. Goodilin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow; Faculty of Materials Science, Lomonosov Moscow State University, Moscow
| | - A.A. Semenova
- Faculty of Materials Science, Lomonosov Moscow State University, Moscow
| | - O.E. Eremina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow
| | - N.A. Brazhe
- Faculty of Biology, Lomonosov Moscow State University, Moscow
| | | | | | - G.V. Maksimov
- Faculty of Biology, Lomonosov Moscow State University, Moscow
| | - I.A. Veselova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow
| |
Collapse
|
20
|
d’Amora M, Rodio M, Sancataldo G, Diaspro A, Intartaglia R. Laser-Fabricated Fluorescent, Ligand-Free Silicon Nanoparticles: Scale-up, Biosafety, and 3D Live Imaging of Zebrafish under Development. ACS APPLIED BIO MATERIALS 2018; 2:321-329. [DOI: 10.1021/acsabm.8b00609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marta d’Amora
- Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Marina Rodio
- Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
- Physical Chemistry, Hamburg University, Martin-Luther-King Platz 6, Hamburg 20146, Germany
| | - Giuseppe Sancataldo
- Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Florence 50121, Italy
| | - Alberto Diaspro
- Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Romuald Intartaglia
- Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
21
|
Soleymani J, Hasanzadeh M, Somi MH, Jouyban A. Nanomaterials based optical biosensing of hepatitis: Recent analytical advancements. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Roy D, Majhi K, Mondal MK, Saha SK, Sinha S, Chowdhury P. Silicon Quantum Dot-Based Fluorescent Probe: Synthesis Characterization and Recognition of Thiocyanate in Human Blood. ACS OMEGA 2018; 3:7613-7620. [PMID: 30087919 PMCID: PMC6068596 DOI: 10.1021/acsomega.8b00844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Allylamine-functionalized silicon quantum dots (ASQDs) of high photostability are synthesized by a robust inverse micelle method to use the material as a fluorescent probe for selective recognition of thiocyanate (a biomarker of a smoker and a nonsmoker). The synthesized ASQDs were characterized by absorption, emission, and Fourier transform infrared spectroscopy. Surface morphology is studied by transmission electron microscopy and dynamic light scattering. The synthesized material exhibits desirable fluorescence behavior with a high quantum yield. A selective and accurate (up to 10-10 M) method of sensing of thiocyanate anion is developed based on fluorescence amplification and quenching of ASQDs. The sensing mechanism is investigated and interpreted with a crystal clear mechanistic approach through the modified Stern-Volmer plot. The developed material and the method is applied to recognize the anion in the human blood sample for identification of the degree of smoking. The material deserves high potentiality in the field of bio-medical science.
Collapse
Affiliation(s)
- Debiprasad Roy
- Polymer
& Nano Research Laboratory, Department of Chemistry, and Integrated Science
Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India
| | - Koushik Majhi
- Polymer
& Nano Research Laboratory, Department of Chemistry, and Integrated Science
Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India
| | - Maloy Kr. Mondal
- Polymer
& Nano Research Laboratory, Department of Chemistry, and Integrated Science
Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India
| | - Swadhin Kr. Saha
- Polymer
& Nano Research Laboratory, Department of Chemistry, and Integrated Science
Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India
| | - Subrata Sinha
- Polymer
& Nano Research Laboratory, Department of Chemistry, and Integrated Science
Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India
| | - Pranesh Chowdhury
- Polymer
& Nano Research Laboratory, Department of Chemistry, and Integrated Science
Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India
| |
Collapse
|
23
|
Eremina OE, Semenova AA, Sergeeva EA, Brazhe NA, Maksimov GV, Shekhovtsova TN, Goodilin EA, Veselova IA. Surface-enhanced Raman spectroscopy in modern chemical analysis: advances and prospects. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4804] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Al-Kattan A, Nirwan VP, Popov A, Ryabchikov YV, Tselikov G, Sentis M, Fahmi A, Kabashin AV. Recent Advances in Laser-Ablative Synthesis of Bare Au and Si Nanoparticles and Assessment of Their Prospects for Tissue Engineering Applications. Int J Mol Sci 2018; 19:E1563. [PMID: 29794976 PMCID: PMC6032194 DOI: 10.3390/ijms19061563] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
Driven by surface cleanness and unique physical, optical and chemical properties, bare (ligand-free) laser-synthesized nanoparticles (NPs) are now in the focus of interest as promising materials for the development of advanced biomedical platforms related to biosensing, bioimaging and therapeutic drug delivery. We recently achieved significant progress in the synthesis of bare gold (Au) and silicon (Si) NPs and their testing in biomedical tasks, including cancer imaging and therapy, biofuel cells, etc. We also showed that these nanomaterials can be excellent candidates for tissue engineering applications. This review is aimed at the description of our recent progress in laser synthesis of bare Si and Au NPs and their testing as functional modules (additives) in innovative scaffold platforms intended for tissue engineering tasks.
Collapse
Affiliation(s)
- Ahmed Al-Kattan
- Aix Marseille University, CNRS, LP3, 13288 Marseille, France.
| | - Viraj P Nirwan
- Aix Marseille University, CNRS, LP3, 13288 Marseille, France.
- Faculty of Technology and Bionics, Rhin-waal University of Applied Science, Marie-Curie-Straβe 1, 47533 Kleve, Germany.
| | - Anton Popov
- Aix Marseille University, CNRS, LP3, 13288 Marseille, France.
| | - Yury V Ryabchikov
- Aix Marseille University, CNRS, LP3, 13288 Marseille, France.
- P.N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskii Prospekt, 199991 Moscow, Russia.
| | - Gleb Tselikov
- Aix Marseille University, CNRS, LP3, 13288 Marseille, France.
| | - Marc Sentis
- Aix Marseille University, CNRS, LP3, 13288 Marseille, France.
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia.
| | - Amir Fahmi
- Faculty of Technology and Bionics, Rhin-waal University of Applied Science, Marie-Curie-Straβe 1, 47533 Kleve, Germany.
| | - Andrei V Kabashin
- Aix Marseille University, CNRS, LP3, 13288 Marseille, France.
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia.
| |
Collapse
|
25
|
Zuidema JM, Kumeria T, Kim D, Kang J, Wang J, Hollett G, Zhang X, Roberts DS, Chan N, Dowling C, Blanco-Suarez E, Allen NJ, Tuszynski MH, Sailor MJ. Oriented Nanofibrous Polymer Scaffolds Containing Protein-Loaded Porous Silicon Generated by Spray Nebulization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706785. [PMID: 29363828 PMCID: PMC6475500 DOI: 10.1002/adma.201706785] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/13/2017] [Indexed: 06/07/2023]
Abstract
Oriented composite nanofibers consisting of porous silicon nanoparticles (pSiNPs) embedded in a polycaprolactone or poly(lactide-co-glycolide) matrix are prepared by spray nebulization from chloroform solutions using an airbrush. The nanofibers can be oriented by an appropriate positioning of the airbrush nozzle, and they can direct growth of neurites from rat dorsal root ganglion neurons. When loaded with the model protein lysozyme, the pSiNPs allow the generation of nanofiber scaffolds that carry and deliver the protein under physiologic conditions (phosphate-buffered saline (PBS), at 37 °C) for up to 60 d, retaining 75% of the enzymatic activity over this time period. The mass loading of protein in the pSiNPs is 36%, and in the resulting polymer/pSiNP scaffolds it is 3.6%. The use of pSiNPs that display intrinsic photoluminescence (from the quantum-confined Si nanostructure) allows the polymer/pSiNP composites to be definitively identified and tracked by time-gated photoluminescence imaging. The remarkable ability of the pSiNPs to protect the protein payload from denaturation, both during processing and for the duration of the long-term aqueous release study, establishes a model for the generation of biodegradable nanofiber scaffolds that can load and deliver sensitive biologics.
Collapse
Affiliation(s)
- Jonathan M. Zuidema
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 (USA)
| | - Tushar Kumeria
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 (USA), School of Pharmacy, University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Dokyoung Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Jinyoung Kang
- Department of Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Joanna Wang
- Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 (USA)
| | - Geoffrey Hollett
- Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 (USA)
| | - Xuan Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 (USA)
| | - David S. Roberts
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 (USA)
| | - Nicole Chan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 (USA)
| | - Cari Dowling
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines, La Jolla, CA, 92037 (USA)
| | - Elena Blanco-Suarez
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines, La Jolla, CA, 92037 (USA)
| | - Nicola J. Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines, La Jolla, CA, 92037 (USA)
| | - Mark H. Tuszynski
- Veterans Administration Medical Center, 3350 La Jolla Village Drive, San Diego, CA, 92161 (USA), Department of Neurosciences, University of California, San Diego, 9500 Gilman, La Jolla, CA 92093 (USA)
| | - Michael J. Sailor
- Department of Chemistry and BiochemistryUniversity of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 (USA)
| |
Collapse
|
26
|
Kim D, Kang J, Wang T, Ryu HG, Zuidema JM, Joo J, Kim M, Huh Y, Jung J, Ahn KH, Kim KH, Sailor MJ. Two-Photon In Vivo Imaging with Porous Silicon Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703309. [PMID: 28833739 DOI: 10.1002/adma.201703309] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/19/2017] [Indexed: 06/07/2023]
Abstract
A major obstacle in luminescence imaging is the limited penetration of visible light into tissues and interference associated with light scattering and autofluorescence. Near-infrared (NIR) emitters that can also be excited with NIR radiation via two-photon processes can mitigate these factors somewhat because they operate at wavelengths of 650-1000 nm where tissues are more transparent, light scattering is less efficient, and endogenous fluorophores are less likely to absorb. This study presents photolytically stable, NIR photoluminescent, porous silicon nanoparticles with a relatively high two-photon-absorption cross-section and a large emission quantum yield. Their ability to be targeted to tumor tissues in vivo using the iRGD targeting peptide is demonstrated, and the distribution of the nanoparticles with high spatial resolution is visualized.
Collapse
Affiliation(s)
- Dokyoung Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Jinyoung Kang
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Taejun Wang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyungbuk, 37673, Republic of Korea
| | - Hye Gun Ryu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673, Republic of Korea
| | - Jonathan M Zuidema
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Jinmyoung Joo
- Department of Convergence Medicine, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Biomedical Engineering Research Center, Asan Institute for Life Science, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Muwoong Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Youngbuhm Huh
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673, Republic of Korea
| | - Ki Hean Kim
- Division of Integrative Biosciences and Biotechnology, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyungbuk, 37673, Republic of Korea
| | - Michael J Sailor
- Department of Chemistry and Biochemistry, Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
27
|
Kucherik AO, Ryabchikov YV, Kutrovskaya SV, Al-Kattan A, Arakelyan SM, Itina TE, Kabashin AV. Cavitation-Free Continuous-Wave Laser Ablation from a Solid Target to Synthesize Low-Size-Dispersed Gold Nanoparticles. Chemphyschem 2017; 18:1185-1191. [PMID: 28240811 DOI: 10.1002/cphc.201601419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Indexed: 01/06/2023]
Abstract
Continuous wave (CW) radiation from a Yb-fiber laser (central wavelength 1064 nm, power 1-200 W) was used to initiate ablation of a gold target in deionized water and to synthesize bare (unprotected) gold nanoparticles. We show that the formed nanoparticles present a single low-size-dispersed population with a mean size of the order of 10 nm, which contrasts with previously reported data on dual populations of nanoparticles formed during pulsed laser ablation in liquids. The lack of a second population of nanoparticles is explained by the absence of cavitation-related mechanism of material ablation, which typically takes place under pulsed laser action on a solid target in liquid ambience, and this supposition is confirmed by plume visualization tests. We also observe a gradual growth of mean nanoparticle size from 8-10 nm to 20-25 nm under the increase of laser power for 532 nm pumping wavelength, whereas for 1064 nm pumping wavelength the mean size 8-10 nm is independent of radiation power. The growth of the nanoparticles observed for 532 nm wavelength is attributed to the enhanced target melting and splashing followed by additional heating due to an efficient excitation of plasmons over gold nanoparticles. Bare, low-size-dispersed gold nanoparticles are of importance for a variety of applications, including biomedicine, catalysis, and photovoltaics. The use of CW radiation for nanomaterial production promises to improve the cost efficiency of this technology.
Collapse
Affiliation(s)
| | - Yury V Ryabchikov
- Aix-Marseille University, CNRS, UMR 7341 CNRS, LP3, Campus de Luminy, Case 917, 13288, Marseille Cedex 9, France.,P.N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskii Prospekt, Moscow, 199 991, Russia
| | | | - Ahmed Al-Kattan
- Aix-Marseille University, CNRS, UMR 7341 CNRS, LP3, Campus de Luminy, Case 917, 13288, Marseille Cedex 9, France
| | | | - Tatiana E Itina
- Laboratoire Hubert Curien, CNRS UMR 5516/UJM/, Univ. Lyon, 18 rue du Professeur Benoit Lauras, Bat. F, 42000, Saint-Etienne, France
| | - Andrei V Kabashin
- Aix-Marseille University, CNRS, UMR 7341 CNRS, LP3, Campus de Luminy, Case 917, 13288, Marseille Cedex 9, France.,National Research Nuclear University "MEPhI", Institute of Engineering Physics for Biomedicine (PhysBio), Bio-Nanophotonic Lab., 115409, Moscow, Russia
| |
Collapse
|
28
|
Yukawa H, Baba Y. In Vivo Fluorescence Imaging and the Diagnosis of Stem Cells Using Quantum Dots for Regenerative Medicine. Anal Chem 2017; 89:2671-2681. [PMID: 28194939 DOI: 10.1021/acs.analchem.6b04763] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroshi Yukawa
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,ImPACT Research Center for Advanced Nanobiodevices, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshinobu Baba
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,ImPACT Research Center for Advanced Nanobiodevices, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Innovation for Future Society, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , 2217-14, Hayashi-cho, Takamatsu 761-0395, Japan.,College of Pharmacy, Kaohsiung Medical University , Shin-Chuan 1 st Rd., Kaohsiung, 807, Taiwan, R.O.C
| |
Collapse
|
29
|
Sychugov I, Sangghaleh F, Bruhn B, Pevere F, Luo JW, Zunger A, Linnros J. Strong Absorption Enhancement in Si Nanorods. NANO LETTERS 2016; 16:7937-7941. [PMID: 27960529 DOI: 10.1021/acs.nanolett.6b04243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report two orders of magnitude stronger absorption in silicon nanorods relative to bulk in a wide energy range. The local field enhancement and dipole matrix element contributions were disentangled experimentally by single-dot absorption measurements on differently shaped particles as a function of excitation polarization and photon energy. Both factors substantially contribute to the observed effect as supported by simulations of the light-matter interaction and atomistic calculations of the transition matrix elements. The results indicate strong shape dependence of the quasidirect transitions in silicon nanocrystals, suggesting nanostructure shape engineering as an efficient tool for overcoming limitations of indirect band gap materials in optoelectronic applications, such as solar cells.
Collapse
Affiliation(s)
- Ilya Sychugov
- Materials and Nano Physics Department, KTH - Royal Institute of Technology , Kista, Stockholm, 16440, Sweden
| | - Fatemeh Sangghaleh
- Materials and Nano Physics Department, KTH - Royal Institute of Technology , Kista, Stockholm, 16440, Sweden
| | - Benjamin Bruhn
- Materials and Nano Physics Department, KTH - Royal Institute of Technology , Kista, Stockholm, 16440, Sweden
| | - Federico Pevere
- Materials and Nano Physics Department, KTH - Royal Institute of Technology , Kista, Stockholm, 16440, Sweden
| | - Jun-Wei Luo
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences , P.O. Box 912, Beijing 100083, China
| | - Alex Zunger
- Renewable and Sustainable Energy Institute, University of Colorado , Boulder, Colorado 80309, United States
| | - Jan Linnros
- Materials and Nano Physics Department, KTH - Royal Institute of Technology , Kista, Stockholm, 16440, Sweden
| |
Collapse
|
30
|
Kim D, Zuidema JM, Kang J, Pan Y, Wu L, Warther D, Arkles B, Sailor MJ. Facile Surface Modification of Hydroxylated Silicon Nanostructures Using Heterocyclic Silanes. J Am Chem Soc 2016; 138:15106-15109. [DOI: 10.1021/jacs.6b08614] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Dokyoung Kim
- Department
of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Jonathan M. Zuidema
- Department
of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Jinyoung Kang
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Youlin Pan
- Gelest Inc., 11 East Steel Road, Morrisville, Pennsylvania 19067, United States
| | - Lianbin Wu
- Department
of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Key
Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - David Warther
- Department
of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Barry Arkles
- Gelest Inc., 11 East Steel Road, Morrisville, Pennsylvania 19067, United States
| | - Michael J. Sailor
- Department
of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
31
|
Tolstik E, Osminkina LA, Akimov D, Gongalsky MB, Kudryavtsev AA, Timoshenko VY, Heintzmann R, Sivakov V, Popp J. Linear and Non-Linear Optical Imaging of Cancer Cells with Silicon Nanoparticles. Int J Mol Sci 2016; 17:E1536. [PMID: 27626408 PMCID: PMC5037811 DOI: 10.3390/ijms17091536] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 01/02/2023] Open
Abstract
New approaches for visualisation of silicon nanoparticles (SiNPs) in cancer cells are realised by means of the linear and nonlinear optics in vitro. Aqueous colloidal solutions of SiNPs with sizes of about 10-40 nm obtained by ultrasound grinding of silicon nanowires were introduced into breast cancer cells (MCF-7 cell line). Further, the time-varying nanoparticles enclosed in cell structures were visualised by high-resolution structured illumination microscopy (HR-SIM) and micro-Raman spectroscopy. Additionally, the nonlinear optical methods of two-photon excited fluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS) with infrared laser excitation were applied to study the localisation of SiNPs in cells. Advantages of the nonlinear methods, such as rapid imaging, which prevents cells from overheating and larger penetration depth compared to the single-photon excited HR-SIM, are discussed. The obtained results reveal new perspectives of the multimodal visualisation and precise detection of the uptake of biodegradable non-toxic SiNPs by cancer cells and they are discussed in view of future applications for the optical diagnostics of cancer tumours.
Collapse
Affiliation(s)
- Elen Tolstik
- Leibniz Institute of Photonic Technology, Jena 07745, Germany.
| | - Liubov A Osminkina
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia.
- Interational Laboratory "Bio-Nanophotonics", National Research Nuclear University "Moscow Engineering Physics Institute", Moscow 115409, Russia.
| | - Denis Akimov
- Leibniz Institute of Photonic Technology, Jena 07745, Germany.
| | - Maksim B Gongalsky
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Andrew A Kudryavtsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushino 142290, Russia.
| | - Victor Yu Timoshenko
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia.
- Interational Laboratory "Bio-Nanophotonics", National Research Nuclear University "Moscow Engineering Physics Institute", Moscow 115409, Russia.
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Jena 07745, Germany.
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich-Schiller-University, Jena 07743, Germany.
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Jena 07745, Germany.
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich-Schiller-University, Jena 07743, Germany.
| |
Collapse
|
32
|
Kabashin AV, Timoshenko VY. What theranostic applications could ultrapure laser-synthesized Si nanoparticles have in cancer? Nanomedicine (Lond) 2016; 11:2247-50. [DOI: 10.2217/nnm-2016-0228] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Andrei V Kabashin
- Aix Marseille University, CNRS, UMR 7341 CNRS, LP3, Campus de Luminy – Case 917, 13288, Marseille Cedex 9, France
| | - Victor Yu Timoshenko
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute), International Laboratory “Bionanophotonics”, 31 Kashirskoe sh., 115409 Moscow, Russia
| |
Collapse
|
33
|
Al-Kattan A, Ryabchikov YV, Baati T, Chirvony V, Sánchez-Royo JF, Sentis M, Braguer D, Timoshenko VY, Estève MA, Kabashin AV. Ultrapure laser-synthesized Si nanoparticles with variable oxidation states for biomedical applications. J Mater Chem B 2016; 4:7852-7858. [DOI: 10.1039/c6tb02623k] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use femtosecond laser fragmentation to fabricate ultrapure bare Si-based nanoparticles (Si-NPs) for biomedical applications.
Collapse
Affiliation(s)
- Ahmed Al-Kattan
- Aix Marseille University
- CNRS
- LP3 UMR 7341
- Marseille cedex 9
- France
| | | | - Tarek Baati
- Aix Marseille University
- INSERM
- CRO2 UMR 911
- Faculté de Pharmacie
- Marseille Cedex 5
| | - Vladimir Chirvony
- UMDO – Unidad Asociada a CSIC-IMM
- Instituto de Ciencias de los Materiales
- Universidad de Valencia
- 46071 Valencia
- Spain
| | - Juan F. Sánchez-Royo
- UMDO – Unidad Asociada a CSIC-IMM
- Instituto de Ciencias de los Materiales
- Universidad de Valencia
- 46071 Valencia
- Spain
| | - Marc Sentis
- Aix Marseille University
- CNRS
- LP3 UMR 7341
- Marseille cedex 9
- France
| | - Diane Braguer
- Aix Marseille University
- INSERM
- CRO2 UMR 911
- Faculté de Pharmacie
- Marseille Cedex 5
| | - Victor Yu. Timoshenko
- P.N. Lebedev Physical Institute of Russian Academy of Sciences
- Moscow
- Russia
- National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute)
- Institute of Engineering Physics for Biomedicine (PhysBio)
| | - Marie-Anne Estève
- Aix Marseille University
- INSERM
- CRO2 UMR 911
- Faculté de Pharmacie
- Marseille Cedex 5
| | | |
Collapse
|