1
|
Dahan E, Pergamenshik L, Taub T, Vovk A, Manier J, Avneri R, Lax E. Poly ADP-ribosylation regulates Arc expression and promotes adaptive stress-coping. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06744-8. [PMID: 39808339 DOI: 10.1007/s00213-025-06744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
RATIONALE Rapid adaptation to stressful events is essential for survival and requires acute stress response and stress-coping strategy. However, the molecular mechanisms that govern this coping strategy have yet to be fully discovered. OBJECTIVES This study aims to investigate the effects of poly ADP-ribosylation (PARylation) on stress-coping strategies following acute stress and to identify the target genes influenced by Parp1-induced histone PARylation. METHODS Mice were subjected to a forced swim test, a well-established acute stress paradigm, to evaluate cortical PARylation and assess the expression of activity-dependent genes. The pharmacological inhibition of Parp1 was conducted using ABT888 (Veliparib) to determine its effects on stress-coping behavior and related molecular changes. RESULTS The forced swim test increased cortical PARylation and upregulated the expression of activity-dependent genes. Systemic inhibition of Parp1 with ABT888 led to impaired stress-coping behavior, evidenced by a reduced immobility response during a subsequent forced swim test done 24 hours later. This impairment was associated with decreased chromatin PARylation and histone H4 acetylation at the Arc promoter and reduced Arc expression observed one hour after Parp1 inhibition. CONCLUSION Our findings indicate that chromatin PARylation at the Arc promoters regulates histone H4 acetylation and Arc gene expression, and a subsequent impact on successful stress-coping behavior in response to acute stress.
Collapse
Affiliation(s)
- Eliyahu Dahan
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Tze'ela Taub
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Arthur Vovk
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Jade Manier
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Raphael Avneri
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Elad Lax
- Department of Molecular Biology, Ariel University, Ariel, Israel.
| |
Collapse
|
2
|
Lu Y, Fu W, Xing W, Wu H, Zhang C, Xu D. Transcriptional regulation mechanism of PARP1 and its application in disease treatment. Epigenetics Chromatin 2024; 17:26. [PMID: 39118189 PMCID: PMC11308664 DOI: 10.1186/s13072-024-00550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a multifunctional nuclear enzyme that catalyzes poly-ADP ribosylation in eukaryotic cells. In addition to maintaining genomic integrity, this nuclear enzyme is also involved in transcriptional regulation. PARP1 can trigger and maintain changes in the chromatin structure and directly recruit transcription factors. PARP1 also prevents DNA methylation. However, most previous reviews on PARP1 have focused on its involvement in maintaining genome integrity, with less focus on its transcriptional regulatory function. This article comprehensively reviews the transcriptional regulatory function of PARP1 and its application in disease treatment, providing new ideas for targeting PARP1 for the treatment of diseases other than cancer.
Collapse
Affiliation(s)
- Yu Lu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China
- Hebei University, Baoding, Hebei, P.R. China
| | - Wenliang Fu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China
| | - Weiwei Xing
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China
| | - Haowei Wu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China
| | - Chao Zhang
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China.
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China.
| |
Collapse
|
3
|
De Silva WGM, Sequeira VB, Yang C, Dixon KM, Holland AJA, Mason RS, Rybchyn MS. 1,25-Dihydroxyvitamin D 3 Suppresses UV-Induced Poly(ADP-Ribose) Levels in Primary Human Keratinocytes, as Detected by a Novel Whole-Cell ELISA. Int J Mol Sci 2024; 25:5583. [PMID: 38891771 PMCID: PMC11171802 DOI: 10.3390/ijms25115583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Photoprotective properties of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to reduce UV-induced DNA damage have been established in several studies. UV-induced DNA damage in skin such as single or double strand breaks is known to initiate several cellular mechanisms including activation of poly(ADP-ribose) (pADPr) polymerase-1 (PARP-1). DNA damage from UV also increases extracellular signal-related kinase (ERK) phosphorylation, which further increases PARP activity. PARP-1 functions by using cellular nicotinamide adenine dinucleotide (NAD+) to synthesise pADPr moieties and attach these to target proteins involved in DNA repair. Excessive PARP-1 activation following cellular stress such as UV irradiation may result in excessive levels of cellular pADPr. This can also have deleterious effects on cellular energy levels due to depletion of NAD+ to suboptimal levels. Since our previous work indicated that 1,25(OH)2D3 reduced UV-induced DNA damage in part through increased repair via increased energy availability, the current study investigated the effect of 1,25(OH)2D3 on UV-induced PARP-1 activity using a novel whole-cell enzyme- linked immunosorbent assay (ELISA) which quantified levels of the enzymatic product of PARP-1, pADPr. This whole cell assay used around 5000 cells per replicate measurement, which represents a 200-400-fold decrease in cell requirement compared to current commercial assays that measure in vitro pADPr levels. Using our assay, we observed that UV exposure significantly increased pADPr levels in human keratinocytes, while 1,25(OH)2D3 significantly reduced levels of UV-induced pADPr in primary human keratinocytes to a similar extent as a known PARP-1 inhibitor, 3-aminobenzamide (3AB). Further, both 1,25(OH)2D3 and 3AB as well as a peptide inhibitor of ERK-phosphorylation significantly reduced DNA damage in UV-exposed keratinocytes. The current findings support the proposal that reduction in pADPr levels may be critical for the function of 1,25(OH)2D3 in skin to reduce UV-induced DNA damage.
Collapse
Affiliation(s)
| | - Vanessa Bernadette Sequeira
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chen Yang
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katie Marie Dixon
- Department of Anatomy and Histology and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Andrew J. A. Holland
- Douglas Cohen Department of Paediatric Surgery, The Children’s Hospital at Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sara Mason
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Stephen Rybchyn
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Lei L, Cao Q, An G, Lv Y, Tang J, Yang J. DDI2 promotes tumor metastasis and resists antineoplastic drugs-induced apoptosis in colorectal cancer. Apoptosis 2022; 28:458-470. [PMID: 36520320 DOI: 10.1007/s10495-022-01796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
The normal colorectal mucosa undergoes precancerous lesions that can develop over time into colorectal cancer (CRC). In the stage of precancerous lesions, DNA replication stress may lead to genome instability. We have performed whole-exome sequencing on genomic DNA obtained from three cases of CRC tissues and identified a novel frameshift mutation of DNA damage inducible 1 homolog 2 gene (DDI2, c. 854 del T). To date, there is no direct evidence that DDI2 is involved in the carcinogenesis of CRC. In this study, we demonstrated that DDI2 is upregulated in the early stage of CRC based on clinical samples and public databases. We also found that 5FU, a standard chemotherapeutic agent for CRC treatment, increased DDI2 mRNA levels in a dose-dependent manner. Depression of DDI2 inhibited CRC cell proliferation, migration and invasion both in vitro and in vivo. Transcriptome sequencing revealed that DDI2 was involved in the mitogen-activated protein kinase (MAPK) pathway. Furthermore, DDI2 resists a MAPK kinase (MEK) inhibitor (trametinib) and a PolyADP-ribose polymerase 1 (PARP1) inhibitor (talazoparib) induced apoptosis in CRC cells. Thus, our results indicate that DDI2 may play a vital role in the carcinogenesis of CRC and could serve as a promising therapeutic target for CRC.
Collapse
|
5
|
Role of NAD + and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2022:10.1007/s10571-022-01287-4. [PMID: 36180651 DOI: 10.1007/s10571-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
Collapse
|
6
|
Liu HY, Liu YY, Zhang YL, Ning Y, Zhang FL, Li DQ. Poly(ADP-ribosyl)ation of acetyltransferase NAT10 by PARP1 is required for its nucleoplasmic translocation and function in response to DNA damage. Cell Commun Signal 2022; 20:127. [PMID: 35986334 PMCID: PMC9389688 DOI: 10.1186/s12964-022-00932-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/08/2022] [Indexed: 11/19/2022] Open
Abstract
Background N-acetyltransferase 10 (NAT10), an abundant nucleolar protein with both lysine and RNA cytidine acetyltransferase activities, has been implicated in Hutchinson-Gilford progeria syndrome and human cancer. We and others recently demonstrated that NAT10 is translocated from the nucleolus to the nucleoplasm after DNA damage, but the underlying mechanism remains unexplored. Methods The NAT10 and PARP1 knockout (KO) cell lines were generated using CRISPR-Cas9 technology. Knockdown of PARP1 was performed using specific small interfering RNAs targeting PARP1. Cells were irradiated with γ-rays using a 137Cs Gammacell-40 irradiator and subjected to clonogenic survival assays. Co-localization and interaction between NAT10 and MORC2 were examined by immunofluorescent staining and immunoprecipitation assays, respectively. PARylation of NAT10 and translocation of NAT10 were determined by in vitro PARylation assays and immunofluorescent staining, respectively. Results Here, we provide the first evidence that NAT10 underwent covalent PARylation modification following DNA damage, and poly (ADP-ribose) polymerase 1 (PARP1) catalyzed PARylation of NAT10 on three conserved lysine (K) residues (K1016, K1017, and K1020) within its C-terminal nucleolar localization signal motif (residues 983–1025). Notably, mutation of those three PARylation residues on NAT10, pharmacological inhibition of PARP1 activity, or depletion of PARP1 impaired NAT10 nucleoplasmic translocation after DNA damage. Knockdown or inhibition of PARP1 or expression of a PARylation-deficient mutant NAT10 (K3A) attenuated the co-localization and interaction of NAT10 with MORC family CW-type zinc finger 2 (MORC2), a newly identified chromatin-remodeling enzyme involved in DNA damage response, resulting in a decrease in DNA damage-induced MORC2 acetylation at lysine 767. Consequently, expression of a PARylation-defective mutant NAT10 resulted in enhanced cellular sensitivity to DNA damage agents. Conclusion Collectively, these findings indicate that PARP1-mediated PARylation of NAT10 is key for controlling its nucleoplasmic translocation and function in response to DNA damage. Moreover, our findings provide novel mechanistic insights into the sophisticated paradigm of the posttranslational modification-driven cellular response to DNA damage. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00932-1.
Collapse
|
7
|
Tiwari P, Khan H, Singh TG, Grewal AK. Poly (ADP-ribose) polymerase: An Overview of Mechanistic Approaches and Therapeutic Opportunities in the Management of Stroke. Neurochem Res 2022; 47:1830-1852. [PMID: 35437712 DOI: 10.1007/s11064-022-03595-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Stroke is one of the leading causes of morbidity and mortality accompanied by blood supply loss to a particular brain area. Several mechanistic approaches such as inhibition of poly (ADP-ribose) polymerase, therapies against tissue thrombosis, and neutrophils lead to stroke's therapeutic intervention. Evidence obtained with the poly (ADP-ribose) polymerase (PARP) inhibition and animals having a deficiency of PARP enzymes; represented the role of PARP in cerebral stroke, ischemia/reperfusion, and neurotrauma. PARP is a nuclear enzyme superfamily with various isoforms, each with different structural domains and functions, and out of all, PARP-1 is the best-characterized member. It has been shown to perform multiple physiological as well as pathological processes, including its role in inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction. The enzyme interacts with NF-κB, p53, and other transcriptional factors to regulate survival and cell death and modulates multiple downstream signaling pathways. Clinical trials have also been conducted using PARP inhibitors for numerous disorders and have shown positive results. However, additional information is yet to be established for the therapeutic intervention of PARP inhibitors in stroke. These agents' utilization appears to be challenging due to their unknown potential long-term side effects. PARP activity increased during ischemia, but its inhibition provided significant neuroprotection. Despite the increased interest in PARP as a pharmacological modulator for novel therapeutic therapies, the current review focused on stroke and poly ADP-ribosylation.
Collapse
Affiliation(s)
- Palak Tiwari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | | |
Collapse
|
8
|
A Long-Lasting PARP1-Activation Mediates Signal-Induced Gene Expression. Cells 2022; 11:cells11091576. [PMID: 35563882 PMCID: PMC9101275 DOI: 10.3390/cells11091576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
This overview presents recent evidence for a long-lasting PARP1 activation by a variety of signal transduction mechanisms, mediating signal-induced gene expression and chromatin remodeling. This mode of PARP1 activation has been reported in a variety of cell types, under physiological conditions. In this mechanism, PARP1 is not transiently activated by binding to DNA breaks. Moreover, damaged DNA interfered with this long-lasting PARP1 activation.
Collapse
|
9
|
Liu L, Li J, Ke Y, Zeng X, Gao J, Ba X, Wang R. The key players of parthanatos: opportunities for targeting multiple levels in the therapy of parthanatos-based pathogenesis. Cell Mol Life Sci 2022; 79:60. [PMID: 35000037 PMCID: PMC11073082 DOI: 10.1007/s00018-021-04109-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Parthanatos is a form of regulated cell death involved in the pathogenesis of many diseases, particularly neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Parthanatos is a multistep cell death pathway cascade that involves poly (ADP-ribose) polymerase 1 (PARP-1) overactivation, PAR accumulation, PAR binding to apoptosis-inducing factor (AIF), AIF release from the mitochondria, nuclear translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and MIF-mediated large-scale DNA fragmentation. All the key players in the parthanatos pathway are pleiotropic proteins with diverse functions. An in-depth understanding of the structure-based activity of the key factors, and the biochemical mechanisms of parthanatos, is crucial for the development of drugs and therapeutic strategies. In this review, we delve into the key players of the parthanatos pathway and reveal the multiple levels of therapeutic opportunities for treating parthanatos-based pathogenesis.
Collapse
Affiliation(s)
- Libo Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Jiaxiang Li
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yueshuang Ke
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China.
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
10
|
The Modified Phenanthridine PJ34 Unveils an Exclusive Cell-Death Mechanism in Human Cancer Cells. Cancers (Basel) 2020; 12:cancers12061628. [PMID: 32575437 PMCID: PMC7352794 DOI: 10.3390/cancers12061628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
This overview summarizes recent data disclosing the efficacy of the PARP inhibitor PJ34 in exclusive eradication of a variety of human cancer cells without impairing healthy proliferating cells. Its cytotoxic activity in cancer cells is attributed to the insertion of specific un-repairable anomalies in the structure of their mitotic spindle, leading to mitotic catastrophe cell death. This mechanism paves the way to a new concept of cancer therapy.
Collapse
|
11
|
Chen QY, Zhang ZL, Liu Q, Chen CJ, Zhang XK, Xu PY, Zhuo M. Presynaptic long-term potentiation requires extracellular signal-regulated kinases in the anterior cingulate cortex. Mol Pain 2020; 16:1744806920917245. [PMID: 32264746 PMCID: PMC7144679 DOI: 10.1177/1744806920917245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular signal-regulated kinases are widely expressed protein kinases in neurons, which serve as important intracellular signaling molecules for central plasticity such as long-term potentiation. Recent studies demonstrate that there are two major forms of long-term potentiation in cortical areas related to pain: postsynaptic long-term potentiation and presynaptic long-term potentiation. In particular, presynaptic long-term potentiation in the anterior cingulate cortex has been shown to contribute to chronic pain-related anxiety. In this review, we briefly summarized the components and roles of extracellular signal-regulated kinases in neuronal signaling, especially in the presynaptic long-term potentiation of anterior cingulate cortex, and discuss the possible molecular mechanisms and functional implications in pain-related emotional disorders.
Collapse
Affiliation(s)
- Qi-Yu Chen
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zhi-Ling Zhang
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qin Liu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao-Jun Chen
- Department of Neurology, Guangzhou Chinese Medical Integrated Hospital (Huadu), Guangdong, China
| | - Xiao-Kang Zhang
- The First Affiliated Hospital of Gan-Nan Medical University, Ganzhopu, China
| | - Ping-Yi Xu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Evidence for Decreased Nucleolar PARP-1 as an Early Marker of Cognitive Impairment. Neural Plast 2019; 2019:4383258. [PMID: 31827497 PMCID: PMC6885846 DOI: 10.1155/2019/4383258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/11/2019] [Accepted: 10/01/2019] [Indexed: 11/21/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear protein that regulates gene expression through poly(ADP)-ribosylation, resulting in the loosening of chromatin structure. PARP-1 enzymatic activity has been shown to be necessary for the expression of several genes required for memory formation and consolidation. Previously, we showed that nucleolar PARP-1 is significantly decreased in hippocampal pyramidal cells in Alzheimer's disease (AD). We proposed that the displacement of PARP-1 from the nucleolus results in downregulation of new rRNA expression and ribosome biogenesis, leading to cognitive impairment. To further investigate the relationship between nucleolar PARP-1 and memory impairment, we examined PARP-1 expression in the hippocampi of individuals with mild cognitive impairment (MCI) compared to control and AD cases. We used immunohistochemical techniques to examine the nucleolar distribution of PARP-1 in the Cornu Ammonis (CA region) of the hippocampus. PARP-1 positive cells were then scored for the presence or absence of PARP-1 in the nucleolus. We found a significant decrease of PARP-1 staining in the nucleolar compartment of hippocampal pyramidal cells in MCI compared with Control and AD. When the four CA (CA1-4) regions were considered separately, only the CA1 region showed significant differences in nucleolar PARP-1 with Control > AD > MCI cases. Categorization of nucleolar PARP-1 into “distinct” and “diffuse” groups suggest that most of the changes occur within the distinct group. In addition, measurements of the nucleolar diameter of nucleolar PARP-1 positive cells in CA2 and CA4 showed Control > MCI. Thus, MCI cases had a lower percentage of PARP-1 nucleolar positive cells in CA1 and smaller nucleolar diameters in CA2 and CA4, compared to Control. Our data suggest that disruption of nucleolar form and function is an early and important step in the progression of cognitive impairment.
Collapse
|
13
|
Cohen-Armon M, Yeheskel A, Pascal JM. Signal-induced PARP1-Erk synergism mediates IEG expression. Signal Transduct Target Ther 2019; 4:8. [PMID: 30993015 PMCID: PMC6459926 DOI: 10.1038/s41392-019-0042-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/10/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
A recently disclosed Erk-induced PARP1 activation mechanism mediates the expression of immediate early genes (IEGs) in response to a variety of extra- and intracellular signals implicated in memory acquisition, development and proliferation. Here, we review this mechanism, which is initiated by stimulation-induced binding of PARP1 to phosphorylated Erk translocated into the nucleus. This binding maintains long-lasting synergistic activity of these proteins, which offers a new pattern for targeted therapy.
Collapse
Affiliation(s)
- Malka Cohen-Armon
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Adva Yeheskel
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - John M. Pascal
- Department of Biochemistry and Molecular Medicine, University of Montreal, Québec, Canada
| |
Collapse
|
14
|
Hwang S, Lee SE, Ahn SG, Lee GH. Psoralidin Stimulates Expression of Immediate-Early Genes and Synapse Development in Primary Cortical Neurons. Neurochem Res 2018; 43:2460-2472. [DOI: 10.1007/s11064-018-2674-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/29/2022]
|
15
|
Visochek L, Cohen-Armon M. PARP1-Erk synergism in proliferating cells. Oncotarget 2018; 9:29140-29145. [PMID: 30018741 PMCID: PMC6044375 DOI: 10.18632/oncotarget.25633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 05/31/2018] [Indexed: 01/04/2023] Open
Abstract
A synergism between PARP1 and phosphorylated Erk mediating IEG (immediate early gene) expression has been recently reported in cerebral neurons and cardiomyocytes. Stimulation induced PARP-Erk synergism was required for IEG expression underlying synaptic plasticity and long-term memory acquisition during learning. It was similarly required for cardiomyocytes development. Here, we identified this mechanism in Erk-induced gene expression promoting proliferation. This mechanism can be targeted in malignant cells.
Collapse
Affiliation(s)
- Leonid Visochek
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Malka Cohen-Armon
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
16
|
Ordway GA, Szebeni A, Hernandez LJ, Crawford JD, Szebeni K, Chandley MJ, Burgess KC, Miller C, Bakkalbasi E, Brown RW. Antidepressant-Like Actions of Inhibitors of Poly(ADP-Ribose) Polymerase in Rodent Models. Int J Neuropsychopharmacol 2017; 20:994-1004. [PMID: 29016792 PMCID: PMC5716178 DOI: 10.1093/ijnp/pyx068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Many patients suffering from depressive disorders are refractory to treatment with currently available antidepressant medications, while many more exhibit only a partial response. These factors drive research to discover new pharmacological approaches to treat depression. Numerous studies demonstrate evidence of inflammation and elevated oxidative stress in major depression. Recently, major depression has been shown to be associated with elevated levels of DNA oxidation in brain cells, accompanied by increased gene expression of the nuclear base excision repair enzyme, poly(ADP-ribose) polymerase-1. Given these findings and evidence that drugs that inhibit poly(ADP-ribose) polymerase-1 activity have antiinflammatory and neuroprotective properties, the present study was undertaken to examine the potential antidepressant properties of poly(ADP-ribose) polymerase inhibitors. METHODS Two rodent models, the Porsolt swim test and repeated exposure to psychological stressors, were used to test the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide, for potential antidepressant activity. Another poly(ADP-ribose) polymerase inhibitor, 5-aminoisoquinolinone, was also tested. RESULTS Poly(ADP-ribose) polymerase inhibitors produced antidepressant-like effects in the Porsolt swim test, decreasing immobility time, and increasing latency to immobility, similar to the effects of fluoxetine. In addition, 3-aminobenzamide treatment increased sucrose preference and social interaction times relative to vehicle-treated control rats following repeated exposure to combined social defeat and unpredictable stress, mediating effects similar to fluoxetine treatment. CONCLUSIONS The poly(ADP-ribose) polymerase inhibitors 3-aminobenzamide and 5-aminoisoquinolinone exhibit antidepressant-like activity in 2 rodent stress models and uncover poly(ADP-ribose) polymerase as a unique molecular target for the potential development of a novel class of antidepressants.
Collapse
Affiliation(s)
- Gregory A Ordway
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi),Correspondence: Gregory A. Ordway, PhD, East Tennessee State University, PO Box 70577, Johnson City, 37614 ()
| | - Attila Szebeni
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Liza J Hernandez
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Jessica D Crawford
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Katalin Szebeni
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Michelle J Chandley
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Katherine C Burgess
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Corwin Miller
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Erol Bakkalbasi
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Russell W Brown
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| |
Collapse
|
17
|
Jubin T, Kadam A, Gani AR, Singh M, Dwivedi M, Begum R. Poly ADP-ribose polymerase-1: Beyond transcription and towards differentiation. Semin Cell Dev Biol 2017; 63:167-179. [PMID: 27476447 DOI: 10.1016/j.semcdb.2016.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023]
Abstract
Gene regulation mediates the processes of cellular development and differentiation leading to the origin of different cell types each having their own signature gene expression profile. However, the compact chromatin structure and the timely recruitment of molecules involved in various signaling pathways are of prime importance for temporal and spatial gene regulation that eventually contribute towards cell type and specificity. Poly (ADP-ribose) polymerase-1 (PARP-1), a 116-kDa nuclear multitasking protein is involved in modulation of chromatin condensation leading to altered gene expression. In response to activation signals, it adds ADP-ribose units to various target proteins including itself, thus regulating various key cellular processes like DNA repair, cell death, transcription, mRNA splicing etc. This review provides insights into the role of PARP-1 in gene regulation, cell differentiation and multicellular morphogenesis. In addition, the review also explores involvement of PARP-1 in immune cells development and therapeutic possibilities to treat various human diseases.
Collapse
Affiliation(s)
- Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Amina Rafath Gani
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India; Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Mala Singh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Mitesh Dwivedi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India; C.G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Surat, Gujarat 394350, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India.
| |
Collapse
|
18
|
Cohen-Armon M. A PARP1-Erk2 synergism is required for stimulation-induced expression of immediate early genes. GENE & TRANSLATIONAL BIOINFORMATICS 2016; 2:e1367. [PMID: 27857998 PMCID: PMC5110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A PARP1-Erk2 synergism was required to generate synaptic long-term potentiation in the CA3-CA1 hippocampal connections. This molecular mechanism was associated with the recently identified pivotal role of polyADP-ribosylation in learning. High frequency electrical stimulation of cortical and hippocampal neurons induced binding of phosphorylated Erk2 (transported into the nucleus) to the nuclear protein PARP1. PARP1-Erk2 binding induced PARP1 activation and polyADP-ribosylation of its prominent substrate, linker histone H1. A facilitated access of PARP1-bound phosphorylated Erk2 to its substrates, transcription factors Elk1 and CREB was attributed to the release of polyADP-ribosylated H1 from the DNA, causing local DNA relaxation. Erk-induced phosphorylation of transcription factors activating the HAT activity of CBP (CREB binding protein), recruited acetylated histone H4 to the promoters of immediate early genes (IEG) cfos, zif268 and arc, which are implicated in synaptic plasticity. In accordance, their induced expression was suppressed after PARP1 genetic deletion in PARP1-KO mice, or after PARP1 inhibition or silencing. Moreover, under these conditions, long-term synaptic potentiation (LTP) (indicating synaptic plasticity) was not generation in the hippocampal CA3-CA1 connections, and learning abilities were impaired. Furthermore, both IEG expression and LTP generation failed when cerebral neurons accumulated single strand DNA breaks, due to a predominant binding of PARP1 to nicked DNA, occluding its Erk binding sites. Thus, a declined synaptic plasticity is anticipated when aged cerebral neurons accumulate DNA single-strand breaks during life span.
Collapse
Affiliation(s)
- M. Cohen-Armon
- Department of Physiology and Pharmacology, Sackler School of Medicine, and the Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|