1
|
MacLean MR, Walker OL, Arun RP, Fernando W, Marcato P. Informed by Cancer Stem Cells of Solid Tumors: Advances in Treatments Targeting Tumor-Promoting Factors and Pathways. Int J Mol Sci 2024; 25:4102. [PMID: 38612911 PMCID: PMC11012648 DOI: 10.3390/ijms25074102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation within tumors that promote cancer progression, metastasis, and recurrence due to their self-renewal capacity and resistance to conventional therapies. CSC-specific markers and signaling pathways highly active in CSCs have emerged as a promising strategy for improving patient outcomes. This review provides a comprehensive overview of the therapeutic targets associated with CSCs of solid tumors across various cancer types, including key molecular markers aldehyde dehydrogenases, CD44, epithelial cellular adhesion molecule, and CD133 and signaling pathways such as Wnt/β-catenin, Notch, and Sonic Hedgehog. We discuss a wide array of therapeutic modalities ranging from targeted antibodies, small molecule inhibitors, and near-infrared photoimmunotherapy to advanced genetic approaches like RNA interference, CRISPR/Cas9 technology, aptamers, antisense oligonucleotides, chimeric antigen receptor (CAR) T cells, CAR natural killer cells, bispecific T cell engagers, immunotoxins, drug-antibody conjugates, therapeutic peptides, and dendritic cell vaccines. This review spans developments from preclinical investigations to ongoing clinical trials, highlighting the innovative targeting strategies that have been informed by CSC-associated pathways and molecules to overcome therapeutic resistance. We aim to provide insights into the potential of these therapies to revolutionize cancer treatment, underscoring the critical need for a multi-faceted approach in the battle against cancer. This comprehensive analysis demonstrates how advances made in the CSC field have informed significant developments in novel targeted therapeutic approaches, with the ultimate goal of achieving more effective and durable responses in cancer patients.
Collapse
Affiliation(s)
- Maya R. MacLean
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Olivia L. Walker
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Raj Pranap Arun
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Wasundara Fernando
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Nova Scotia Health Authority, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
2
|
Krenn PW, Aberger F. Targeting cancer hallmark vulnerabilities in hematologic malignancies by interfering with Hedgehog/GLI signaling. Blood 2023; 142:1945-1959. [PMID: 37595276 DOI: 10.1182/blood.2021014761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
Understanding the genetic alterations, disrupted signaling pathways, and hijacked mechanisms in oncogene-transformed hematologic cells is critical for the development of effective and durable treatment strategies against liquid tumors. In this review, we focus on the specific involvement of the Hedgehog (HH)/GLI pathway in the manifestation and initiation of various cancer features in hematologic malignancies, including multiple myeloma, T- and B-cell lymphomas, and lymphoid and myeloid leukemias. By reviewing canonical and noncanonical, Smoothened-independent HH/GLI signaling and summarizing preclinical in vitro and in vivo studies in hematologic malignancies, we elucidate common molecular mechanisms by which HH/GLI signaling controls key oncogenic processes and cancer hallmarks such as cell proliferation, cancer stem cell fate, genomic instability, microenvironment remodeling, and cell survival. We also summarize current clinical trials with HH inhibitors and discuss successes and challenges, as well as opportunities for future combined therapeutic approaches. By providing a bird's eye view of the role of HH/GLI signaling in liquid tumors, we suggest that a comprehensive understanding of the general oncogenic effects of HH/GLI signaling on the formation of cancer hallmarks is essential to identify critical vulnerabilities within tumor cells and their supporting remodeled microenvironment, paving the way for the development of novel and efficient personalized combination therapies for hematologic malignancies.
Collapse
Affiliation(s)
- Peter W Krenn
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
3
|
Busch C, Mulholland T, Zagnoni M, Dalby M, Berry C, Wheadon H. Overcoming BCR::ABL1 dependent and independent survival mechanisms in chronic myeloid leukaemia using a multi-kinase targeting approach. Cell Commun Signal 2023; 21:342. [PMID: 38031192 PMCID: PMC10685629 DOI: 10.1186/s12964-023-01363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Despite improved patient outcome using tyrosine kinase inhibitors (TKIs), chronic myeloid leukaemia (CML) patients require life-long treatment due to leukaemic stem cell (LSC) persistence. LSCs reside in the bone marrow (BM) niche, which they modify to their advantage. The BM provides oncogene-independent signals to aid LSC cell survival and quiescence. The bone-morphogenetic pathway (BMP) is one pathway identified to be highly deregulated in CML, with high levels of BMP ligands detected in the BM, accompanied by CML stem and progenitor cells overexpressing BMP type 1 receptors- activin-like kinases (ALKs), especially in TKI resistant patients. Saracatinib (SC), a SRC/ABL1 dual inhibitor, inhibits the growth of CML cells resistant to the TKI imatinib (IM). Recent studies indicate that SC is also a potent ALK inhibitor and BMP antagonist. Here we investigate the efficacy of SC in overcoming CML BCR::ABL1 dependent and independent signals mediated by the BM niche both in 2D and 3D culture. METHODS CML cells (K562 cell line and CML CD34+ primary cells) were treated with single or combination treatments of: IM, SC and the BMP receptors inhibitor dorsomorphin (DOR), with or without BMP4 stimulation in 2D (suspension) and 3D co-culture on HS5 stroma cell line and mesenchymal stem cells in AggreWell and microfluidic devices. Flow cytometry was performed to investigate apoptosis, cell cycle progression and proliferation, alongside colony assays following treatment. Proteins changes were validated by immunoblotting and transcriptional changes by Fluidigm multiplex qPCR. RESULTS By targeting the BMP pathway, using specific inhibitors against ALKs in combination with SRC and ABL TKIs, we show an increase in apoptosis, altered cell cycle regulation, fewer cell divisions, and reduced numbers of CD34+ cells. Impairment of long-term proliferation and differentiation potential after combinatorial treatment also occurred. CONCLUSION BMP signalling pathway is important for CML cell survival. Targeting SRC, ABL and ALK kinases is more effective than ABL inhibition alone, the combination efficacy importantly being demonstrated in both 2D and 3D cell cultures highlighting the need for combinatorial therapies in contrast to standard of care single agents. Our study provides justification to target multiple kinases in CML to combat LSC persistence.
Collapse
Affiliation(s)
- Caroline Busch
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Theresa Mulholland
- Centre for Microsystems and Photonics, Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK
| | - Michele Zagnoni
- Centre for Microsystems and Photonics, Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK
| | - Matthew Dalby
- Mazumdar-Shaw Advanced Research Centre, School of Molecular Biosciences, University of Glasgow, Glasgow, G11 6EW, UK
| | - Catherine Berry
- Mazumdar-Shaw Advanced Research Centre, School of Molecular Biosciences, University of Glasgow, Glasgow, G11 6EW, UK
| | - Helen Wheadon
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK.
| |
Collapse
|
4
|
Leow BCS, Kok CH, Yeung DT, Hughes TP, White DL, Eadie LN. The acquisition order of leukemic drug resistance mutations is directed by the selective fitness associated with each resistance mechanism. Sci Rep 2023; 13:13110. [PMID: 37567965 PMCID: PMC10421868 DOI: 10.1038/s41598-023-40279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
In Chronic Myeloid Leukemia, the transition from drug sensitive to drug resistant disease is poorly understood. Here, we used exploratory sequencing of gene transcripts to determine the mechanisms of drug resistance in a dasatinib resistant cell line model. Importantly, cell samples were collected sequentially during drug exposure and dose escalation, revealing several resistance mechanisms which fluctuated over time. BCR::ABL1 overexpression, BCR::ABL1 kinase domain mutation, and overexpression of the small molecule transporter ABCG2, were identified as dasatinib resistance mechanisms. The acquisition of mutations followed an order corresponding with the increase in selective fitness associated with each resistance mechanism. Additionally, it was demonstrated that ABCG2 overexpression confers partial ponatinib resistance. The results of this study have broad applicability and help direct effective therapeutic drug usage and dosing regimens and may be useful for clinicians to select the most efficacious therapy at the most beneficial time.
Collapse
Affiliation(s)
- Benjamin C S Leow
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Chung H Kok
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - David T Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
- Australasian Leukaemia & Lymphoma Group, Richmond, VIC, 3121, Australia
- Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Timothy P Hughes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
- Australasian Leukaemia & Lymphoma Group, Richmond, VIC, 3121, Australia
- Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Deborah L White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
- Australasian Leukaemia & Lymphoma Group, Richmond, VIC, 3121, Australia
- Australian & New Zealand Children's Haematology/Oncology Group, Clayton, VIC, 3168, Australia
- Australian Genomics Health Alliance, Parkville, VIC, 3052, Australia
| | - Laura N Eadie
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia.
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia.
| |
Collapse
|
5
|
Rajamani BM, Illangeswaran RSS, Benjamin ESB, Balakrishnan B, Jebanesan DZP, Das S, Pai AA, Vidhyadharan RT, Mohan A, Karathedath S, Abraham A, Mathews V, Velayudhan SR, Balasubramanian P. Modulating retinoid-X-receptor alpha (RXRA) expression sensitizes chronic myeloid leukemia cells to imatinib in vitro and reduces disease burden in vivo. Front Pharmacol 2023; 14:1187066. [PMID: 37324449 PMCID: PMC10264673 DOI: 10.3389/fphar.2023.1187066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: The ligand-activated transcription factors, nuclear hormone receptors (NHRs), remain unexplored in hematological malignancies except for retinoic acid receptor alpha (RARA). Methods: Here we profiled the expression of various NHRs and their coregulators in Chronic myeloid leukemia (CML) cell lines and identified a significant differential expression pattern between inherently imatinib mesylate (IM)-sensitive and resistant cell lines. Results: Retinoid-X-receptor alpha (RXRA) was downregulated in CML cell lines inherently resistant to IM and in primary CML CD34+ cells. Pre-treatment with clinically relevant RXRA ligands improved sensitivity to IM in-vitro in both CML cell lines and primary CML cells. This combination effectively reduced the viability and colony-forming capacity of CML CD34+ cells in-vitro. In-vivo, this combination reduced leukemic burden and prolonged survival. Overexpression (OE) of RXRA inhibited proliferation and improved sensitivity to IM in-vitro. In-vivo, RXRA OE cells showed reduced engraftment of cells in the bone marrow, improved sensitivity to IM, and prolonged survival. Both RXRA OE and ligand treatment markedly reduced BCR::ABL1 downstream kinase activation, activating apoptotic cascades and improving sensitivity to IM. Importantly, RXRA OE also led to the disruption of the oxidative capacity of these cells. Conclusion: Combining IM with clinically available RXRA ligands could form an alternative treatment strategy in CML patients with suboptimal response to IM.
Collapse
Affiliation(s)
- Bharathi M. Rajamani
- Department of Haematology, Christian Medical College, Vellore, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | | | - Esther Sathya Bama Benjamin
- Department of Haematology, Christian Medical College, Vellore, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Balaji Balakrishnan
- Department of Haematology, Christian Medical College, Vellore, India
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | | | - Saswati Das
- Department of Haematology, Christian Medical College, Vellore, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Aswin Anand Pai
- Department of Haematology, Christian Medical College, Vellore, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | - Ajith Mohan
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Aby Abraham
- Department of Haematology, Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Shaji R. Velayudhan
- Department of Haematology, Christian Medical College, Vellore, India
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, India
| | | |
Collapse
|
6
|
Wu A, Turner KA, Woolfson A, Jiang X. The Hedgehog Pathway as a Therapeutic Target in Chronic Myeloid Leukemia. Pharmaceutics 2023; 15:pharmaceutics15030958. [PMID: 36986819 PMCID: PMC10053130 DOI: 10.3390/pharmaceutics15030958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Despite the development of therapeutic agents that selectively target cancer cells, relapse driven by acquired drug resistance and resulting treatment failure remains a significant issue. The highly conserved Hedgehog (HH) signaling pathway performs multiple roles in both development and tissue homeostasis, and its aberrant regulation is known to drive the pathogenesis of numerous human malignancies. However, the role of HH signaling in mediating disease progression and drug resistance remains unclear. This is especially true for myeloid malignancies. The HH pathway, and in particular the protein Smoothened (SMO), has been shown to be essential for regulating stem cell fate in chronic myeloid leukemia (CML). Evidence suggests that HH pathway activity is critical for maintaining the drug-resistant properties and survival of CML leukemic stem cells (LSCs), and that dual inhibition of BCR-ABL1 and SMO may comprise an effective therapeutic strategy for the eradication of these cells in patients. This review will explore the evolutionary origins of HH signaling, highlighting its roles in development and disease, which are mediated by canonical and non-canonical HH signaling. Development of small molecule inhibitors of HH signaling and clinical trials using these inhibitors as therapeutic agents in cancer and their potential resistance mechanisms, are also discussed, with a focus on CML.
Collapse
Affiliation(s)
- Andrew Wu
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Interdisciplinary Oncology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kelly A. Turner
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Adrian Woolfson
- Replay Holdings Inc., 5555 Oberlin Drive, San Diego, CA 92121, USA
| | - Xiaoyan Jiang
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Interdisciplinary Oncology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence:
| |
Collapse
|
7
|
Ardalan Khales S, Forghanifard MM, Abbaszadegan MR, Hosseini SE. EZH2 deregulates BMP, Hedgehog, and Hippo cell signaling pathways in esophageal squamous cell carcinoma. Adv Med Sci 2023; 68:21-30. [PMID: 36403545 DOI: 10.1016/j.advms.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/31/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Cell signaling pathways play central roles in cellular stemness state, and aberrant activation of these cascades is attributed to the severity of esophageal squamous cell carcinoma (ESCC). In this study, we aimed to determine the potential impact of enhancer of zeste homolog 2 (EZH2) gene on different cell signaling pathways including bone morphogenesis protein (BMP), Hedgehog, and Hippo in ESCC, and to illuminate EZH2-mediated gene regulatory networks in this aggressive malignancy. MATERIALS AND METHODS EZH2 silencing was performed in two ESCC lines, KYSE-30 and YM-1, followed by gene expression analysis of BMP, Hedgehog, and Hippo signaling using RT-qPCR. EZH2 enforced expression was induced in both cell lines and gene expression of the pathways was evaluated in parallel. The contribution of EZH2 in epithelial-mesenchymal transition (EMT) and cell migration were also evaluated. RESULTS EZH2 downregulation decreased expression of the vital components of the Hedgehog and Hippo signaling, while EZH2 upregulation significantly increased its levels in both ESCC cell lines. The expression of BMP target genes was either reduced in EZH2-expressing cells or increased in EZH2-silencing cells. Enforced expression of EZH2 stimulated downregulation of epithelial markers and upregulation of mesenchymal markers in KYSE-30 and YM-1 cells. Significant downregulation of mesenchymal markers was detected following the silencing of EZH2 in the cells. Knocking down EZH2 decreased migration, while enforced expression of EZH2 increased migration in both ESCC lines. CONCLUSIONS These results may support the promoting role of EZH2 in ESCC tumorigenesis through the recruitment of important cell signaling pathways.
Collapse
Affiliation(s)
| | | | | | - Seyed Ebrahim Hosseini
- Department of Biology, Faculty of Sciences, Zand Institute of Higher Education, Shiraz, Iran
| |
Collapse
|
8
|
Shah M, Kumar H, Qiu S, Li H, Harris M, He J, Abraham A, Crossman DK, Paterson A, Welner RS, Bhatia R. Low c-Kit expression identifies primitive, therapy-resistant CML stem cells. JCI Insight 2023; 8:e157421. [PMID: 36413413 PMCID: PMC9870079 DOI: 10.1172/jci.insight.157421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the efficacy of tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML), malignant long-term hematopoietic stem cells (LT-HSCs) persist as a source of relapse. However, LT-HSCs are heterogenous and the most primitive, drug-resistant LT-HSC subpopulations are not well characterized. In normal hematopoiesis, self-renewal and long-term reconstitution capacity are enriched within LT-HSCs with low c-Kit expression (c-KITlo). Here, using a transgenic CML mouse model, we found that long-term engraftment and leukemogenic capacity were restricted to c-KITlo CML LT-HSCs. CML LT-HSCs demonstrated enhanced differentiation with expansion of mature progeny following exposure to the c-KIT ligand, stem cell factor (SCF). Conversely, SCF deletion led to depletion of normal LT-HSCs but increase in c-KITlo and total CML LT-HSCs with reduced generation of mature myeloid cells. CML c-KITlo LT-HSCs showed reduced cell cycling and expressed enhanced quiescence and inflammatory gene signatures. SCF administration led to enhanced depletion of CML primitive progenitors but not LT-HSCs after TKI treatment. Human CML LT-HSCs with low or absent c-KIT expression were markedly enriched after TKI treatment. We conclude that CML LT-HSCs expressing low c-KIT levels are enriched for primitive, quiescent, drug-resistant leukemia-initiating cells and represent a critical target for eliminating disease persistence.
Collapse
Affiliation(s)
- Mansi Shah
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Harish Kumar
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shaowei Qiu
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hui Li
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mason Harris
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jianbo He
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ajay Abraham
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Andrew Paterson
- Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Robert S. Welner
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ravi Bhatia
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
9
|
Ng JJ, Ong ST. Therapy Resistance and Disease Progression in CML: Mechanistic Links and Therapeutic Strategies. Curr Hematol Malig Rep 2022; 17:181-197. [PMID: 36258106 DOI: 10.1007/s11899-022-00679-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Despite the adoption of tyrosine kinases inhibitors (TKIs) as molecular targeted therapy in chronic myeloid leukemia, some patients do not respond to treatment and even experience disease progression. This review aims to give a broad summary of advances in understanding of the mechanisms of therapy resistance, as well as management strategies that may overcome or prevent the emergence of drug resistance. Ultimately, the goal of therapy is the cure of CML, which will also require an increased understanding of the leukemia stem cell (LSC). RECENT FINDINGS Resistance to tyrosine kinase inhibitors stems from a range of possible causes. Mutations of the BCR-ABL1 fusion oncoprotein have been well-studied. Other causes range from cell-intrinsic factors, such as the inherent resistance of primitive stem cells to drug treatment, to mechanisms extrinsic to the leukemic compartment that help CML cells evade apoptosis. There exists heterogeneity in TKI response among different hematopoietic populations in CML. The abundances of these TKI-sensitive and TKI-insensitive populations differ from patient to patient and contribute to response heterogeneity. It is becoming clear that targeting the BCR-ABL1 kinase through TKIs is only one part of the equation, and TKI usage alone may not cure the majority of patients with CML. Considerable effort should be devoted to targeting the BCR-ABL1-independent mechanisms of resistance and persistence of CML LSCs.
Collapse
Affiliation(s)
- John Joson Ng
- Cancer & Stem Cell Biology Signature Research Programme, Duke-NUS Medical School, 8 College Road, Singapore, Singapore, 169857
| | - S Tiong Ong
- Cancer & Stem Cell Biology Signature Research Programme, Duke-NUS Medical School, 8 College Road, Singapore, Singapore, 169857.
- Department of Haematology, Singapore General Hospital, Singapore, Singapore.
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore.
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
10
|
Lemos T, Merchant A. The hedgehog pathway in hematopoiesis and hematological malignancy. Front Oncol 2022; 12:960943. [PMID: 36091167 PMCID: PMC9453489 DOI: 10.3389/fonc.2022.960943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
The Hedgehog (HH) pathway is a promising therapeutic target in hematological malignancies. Activation of the pathway has been tied to greater chances of relapse and poorer outcomes in several hematological malignancies and inhibiting the pathway has improved outcomes in several clinical trials. One inhibitor targeting the pathway via the protein Smoothened (SMO), glasdegib, has been approved by the FDA for use with a low dose cytarabine regiment in some high-risk acute myeloid leukemia patients (AML). If further clinical trials in glasdegib produce positive results, there may soon be more general use of HH inhibitors in the treatment of hematological malignancies.While there is clinical evidence that HH inhibitors may improve outcomes and help prevent relapse, a full understanding of any mechanism of action remains elusive. The bulk of AML cells exhibit primary resistance to SMO inhibition (SMOi), leading some to hypothesize that that clinical activity of SMOi is mediated through modulation of self-renewal and chemoresistance in rare cancer stem cells (CSC). Direct evidence that CSC are being targeted in patients by SMOi has proven difficult to produce, and here we present data to support the alternative hypothesis that suggests the clinical benefit observed with SMOi is being mediated through stromal cells in the tumor microenvironment.This paper's aims are to review the history of the HH pathway in hematopoiesis and hematological malignancy, to highlight the pre-clinical and clinical evidence for its use a therapeutic target, and to explore the evidence for stromal activation of the pathway acting to protect CSCs and enable self-renewal of AML and other diseases. Finally, we highlight gaps in the current data and present hypotheses for new research directions.
Collapse
Affiliation(s)
| | - Akil Merchant
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
11
|
Update on glasdegib in acute myeloid leukemia - broadening horizons of Hedgehog pathway inhibitors. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:9-34. [PMID: 36651529 DOI: 10.2478/acph-2022-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 01/20/2023]
Abstract
Numerous new emerging therapies, including oral targeted chemotherapies, have recently entered the therapeutic arsenal against acute myeloid leukemia (AML). The significant shift toward the use of these novel therapeutics, administered either alone or in combination with intensive or low-intensity chemotherapy, changes the prospects for the control of this disease, especially for elderly patients. Glasdegib, an oral Hedgehog pathway inhibitor, showed satisfactory response rates associated with moderate toxicity and less early mortality than standard induction regimens in this population. It was approved in November 2018 by the FDA and in June 2020 by the EMA for use in combination with low-dose cytarabine as a treatment of newly-diagnosed AML in patients aged ≥ 75 and/or unfit for intensive induction chemotherapy. The current paper proposes an extensive, up-to-date review of the preclinical and clinical development of glasdegib. Elements of its routine clinical use and the landscape of ongoing clinical trials are also stated.
Collapse
|
12
|
Mojtahedi H, Yazdanpanah N, Rezaei N. Chronic myeloid leukemia stem cells: targeting therapeutic implications. Stem Cell Res Ther 2021; 12:603. [PMID: 34922630 PMCID: PMC8684082 DOI: 10.1186/s13287-021-02659-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm driven by BCR-ABL1 oncoprotein, which plays a pivotal role in CML pathology, diagnosis, and treatment as confirmed by the success of tyrosine kinase inhibitor (TKI) therapy. Despite advances in the development of more potent tyrosine kinase inhibitors, some mechanisms particularly in terms of CML leukemic stem cell (CML LSC) lead to intrinsic or acquired therapy resistance, relapse, and disease progression. In fact, the maintenance CML LSCs in patients who are resistance to TKI therapy indicates the role of CML LSCs in resistance to therapy through survival mechanisms that are not completely dependent on BCR-ABL activity. Targeting therapeutic approaches aim to eradicate CML LSCs through characterization and targeting genetic alteration and molecular pathways involving in CML LSC survival in a favorable leukemic microenvironment and resistance to apoptosis, with the hope of providing a functional cure. In other words, it is possible to develop the combination therapy of TKs with drugs targeting genes or molecules more specifically, which is required for survival mechanisms of CML LSCs, while sparing normal HSCs for clinical benefits along with TKIs.
Collapse
Affiliation(s)
- Hanieh Mojtahedi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Chen Y, Zou J, Cheng F, Li W. Treatment-Free Remission in Chronic Myeloid Leukemia and New Approaches by Targeting Leukemia Stem Cells. Front Oncol 2021; 11:769730. [PMID: 34778088 PMCID: PMC8581243 DOI: 10.3389/fonc.2021.769730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic landscape for chronic myeloid leukemia (CML) has improved significantly with the approval of tyrosine kinase inhibitors (TKIs) for therapeutic use. Most patients with optimal responses to TKIs can have a normal life expectancy. Treatment-free remission (TFR) after discontinuing TKI has increasingly become a new goal for CML treatment. However, TKI only "control" CML, and relapse after discontinuation has become a key factor hindering patient access to attempt TFR. In this study, we reviewed studies on TKI discontinuation, including both first and second-generation TKI. We also reviewed predictors of relapse, new monitoring methods, and strategies targeting leukemic stem cells.
Collapse
Affiliation(s)
| | | | | | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Abraham A, Matsui W. Hedgehog Signaling in Myeloid Malignancies. Cancers (Basel) 2021; 13:cancers13194888. [PMID: 34638372 PMCID: PMC8507617 DOI: 10.3390/cancers13194888] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The Hedgehog signaling pathway is aberrantly activated in many myeloid malignancies, and pathway inhibition is clinically beneficial in specific patients with acute myeloid leukemia. However, even with the approval of these agents, the role of Hedgehog signaling in other myeloid disorders is less clear. In this review, we summarize the laboratory studies that have examined Hedgehog signaling in normal and malignant hematopoiesis as well as the clinical studies that have been carried out in several myeloid leukemias. Finally, we explore potential strategies to further expand the use of pathway inhibitors as therapies for these diseases. Abstract Myeloid malignancies arise from normal hematopoiesis and include several individual disorders with a wide range of clinical manifestations, treatment options, and clinical outcomes. The Hedgehog (HH) signaling pathway is aberrantly activated in many of these diseases, and glasdegib, a Smoothened (SMO) antagonist and HH pathway inhibitor, has recently been approved for the treatment of acute myeloid leukemia (AML). The efficacy of SMO inhibitors in AML suggests that they may be broadly active, but clinical studies in other myeloid malignancies have been largely inconclusive. We will discuss the biological role of the HH pathway in normal hematopoiesis and myeloid malignancies and review clinical studies targeting HH signaling in these diseases. In addition, we will examine SMO-independent pathway activation and highlight potential strategies that may expand the clinical utility of HH pathway antagonists.
Collapse
|
15
|
Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia-From Molecular Mechanisms to Clinical Relevance. Cancers (Basel) 2021; 13:cancers13194820. [PMID: 34638304 PMCID: PMC8508378 DOI: 10.3390/cancers13194820] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Chronic myeloid leukemia (CML) is a myeloproliferative neoplasia associated with a molecular alteration, the fusion gene BCR-ABL1, that encodes the tyrosine kinase oncoprotein BCR-ABL1. This led to the development of tyrosine kinase inhibitors (TKI), with Imatinib being the first TKI approved. Although the vast majority of CML patients respond to Imatinib, resistance to this targeted therapy contributes to therapeutic failure and relapse. Here we review the molecular mechanisms and other factors (e.g., patient adherence) involved in TKI resistance, the methodologies to access these mechanisms, and the possible therapeutic approaches to circumvent TKI resistance in CML. Abstract Resistance to targeted therapies is a complex and multifactorial process that culminates in the selection of a cancer clone with the ability to evade treatment. Chronic myeloid leukemia (CML) was the first malignancy recognized to be associated with a genetic alteration, the t(9;22)(q34;q11). This translocation originates the BCR-ABL1 fusion gene, encoding the cytoplasmic chimeric BCR-ABL1 protein that displays an abnormally high tyrosine kinase activity. Although the vast majority of patients with CML respond to Imatinib, a tyrosine kinase inhibitor (TKI), resistance might occur either de novo or during treatment. In CML, the TKI resistance mechanisms are usually subdivided into BCR-ABL1-dependent and independent mechanisms. Furthermore, patients’ compliance/adherence to therapy is critical to CML management. Techniques with enhanced sensitivity like NGS and dPCR, the use of artificial intelligence (AI) techniques, and the development of mathematical modeling and computational prediction methods could reveal the underlying mechanisms of drug resistance and facilitate the design of more effective treatment strategies for improving drug efficacy in CML patients. Here we review the molecular mechanisms and other factors involved in resistance to TKIs in CML and the new methodologies to access these mechanisms, and the therapeutic approaches to circumvent TKI resistance.
Collapse
|
16
|
Soverini S, De Santis S, Monaldi C, Bruno S, Mancini M. Targeting Leukemic Stem Cells in Chronic Myeloid Leukemia: Is It Worth the Effort? Int J Mol Sci 2021; 22:ijms22137093. [PMID: 34209376 PMCID: PMC8269304 DOI: 10.3390/ijms22137093] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a classical example of stem cell cancer since it arises in a multipotent hematopoietic stem cell upon the acquisition of the t(9;22) chromosomal translocation, that converts it into a leukemic stem cell (LSC). The resulting BCR-ABL1 fusion gene encodes a deregulated tyrosine kinase that is recognized as the disease driver. Therapy with tyrosine kinase inhibitors (TKIs) eliminates progenitor and more differentiated cells but fails to eradicate quiescent LSCs. Thus, although many patients obtain excellent responses and a proportion of them can even attempt treatment discontinuation (treatment free remission [TFR]) after some years of therapy, LSCs persist, and represent a potentially dangerous reservoir feeding relapse and hampering TFR. Over the past two decades, intensive efforts have been devoted to the characterization of CML LSCs and to the dissection of the cell-intrinsic and -extrinsic mechanisms sustaining their persistence, in an attempt to find druggable targets enabling LSC eradication. Here we provide an overview and an update on these mechanisms, focusing in particular on the most recent acquisitions. Moreover, we provide a critical appraisal of the clinical relevance and feasibility of LSC targeting in CML.
Collapse
MESH Headings
- Drug Delivery Systems
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Neoplastic Stem Cells/enzymology
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Simona Soverini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, 40138 Bologna, Italy; (S.D.S.); (C.M.); (S.B.)
- Correspondence: ; Tel.: +39-051-214-3832
| | - Sara De Santis
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, 40138 Bologna, Italy; (S.D.S.); (C.M.); (S.B.)
| | - Cecilia Monaldi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, 40138 Bologna, Italy; (S.D.S.); (C.M.); (S.B.)
| | - Samantha Bruno
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, 40138 Bologna, Italy; (S.D.S.); (C.M.); (S.B.)
| | - Manuela Mancini
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
17
|
Kumar V, Vashishta M, Kong L, Wu X, Lu JJ, Guha C, Dwarakanath BS. The Role of Notch, Hedgehog, and Wnt Signaling Pathways in the Resistance of Tumors to Anticancer Therapies. Front Cell Dev Biol 2021; 9:650772. [PMID: 33968932 PMCID: PMC8100510 DOI: 10.3389/fcell.2021.650772] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Resistance to therapy is the major hurdle in the current cancer management. Cancer cells often rewire their cellular process to alternate mechanisms to resist the deleterious effect mounted by different therapeutic approaches. The major signaling pathways involved in the developmental process, such as Notch, Hedgehog, and Wnt, play a vital role in development, tumorigenesis, and also in the resistance to the various anticancer therapies. Understanding how cancer utilizes these developmental pathways in acquiring the resistance to the multi-therapeutic approach cancer can give rise to a new insight of the anti-therapy resistance mechanisms, which can be explored for the development of a novel therapeutic approach. We present a brief overview of Notch, Hedgehog, and Wnt signaling pathways in cancer and its role in providing resistance to various cancer treatment modalities such as chemotherapy, radiotherapy, molecular targeted therapy, and immunotherapy. Understanding the importance of these molecular networks will provide a rational basis for novel and safer combined anticancer therapeutic approaches for the improvement of cancer treatment by overcoming drug resistance.
Collapse
Affiliation(s)
- Vivek Kumar
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Mohit Vashishta
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lin Kong
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Xiaodong Wu
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade J Lu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Chandan Guha
- Albert Einstein College of Medicine, The Bronx, NY, United States
| | - B S Dwarakanath
- R&D Dept, Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
18
|
Rodrigues ACBDC, Costa RGA, Silva SLR, Dias IRSB, Dias RB, Bezerra DP. Cell signaling pathways as molecular targets to eliminate AML stem cells. Crit Rev Oncol Hematol 2021; 160:103277. [PMID: 33716201 DOI: 10.1016/j.critrevonc.2021.103277] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/25/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) remains the most lethal of leukemias and a small population of cells called leukemic stem cells (LSCs) has been associated with disease relapses. Some cell signaling pathways play an important role in AML survival, proliferation and self-renewal properties and are abnormally activated or suppressed in LSCs. This includes the NF-κB, Wnt/β-catenin, Hedgehog, Notch, EGFR, JAK/STAT, PI3K/AKT/mTOR, TGF/SMAD and PPAR pathways. This review aimed to discuss these pathways as molecular targets for eliminating AML LSCs. Herein, inhibitors/activators of these pathways were summarized as a potential new anti-AML therapy capable of eliminating LSCs to guide future researches. The clinical use of cell signaling pathways data can be useful to enhance the anti-AML therapy.
Collapse
Affiliation(s)
| | - Rafaela G A Costa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Suellen L R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Ingrid R S B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
19
|
Anusha, Dalal H, Subramanian S, V P S, Gowda DA, H K, Damodar S, Vyas N. Exovesicular-Shh confers Imatinib resistance by upregulating Bcl2 expression in chronic myeloid leukemia with variant chromosomes. Cell Death Dis 2021; 12:259. [PMID: 33707419 PMCID: PMC7952724 DOI: 10.1038/s41419-021-03542-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/29/2023]
Abstract
Chronic myeloid leukemia (CML) patients with complex chromosomal translocations as well as non-compliant CML patients often demonstrate short-lived responses and poor outcomes on the current therapeutic regimes using Imatinib and its variants. It has been derived so far that leukemic stem cells (LSCs) are responsible for Imatinib resistance and CML progression. Sonic hedgehog (Shh) signaling has been implicated in proliferation of this Imatinib-resistant CD34(+) LSCs. Our work here identifies the molecular mechanism of Shh-mediated mutation-independent Imatinib resistance that is most relevant for treating CML-variants and non-compliant patients. Our results elucidate that while Shh can impart stemness, it also upregulates expression of anti-apoptotic protein—Bcl2. It is the upregulation of Bcl2 that is involved in conferring Imatinib resistance to the CD34(+) LSCs. Sub-toxic doses of Bcl2 inhibitor or Shh inhibitor (<<IC50), when used as adjuvants along with Imatinib, can re-sensitize Shh signaling cells to Imatinib. Our work here highlights the need to molecularly stratify CML patients and implement combinatorial therapy to overcome the current limitations and improve outcomes in CML.
Collapse
Affiliation(s)
- Anusha
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.,St. John's Research Institute, St. John's Academy of Health Sciences, Bangalore, 560034, India
| | - Hamza Dalal
- Mazumdar Shaw Medical Center, Narayana Health City, Bangalore, 560099, India
| | - Sitalakshmi Subramanian
- St. John's Medical College and Hosptial, St. John's Academy of Health Sciences, Bangalore, 560034, India
| | - Snijesh V P
- St. John's Research Institute, St. John's Academy of Health Sciences, Bangalore, 560034, India
| | - Divya A Gowda
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Krishnamurthy H
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Sharat Damodar
- Mazumdar Shaw Medical Center, Narayana Health City, Bangalore, 560099, India.
| | - Neha Vyas
- St. John's Research Institute, St. John's Academy of Health Sciences, Bangalore, 560034, India.
| |
Collapse
|
20
|
Yung Y, Lee E, Chu HT, Yip PK, Gill H. Targeting Abnormal Hematopoietic Stem Cells in Chronic Myeloid Leukemia and Philadelphia Chromosome-Negative Classical Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22020659. [PMID: 33440869 PMCID: PMC7827471 DOI: 10.3390/ijms22020659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/02/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are unique hematopoietic stem cell disorders sharing mutations that constitutively activate the signal-transduction pathways involved in haematopoiesis. They are characterized by stem cell-derived clonal myeloproliferation. The key MPNs comprise chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). CML is defined by the presence of the Philadelphia (Ph) chromosome and BCR-ABL1 fusion gene. Despite effective cytoreductive agents and targeted therapy, complete CML/MPN stem cell eradication is rarely achieved. In this review article, we discuss the novel agents and combination therapy that can potentially abnormal hematopoietic stem cells in CML and MPNs and the CML/MPN stem cell-sustaining bone marrow microenvironment.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Autophagy
- Biomarkers, Tumor
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/genetics
- Combined Modality Therapy
- Disease Susceptibility
- Genetic Predisposition to Disease
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Molecular Targeted Therapy
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/pathology
- Myeloproliferative Disorders/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Philadelphia Chromosome
- Signal Transduction/drug effects
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
| | | | | | | | - Harinder Gill
- Correspondence: ; Tel.: +852-2255-4542; Fax: +852-2816-2863
| |
Collapse
|
21
|
Minciacchi VR, Kumar R, Krause DS. Chronic Myeloid Leukemia: A Model Disease of the Past, Present and Future. Cells 2021; 10:cells10010117. [PMID: 33435150 PMCID: PMC7827482 DOI: 10.3390/cells10010117] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid leukemia (CML) has been a "model disease" with a long history. Beginning with the first discovery of leukemia and the description of the Philadelphia Chromosome and ending with the current goal of achieving treatment-free remission after targeted therapies, we describe here the journey of CML, focusing on molecular pathways relating to signaling, metabolism and the bone marrow microenvironment. We highlight current strategies for combination therapies aimed at eradicating the CML stem cell; hopefully the final destination of this long voyage.
Collapse
MESH Headings
- Epigenesis, Genetic
- History, 20th Century
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/history
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Models, Biological
- Molecular Targeted Therapy
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Valentina R. Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany; (V.R.M.); (R.K.)
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany; (V.R.M.); (R.K.)
| | - Daniela S. Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany; (V.R.M.); (R.K.)
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt, Germany
- Faculty of Medicine, Medical Clinic II, Johann Wolfgang Goethe University, 60596 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-63395-500; Fax: +49-69-63395-519
| |
Collapse
|
22
|
Targeting Hedgehog Pathway and DNA Methyltransferases in Uterine Leiomyosarcoma Cells. Cells 2020; 10:cells10010053. [PMID: 33396427 PMCID: PMC7824187 DOI: 10.3390/cells10010053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Uterine leiomyosarcoma (LMS) is an aggressive tumor that presents poor prognosis, high rates of recurrence and metastasis. Because of its rarity, there is no information available concerning LMS molecular mechanisms of origin and development. Here, we assessed the expression profile of Hedgehog (HH) signaling pathway markers and the effects of their pharmacological inhibition on uterine smooth muscle (UTSM), leiomyoma and LMS cells. Additionally, we also evaluated the effects of DNMTs inhibition on LMS cells behavior. Cell proliferation, migration and apoptosis rates were evaluated by MTT, Scratch and Annexin V assays, respectively. RNA expression and protein levels were assessed by qRT-PCR and Western blot. We found that SMO and GLIs (1, 2 and 3) expression was upregulated in LMS cells, with increased nuclear levels of GLI proteins. Treatment with LDE225 (SMOi) and Gant61 (GLIi) resulted in a significant reduction in Glis protein levels in LMS (p < 0.05). Additionally, the expression of DNMT (1, 3a, and 3b), as well as GLI1 nuclear expression, was significantly decreased after treatment with HH inhibitor in LMS cells. Our results showed that blocking of SMO, GLI and DNMTs is able to inhibit LMS proliferation, migration and invasion. Importantly, the combination of those treatments exhibited a potentiated effect on LMS malignant features due to HH pathway deactivation.
Collapse
|
23
|
Xing G, Zhao T, Zhang X, Li H, Li X, Cui P, Li M, Li D, Zhang N, Jiang W. Astrocytic Sonic Hedgehog Alleviates Intracerebral Hemorrhagic Brain Injury via Modulation of Blood-Brain Barrier Integrity. Front Cell Neurosci 2020; 14:575690. [PMID: 33343302 PMCID: PMC7747855 DOI: 10.3389/fncel.2020.575690] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/08/2020] [Indexed: 11/21/2022] Open
Abstract
Background: Intracerebral hemorrhage (ICH) is a fatal subtype of stroke that lacks effective therapy. Blood-brain barrier (BBB) damage is a hallmark of ICH-induced brain injury that leads to edema formation, leukocytes infiltration, influx of blood components into the perihematomal (PHE) region, and eventually brain injury. Astrocytes are essential for the formation and maintenance of the BBB by providing secreted molecules that contribute to the association between these cells. Sonic hedgehog (SHH) derived from astrocytes promotes the maturity and integrity of the BBB by upregulating tight junctions (TJs) in brain capillary endothelial cells (ECs). However, the effect of SHH on BBB in ICH has not been investigated. Methods: Cyclopamine (CYC) is a potent, selective inhibitor that specifically blocks the SHH signaling pathway. Here, we used pharmacological inhibitions (CYC and its derivatives) to determine a critical role of the SHH signaling pathway in promoting BBB integrity after ICH by mechanisms of regulating the TJ proteins in vivo and in vitro. Results: The expression of astrocytic SHH was upregulated in mouse brains after ICH. Compared with the vehicle-treated group, inhibition of the SHH signaling pathway with CYC and its derivatives treatments aggravated neurological function deficits, brain edema, hematoma volume, and BBB impairment by downregulating TJs in ECs through the SHH-Gli-1 axis in vivo and in vitro. Conclusions: SHH signaling pathway at the level of the BBB provides a barrier-promoting effect, suggesting that the SHH signaling pathway may function as a potential therapeutic target for restoring BBB function in ICH.
Collapse
Affiliation(s)
- Gebeili Xing
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Inner Mongolia People's Hospital, Hohhot, China
| | - Tianman Zhao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiyue Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - He Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiuping Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Pan Cui
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Daojing Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Jiang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
24
|
Ottmann OG, Stegelmann F, Breccia M, Steegmann JL, Olavarria E, Aimone P, Lipton JH. Smoothened inhibitor erismodegib combined with nilotinib in patients with chronic myeloid leukemia resistant/intolerant to at least one prior tyrosine kinase inhibitor: a phase 1b study. Leuk Lymphoma 2020; 62:739-742. [PMID: 33153366 DOI: 10.1080/10428194.2020.1839649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Oliver G Ottmann
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Frank Stegelmann
- Klinik für Innere Medizin III, Universitätsklinikum Ulm, Ulm, Germany
| | - Massimo Breccia
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Juan Luis Steegmann
- Instituto de Investigación Sanitaria, IIS-IP. Servicio de Hematología, Hospital Universitario de la Princesa, Madrid, Spain
| | | | | | | |
Collapse
|
25
|
Park CS, Lacorazza HD. DYRK2 controls a key regulatory network in chronic myeloid leukemia stem cells. Exp Mol Med 2020; 52:1663-1672. [PMID: 33067577 PMCID: PMC8080801 DOI: 10.1038/s12276-020-00515-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/02/2023] Open
Abstract
Chronic myeloid leukemia is a hematological cancer driven by the oncoprotein BCR-ABL1, and lifelong treatment with tyrosine kinase inhibitors extends patient survival to nearly the life expectancy of the general population. Despite advances in the development of more potent tyrosine kinase inhibitors to induce a durable deep molecular response, more than half of patients relapse upon treatment discontinuation. This clinical finding supports the paradigm that leukemia stem cells feed the neoplasm, resist tyrosine kinase inhibition, and reactivate upon drug withdrawal depending on the fitness of the patient's immune surveillance. This concept lends support to the idea that treatment-free remission is not achieved solely with tyrosine kinase inhibitors and that new molecular targets independent of BCR-ABL1 signaling are needed in order to develop adjuvant therapy to more efficiently eradicate the leukemia stem cell population responsible for chemoresistance and relapse. Future efforts must focus on the identification of new targets to support the discovery of potent and safe small molecules able to specifically eradicate the leukemic stem cell population. In this review, we briefly discuss molecular maintenance in leukemia stem cells in chronic myeloid leukemia and provide a more in-depth discussion of the dual-specificity kinase DYRK2, which has been identified as a novel actionable checkpoint in a critical leukemic network. DYRK2 controls the activation of p53 and proteasomal degradation of c-MYC, leading to impaired survival and self-renewal of leukemia stem cells; thus, pharmacological activation of DYRK2 as an adjuvant to standard therapy has the potential to induce treatment-free remission.
Collapse
MESH Headings
- Animals
- Carrier Proteins/metabolism
- Cell Self Renewal/genetics
- Disease Susceptibility
- Energy Metabolism
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Protein Binding
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Signal Transduction
- Dyrk Kinases
Collapse
Affiliation(s)
- Chun Shik Park
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - H Daniel Lacorazza
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
26
|
Hedgehog Pathway Inhibitors: A New Therapeutic Class for the Treatment of Acute Myeloid Leukemia. Blood Cancer Discov 2020; 1:134-145. [DOI: 10.1158/2643-3230.bcd-20-0007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/06/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
|
27
|
CML - Not only BCR-ABL1 matters. Best Pract Res Clin Haematol 2020; 33:101194. [PMID: 33038988 DOI: 10.1016/j.beha.2020.101194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/30/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Abstract
BCR-ABL1 is in the center of chronic myeloid leukemia (CML) pathology, diagnosis and treatment, as confirmed by the success of tyrosine kinase inhibitor (TKI) therapy. However, additional mechanisms and events, many of which function independently of BCR-ABL1, play important roles, particularly in terms of leukemic stem cell (LSC) persistence, primary and secondary resistance, and disease progression. Promising therapeutic approaches aim to disrupt pathways which mediate LSC survival during successful TKI treatment, in the hope of improving long-term treatment-free-remission and perhaps provide a functional cure for some patients. Over the years through advances in sequencing technology frequent molecular aberrations in addition to BCR-ABL1 have been identified not only in advanced disease but also in chronic phase CML, often affecting epigenetic regulators such as ASXL1, DNMT3A and TET2. Analyses of serial samples have revealed various patterns of clonal evolution with some mutations preceding the BCR-ABL1 acquisition. Such mutations can be considered to be important co-factors in the pathogenesis of CML and could potentially influence therapeutic strategies in the future.
Collapse
|
28
|
Vetrie D, Helgason GV, Copland M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer 2020; 20:158-173. [PMID: 31907378 DOI: 10.1038/s41568-019-0230-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2019] [Indexed: 01/21/2023]
Abstract
For two decades, leukaemia stem cells (LSCs) in chronic myeloid leukaemia (CML) and acute myeloid leukaemia (AML) have been advanced paradigms for the cancer stem cell field. In CML, the acquisition of the fusion tyrosine kinase BCR-ABL1 in a haematopoietic stem cell drives its transformation to become a LSC. In AML, LSCs can arise from multiple cell types through the activity of a number of oncogenic drivers and pre-leukaemic events, adding further layers of context and genetic and cellular heterogeneity to AML LSCs not observed in most cases of CML. Furthermore, LSCs from both AML and CML can be refractory to standard-of-care therapies and persist in patients, diversify clonally and serve as reservoirs to drive relapse, recurrence or progression to more aggressive forms. Despite these complexities, LSCs in both diseases share biological features, making them distinct from other CML or AML progenitor cells and from normal haematopoietic stem cells. These features may represent Achilles' heels against which novel therapies can be developed. Here, we review many of the similarities and differences that exist between LSCs in CML and AML and examine the therapeutic strategies that could be used to eradicate them.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Disease Management
- Disease Susceptibility
- Drug Development
- History, 20th Century
- History, 21st Century
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Molecular Targeted Therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Research/history
- Research/trends
Collapse
Affiliation(s)
- David Vetrie
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
29
|
Liu S, Li C, Xin P, Zheng Y, Peng Q, Xu Y, Luo Y, Wu Y, Zhu X. Sonidegib, a Smoothened Inhibitor, Promotes Apoptosis and Suppresses Proliferation of Natural Killer/T-Cell Lymphoma. Med Sci Monit 2019; 25:8579-8586. [PMID: 31724562 PMCID: PMC6873646 DOI: 10.12659/msm.918812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Dysregulation of the Hedgehog (Hh) pathway modulates various aspects of hematologic and solid tumors, but its effects in human Natural killer/T-cell lymphoma (NKTCL) are unclear. Moreover, no study has examined the consequences of pharmacologically inhibiting Hh signaling in NKTCL cell lines. Material/Methods In this study, the expression of Smoothened (Smo) and Glioma-associated oncogene 1 (Gli1) in NKTCL tissue were scrutinized. Two human NKTCL cell lines, SNK6 and SNT8, were subjected to various doses of sonidegib (a Smo inhibitor) and incubated for distinct durations. The cell apoptosis was examined by flow cytometry, CCK-8 assay was run to assess proliferation, and protein levels were quantified by Western blotting. Results Both Smo and Gli1 expression were higher in NKTCL tissue than in Lymphoid Reactive Hyperplasia (LRH). Sonidegib significantly suppressed proliferation in NKTCL cells and the effect was dose-dependent. Further analysis revealed that sonidegib treatment elevated the number of apoptotic cells in a dose- and time-dependent manner. In addition, sonidegib downregulated Smo and Gli1expression in NKTCL cells. Conclusions The Hh pathway is crucial to the development of NKTCL and thus holds huge promise as a treatment for this disease.
Collapse
Affiliation(s)
- Shengquan Liu
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Chuntuan Li
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Pengliang Xin
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Yan Zheng
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Qunyi Peng
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Yahong Xu
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Ying Luo
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Yishen Wu
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Xiongpeng Zhu
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| |
Collapse
|
30
|
Muselli F, Peyron JF, Mary D. Druggable Biochemical Pathways and Potential Therapeutic Alternatives to Target Leukemic Stem Cells and Eliminate the Residual Disease in Chronic Myeloid Leukemia. Int J Mol Sci 2019; 20:E5616. [PMID: 31717629 PMCID: PMC6888542 DOI: 10.3390/ijms20225616] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic Myeloid Leukemia (CML) is a disease arising in stem cells expressing the BCR-ABL oncogenic tyrosine kinase that transforms one Hematopoietic stem/progenitor Cell into a Leukemic Stem Cell (LSC) at the origin of differentiated and proliferating leukemic cells in the bone marrow (BM). CML-LSCs are recognized as being responsible for resistances and relapses that occur despite the advent of BCR-ABL-targeting therapies with Tyrosine Kinase Inhibitors (TKIs). LSCs share a lot of functional properties with Hematopoietic Stem Cells (HSCs) although some phenotypical and functional differences have been described during the last two decades. Subverted mechanisms affecting epigenetic processes, apoptosis, autophagy and more recently metabolism and immunology in the bone marrow microenvironment (BMM) have been reported. The aim of this review is to bring together the modifications and molecular mechanisms that are known to account for TKI resistance in primary CML-LSCs and to focus on the potential solutions that can circumvent these resistances, in particular those that have been, or will be tested in clinical trials.
Collapse
MESH Headings
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplasm, Residual/drug therapy
- Neoplasm, Residual/metabolism
- Neoplasm, Residual/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Protein Kinase Inhibitors/therapeutic use
- Tumor Microenvironment/drug effects
Collapse
Affiliation(s)
| | | | - Didier Mary
- Université Côte d’Azur, Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Centre Méditerranéen de Médecine Moléculaire, CEDEX 3, 06204 Nice, France; (F.M.); (J.-F.P.)
| |
Collapse
|
31
|
Abstract
The hedgehog-smoothened (HH/SMO) pathway has been proposed as a potential therapeutic target for hematological malignancies. Our previous studies designed a series of HH inhibitors with novel scaffolds distinctive from vismodegib, the first Food and Drug Administration-approved HH inhibitor for the treatment of basal-cell carcinoma and medulloblastoma. In the present study, we evaluated these HH inhibitors against blood cancers and found that HH78 displayed potent activity in suppressing the HH signaling pathway. HH78 competitively bound to SMO and suppressed the transcriptional activity of GLI by the luciferase reporter gene assay and the measurement of HH/SMO-downregulated genes, including cyclin D2, cyclin E, PTCH1, PTCH2, and GLI. HH78 at low micromolar concentrations induced significant cancer cell apoptosis showed by increased caspase-3 activation, annexin V-staining and downregulated prosurvival proteins, including c-Myc, Bcl-2, Mcl-1, and Bcl-xL. In contrast, vismodegib did not show any effects on these apoptotic events. HH78 also suppressed the activation of the AKT/mTOR pathway, which cross-talks with the HH/SMO pathway. Finally, HH78 inhibited the growth of human leukemia K562 in nude mice xenografts with no overt toxicity. Collectively, the present study identified a novel HH inhibitor with great potential for the treatment of hematological malignancies.
Collapse
|
32
|
Chahal KK, Li J, Kufareva I, Parle M, Durden DL, Wechsler-Reya RJ, Chen CC, Abagyan R. Nilotinib, an approved leukemia drug, inhibits smoothened signaling in Hedgehog-dependent medulloblastoma. PLoS One 2019; 14:e0214901. [PMID: 31539380 PMCID: PMC6754133 DOI: 10.1371/journal.pone.0214901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/04/2019] [Indexed: 01/21/2023] Open
Abstract
Dysregulation of the seven-transmembrane (7TM) receptor Smoothened (SMO) and other components of the Hedgehog (Hh) signaling pathway contributes to the development of cancers including basal cell carcinoma (BCC) and medulloblastoma (MB). However, SMO-specific antagonists produced mixed results in clinical trials, marked by limited efficacy and high rate of acquired resistance in tumors. Here we discovered that Nilotinib, an approved inhibitor of several kinases, possesses an anti-Hh activity, at clinically achievable concentrations, due to direct binding to SMO and inhibition of SMO signaling. Nilotinib was more efficacious than the SMO-specific antagonist Vismodegib in inhibiting growth of two Hh-dependent MB cell lines. It also reduced tumor growth in subcutaneous MB mouse xenograft model. These results indicate that in addition to its known activity against several tyrosine-kinase-mediated proliferative pathways, Nilotinib is a direct inhibitor of the Hh pathway. The newly discovered extension of Nilotinib's target profile holds promise for the treatment of Hh-dependent cancers.
Collapse
Affiliation(s)
- Kirti Kandhwal Chahal
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego (UCSD), La Jolla, California, United States of America
- Department of Pharmaceutical Sciences, G.J. University of Science and Technology, Hisar, India
| | - Jie Li
- Department of Neurosurgery, Minneapolis, Minnesota, United States of America
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego (UCSD), La Jolla, California, United States of America
| | - Milind Parle
- Department of Pharmaceutical Sciences, G.J. University of Science and Technology, Hisar, India
| | - Donald L. Durden
- Department of Pediatrics, Moores Cancer Center, School of Medicine, UCSD and Rady Children’s Hospital, San Diego, La Jolla, California, United States of America
| | - Robert J. Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Clark C. Chen
- Department of Neurosurgery, Minneapolis, Minnesota, United States of America
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego (UCSD), La Jolla, California, United States of America
| |
Collapse
|
33
|
Banerjee S, Corless CL, Miettinen MM, Noh S, Ustoy R, Davis JL, Tang CM, Yebra M, Burgoyne AM, Sicklick JK. Loss of the PTCH1 tumor suppressor defines a new subset of plexiform fibromyxoma. J Transl Med 2019; 17:246. [PMID: 31362756 PMCID: PMC6668176 DOI: 10.1186/s12967-019-1995-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Plexiform fibromyxoma (PF) is a rare gastric tumor often confused with gastrointestinal stromal tumor. These so-called "benign" tumors often present with upper GI bleeding and gastric outlet obstruction. It was recently demonstrated that approximately one-third of PF have activation of the GLI1 oncogene, a transcription factor in the hedgehog (Hh) pathway, via a MALAT1-GLI1 fusion protein or GLI1 up-regulation. Despite this discovery, the biology of most PFs remains unknown. METHODS Next generation sequencing (NGS) was performed on formalin-fixed paraffin-embedded (FFPE) samples of PF specimens collected from three institutions (UCSD, NCI and OHSU). Fresh frozen tissue from one tumor was utilized for in vitro assays, including quantitative RT-PCR and cell viability assays following drug treatment. RESULTS Eight patients with PF were identified and 5 patients' tumors were analyzed by NGS. An index case had a mono-allelic PTCH1 deletion of exons 15-24 and a second case, identified in a validation cohort, also had a PTCH1 gene loss associated with a suspected long-range chromosome 9 deletion. Building on the role of Hh signaling in PF, PTCH1, a tumor suppressor protein, functions upstream of GLI1. Loss of PTCH1 induces GLI1 activation and downstream gene transcription. Utilizing fresh tissue from the index PF case, RT-qPCR analysis demonstrated expression of Hh pathway components, SMO and GLI1, as well as GLI1 transcriptional targets, CCND1 and HHIP. In turn, short-term in vitro treatment with a Hh pathway inhibitor, sonidegib, resulted in dose-dependent cell killing. CONCLUSIONS For the first time, we report a novel association between PTCH1 inactivation and the development of plexiform fibromyxoma. Hh pathway inhibition with SMO antagonists may represent a target to study for treating a subset of plexiform fibromyxomas.
Collapse
Affiliation(s)
- Sudeep Banerjee
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, UC San Diego Health Sciences, 3855 Health Sciences Drive, Room 2313, Mail Code 0987, La Jolla, CA 92093-0987 USA
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| | - Christopher L. Corless
- Department of Pathology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | | | - Sangkyu Noh
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, UC San Diego Health Sciences, 3855 Health Sciences Drive, Room 2313, Mail Code 0987, La Jolla, CA 92093-0987 USA
| | - Rowan Ustoy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, UC San Diego Health Sciences, 3855 Health Sciences Drive, Room 2313, Mail Code 0987, La Jolla, CA 92093-0987 USA
| | - Jessica L. Davis
- Department of Pathology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Chih-Min Tang
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, UC San Diego Health Sciences, 3855 Health Sciences Drive, Room 2313, Mail Code 0987, La Jolla, CA 92093-0987 USA
| | - Mayra Yebra
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, UC San Diego Health Sciences, 3855 Health Sciences Drive, Room 2313, Mail Code 0987, La Jolla, CA 92093-0987 USA
| | - Adam M. Burgoyne
- Division of Hematology Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA USA
| | - Jason K. Sicklick
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, UC San Diego Health Sciences, 3855 Health Sciences Drive, Room 2313, Mail Code 0987, La Jolla, CA 92093-0987 USA
| |
Collapse
|
34
|
Crisci S, Amitrano F, Saggese M, Muto T, Sarno S, Mele S, Vitale P, Ronga G, Berretta M, Di Francia R. Overview of Current Targeted Anti-Cancer Drugs for Therapy in Onco-Hematology. ACTA ACUST UNITED AC 2019; 55:medicina55080414. [PMID: 31357735 PMCID: PMC6723645 DOI: 10.3390/medicina55080414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
The upgraded knowledge of tumor biology and microenviroment provides information on differences in neoplastic and normal cells. Thus, the need to target these differences led to the development of novel molecules (targeted therapy) active against the neoplastic cells' inner workings. There are several types of targeted agents, including Small Molecules Inhibitors (SMIs), monoclonal antibodies (mAbs), interfering RNA (iRNA) molecules and microRNA. In the clinical practice, these new medicines generate a multilayered step in pharmacokinetics (PK), which encompasses a broad individual PK variability, and unpredictable outcomes according to the pharmacogenetics (PG) profile of the patient (e.g., cytochrome P450 enzyme), and to patient characteristics such as adherence to treatment and environmental factors. This review focuses on the use of targeted agents in-human phase I/II/III clinical trials in cancer-hematology. Thus, it outlines the up-to-date anticancer drugs suitable for targeted therapies and the most recent finding in pharmacogenomics related to drug response. Besides, a summary assessment of the genotyping costs has been discussed. Targeted therapy seems to be an effective and less toxic therapeutic approach in onco-hematology. The identification of individual PG profile should be a new resource for oncologists to make treatment decisions for the patients to minimize the toxicity and or inefficacy of therapy. This could allow the clinicians to evaluate benefits and restrictions, regarding costs and applicability, of the most suitable pharmacological approach for performing a tailor-made therapy.
Collapse
Affiliation(s)
- Stefania Crisci
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Filomena Amitrano
- Gruppo Oncologico Ricercatori Italiano GORI ONLUS, Pordenone 33100, Italy
| | - Mariangela Saggese
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Tommaso Muto
- Hematology and Cellular Immunology (Clinical Biochemistry) A.O. dei Colli Monaldi Hospital, Naples 80131, Italy
| | - Sabrina Sarno
- Anatomia Patologica, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Sara Mele
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Pasquale Vitale
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Giuseppina Ronga
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Massimiliano Berretta
- Department of Medical Oncology, CRO National Cancer Institute, Aviano (PN) 33081, Italy
| | - Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics (IAPharmagen), Ancona 60125, Italy.
| |
Collapse
|
35
|
Carpenter RL, Ray H. Safety and Tolerability of Sonic Hedgehog Pathway Inhibitors in Cancer. Drug Saf 2019; 42:263-279. [PMID: 30649745 DOI: 10.1007/s40264-018-0777-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hedgehog pathway, for which sonic hedgehog (Shh) is the most prominent ligand, is highly conserved and is tightly associated with embryonic development in a number of species. This pathway is also tightly associated with the development of several types of cancer, including basal cell carcinoma (BCC) and acute promyelocytic leukemia, among many others. Inactivating mutations in Patched-1 (PTCH1), leading to ligand-independent pathway activation, are frequent in several cancer types, but most prominent in BCC. This has led to the development of several compounds targeting this pathway as a cancer therapeutic. These compounds target the inducers of this pathway in Smoothened (SMO) and the GLI transcription factors, although targeting SMO has had the most success. Despite the many attempts at targeting this pathway, only three US FDA-approved drugs for cancers affect the Shh pathway. Two of these compounds, vismodegib and sonidegib, target SMO to suppress signaling from either PTCH1 or SMO mutations that lead to upregulation of the pathway. The other approved compound is arsenic trioxide, which can suppress this pathway at the level of the GLI proteins, although current evidence suggests it also has other targets. This review focuses on the safety and tolerability of these clinically approved drugs targeting the Shh pathway, along with a discussion on other Shh pathway inhibitors being developed.
Collapse
Affiliation(s)
- Richard L Carpenter
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA. .,Medical Sciences, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA. .,Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Dr., Indianapolis, IN, 46202, USA.
| | - Haimanti Ray
- Medical Sciences, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA
| |
Collapse
|
36
|
Cortes JE, Gutzmer R, Kieran MW, Solomon JA. Hedgehog signaling inhibitors in solid and hematological cancers. Cancer Treat Rev 2019; 76:41-50. [PMID: 31125907 DOI: 10.1016/j.ctrv.2019.04.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The hedgehog signaling pathway is normally tightly regulated. Mutations in hedgehog pathway components may lead to abnormal activation. Aberrantly activated hedgehog signaling plays a major role in the development of solid and hematological cancer. In recent years, inhibitors have been developed that attenuate hedgehog signaling; 2 have been approved for use in basal cell carcinoma (BCC), while others are under development or in clinical trials. The aim of this review is to provide an overview of known hedgehog inhibitors (HHIs) and their potential for the treatment of hematological cancers and solid tumors beyond BCC. DESIGN Published literature was searched to identify articles relating to HHIs in noncutaneous cancer. Both preclinical and clinical research articles were included. In addition, relevant clinical trial results were identified from www.clinicaltrials.gov. Information on the pharmacology of HHIs is also included. RESULTS HHIs show activity in a variety of solid and hematological cancers. In preclinical studies, HHIs demonstrated efficacy in pancreatic cancer, rhabdomyosarcoma, breast cancer, and acute myeloid leukemia (AML). In clinical studies, HHIs showed activity in medulloblastoma, as well as prostate, pancreatic, and hematological cancers. Current clinical trials testing the efficacy of HHIs are underway for prostate, pancreatic, and breast cancers, as well as multiple myeloma and AML. CONCLUSIONS As clinical trial results become available, it will be possible to discern which additional tumor types are suited to HHI mono- or combination therapy with other anticancer agents. The latter strategy may be useful for delaying or overcoming drug resistance.
Collapse
Affiliation(s)
- Jorge E Cortes
- Department of Leukemia, MD Anderson Cancer Center, 1515 Holcombe Blvd. #428, Houston, TX 77030, USA.
| | - Ralf Gutzmer
- Skin Cancer Center Hannover, Department of Dermatology, Hannover Medical School, Carl-Neuberg Str 1, D-30625 Hannover, Germany.
| | - Mark W Kieran
- Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
| | - James A Solomon
- Ameriderm Research, 725 W Granada Blvd Ste 44, Ormond Beach, FL 32174, USA; University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
37
|
Genomic testing, tumor microenvironment and targeted therapy of Hedgehog-related human cancers. Clin Sci (Lond) 2019; 133:953-970. [PMID: 31036756 DOI: 10.1042/cs20180845] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/24/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Hedgehog signals are transduced through Patched receptors to the Smoothened (SMO)-SUFU-GLI and SMO-Gi-RhoA signaling cascades. MTOR-S6K1 and MEK-ERK signals are also transduced to GLI activators through post-translational modifications. The GLI transcription network up-regulates target genes, such as BCL2, FOXA2, FOXE1, FOXF1, FOXL1, FOXM1, GLI1, HHIP, PTCH1 and WNT2B, in a cellular context-dependent manner. Aberrant Hedgehog signaling in tumor cells leads to self-renewal, survival, proliferation and invasion. Paracrine Hedgehog signaling in the tumor microenvironment (TME), which harbors cancer-associated fibroblasts, leads to angiogenesis, fibrosis, immune evasion and neuropathic pain. Hedgehog-related genetic alterations occur frequently in basal cell carcinoma (BCC) (85%) and Sonic Hedgehog (SHH)-subgroup medulloblastoma (87%) and less frequently in breast cancer, colorectal cancer, gastric cancer, pancreatic cancer, non-small-cell lung cancer (NSCLC) and ovarian cancer. Among investigational SMO inhibitors, vismodegib and sonidegib are approved for the treatment of patients with BCC, and glasdegib is approved for the treatment of patients with acute myeloid leukemia (AML). Resistance to SMO inhibitors is caused by acquired SMO mutations, SUFU deletions, GLI2 amplification, other by-passing mechanisms of GLI activation and WNT/β-catenin signaling activation. GLI-DNA-interaction inhibitors (glabrescione B and GANT61), GLI2 destabilizers (arsenic trioxide and pirfenidone) and a GLI-deacetylation inhibitor (4SC-202) were shown to block GLI-dependent transcription and tumorigenesis in preclinical studies. By contrast, SMO inhibitors can remodel the immunosuppressive TME that is dominated by M2-like tumor-associated macrophages (M2-TAMs), myeloid-derived suppressor cells and regulatory T cells, and thus, a Phase I/II clinical trial of the immune checkpoint inhibitor pembrolizumab with or without vismodegib in BCC patients is ongoing.
Collapse
|
38
|
Zhang H, Li S. Concise Review: Exploiting Unique Biological Features of Leukemia Stem Cells for Therapeutic Benefit. Stem Cells Transl Med 2019; 8:768-774. [PMID: 31016860 PMCID: PMC6646691 DOI: 10.1002/sctm.18-0247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer stem cells play a critical role in disease initiation and insensitivity to chemotherapy in numerous hematologic malignancies and some solid tumors, and these stem cells need to be eradicated to achieve a cure. Key to successful targeting of cancer stem cells is to identify and functionally test critical target genes and to fully understand their associated molecular network in these stem cells. Human chronic myeloid leukemia (CML) is well accepted as one of the typical types of hematopoietic malignancies that are derived from leukemia stem cells (LSCs), serving as an excellent model disease for understanding the biology of LSCs and developing effective, selective, and curative strategies through targeting LSCs. Here, we discuss LSCs in CML with a focus on identification of unique biological features of these stem cells to emphasize the feasibility and significance of specific targeting of LSCs while sparing normal stem cell counterparts in leukemia therapy. stem cells translational medicine2019;8:768&774
Collapse
Affiliation(s)
- Haojian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, People's Republic of China
| | - Shaoguang Li
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
39
|
Flis S, Chojnacki T. Chronic myelogenous leukemia, a still unsolved problem: pitfalls and new therapeutic possibilities. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:825-843. [PMID: 30880916 PMCID: PMC6415732 DOI: 10.2147/dddt.s191303] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder of hematopoietic stem cells. At the molecular level, the disorder results from t(9;22)(q34;q11) reciprocal translocation between chromosomes, which leads to the formation of an oncogenic BCR–ABL gene fusion. Instead of progress in the understanding of the molecular etiology of CML and the development of novel therapeutic strategies, clinicians still face many challenges in the effective treatment of patients. In this review, we discuss the pathways of diagnosis and treatment of patients, as well as the problems appearing in the course of disease development. We also briefly refer to several aspects regarding the current knowledge on the molecular basis of CML and new potential therapeutic targets.
Collapse
Affiliation(s)
- Sylwia Flis
- Department of Pharmacology, National Medicines Institute, 00-725 Warsaw, Poland,
| | - Tomasz Chojnacki
- Department of Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland,
| |
Collapse
|
40
|
BHATIA RAVI. TARGETING LEUKEMIA STEM CELL RESISTANCE IN CHRONIC MYELOGENOUS LEUKEMIA. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2019; 130:246-254. [PMID: 31516189 PMCID: PMC6736008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A major limitation of current leukemia treatment is that most patients ultimately relapse. Leukemia cells show heterogeneous potential and response to treatment. We have shown that primitive leukemia stem cells (LSC) in chronic myelogenous leukemia resist elimination by treatment, and persist as a source of relapse. The bone marrow microenvironment (BMM) plays a critical role in of hematopoietic stem cell maintenance and regulation. There is increasing interest in the role of the BMM in promoting LSC maintenance, resistance to therapy, and ultimately disease relapse. Recent studies have shown that leukemia-induced changes in the BMM provide a competitive growth advantage to LSC, and support their preservation after treatment. We are studying mechanisms of niche regulation of LSC to guide development of novel approaches to target LSC and enhance cures.
Collapse
|
41
|
Chronic myeloid leukaemia cells require the bone morphogenic protein pathway for cell cycle progression and self-renewal. Cell Death Dis 2018; 9:927. [PMID: 30206237 PMCID: PMC6134087 DOI: 10.1038/s41419-018-0905-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/15/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023]
Abstract
Leukaemic stem cell (LSC) persistence remains a major obstacle to curing chronic myeloid leukaemia (CML). The bone morphogenic protein (BMP) pathway is deregulated in CML, with altered expression and response to the BMP ligands shown to impact on LSC expansion and behaviour. In this study, we determined whether alterations in the BMP pathway gene signature had any predictive value for therapeutic response by profiling 60 CML samples at diagnosis from the UK SPIRIT2 trial and correlating the data to treatment response using the 18-month follow-up data. There was significant deregulation of several genes involved in the BMP pathway with ACV1C, INHBA, SMAD7, SNAIL1 and SMURF2 showing differential expression in relation to response. Therapeutic targeting of CML cells using BMP receptor inhibitors, in combination with tyrosine kinase inhibitor (TKI), indicate a synergistic mode of action. Furthermore, dual treatment resulted in altered cell cycle gene transcription and irreversible cell cycle arrest, along with increased apoptosis compared to single agents. Targeting CML CD34+ cells with BMP receptor inhibitors resulted in fewer cell divisions, reduced numbers of CD34+ cells and colony formation when compared to normal donor CD34+ cells, both in the presence and absence of BMP4. In an induced pluripotent stem cell (iPSC) model generated from CD34+ hematopoietic cells, we demonstrate altered cell cycle profiles and dynamics of ALK expression in CML-iPSCs in the presence and absence of BMP4 stimulation, when compared to normal iPSC. Moreover, dual targeting with TKI and BMP inhibitor prevented the self-renewal of CML-iPSC and increased meso-endodermal differentiation. These findings indicate that transformed stem cells may be more reliant on BMP signalling than normal stem cells. These changes offer a therapeutic window in CML, with intervention using BMP inhibitors in combination with TKI having the potential to target LSC self-renewal and improve long-term outcome for patients.
Collapse
|
42
|
Chorzalska A, Ahsan N, Rao RSP, Roder K, Yu X, Morgan J, Tepper A, Hines S, Zhang P, Treaba DO, Zhao TC, Olszewski AJ, Reagan JL, Liang O, Gruppuso PA, Dubielecka PM. Overexpression of Tpl2 is linked to imatinib resistance and activation of MEK-ERK and NF-κB pathways in a model of chronic myeloid leukemia. Mol Oncol 2018; 12:630-647. [PMID: 29485707 PMCID: PMC5928369 DOI: 10.1002/1878-0261.12186] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022] Open
Abstract
The introduction of tyrosine kinase inhibitors (TKI) has transformed chronic myeloid leukemia (CML) into a chronic disease with long-term survival exceeding 85%. However, resistance of CML stem cells to TKI may contribute to the 50% relapse rate observed after TKI discontinuation in molecular remission. We previously described a model of resistance to imatinib mesylate (IM), in which K562 cells cultured in high concentrations of imatinib mesylate showed reduced Bcr-Abl1 protein and activity levels while maintaining proliferative potential. Using quantitative phosphoproteomic analysis of these IM-resistant cells, we have now identified significant upregulation of tumor progression locus (Tpl2), also known as cancer Osaka thyroid (COT1) kinase or Map3k8. Overexpression of Tpl2 in IM-resistant cells was accompanied by elevated activities of Src family kinases (SFKs) and NF-κB, MEK-ERK signaling. CD34+ cells isolated from the bone marrow of patients with CML and exposed to IMin vitro showed increased MAP3K8 transcript levels. Dasatinib (SFK inhibitor), U0126 (MEK inhibitor), and PS-1145 (IκB kinase (IKK) inhibitor) used in combination resulted in elimination of 65% of IM-resistant cells and reduction in the colony-forming capacity of CML CD34+ cells in methylcellulose assays by 80%. In addition, CML CD34+ cells cultured with the combination of inhibitors showed reduced MAP3K8 transcript levels. Overall, our data indicate that elevated Tpl2 protein and transcript levels are associated with resistance to IM and that combined inhibition of SFK, MEK, and NF-κB signaling attenuates the survival of IM-resistant CML cells and CML CD34+ cells. Therefore, combination of SFK, MEK, and NF-κB inhibitors may offer a new therapeutic approach to overcome TKI resistance in CML patients.
Collapse
Affiliation(s)
- Anna Chorzalska
- Signal Transduction Lab, Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Nagib Ahsan
- Division of Biology and Medicine, COBRE CCRD Proteomics Core Facility, Rhode Island Hospital, Brown University, Providence, RI, USA
| | - R Shyama Prasad Rao
- Division of Biostatistics and Bioinformatics, Yenepoya Research Center, Yenepoya University, Mangalore, India
| | - Karim Roder
- Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Xiaoqing Yu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - John Morgan
- Flow Cytometry and Cell Sorting Core Facility, Roger Williams Medical Center, Providence, RI, USA
| | - Alexander Tepper
- Signal Transduction Lab, Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Steven Hines
- Signal Transduction Lab, Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Peng Zhang
- Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Diana O Treaba
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ting C Zhao
- Cardiovascular Lab, Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - Adam J Olszewski
- Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - John L Reagan
- Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Olin Liang
- Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Philip A Gruppuso
- Department of Pediatrics, Rhode Island Hospital, Brown University, Providence, RI, USA
| | - Patrycja M Dubielecka
- Signal Transduction Lab, Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
43
|
Arrigoni E, Del Re M, Galimberti S, Restante G, Rofi E, Crucitta S, Baratè C, Petrini M, Danesi R, Di Paolo A. Concise Review: Chronic Myeloid Leukemia: Stem Cell Niche and Response to Pharmacologic Treatment. Stem Cells Transl Med 2018; 7:305-314. [PMID: 29418079 PMCID: PMC5827745 DOI: 10.1002/sctm.17-0175] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/09/2018] [Indexed: 12/27/2022] Open
Abstract
Nowadays, more than 90% of patients affected by chronic myeloid leukemia (CML) survive with a good quality of life, thanks to the clinical efficacy of tyrosine kinase inhibitors (TKIs). Nevertheless, point mutations of the ABL1 pocket occurring during treatment may reduce binding of TKIs, being responsible of about 20% of cases of resistance among CML patients. In addition, the presence of leukemic stem cells (LSCs) represents the most important event in leukemia progression related to TKI resistance. LSCs express stem cell markers, including active efflux pumps and genetic and epigenetic alterations together with deregulated cell signaling pathways involved in self-renewal, such as Wnt/β-catenin, Notch, and Hedgehog. Moreover, the interaction with the bone marrow microenvironment, also known as hematopoietic niche, may influence the phenotype of surrounding cells, which evade mechanisms controlling cell proliferation and are less sensitive or frankly resistant to TKIs. This Review focuses on the role of LSCs and stem cell niche in relation to response to pharmacological treatments. A literature search from PubMed database was performed until April 30, 2017, and it has been analyzed according to keywords such as chronic myeloid leukemia, stem cell, leukemic stem cells, hematopoietic niche, tyrosine kinase inhibitors, and drug resistance. Stem Cells Translational Medicine 2018;7:305-314.
Collapse
Affiliation(s)
- Elena Arrigoni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Sara Galimberti
- Unit of Hematology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Giuliana Restante
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Eleonora Rofi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Claudia Baratè
- Unit of Hematology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Mario Petrini
- Unit of Hematology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Antonello Di Paolo
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| |
Collapse
|
44
|
Massimino M, Stella S, Tirrò E, Romano C, Pennisi MS, Puma A, Manzella L, Zanghì A, Stagno F, Di Raimondo F, Vigneri P. Non ABL-directed inhibitors as alternative treatment strategies for chronic myeloid leukemia. Mol Cancer 2018; 17:56. [PMID: 29455672 PMCID: PMC5817805 DOI: 10.1186/s12943-018-0805-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
The introduction of ABL Tyrosine Kinase Inhibitors (TKIs) has significantly improved the outcome of Chronic Myeloid Leukemia (CML) patients that, in large part, achieve satisfactory hematological, cytogenetic and molecular remissions. However, approximately 15-20% fail to obtain optimal responses according to the current European Leukemia Network recommendation because of drug intolerance or resistance.Moreover, a plethora of evidence suggests that Leukemic Stem Cells (LSCs) show BCR-ABL1-independent survival. Hence, they are unresponsive to TKIs, leading to disease relapse if pharmacological treatment is discontinued.All together, these biological events generate a subpopulation of CML patients in need of alternative therapeutic strategies to overcome TKI resistance or to eradicate LSCs in order to allow cure of the disease.In this review we update the role of "non ABL-directed inhibitors" targeting signaling pathways downstream of the BCR-ABL1 oncoprotein and describe immunological approaches activating specific T cell responses against CML cells.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor
- Combined Modality Therapy
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Molecular Targeted Therapy
- Signal Transduction/drug effects
- Treatment Outcome
Collapse
Affiliation(s)
- Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Antonino Zanghì
- Department of Surgical Medical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
| | - Fabio Stagno
- Division of Hematology and Bone Marrow Transplant, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
| | - Francesco Di Raimondo
- Division of Hematology and Bone Marrow Transplant, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Department of Surgery, Medical and Surgical Specialties, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy.
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy.
| |
Collapse
|
45
|
Shah M, Bhatia R. Preservation of Quiescent Chronic Myelogenous Leukemia Stem Cells by the Bone Marrow Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1100:97-110. [DOI: 10.1007/978-3-319-97746-1_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Bhatia R. Novel approaches to therapy in CML. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:115-120. [PMID: 29222245 PMCID: PMC6142563 DOI: 10.1182/asheducation-2017.1.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Treatment with tyrosine kinase inhibitors (TKIs) results in remission and prolongation of survival in most chronic myeloid leukemia (CML) patients but fails to eliminate the leukemia stem cells (LSCs) responsible for disease development and propagation. This accounts for the clinical observation that TKI discontinuation leads to rapid leukemia relapse. Most patients require continued treatment to prevent relapse, with associated risk of relapse, toxicity, teratogenic effects, financial burden, and noncompliance. Understanding LSC resistance to TKI and development of strategies to increase the proportion of CML patients achieving treatment-free remissions is a critical area of investigation in CML. In addition, LSCs are the source of TKI resistance, relapse, or disease progression, which is another major area of need in CML treatment. It is now understood that BCR-ABL kinase-independent mechanisms are responsible for retention of LSC subpopulations. It is likely that both cell-intrinsic and microenvironmental mechanisms contribute to LSC maintenance. Here, we review the current understanding of mechanisms underlying persistence of CML LSCs during TKI treatment, recently described approaches to target these cells and emerging clinical trials, and the challenges impeding more rapid progress in achieving cures for a greater number of CML patients.
Collapse
MESH Headings
- Drug Resistance, Neoplasm/drug effects
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Protein Kinase Inhibitors/adverse effects
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Ravi Bhatia
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
47
|
Patel AB, O'Hare T, Deininger MW. Mechanisms of Resistance to ABL Kinase Inhibition in Chronic Myeloid Leukemia and the Development of Next Generation ABL Kinase Inhibitors. Hematol Oncol Clin North Am 2017; 31:589-612. [PMID: 28673390 PMCID: PMC5505321 DOI: 10.1016/j.hoc.2017.04.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chronic myeloid leukemia is increasingly viewed as a chronic illness; most patients have a life expectancy close to that of the general population. Despite progress made using BCR-ABL1 tyrosine kinase inhibitors (TKIs), drug resistance via BCR-ABL1-dependent and BCR-ABL1-independent mechanisms continues to be an issue. BCR-ABL1-dependent resistance is primarily mediated through oncoprotein kinase domain mutations and usually results in overt resistance to TKIs. However, BCR-ABL1-independent resistance in the setting of effective BCR-ABL1 inhibition is recognized as a major contributor to minimal residual disease. Efforts to eradicate persistent leukemic stem cells have focused on combination therapy.
Collapse
MESH Headings
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biological Availability
- Biomarkers
- Cell Survival/drug effects
- Cell Survival/genetics
- Dose-Response Relationship, Drug
- Drug Discovery
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Immunotherapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Models, Molecular
- Molecular Targeted Therapy
- Mutation
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction/drug effects
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Ami B Patel
- Department of Hematology and Oncology, Huntsman Cancer Institute, 2000 Circle of Hope Drive, The University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas O'Hare
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA.
| |
Collapse
|
48
|
Alonso-Dominguez JM, Casado LF, Anguita E, Gomez-Casares MT, Buño I, Ferrer-Marín F, Arenas A, Del Orbe R, Ayala R, Llamas P, Salgado RN, Osorio S, Sanchez-Godoy P, Burgaleta C, Mahíllo-Fernández I, Garcia-Gutierrez V, Steegmann JL, Martinez-Lopez J. PTCH1 is a reliable marker for predicting imatinib response in chronic myeloid leukemia patients in chronic phase. PLoS One 2017; 12:e0181366. [PMID: 28704552 PMCID: PMC5509313 DOI: 10.1371/journal.pone.0181366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/29/2017] [Indexed: 11/18/2022] Open
Abstract
Patched homolog 1 gene (PTCH1) expression and the ratio of PTCH1 to Smoothened (SMO) expression have been proposed as prognostic markers of the response of chronic myeloid leukemia (CML) patients to imatinib. We compared these measurements in a realistic cohort of 101 patients with CML in chronic phase (CP) using a simplified qPCR method, and confirmed the prognostic power of each in a competing risk analysis. Gene expression levels were measured in peripheral blood samples at diagnosis. The PTCH1/SMO ratio did not improve PTCH1 prognostic power (area under the receiver operating characteristic curve 0.71 vs. 0.72). In order to reduce the number of genes to be analyzed, PTCH1 was the selected measurement. High and low PTCH1 expression groups had significantly different cumulative incidences of imatinib failure (IF), which was defined as discontinuation of imatinib due to lack of efficacy (5% vs. 25% at 4 years, P = 0.013), probabilities of achieving a major molecular response (81% vs. 53% at first year, P = 0.02), and proportions of early molecular failure (14% vs. 43%, P = 0.015). Every progression to an advanced phase (n = 3) and CML-related death (n = 2) occurred in the low PTCH1 group (P<0.001 for both comparisons). PTCH1 was an independent prognostic factor for the prediction of IF. We also validated previously published thresholds for PTCH1 expression. Therefore, we confirmed that PTCH1 expression can predict the imatinib response in CML patients in CP by applying a more rigorous statistical analysis. Thus, PTCH1 expression is a promising molecular marker for predicting the imatinib response in CML patients in CP.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/therapeutic use
- Biomarkers, Pharmacological
- Biomarkers, Tumor/physiology
- Female
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Imatinib Mesylate/therapeutic use
- Leukemia, Myeloid, Chronic-Phase/diagnosis
- Leukemia, Myeloid, Chronic-Phase/drug therapy
- Leukemia, Myeloid, Chronic-Phase/genetics
- Male
- Middle Aged
- Patched-1 Receptor/physiology
- Prognosis
- Retrospective Studies
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Juan M. Alonso-Dominguez
- Hospital Universitario Fundación Jiménez Díaz, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), UAM, Madrid, Spain
| | | | | | | | - Ismael Buño
- Hospital General Universitario Gregorio Marañon. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | | | - Alicia Arenas
- Fundación Investigación Biomédica Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Rafael Del Orbe
- Biocruces Health Research Institute,Barakaldo (Bilbao), Spain
| | - Rosa Ayala
- Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Pilar Llamas
- Hospital Universitario Fundación Jiménez Díaz, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), UAM, Madrid, Spain
| | - Rocio N. Salgado
- Hospital Universitario Fundación Jiménez Díaz, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), UAM, Madrid, Spain
| | - Santiago Osorio
- Hospital General Universitario Gregorio Marañon. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | | | - Carmen Burgaleta
- Hospital Universitario Príncipe de Asturias, Alcalá de Henares (Madrid), Spain
| | - Ignacio Mahíllo-Fernández
- Hospital Universitario Fundación Jiménez Díaz, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), UAM, Madrid, Spain
| | | | | | | |
Collapse
|
49
|
Horne GA, Copland M. Approaches for targeting self-renewal pathways in cancer stem cells: implications for hematological treatments. Expert Opin Drug Discov 2017; 12:465-474. [DOI: 10.1080/17460441.2017.1303477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Clarke CJ, Holyoake TL. Preclinical approaches in chronic myeloid leukemia: from cells to systems. Exp Hematol 2017; 47:13-23. [PMID: 28017647 PMCID: PMC5333535 DOI: 10.1016/j.exphem.2016.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/19/2016] [Indexed: 12/22/2022]
Abstract
Advances in the design of targeted therapies for the treatment of chronic myeloid leukemia (CML) have transformed the prognosis for patients diagnosed with this disease. However, leukemic stem cell persistence, drug intolerance, drug resistance, and advanced-phase disease represent unmet clinical needs demanding the attention of CML investigators worldwide. The availability of appropriate preclinical models is essential to efficiently translate findings from the bench to the clinic. Here we review the current approaches taken to preclinical work in the CML field, including examples of commonly used in vivo models and recent successes from systems biology-based methodologies.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cell Line, Transformed
- Cell Transplantation
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Humans
- In Vitro Techniques
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Transduction, Genetic
- Transgenes
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Cassie J Clarke
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, UK
| | - Tessa L Holyoake
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, UK.
| |
Collapse
|