1
|
Li S, Zhao Z, Wang J, Xie L, Pan M, Wu F, Hu Y, Liu J, Zeng H. Molecular Interaction Mechanisms Between Lubricant-Infused Slippery Surfaces and Mussel-Inspired Polydopamine Adhesive and DOPA Moiety. Macromol Rapid Commun 2024; 45:e2400276. [PMID: 39031940 DOI: 10.1002/marc.202400276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Lubricant-infused slippery surfaces have recently emerged as promising antifouling coatings, showing potential against proteins, cells, and marine mussels. However, a comprehensive understanding of the molecular binding behaviors and interaction strength of foulants to these surfaces is lacking. In this work, mussel-inspired chemistry based on catechol-containing chemicals including 3,4-dihydroxyphenylalanine (DOPA) and polydopamine (PDA) is employed to investigate the antifouling performance and repellence mechanisms of fluorinated-based slippery surface, and the correlated interaction mechanisms are probed using atomic force microscopy (AFM). Intermolecular force measurements and deposition experiments between PDA and the surface reveal the ability of lubricant film to inhibit the contact of PDA particles with the substrate. Moreover, the binding mechanisms and bond dissociation energy between a single DOPA moiety and the lubricant-infused slippery surface are quantitatively investigated employing single-molecule force spectroscopy based on AFM (SM-AFM), which reveal that the infused lubricant layer can remarkably influence the dissociation forces and weaken the binding strength between DOPA and underneath per-fluorinated monolayer surface. This work provides new nanomechanical insights into the fundamental antifouling mechanisms of the lubricant-infused slippery surfaces against mussel-derived adhesive chemicals, with important implications for the design of lubricant-infused materials and other novel antifouling platforms for various bioengineering and engineering applications.
Collapse
Affiliation(s)
- Sijia Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jingyi Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, P. R. China
| | - Lei Xie
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, P. R. China
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Feiyi Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Ying Hu
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan, 030024, P. R. China
| | - Jifang Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, P. R. China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
2
|
Jia Y, Yang Y, Cai X, Zhang H. Recent Developments in Slippery Liquid-Infused Porous Surface Coatings for Biomedical Applications. ACS Biomater Sci Eng 2024; 10:3655-3672. [PMID: 38743527 DOI: 10.1021/acsbiomaterials.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Slippery liquid-infused porous surface (SLIPS), inspired by the Nepenthes pitcher plant, exhibits excellent performances as it has a smooth surface and extremely low contact angle hysteresis. Biomimetic SLIPS attracts considerable attention from the researchers for different applications in self-cleaning, anti-icing, anticorrosion, antibacteria, antithrombotic, and other fields. Hence, SLIPS has shown promise for applications across both the biomedical and industrial fields. However, the manufacturing of SLIPS with strong bonding ability to different substrates and powerful liquid locking performance remains highly challenging. In this review, a comprehensive overview of research on SLIPS for medical applications is conducted, and the design parameters and common fabrication methods of such surfaces are summarized. The discussion extends to the mechanisms of interaction between microbes, cells, proteins, and the liquid layer, highlighting the typical antifouling applications of SLIPS. Furthermore, it identifies the potential of utilizing the controllable factors provided by SLIPS to develop innovative materials and devices aimed at enhancing human health.
Collapse
Affiliation(s)
- Yiran Jia
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yinuo Yang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xu Cai
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P. R. China
| | - Hongyu Zhang
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
3
|
Eliades T, Panayi N, Papageorgiou SN. From biomimetics to smart materials and 3D technology: Applications in orthodontic bonding, debonding, and appliance design or fabrication. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:403-411. [PMID: 38022388 PMCID: PMC10665594 DOI: 10.1016/j.jdsr.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
This review covers aspects of orthodontic materials, appliance fabrication and bonding, crossing scientific fields and presenting recent advances in science and technology. Its purpose is to familiarize the reader with developments on these issues, indicate possible future applications of such pioneering approaches, and report the current status in orthodontics. The first section of this review covers shape-memory polymer wires, several misconceptions arising from the recent introduction of novel three-dimensional (3D)-printed aligners (mistakenly termed shape-memory polymers only because they present a certain degree of rebound capacity, as most non-stiff alloys or polymers do), frictionless surfaces enabling resistance-less sliding, self-healing materials for effective handling of fractured plastic/ceramic brackets, self-cleaning materials to minimize microbial attachment or plaque build-up on orthodontic appliances, elastomers with reduced force relaxation and extended stretching capacity to address the problem of inadequate force application during wire-engagement in the bracket slot, biomimetic (non-etching mediated) adhesive attachment to surfaces based on the model of the gecko and the mussel, and command-debond adhesives as options for an atraumatic debonding. This review's second section deals with the recent and largely unsubstantiated application of 3D-printed alloys and polymers in orthodontics and aspects of planning, material fabrication, and appliance design.
Collapse
Affiliation(s)
- Theodore Eliades
- Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Nearchos Panayi
- Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- European University Cyprus, School of Dentistry, Nicosia, Cyprus
| | - Spyridon N. Papageorgiou
- Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Rajaramon S, David H, Sajeevan A, Shanmugam K, Sriramulu H, Dandela R, Solomon AP. Multi-functional approach in the design of smart surfaces to mitigate bacterial infections: a review. Front Cell Infect Microbiol 2023; 13:1139026. [PMID: 37287465 PMCID: PMC10242021 DOI: 10.3389/fcimb.2023.1139026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
Advancements in biomedical devices are ingenious and indispensable in health care to save millions of lives. However, microbial contamination paves the way for biofilm colonisation on medical devices leading to device-associated infections with high morbidity and mortality. The biofilms elude antibiotics facilitating antimicrobial resistance (AMR) and the persistence of infections. This review explores nature-inspired concepts and multi-functional approaches for tuning in next-generation devices with antibacterial surfaces to mitigate resistant bacterial infections. Direct implementation of natural inspirations, like nanostructures on insect wings, shark skin, and lotus leaves, has proved promising in developing antibacterial, antiadhesive, and self-cleaning surfaces, including impressive SLIPS with broad-spectrum antibacterial properties. Effective antimicrobial touch surfaces, photocatalytic coatings on medical devices, and conventional self-polishing coatings are also reviewed to develop multi-functional antibacterial surfaces to mitigate healthcare-associated infections (HAIs).
Collapse
Affiliation(s)
- Shobana Rajaramon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Anusree Sajeevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Hrithiha Sriramulu
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
5
|
Ranjan D, Chaudhary M, Zou A, Maroo SC. Dropwise Condensation in Ambient on a Depleted Lubricant-Infused Surface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21679-21689. [PMID: 37079801 PMCID: PMC10165607 DOI: 10.1021/acsami.3c02450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Durability of a lubricant-infused surface (LIS) is critical for heat transfer, especially in condensation-based applications. Although LIS promotes dropwise condensation, each departing droplet condensate acts as a lubricant-depleting agent due to the formation of wetting ridge and cloaking layer around the condensate, thus gradually leading to drop pinning on the underlying rough topography. Condensation heat transfer further deteriorates in the presence of non-condensable gases (NCGs) requiring special experimental arrangements to eliminate NCGs due to a decrease in the availability of nucleation sites. To address these issues while simultaneously improving heat-transfer performance of LIS in condensation-based systems, we report fabrication of both fresh LIS and a lubricant-depleted LIS using silicon porous nanochannel wicks as an underlying substrate. Strong capillarity in the nanochannels helps retain silicone oil (polydimethylsiloxane) on the surface even after it is severely depleted under tap water. The effect of oil viscosity was investigated for drop mobility and condensation heat transfer under ambient conditions, i.e., in the presence of NCGs. While fresh LIS prepared using 5 cSt silicone oil exhibited a low roll-off angle (∼1°) and excellent water drop (5 μL) sliding velocity ∼66 mm s-1, it underwent rapid depletion as compared to higher viscosity oils. Condensation performed on depleted nanochannel LIS with higher viscosity oil (50 cSt) resulted in a heat-transfer coefficient (HTC) of ∼2.33 kW m-2 K-1, which is a ∼162% improvement over flat Si-LIS (50 cSt). Such LIS promote fast drop shedding as is evident from the little change in the fraction of drops with diameter <500 μm from ∼98% to only ∼93% after 4 h of condensation. Improvement in HTC was also seen in condensation experiments conducted for 3 days where a steady HTC of ∼1.46 kW m-2 K-1 was achieved over the last 2 days. The ability of reported LIS to maintain long-term hydrophobicity and dropwise condensation will aid in designing condensation-based systems with improved heat-transfer performance.
Collapse
Affiliation(s)
- Durgesh Ranjan
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Maheswar Chaudhary
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - An Zou
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Shalabh C Maroo
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
6
|
Dawson J, Coaster S, Han R, Gausden J, Liu H, McHale G, Chen J. Dynamics of Droplets Impacting on Aerogel, Liquid Infused, and Liquid-Like Solid Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2301-2312. [PMID: 36580541 PMCID: PMC9837784 DOI: 10.1021/acsami.2c14483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Droplets impacting superhydrophobic surfaces have been extensively studied due to their compelling scientific insights and important industrial applications. In these cases, the commonly reported impact regime was that of complete rebound. This impact regime strongly depends on the nature of the superhydrophobic surface. Here, we report the dynamics of droplets impacting three hydrophobic slippery surfaces, which have fundamental differences in normal liquid adhesion and lateral static and kinetic liquid friction. For an air cushion-like (super)hydrophobic solid surface (Aerogel) with low adhesion and low static and low kinetic friction, complete rebound can start at a very low Weber (We) number (∼1). For slippery liquid-infused porous (SLIP) surfaces with high adhesion and low static and low kinetic friction, complete rebound only occurs at a much higher We number (>5). For a slippery omniphobic covalently attached liquid-like (SOCAL) solid surface, with high adhesion and low static friction similar to SLIPS but higher kinetic friction, complete rebound was not observed, even for a We as high as 200. Furthermore, the droplet ejection volume after impacting the Aerogel surface is 100% across the whole range of We numbers tested compared to other surfaces. In contrast, droplet ejection for SLIPs was only observed consistently when the We was above 5-10. For SOCAL, 100% (or near 100%) ejection volume was not observed even at the highest We number tested here (∼200). This suggests that droplets impacting our (super)hydrophobic Aerogel and SLIPS lose less kinetic energy. These insights into the differences between normal adhesion and lateral friction properties can be used to inform the selection of surface properties to achieve the most desirable droplet impact characteristics to fulfill a wide range of applications, such as deicing, inkjet printing, and microelectronics.
Collapse
Affiliation(s)
- Jack Dawson
- School
of Engineering, Newcastle University, Newcastle Upon TyneNE1
7RU, United Kingdom
| | - Samual Coaster
- School
of Engineering, Newcastle University, Newcastle Upon TyneNE1
7RU, United Kingdom
| | - Rui Han
- School
of Engineering, Newcastle University, Newcastle Upon TyneNE1
7RU, United Kingdom
| | - Johannes Gausden
- School
of Engineering, Newcastle University, Newcastle Upon TyneNE1
7RU, United Kingdom
| | - Hongzhong Liu
- School
of Mechanical Engineering, Xi’an
Jiaotong University, Xi’an710054, China
| | - Glen McHale
- School
of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, EdinburghEH9 3FB, United Kingdom
| | - Jinju Chen
- School
of Engineering, Newcastle University, Newcastle Upon TyneNE1
7RU, United Kingdom
| |
Collapse
|
7
|
Zhang X, Bai R, Sun Q, Zhuang Z, Zhang Y, Chen S, Han B. Bio-inspired special wettability in oral antibacterial applications. Front Bioeng Biotechnol 2022; 10:1001616. [PMID: 36110327 PMCID: PMC9468580 DOI: 10.3389/fbioe.2022.1001616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Most oral diseases originate from biofilms whose formation is originated from the adhesion of salivary proteins and pioneer bacteria. Therefore, antimicrobial materials are mainly based on bactericidal methods, most of which have drug resistance and toxicity. Natural antifouling surfaces inspire new antibacterial strategies. The super wettable surfaces of lotus leaves and fish scales prompt design of biomimetic oral materials covered or mixed with super wettable materials to prevent adhesion. Bioinspired slippery surfaces come from pitcher plants, whose porous surfaces are infiltrated with lubricating liquid to form superhydrophobic surfaces to reduce the contact with liquids. It is believed that these new methods could provide promising directions for oral antimicrobial practice, improving antimicrobial efficacy.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Rushui Bai
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qiannan Sun
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zimeng Zhuang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yunfan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
- *Correspondence: Yunfan Zhang, ; Si Chen, ; Bing Han,
| | - Si Chen
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
- *Correspondence: Yunfan Zhang, ; Si Chen, ; Bing Han,
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
- *Correspondence: Yunfan Zhang, ; Si Chen, ; Bing Han,
| |
Collapse
|
8
|
Kim KH, Mai HN, Hyun DC, Lee DH. New Autonomous Water-Enabled Self-Healing Coating Material with Antibacterial-Agent-Releasing Properties. Pharmaceutics 2022; 14:pharmaceutics14051005. [PMID: 35631591 PMCID: PMC9143542 DOI: 10.3390/pharmaceutics14051005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 12/07/2022] Open
Abstract
A new autonomous water-enabled self-healing coating with antibacterial-agent-releasing capability was developed for the first time by precipitating an aqueous solution of hydrogen-bonded tannic acid (TA) and polyethylene glycol (PEG) (TA: 5 mg/mL; PEG: 5 mg/mL with MW = 100 kDa) to form a smooth, uniform coating layer with an average roughness of 0.688 nm and thickness of 22.3 μm on a polymethyl methacrylate (PMMA) substrate after 10 min of incubation. Our method is cost- and time-efficient, as the hydrophilic coating (water contact angle = 65.1°) forms rapidly, binding strongly to the PMMA substrate (adhesive energy = 83 mJ/m2), without the need for pretreatment or surface modification, and is capable of rapid self-repair (approximately 5 min) through hydrogen bonding in aqueous media. Furthermore, adding 0.5 mg/mL of chlorhexidine acetate (CHX), a commonly used antibacterial agent in dentistry, into the TA–PEG emulsion allowed the release of 2.89 μg/mL of the drug from the coating layer, which is promising for actively inhibiting the vitality and growth of bacteria around PMMA dental restorations. The use of CHX-loaded TA–PEG hydrogen-bonded complexes is highly favorable for the fabrication of an autonomous self-healing biocoating with active antibacterial-agent-releasing capability, which can be applied not only in dentistry but also in other medical fields.
Collapse
Affiliation(s)
- Ki-Hak Kim
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41940, Korea;
| | - Hang-Nga Mai
- Institute for Translational Research in Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Dong-Choon Hyun
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41940, Korea;
- Correspondence: (D.-C.H.); (D.-H.L.); Tel.: +82-536-007-676 (D.-H.L.)
| | - Du-Hyeong Lee
- Department of Prosthodontics, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Correspondence: (D.-C.H.); (D.-H.L.); Tel.: +82-536-007-676 (D.-H.L.)
| |
Collapse
|
9
|
Dhingra S, Sharma S, Saha S. Infection Resistant Surface Coatings by Polymer Brushes: Strategies to Construct and Applications. ACS APPLIED BIO MATERIALS 2022; 5:1364-1390. [DOI: 10.1021/acsabm.1c01006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shaifali Dhingra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shivangi Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
10
|
Wu S, Li D, Huang J, Xiang L, Lu J, Wang Y, Li J, Li C. 飞秒激光制备仿生疏水微柱阵列应用于液滴操控. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Dentin Biomodification with Flavonoids and Calcium Phosphate Ion Clusters to Improve Dentin Bonding Stability. MATERIALS 2022; 15:ma15041494. [PMID: 35208035 PMCID: PMC8879567 DOI: 10.3390/ma15041494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to evaluate the effects of flavonoids and calcium phosphate ion clusters (CPIC) on dentin bonding stability. Seven experimental solutions were synthesized using icaritin (ICT), fisetin (FIS), silibinin (SIB), CPIC, and combinations of one of three flavonoids and CPIC (ICT + C, FIS + C, SIB + C). The experimental solutions were applied to demineralized dentin prior to the application of a universal adhesive. A group without any experimental solution served as a control. Dentin specimens pretreated with the experimental solutions were assayed using Fourier transform infrared (FTIR) spectroscopy. The microtensile bond strength (µTBS) and nanoleakage were evaluated at 24 h and after 10,000 thermocycles. FIS and ICT + C showed significantly higher µTBS than the control group at 24 h. CPIC, ICT + C, FIS + C, and SIB + C showed significantly higher µTBS than the control group after thermocycling. After thermocycling, silver infiltration into the hybrid layer and interfacial gaps was more noticeable in the control group than in the other groups. The FTIR spectra revealed the formation of apatitic minerals in the demineralized dentin in the flavonoid and CPIC combination groups. The pretreatment of demineralized dentin with flavonoids and CPIC improved dentin bonding stability. The flavonoid and CPIC combinations preserved dentin bond strength.
Collapse
|
12
|
Niu JY, Yin IX, Wu WKK, Li QL, Mei ML, Chu CH. Efficacy of the dual-action GA-KR12 peptide for remineralising initial enamel caries: an in vitro study. Clin Oral Investig 2021; 26:2441-2451. [PMID: 34635946 DOI: 10.1007/s00784-021-04210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the antibiofilm and remineralising effects of the dual-action peptide GA-KR12 on artificial enamel caries. MATERIALS AND METHODS Enamel blocks with artificial caries were treated with sterilised deionised water as control or GA-KR12. The blocks underwent biochemical cycling with Streptococcus mutans for 3 weeks. The architecture, viability, and growth kinetics of the biofilm were determined, respectively, by scanning electron microscopy (SEM), confocal laser scanning microscopy, and quantitative (culture colony-forming units, CFUs). The mineral loss, calcium-to-phosphorus ratio, surface morphology, and crystal characteristics of the enamel surface were determined, respectively, using micro-computed tomography, energy dispersive spectroscopy, SEM, and X-ray diffraction (XRD). RESULTS SEM showed confluent growth of S. mutans in the control group but not in the GA-KR12-treated group. The dead-to-live ratios of the control and GA-KR12-treated groups were 0.42 ± 0.05 and 0.81 ± 0.08, respectively (p < 0.001). The log CFUs of the control and GA-KR12-treated groups were 8.15 ± 0.32 and 6.70 ± 0.49, respectively (p < 0.001). The mineral losses of the control and GA-KR12-treated groups were 1.39 ± 0.09 gcm-3 and 1.19 ± 0.05 gcm-3, respectively (p < 0.001). The calcium-to-phosphorus molar ratios of the control and GA-KR12-treated groups were 1.47 ± 0.03 and 1.57 ± 0.02, respectively (p < 0.001). A uniformly remineralised prismatic pattern on enamel blocks was observed in the GA-KR12-treated but not in the control group. The hydroxyapatite in the GA-KR12-treated group was better crystallised than that in the control group. CONCLUSION The dual-action peptide GA-KR12 inhibited the growth of S. mutans biofilm and promoted the remineralisation of enamel caries. CLINICAL RELEVANCE GA-KR12 potentially is applicable for managing enamel caries.
Collapse
Affiliation(s)
- John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,Department of Oral Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Quan-Li Li
- School of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China. .,Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Guan Y, Chen R, Sun G, Liu Q, Liu J, Yu J, Lin C, Duan J, Wang J. The mussel-inspired micro-nano structure for antifouling:A flowering tree. J Colloid Interface Sci 2021; 603:307-318. [PMID: 34186406 DOI: 10.1016/j.jcis.2021.06.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
Abstract
Mussels are typical marine fouling organisms that attach to surfaces though secretions, which is generally the focus of research on mussel-related fouling. This study reveals "a flowering tree" structure on mussel shells with antifouling performance. Based on the antifouling mechanism of surface microstructure, we prepared mussel-like shells (P) using the biomimetic replication method. Mussel adhesion experiments were conducted to examine the anti-mussel performances of the mussel shells and P. The anti-diatom performances of the mussel-like shells were also evaluated using three types of diatoms. The mussels responded differently to different locations on the shells, and the flowering tree microstructure exhibited excellent antifouling performance. In addition, VP (P immersed in vinyl silicon oil) and HP (P immersed in hydroxyl silicone oil) were prepared. The anti-diatom performance of VP was better than those of P and HP, indicating that hydrophobicity has a greater influence on anti-diatom performance than electronegativity. The newly discovered antifouling micro-nano structure was parameterized, revealing that a branch of the flowering tree has an inclination of 13.3° to the surface with a height of 210.1 nm. The results of this study provide insights for further investigations of bionic micro-nano structures in the field of antifouling.
Collapse
Affiliation(s)
- Yu Guan
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Gaohui Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Cunguo Lin
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101, China
| | - Jizhou Duan
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Lab Marine Environm Corros & Biofouling, Chinese Academy of Sciences Institute of Oceanology, Qingdao 266071, China; Open Studio Marine Corros & Protect, Pilot Natl Lab Marine Sci & Technol, Qingdao 266237, China; Ctr Ocean Megasci, Chinese Academy of Sciences Chinese Acad Sci, Qingdao 266071, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| |
Collapse
|
14
|
Zhou L, Wong HM, Li QL. Anti-Biofouling Coatings on the Tooth Surface and Hydroxyapatite. Int J Nanomedicine 2020; 15:8963-8982. [PMID: 33223830 PMCID: PMC7671468 DOI: 10.2147/ijn.s281014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/21/2020] [Indexed: 01/02/2023] Open
Abstract
Dental plaque is one type of biofouling on the tooth surface that consists of a diverse population of microorganisms and extracellular matrix and causes oral diseases and even systematic diseases. Numerous studies have focused on preventing bacteria and proteins on tooth surfaces, especially with anti-biofouling coatings. Anti-biofouling coatings can be stable and sustainable over the long term on the tooth surface in the complex oral environment. In this review, numerous anti-biofouling coatings on the tooth surface and hydroxyapatite (as the main component of dental hard tissue) were summarized based on their mechanisms, which include three major strategies: antiprotein and antibacterial adhesion through chemical modification, contact killing through the modification of antimicrobial agents, and antibacterial agent release. The first strategy of coatings can resist the adsorption of proteins and bacteria. However, these coatings use passive strategies and cannot kill bacteria. The second strategy can interact with the cell membrane of bacteria to cause bacterial death. Due to the possibility of delivering a high antibacterial agent concentration locally, the third strategy is recommended and will be the trend of local drug use in dentistry in the future.
Collapse
Affiliation(s)
- Li Zhou
- Department of Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR999077, People’s Republic of China
| | - Hai Ming Wong
- Department of Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR999077, People’s Republic of China
| | - Quan Li Li
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei230000, People’s Republic of China
| |
Collapse
|
15
|
A Nanoengineered Stainless Steel Surface to Combat Bacterial Attachment and Biofilm Formation. Foods 2020; 9:foods9111518. [PMID: 33105653 PMCID: PMC7690382 DOI: 10.3390/foods9111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Nanopatterning and anti-biofilm characterization of self-cleanable surfaces on stainless steel substrates were demonstrated in the current study. Electrochemical etching in diluted aqua regia solution consisting of 3.6% hydrogen chloride and 1.2% nitric acid was conducted at 10 V for 5, 10, and 15 min to fabricate nanoporous structures on the stainless steel. Variations in the etching rates and surface morphologic characteristics were caused by differences in treatment durations; the specimens treated at 10 V for 10 min showed that the nanoscale pores are needed to enhance the self-cleanability. Under static and realistic flow environments, the populations of Escherichia coli O157:H7 and Salmonella Typhimurium on the developed features were significantly reduced by 2.1–3.0 log colony-forming unit (CFU)/cm2 as compared to bare stainless steel (p < 0.05). The successful fabrication of electrochemically etched stainless steel surfaces with Teflon coating could be useful in the food industry and biomedical fields to hinder biofilm formation in order to improve food safety.
Collapse
|
16
|
Fabrication of biomimetic slippery liquid‐infused porous surface on 5086 aluminum alloy with excellent antifouling performance. SURF INTERFACE ANAL 2020. [DOI: 10.1002/sia.6894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Ishihara K, Kozaki Y, Inoue Y, Fukazawa K. Biomimetic phospholipid polymers for suppressing adsorption of saliva proteins on dental hydroxyapatite substrate. J Appl Polym Sci 2020. [DOI: 10.1002/app.49812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering The University of Tokyo Tokyo Japan
| | - Yoichiro Kozaki
- Department of Materials Engineering, School of Engineering The University of Tokyo Tokyo Japan
| | - Yuuki Inoue
- Department of Materials Engineering, School of Engineering The University of Tokyo Tokyo Japan
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering The University of Tokyo Tokyo Japan
| |
Collapse
|
18
|
Wang C, Yan Y, Du D, Xiong X, Ma Y. WO 3-Based Slippery Liquid-Infused Porous Surfaces with Long-Term Stability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29767-29777. [PMID: 32510196 DOI: 10.1021/acsami.0c05315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Slippery liquid-infused porous surfaces (SLIPS) inspired by Nepenthes pitcher plants exhibit excellent hydrophobicity, antifouling and anti-icing properties, and long-term durability under pressure and temperature. SLIPS have potential applications including in biomedical devices, self-cleaning structures, and water-resistant coatings. A big challenge posed by SLIPS is the durability of the lubricant in the porous layer. Herein, uniform tungsten oxide nanofiber networks were synthesized on the surface of stainless steel through a simple one-step hydrothermal method. WO3 nanofiber networks on stainless steels were chemically modified, filled with a lubricant, and prepared as SLIPS with excellent liquid repellency and good anti-biofouling properties. The relationship of the nanostructures and the slippery properties of the obtained WO3-based SLIPS have been investigated in detail in this work. The liquid retention and long-term stability of the SLIPS were characterized using high shear force and water flow impact. We found that the long-term durability of the SLIPS is strongly related to the diameters and the Brunauer-Emmett-Teller surface areas of the WO3 nanostructures. The durability of the SLIPS is better when the diameter of the WO3 nanostructures is smaller. The WO3-based SLIPS prepared in this work exhibit outstanding slippery property, anti-biofouling, and long-term stability under extreme conditions such as high shear rate and water washing and thus may have potential application for surface modification of medical devices in the future.
Collapse
Affiliation(s)
- Chunxia Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuxin Yan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Daming Du
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaolu Xiong
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yurong Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
19
|
Ohsumi T, Takenaka S, Sakaue Y, Suzuki Y, Nagata R, Hasegawa T, Ohshima H, Terao Y, Noiri Y. Adjunct use of mouth rinses with a sonic toothbrush accelerates the detachment of a Streptococcus mutans biofilm: an in vitro study. BMC Oral Health 2020; 20:161. [PMID: 32493283 PMCID: PMC7268619 DOI: 10.1186/s12903-020-01144-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this in vitro study was to examine the possible enhancement of the biofilm peeling effect of a sonic toothbrush following the use of an antimicrobial mouth rinse. METHODS The biofilm at a noncontact site in the interdental area was treated by sound wave convection with the test solution or by immersion in the solution. The biofilm peeling effect was evaluated by determining the bacterial counts and performing morphological observations. A Streptococcus mutans biofilm was allowed to develop on composite resin discs by cultivation with stirring at 50 rpm for 72 h. The specimens were then placed in recesses located between plastic teeth and divided into an immersion group and a combination group. The immersion group was treated with phosphate buffer, chlorhexidine digluconate Peridex™ (CHX) mouth rinse or Listerine® Fresh Mint (EO) mouth rinse. The combination group was treated with CHX or EO and a sonic toothbrush. RESULTS The biofilm thickness was reduced by approximately one-half compared with the control group. The combination treatment produced a 1 log reduction in the number of bacteria compared to the EO immersion treatment. No significant difference was observed in the biofilm peeling effect of the immersion group compared to the control group. CONCLUSIONS The combined use of a sonic toothbrush and a mouth rinse enhanced the peeling of the biofilm that proliferates in places that are difficult to reach using mechanical stress.
Collapse
Affiliation(s)
- Tatsuya Ohsumi
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan.
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Yuuki Sakaue
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Yuki Suzuki
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Ryoko Nagata
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Taisuke Hasegawa
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
20
|
Chen C, Zhou L, Shi LA, Zhu S, Huang Z, Xue C, Li J, Hu Y, Wu D, Chu J. Ultralow-Voltage-Driven Smart Control of Diverse Drop's Anisotropic Sliding by in Situ Switching Joule Heat on Paraffin-Infused Microgrooved Slippery Surface. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1895-1904. [PMID: 31794661 DOI: 10.1021/acsami.9b17936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Stimuli-responsive anisotropic slippery surfaces (ASSs) have demonstrated intriguing performance in manipulating the behaviors of some liquids. However, most present methods have been limited to conductive droplets, certain specific conductive platforms, and higher manipulation temperature that greatly hinder its practical applications. Here, an electric-responsive paraffin-infused ASS (ER-PIASS) composed of paraffin, microgrooved PDMS, and flexible embedded silver nanowire heater is reported. Owing to the fast electric-response of ER-PIASS, smart control between anisotropic sliding and pinning for diverse liquids can be realized by remotely loading and discharging electric-stimuli. The underlying mechanism is that the generated Joule heat melts the solidified paraffin to slide a pinning droplet once an electric-trigger is loaded due to the formation of a slippery air/liquid/liquid/solid system. Once the voltage is discharged, the liquefied paraffin would rapidly solidify to stick to a slipping droplet because of the recovery of a frictional air/liquid/solid system. Additionally, the effect of the groove's height (h), spacing between two adjacent grooves (d), and thickness of the paraffin layer on the anisotropic degree was quantitatively studied and an optimized value of 75° is thus harvested. Through tuning the recipe of the hybrid lubricant, the responsive voltage and temperature for ER-PIASS can be dramatically decreased to ultralow figures of 2.0 V and 34.2 °C. By taking advantage of this ultralow-voltage-driven biocompatible ER-PIASS, we enable the anisotropic smart control of cell culture medium and yeast droplets for their directional coalesce, growth, and fission. We believe that such stimuli-responsive surfaces will be promising candidates for manipulating droplets' directional sliding behavior and further bloom the studies of flexible microfluidics devices.
Collapse
Affiliation(s)
- Chao Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Lili Zhou
- School of Instrument Science and Optoelectronics Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Lu-An Shi
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Zhouchen Huang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Cheng Xue
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| |
Collapse
|
21
|
Peppou-Chapman S, Hong JK, Waterhouse A, Neto C. Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chem Soc Rev 2020; 49:3688-3715. [DOI: 10.1039/d0cs00036a] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We review the rational choice, the analysis, the depletion and the properties imparted by the liquid layer in liquid-infused surfaces – a new class of low-adhesion surface.
Collapse
Affiliation(s)
- Sam Peppou-Chapman
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Jun Ki Hong
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Anna Waterhouse
- The University of Sydney Nano Institute
- The University of Sydney
- Australia
- Central Clinical School
- Faculty of Medicine and Health
| | - Chiara Neto
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| |
Collapse
|
22
|
He X, Tian F, Bai X, Yuan C. Role of trapped air and lubricant in the interactions between fouling and SiO 2 nanoparticle surfaces. Colloids Surf B Biointerfaces 2019; 184:110502. [PMID: 31542644 DOI: 10.1016/j.colsurfb.2019.110502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/29/2019] [Accepted: 09/11/2019] [Indexed: 11/29/2022]
Abstract
Both biomimetic superhydrophobic surfaces and biomimetic slippery liquid-infused porous surfaces (SLIPSs) have been developed as potential alternatives for solving the problem of biofouling. Herein, a facile method was used to construct superhydrophobic surfaces and liquid infused porous surfaces on stainless steels for antifouling applications. The nano-structures were formed by electrostatic attraction between polycations and negatively charged SiO2 nanoparticles, providing a structural basis for superhydrophobic surfaces and liquid infused surfaces. Biofouling testing suggested excellent antifouling performances of the liquid infused porous surfaces by decreasing the adhesion of Chlorella pyrenoidosa by 93% and of Phaeodactylum tricornutum by 71%. The thermodynamic interpretation further indicated that the air layer captured by the superhydrophobic surfaces and the lubricant layer entrapped by the liquid infused porous surfaces played the dominant role in their antifouling performances. The inspiring results might show great potential for liquid infused porous surfaces in antifouling applications.
Collapse
Affiliation(s)
- Xiaoyan He
- Reliability Engineering Institute, National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan 430063, China; Key Laboratory of Marine Power Engineering and Technology, Ministry of Transport, Wuhan University of Technology, Wuhan 430063, China
| | - Feng Tian
- Reliability Engineering Institute, National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan 430063, China; Key Laboratory of Marine Power Engineering and Technology, Ministry of Transport, Wuhan University of Technology, Wuhan 430063, China
| | - Xiuqin Bai
- Reliability Engineering Institute, National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan 430063, China; Key Laboratory of Marine Power Engineering and Technology, Ministry of Transport, Wuhan University of Technology, Wuhan 430063, China.
| | - Chengqing Yuan
- Reliability Engineering Institute, National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan 430063, China; Key Laboratory of Marine Power Engineering and Technology, Ministry of Transport, Wuhan University of Technology, Wuhan 430063, China
| |
Collapse
|
23
|
Lee J, Jiang Y, Hizal F, Ban GH, Jun S, Choi CH. Durable omniphobicity of oil-impregnated anodic aluminum oxide nanostructured surfaces. J Colloid Interface Sci 2019; 553:734-745. [DOI: 10.1016/j.jcis.2019.06.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
|
24
|
Waterhouse A, Leslie DC, Lightbown K, Antonoff D, Lightbown S, Dimitrakakis N, Hicks-Berthet JB, Leslie CN, Super M, Ingber DE, Ackerman MB. Rapid Coating Process Generates Omniphobic Dentures in Minutes to Reduce C. albicans Biofouling. ACS Biomater Sci Eng 2019; 5:420-424. [PMID: 33405807 DOI: 10.1021/acsbiomaterials.8b01214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Localized infections caused by biofilm formation on dentures pose a serious health risk for patients, especially the elderly, as they can lead to complications such as pneumonia. Daily enzymatic denture cleaners do not fully prevent biofilm formation on dentures. Here we developed a rapid coating process to apply a liquid repellent surface to dentures in ∼5 min and demonstrated a significant 225-fold reduction of Candida albicans adhesion over 6 days, compared to uncoated dentures. This rapid coating process could be applied to dentures and other dental devices chair-side and allow the research community to quickly and easily generate ominphobic surfaces.
Collapse
Affiliation(s)
- Anna Waterhouse
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Daniel C Leslie
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Kayla Lightbown
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Daniel Antonoff
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Shanda Lightbown
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Nikolaos Dimitrakakis
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Julia B Hicks-Berthet
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Cheyene N Leslie
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Michael Super
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States.,Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Marc B Ackerman
- Department of Dentistry, Boston Children's Hospital, Boston, Massachusetts 02115, United States.,Department of Developmental Biology, School of Dental Medicine, Harvard University, Boston, Massachusetts, United States
| |
Collapse
|
25
|
Sun D, Böhringer KF. Self-Cleaning: From Bio-Inspired Surface Modification to MEMS/Microfluidics System Integration. MICROMACHINES 2019; 10:E101. [PMID: 30704097 PMCID: PMC6412494 DOI: 10.3390/mi10020101] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 11/16/2022]
Abstract
This review focuses on self-cleaning surfaces, from passive bio-inspired surface modification including superhydrophobic, superomniphobic, and superhydrophilic surfaces, to active micro-electro-mechanical systems (MEMS) and digital microfluidic systems. We describe models and designs for nature-inspired self-cleaning schemes as well as novel engineering approaches, and we discuss examples of how MEMS/microfluidic systems integrate with functional surfaces to dislodge dust or undesired liquid residues. Meanwhile, we also examine "waterless" surface cleaning systems including electrodynamic screens and gecko seta-inspired tapes. The paper summarizes the state of the art in self-cleaning surfaces, introduces available cleaning mechanisms, describes established fabrication processes and provides practical application examples.
Collapse
Affiliation(s)
- Di Sun
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98105, USA.
| | - Karl F Böhringer
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
26
|
Peppou-Chapman S, Neto C. Mapping Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33669-33677. [PMID: 30168715 DOI: 10.1021/acsami.8b11768] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Slippery liquid infused porous surfaces (SLIPS) have recently gained a lot of attention because of their wide range of applications. We recently showed that SLIPS with most of their surface depleted of lubricant, as little lubricant as 0.02 ± 0.01 μL cm-1, were effective against marine biofouling. Characterization of the depletion and configuration of the immobilized liquid layer on SLIPS is crucial to optimizing their performance. Previous attempts at mapping lubricant thickness have been diffraction limited or indirectly measured thickness. Here, we use atomic force microscopy meniscus force measurements to directly map lubricant thickness with nanoscale resolution on wrinkled surfaces made from Teflon and poly(4-vinylpyridine) (P4VP). Using this method, we show that SLIPS are easily depleted and are effectively heterogeneous surfaces, where the majority of the surface is a thick lubricating layer stabilized by capillary forces and part nanothin layer stabilized long-range intermolecular forces. We found that the depleted silicone oil thickness on the tops of nonwettable (Teflon) wrinkles is approx. 5 nm, close to but greater than the minimum measurable thickness of approx. 3 nm. The silicone oil thickness on the tops of wettable (P4VP) wrinkles is approx. 15 nm. Surfaces in this state still show antibiofouling properties and thus show that a thick lubricating layer is not necessary for all favorable properties of SLIPS.
Collapse
Affiliation(s)
- Sam Peppou-Chapman
- School of Chemistry and The University of Sydney Nano Institute , The University of Sydney , Camperdown , New South Wales 2006 , Australia
| | - Chiara Neto
- School of Chemistry and The University of Sydney Nano Institute , The University of Sydney , Camperdown , New South Wales 2006 , Australia
| |
Collapse
|
27
|
Zhang P, Liu G, Zhang D, Chen H. Liquid-Infused Surfaces on Electrosurgical Instruments with Exceptional Antiadhesion and Low-Damage Performances. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33713-33720. [PMID: 30183244 DOI: 10.1021/acsami.8b13373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electrosurgery based on electrosurgical instruments plays an important role in clinical surgery owing to its advantages of ease of operation, low damage, and less pain to the patient. But soft tissue adhesion on electrosurgical instruments is still a major obstacle to improve the operation efficiency and achieve a better surgical result, regardless of so many developed methods to enhance the antiadhesion performance. In this paper, we successfully demonstrated that liquid-infused surfaces (LISs) can significantly improve the antiadhesion performance of electrosurgical instruments. We developed a microcontact printing method to assist the structure fabrication on the small instrument tip to prepare a firmly liquid-held surface. Soft tissue cutting experiments showed that LIS could not only significantly reduce the adhesion force between the tissue and the instrument tip but also lead to a much smaller charring wound. The underlying mechanism was discussed, and further experiments concluded that LIS have a better duration capability. Our study provides a new insight into the antiadhesion design for electrosurgical instruments.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Mechanical Engineering and Automation , Beihang University , Beijing 100191 , China
- Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , California 94158 , United States
| | - Guang Liu
- School of Mechanical Engineering and Automation , Beihang University , Beijing 100191 , China
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation , Beihang University , Beijing 100191 , China
- Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , China
| | - Huawei Chen
- School of Mechanical Engineering and Automation , Beihang University , Beijing 100191 , China
- Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , China
| |
Collapse
|
28
|
Zhang H, Wang P, Zhang D. Designing a transparent organogel layer with self-repairing property for the inhibition of marine biofouling. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Wallace A, Albadawi H, Patel N, Khademhosseini A, Zhang YS, Naidu S, Knuttinen G, Oklu R. Anti-fouling strategies for central venous catheters. Cardiovasc Diagn Ther 2017; 7:S246-S257. [PMID: 29399528 DOI: 10.21037/cdt.2017.09.18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Central venous catheters (CVCs) are ubiquitous in the healthcare industry and carry two common complications, catheter related infections and occlusion, particularly by thrombus. Catheter-related bloodstream infections (CRBSI) are an important cause of nosocomial infections that increase patient morbidity, mortality, and hospital cost. Innovative design strategies for intravenous catheters can help reduce these preventable infections. Antimicrobial coatings can play a major role in preventing disease. These coatings can be divided into two major categories: drug eluting and non-drug eluting. Much of these catheter designs are targeted at preventing the formation of microbial biofilms that make treatment of CRBSI nearly impossible without removal of the intravenous device. Exciting developments in catheter impregnation with antibiotics as well as nanoscale surface design promise innovative changes in the way that physicians manage intravenous catheters. Occlusion of a catheter renders the catheter unusable and is often treated by tissue plasminogen activator administration or replacement of the line. Prevention of this complication requires a thorough understanding of the mechanisms of platelet aggregation, signaling and cross-linking. This article will look at the advances in biomaterial design specifically drug eluting, non-drug eluting, lubricious coatings and micropatterning as well as some of the characteristics of each as they relate to CVCs.
Collapse
Affiliation(s)
- Alex Wallace
- Department of Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Hassan Albadawi
- Division of Vascular & Interventional Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Nikasha Patel
- Division of Vascular & Interventional Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA.,California NanoSystems Institute (CNSI), University of California-Los Angeles (UCLA), Los Angeles, CA, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Sailendra Naidu
- Division of Vascular & Interventional Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Grace Knuttinen
- Division of Vascular & Interventional Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
30
|
Ban GH, Lee J, Choi CH, Li Y, Jun S. Nano-patterned aluminum surface with oil-impregnation for improved antibacterial performance. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.05.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Zouaghi S, Six T, Bellayer S, Moradi S, Hatzikiriakos SG, Dargent T, Thomy V, Coffinier Y, André C, Delaplace G, Jimenez M. Antifouling Biomimetic Liquid-Infused Stainless Steel: Application to Dairy Industrial Processing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26565-26573. [PMID: 28715202 DOI: 10.1021/acsami.7b06709] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fouling is a widespread and costly issue, faced by all food-processing industries. Particularly, in the dairy sector, where thermal treatments are mandatory to ensure product safety, heat-induced fouling represents up to 80% of the total production costs. Significant environmental impacts, due the massive consumption of water and energy, are also to deplore. Fouling control solutions are thus desperately needed, as they would lead to substantial financial gains as well as tremendous progress toward eco-responsible processes. This work aims at presenting a novel and very promising dairy fouling-mitigation strategy, inspired by nature, and to test its antifouling performances in real industrial conditions. Slippery liquid-infused surfaces were successfully designed directly on food grade stainless steel, via femtosecond laser ablation, followed by fluorosilanization and impregnation with an inert perfluorinated oil. Resulting hydrophobic surfaces (water contact angle of 112°) exhibited an extremely slippery nature (contact angle hysteresis of 0.6°). Outstanding fouling-release performances were obtained for these liquid-infused surfaces as absolutely no trace of dairy deposit was found after 90 min of pasteurization test in pilot-scale equipment followed by a short water rinse.
Collapse
Affiliation(s)
| | | | | | - Sona Moradi
- Chemical and Biological Engineering Department, The University of British Columbia , Vancouver, BC Canada
| | - Savvas G Hatzikiriakos
- Chemical and Biological Engineering Department, The University of British Columbia , Vancouver, BC Canada
| | | | | | | | - Christophe André
- INRA, F-59000 Lille, France
- Hautes Etudes d'Ingénieur, F-59000 Lille, France
| | | | | |
Collapse
|
32
|
Wang P, Zhang D, Sun S, Li T, Sun Y. Fabrication of Slippery Lubricant-Infused Porous Surface with High Underwater Transparency for the Control of Marine Biofouling. ACS APPLIED MATERIALS & INTERFACES 2017; 9:972-982. [PMID: 27992173 DOI: 10.1021/acsami.6b09117] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Marine optical instruments are bearing serious biofouling problem, which affects the accuracy of data collected. To solve the biofouling problem of marine optical instruments, a novel instance of slippery lubricant-infused porous surface (SLIPS) with high underwater-transparency was designed over glass substrate via infusing lubricant into its porous microstructure fabricated with hydrothermal method. The advantage of SLIPS as antibiofouling strategy to marine optical instruments was proven by comparing its underwater optical and antibiofouling performances with three kinds of samples (hydrophilic glass sample, textured hydrophilic glass sample, and superhydrophobic glass sample). The modification of SLIPS enhances the underwater-transparency of glass sample within the wavelength of 500-800 nm, for the infusion of lubricant with lower refractive index than glass substrate. In contrast with hydrophilic surface, textured hydrophilic surface and superhydrophobic surface, SLIPS can significantly inhibit bacterial and algal settlements, thereby maintaining high underwater-transparency in both dynamic and static seawater. The inhibition of bacterial and algal settlements over SLIPS results from its liquid-like property. The contact angle hysteresis of water over SLIPS increases with immersion time in seawater under different conditions (static, dynamic, and vibration conditions). Both dynamic and vibration conditions accelerate the failure of SLIPS exposed in seawater. This research provides valuable information for solving biofouling problem of marine optical instruments with SLIPS.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences , 7 Naihai Road, Qingdao 266071, China
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute , Qingdao 266101, China
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences , 7 Naihai Road, Qingdao 266071, China
| | - Shimei Sun
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences , 7 Naihai Road, Qingdao 266071, China
- University of the Chinese Academy of Sciences , 19 (Jia) Yuquan Road, Beijing 100039, China
| | - Tianping Li
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences , 7 Naihai Road, Qingdao 266071, China
- University of the Chinese Academy of Sciences , 19 (Jia) Yuquan Road, Beijing 100039, China
| | - Yan Sun
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences , 7 Naihai Road, Qingdao 266071, China
| |
Collapse
|
33
|
Liu Y, Song Y, Niu S, Zhang Y, Han Z, Ren L. Integrated super-hydrophobic and antireflective PDMS bio-templated from nano-conical structures of cicada wings. RSC Adv 2016. [DOI: 10.1039/c6ra23811d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A PDMS positive replica bio-templated from cicada wings demonstrates excellent antireflective properties and super-hydrophobic capacity.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Bionic Engineering
- Ministry of Education
- Jilin University
- Changchun 130022
- China
| | - Yunyun Song
- Key Laboratory of Bionic Engineering
- Ministry of Education
- Jilin University
- Changchun 130022
- China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering
- Ministry of Education
- Jilin University
- Changchun 130022
- China
| | - Yonglai Zhang
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun 130012
- China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering
- Ministry of Education
- Jilin University
- Changchun 130022
- China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering
- Ministry of Education
- Jilin University
- Changchun 130022
- China
| |
Collapse
|