1
|
Wang X, Sun K, Xu Z, Chen Z, Wu W. Roles of SP/KLF transcription factors in odontoblast differentiation: From development to diseases. Oral Dis 2024; 30:3745-3760. [PMID: 38409677 DOI: 10.1111/odi.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES A zinc-finger transcription factor family comprising specificity proteins (SPs) and Krüppel-like factor proteins (KLFs) plays an important role in dentin development and regeneration. However, a systematic regulatory network involving SPs/KLFs in odontoblast differentiation has not yet been described. This review examined the expression patterns of SP/KLF gene family members and their current known functions and mechanisms in odontoblast differentiation, and discussed prospective research directions for further exploration of mechanisms involving the SP/KLF gene family in dentin development. MATERIALS AND METHODS Relevant literature on SP/KLF gene family members and dentin development was acquired from PubMed and Web of Science. RESULTS We discuss the expression patterns, functions, and related mechanisms of eight members of the SP/KLF gene family in dentin development and genetic disorders with dental problems. We also summarize current knowledge about their complementary or synergistic actions. Finally, we propose future research directions for investigating the mechanisms of dentin development. CONCLUSIONS The SP/KLF gene family plays a vital role in tooth development. Studying the complex complementary or synergistic interactions between SPs/KLFs is helpful for understanding the process of odontoblast differentiation. Applications of single-cell and spatial multi-omics may provide a more complete investigation of the mechanism involved in dentin development.
Collapse
Affiliation(s)
- Xuefei Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Kaida Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zekai Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Wenzhi Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Choi H, Yang L, Liu Y, Jeong JK, Cho ES. Inactivation of Sufu in cementoblasts accelerates external tooth root resorption. J Cell Physiol 2023; 238:447-458. [PMID: 36598878 DOI: 10.1002/jcp.30943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Cementum has been empirically regarded as an antiresorptive barrier against tooth roots. However, little is known about the factors of homeostasis and resistant mechanisms of tooth roots against resorption. Here, we investigated cementum factors and their interaction against resorption using transgenic mice exhibiting external cervical root resorption (ECRR). Ectopically thickened cervical cementum caused by functional inactivation of ectonucleotide pyrophosphotase/phosphodiesterase 1 (Enpp1) was susceptible to ECRR with aging. In addition, the inactivation of the suppressor of fused (Sufu), a Hedgehog signaling inhibitor, in cementoblasts led to ECRR. Interestingly, concurrent inactivation of Sufu and Enpp1 in cementoblasts remarkably exacerbated ECRR with higher Rankl expression. Cellular and molecular analyses using cementoblasts and bone marrow-derived macrophages indicated that Dickkopf-related protein 1 (Dkk1) induced by the inactivation of Sufu in cementoblasts has roles in the acceleration of ECRR triggered by Enpp1 inactivation. Using compound mutant mice for concurrent Wntless and Enpp1 inactivation, this synergistic cooperation of Dkk1 and Npp1 for resorption found in double mutant Sufu and Enpp1 mice was confirmed by the reproduction of amplified ECRR. On the basis of these findings, we conclude that proper Npp1 function and sustained Wnt activity in the cervical cementum are essential for the homeostasis of tooth roots against resorption in a physiological state.
Collapse
Affiliation(s)
- Hwajung Choi
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| | - Liu Yang
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| | - Yudong Liu
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| | - Ju-Kyung Jeong
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| |
Collapse
|
3
|
Xiao F, Shi J, Zhang X, Hu M, Chen K, Shen C, Chen X, Guo Y, Li Y. Gadolinium-doped whitlockite/chitosan composite scaffolds with osteogenic activity for bone defect treatment: In vitro and in vivo evaluations. Front Bioeng Biotechnol 2023; 11:1071692. [PMID: 36873374 PMCID: PMC9975562 DOI: 10.3389/fbioe.2023.1071692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Reducing the incidence of bone defects caused by trauma and other primary diseases is an urgent task in modern society. In the present study, we developed a gadolinium-doped whitlockite/chitosan (Gd-WH/CS) scaffold and assessed its biocompatibility, osteoinductivity, and bone regeneration capacity for the treatment of calvarial defect in a Sprague-Dawley (SD) rat model. The Gd-WH/CS scaffolds possessed a macroporous structure, with a pore size ranging 200-300 μm, which facilitated the growth of bone precursor cells and tissues into scaffold. Results of cytological and histological biosafety experiments showed that both WH/CS and Gd-WH/CS scaffolds were non-cytotoxic to human adipose-derived stromal cells (hADSCs) and bone tissue, which demonstrated the excellent biocompatibility of Gd-WH/CS scaffolds. Results of western blotting and real-time PCR analysis provided a possible mechanism that Gd3+ ions in the Gd-WH/CS scaffolds promoted the osteogenic differentiation of hADSCs through the GSK3β/β-catenin signaling pathway and significantly upregulated the expression of osteogenic related genes (OCN, OSX and COL1A1). Finally, in animal experiments, SD rat cranial defects were effectively treated and repaired with Gd-WH/CS scaffolds due to its appropriate degradation rate and excellent osteogenic activity. This study suggests the potential utility of the Gd-WH/CS composite scaffolds in treating bone defect disease.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jingjing Shi
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Xinhai Zhang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Min Hu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Kangming Chen
- Department of Orthopaedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Shen
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Xiaodong Chen
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Yaping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Yang Li
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Choi H, Yang L, Liu Y, Jeong JK, Cho ES. Npp1 prevents external tooth root resorption by regulation of cervical cementum integrity. Sci Rep 2022; 12:21158. [PMID: 36477209 PMCID: PMC9729310 DOI: 10.1038/s41598-022-25846-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Tooth roots embedded in the alveolar bone do not typically undergo resorption while the bone continues remodeling in its physiological state. In this study, we analyzed genetically modified mice with the functional inactivation of nucleotide pyrophosphatase 1 (Npp1), encoded by ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1). This mutation leads to the formation of ectopic cervical cementum vulnerable to external tooth root resorption. Cementoblasts with the inactivation of Enpp1 extensively expressed non-collagenous matrix proteins enriched with bone sialoprotein (Bsp), dentin matrix protein 1 (Dmp1), and osteopontin (Opn), which have roles in mineralization through nucleation and in cell adhesion through the Arg-Gly-Asp (RGD) motif. In cementoblasts with the inactivation of Enpp1, β-catenin was significantly activated and induced the expression of these non-collagenous matrix proteins. In addition, adenosine triphosphate (ATP), which is the most preferred substrate of Npp1, accumulated extracellularly and autocrinally induced the expression of the receptor activator of nuclear factor κB ligand (Rankl) in cementoblasts with inactivated Npp1. Consequently, these results strongly suggest that functional Npp1 preserves cervical cementum integrity and supports the anti-resorptive properties of tooth roots through ATP homeostasis in the physiological state of cervical cementum.
Collapse
Affiliation(s)
- Hwajung Choi
- grid.411545.00000 0004 0470 4320Laboratory for Craniofacial Biology, Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896 South Korea
| | - Liu Yang
- grid.411545.00000 0004 0470 4320Laboratory for Craniofacial Biology, Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896 South Korea
| | - Yudong Liu
- grid.411545.00000 0004 0470 4320Laboratory for Craniofacial Biology, Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896 South Korea
| | - Ju-Kyung Jeong
- grid.411545.00000 0004 0470 4320Laboratory for Craniofacial Biology, Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896 South Korea
| | - Eui-Sic Cho
- grid.411545.00000 0004 0470 4320Laboratory for Craniofacial Biology, Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896 South Korea
| |
Collapse
|
5
|
Sun Q, Zhao T, Li B, Li M, Luo P, Zhang C, Chen G, Cao Z, Li Y, Du M, He H. FTO/RUNX2 signaling axis promotes cementoblast differentiation under normal and inflammatory condition. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119358. [PMID: 36084732 DOI: 10.1016/j.bbamcr.2022.119358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent mRNA modification which plays crucial roles in various biological processes, but its role in cementogenesis remains largely unknown. Here, using time-series transcriptomic analysis, we reveal that mRNA m6A demethylase Fat mass and obesity-associated protein (FTO) is involved in cementogenesis. Knocking down FTO decreases cementoblast differentiation and mineralization in both OCCM-30 cellular model and murine ectopic bone formation model. Mechanistically, we find that FTO directly binds Runt-related transcription factor 2 (Runx2) mRNA, an important cementogenesis factor, thus protecting it from YTH domain-containing family protein 2 (YTHDF2) mediated degradation, when cementoblasts are differentiating. Knocking down YTHDF2 restores the expression of Runx2 in FTO-knockdown cells. Moreover, under inflammatory conditions, TNF-α inhibits cementoblast differentiation and mineralization partly through FTO/RUNX2 axis. Collectively, our study reveals an important regulatory role of FTO/RUNX2 axis in normal and pathological cementogenesis.
Collapse
Affiliation(s)
- Qiao Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Tingting Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Biao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mengying Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ping Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chen Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yicun Li
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, China
| | - Mingyuan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Andras NL, Mohamed FF, Chu EY, Foster BL. Between a rock and a hard place: Regulation of mineralization in the periodontium. Genesis 2022; 60:e23474. [PMID: 35460154 PMCID: PMC9492628 DOI: 10.1002/dvg.23474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/30/2022]
Abstract
The periodontium supports and attaches teeth via mineralized and nonmineralized tissues. It consists of two, unique mineralized tissues, cementum and alveolar bone. In between these tissues, lies an unmineralized, fibrous periodontal ligament (PDL), which distributes occlusal forces, nourishes and invests teeth, and harbors progenitor cells for dentoalveolar repair. Many unanswered questions remain regarding periodontal biology. This review will focus on recent research providing insights into one enduring mystery: the precise regulation of the hard-soft tissue borders in the periodontium which define the interfaces of the cementum-PDL-alveolar bone structure. We will focus on advances in understanding the molecular mechanisms that maintain the unmineralized PDL "between a rock and a hard place" by regulating the mineralization of cementum and alveolar bone.
Collapse
Affiliation(s)
- Natalie L. Andras
- Biosciences Division, College of DentistryThe Ohio State UniversityColumbusOhioUSA
| | - Fatma F. Mohamed
- Biosciences Division, College of DentistryThe Ohio State UniversityColumbusOhioUSA
| | - Emily Y. Chu
- Division of Operative Dentistry, Department of General Dentistry, School of DentistryUniversity of MarylandBaltimoreMarylandUSA
| | - Brian L. Foster
- Biosciences Division, College of DentistryThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
7
|
Oka K. Fibrillin protein, a candidate for creating a suitable scaffold in PDL regeneration while avoiding ankylosis. Genesis 2022; 60:e23486. [PMID: 35678273 DOI: 10.1002/dvg.23486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/26/2022] [Accepted: 05/14/2022] [Indexed: 11/11/2022]
Abstract
The tooth is stabilized by fiber-rich tissue called the periodontal ligament (PDL). The narrow space of the PDL does not calcify in the physiological state even thought it exists between two calcified tissues, namely, the cementum of the root and alveolar bone. Two situations that require PDL regeneration are periodontitis and dental trauma. Periodontitis induces the loss of PDL and alveolar bone due to inflammation related to infection. Conversely, in PDLs damaged by dental trauma, accelerating bone formation as an overreaction of the healing process is induced, thereby inducing dentoalveolar ankylosis at the tooth root surface. PDL regeneration following dental trauma must therefore be considered separately from periodontitis. Therefore, PDL regeneration in dental trauma must be considered separately from periodontitis. This review focuses on the components involved in avoiding dentoalveolar ankylosis, including oxytalan fibers, aggregated microfibrils, epithelial cell rests of Malassez (ERM), and TGF-β signaling. During root development, oxytalan fibers produced by PDL cells work in collaboration with the epithelial components in the PDL (e.g., Hertwig's root sheath [HERS] and ERM). We herein describe the functions of oxytalan fibers, ERM, and TGF-β signals which are involved in the avoidance of bone formation.
Collapse
Affiliation(s)
- Kyoko Oka
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
8
|
Fu Z, Zhuang Y, Cui J, Sheng R, Tomás H, Rodrigues J, Zhao B, Wang X, Lin K. Development and challenges of cells- and materials-based tooth regeneration. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
9
|
Yu XY, Zhang ZQ, Huang JC, Lin JY, Cai XP, Liu CF. IL-7-Treated Periodontal Ligament Cells Regulate Local Immune Homeostasis by Modulating Treg/Th17 Cell Polarization. Front Med (Lausanne) 2022; 9:754341. [PMID: 35280902 PMCID: PMC8905254 DOI: 10.3389/fmed.2022.754341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Both interleukin (IL)-7 and human periodontal ligament cells (hPDLCs) have immunomodulatory properties. However, their combined effect on CD4+T cells has never been studied. In this study, we aimed to investigate the effect of conditioned medium of hPDLCs treated with rhIL-7 on the differentiation of CD4+T cells into regulatory T cells/T helper 17 cells (Treg/Th17 cells) and observe the effect of IL-7 on the immunomodulatory properties of PDLCs. After hPDLCs were treated with different concentrations of rhIL-7 for 24 h, the collected supernatants were used to incubate CD4+T cells for 3 days. A gamma-secretase inhibitor (DAPT) was used to suppress the activation of the Notch1 signaling pathway. Cell proliferation, apoptosis, and necrosis were determined using the cell counting kit-8 (CCK-8) and flow cytometry (FCM). The expressions of forkhead box P3 (Foxp3) in CD4+T cells and transforming growth factor (TGF-β) and IL-6 in the supernatants were determined by ELISA. Reverse transcription-quantitative PCR (RT-qPCR), and the Western blot (WB) determined the mRNA levels and protein expression of various target factors. FCM was used to detect the mean fluorescence intensity of PD-L1 in hPDLCs and to analyze the differentiation of Treg/Th17 cells. Our results showed that IL-7 promoted proliferation and inhibited apoptosis in hPDLCs, promoted the expression of TGF-β, PD-L1, Notch1, Jagged1, and Hes1, and inhibited the levels of hypoxia-inducible factor (HIF)-1α and TCF7, whereas the addition of DAPT effectively reversed these effects. Importantly, we found that the conditioned medium of hPDLCs treated with rhIL-7 promoted the polarization of CD4+T cells into Treg cells but had no significant effect on the differentiation of Th17 cells. Our study indicated that treatment of PDLCs with IL-7 can promote the polarization of CD4+T cells into Treg cells by modulating the expression of inflammatory factors and signaling molecules through activating the Notch1 signaling pathway, thus participating in the regulation of immune homeostasis in the periodontal microenvironment.
Collapse
Affiliation(s)
- Xin-Yi Yu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhao-Qiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Chang Huang
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Yu Lin
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xue-Pei Cai
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Chu-Feng Liu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Erdenebat T, Lee DJ, Kim SJ, Choi YJ, Kim EJ, Choi EH, Liu J, Hwang CJ, Jung HS, Cha JY. Effect of the Number of Micro-Osteoperforations on the Rate of Tooth Movement and Periodontal Response in Mice. Front Physiol 2022; 13:837094. [PMID: 35309083 PMCID: PMC8928525 DOI: 10.3389/fphys.2022.837094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Accelerated tooth movement can be achieved using micro-osteoperforations (MOPs) to stimulate regeneration of the alveolar bone during minimally invasive surgical trauma. However, there is currently no standardized protocol and limited reports regarding the side effects of MOPs based on biological evidence. This study sought to evaluate the biological effects of the number of MOPs on orthodontic tooth movement (OTM) and the potential risk for root resorption. Male CD1 mice were divided into 4 groups based on the number of MOPs, as follows: Sham; 0MOP+OTM; 2MOP+OTM; and 4MOP+OTM groups. Tooth movement distance and the number of osteoclasts were higher whereas bone volume and trabecular number were lower in the 4MOP+OTM group compared to those of the 0MOP+OTM group. Immunofluorescent assay analysis indicated that the 4MOP+OTM group was positively associated with rapid cementum regeneration and periodontal ligament tissue formation. Our findings revealed that the MOP procedure affected tooth movement and did not significantly contribute to root resorption, whereas it may promote constitutive activation of cementogenesis.
Collapse
Affiliation(s)
- Tselmuun Erdenebat
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, South Korea
| | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Su-Jung Kim
- Department of Orthodontics, Kyung Hee University School of Dentistry, Seoul, South Korea
| | - Yoon Jeong Choi
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eun-Hack Choi
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jing Liu
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, South Korea
| | - Chung-Ju Hwang
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, South Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
- *Correspondence: Han-Sung Jung,
| | - Jung-Yul Cha
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, South Korea
- Jung-Yul Cha,
| |
Collapse
|
11
|
Stanwick M, Barkley C, Serra R, Kruggel A, Webb A, Zhao Y, Pietrzak M, Ashman C, Staats A, Shahid S, Peters SB. Tgfbr2 in Dental Pulp Cells Guides Neurite Outgrowth in Developing Teeth. Front Cell Dev Biol 2022; 10:834815. [PMID: 35265620 PMCID: PMC8901236 DOI: 10.3389/fcell.2022.834815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor β (TGFβ) plays an important role in tooth morphogenesis and mineralization. During postnatal development, the dental pulp (DP) mesenchyme secretes neurotrophic factors that guide trigeminal nerve fibers into and throughout the DP. This process is tightly linked with dentin formation and mineralization. Our laboratory established a mouse model in which Tgfbr2 was conditionally deleted in DP mesenchyme using an Osterix promoter-driven Cre recombinase (Tgfbr2 cko ). These mice survived postnatally with significant defects in bones and teeth, including reduced mineralization and short roots. Hematoxylin and eosin staining revealed reduced axon-like structures in the mutant mice. Reporter imaging demonstrated that Osterix-Cre activity within the tooth was active in the DP and derivatives, but not in neuronal afferents. Immunofluorescence staining for β3 tubulin (neuronal marker) was performed on serial cryosections from control and mutant molars on postnatal days 7 and 24 (P7, P24). Confocal imaging and pixel quantification demonstrated reduced innervation in Tgfbr2 cko first molars at both stages compared to controls, indicating that signals necessary to promote neurite outgrowth were disrupted by Tgfbr2 deletion. We performed mRNA-Sequence (RNA-Seq) and gene onotology analyses using RNA from the DP of P7 control and mutant mice to investigate the pathways involved in Tgfbr2-mediated tooth development. These analyses identified downregulation of several mineralization-related and neuronal genes in the Tgfbr2 cko DP compared to controls. Select gene expression patterns were confirmed by quantitative real-time PCR and immunofluorescence imaging. Lastly, trigeminal neurons were co-cultured atop Transwell filters overlying primary Tgfbr2 f/f DP cells. Tgfbr2 in the DP was deleted via Adenovirus-expressed Cre recombinase. Confocal imaging of axons through the filter pores showed increased axonal sprouting from neurons cultured with Tgfbr2-positive DP cells compared to neurons cultured alone. Axon sprouting was reduced when Tgfbr2 was knocked down in the DP cells. Immunofluorescence of dentin sialophosphoprotein in co-cultured DP cells confirmed reduced mineralization potential in cells with Tgfbr2 deletion. Both our proteomics and RNA-Seq analyses indicate that axonal guidance cues, particularly semaphorin signaling, were disrupted by Tgfbr2 deletion. Thus, Tgfbr2 in the DP mesenchyme appears to regulate differentiation and the cells' ability to guide neurite outgrowth during tooth mineralization and innervation.
Collapse
Affiliation(s)
- Monica Stanwick
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Courtney Barkley
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rosa Serra
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew Kruggel
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Chandler Ashman
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Allie Staats
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Shifa Shahid
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Sarah B. Peters
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States,Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: Sarah B. Peters,
| |
Collapse
|
12
|
Xiao M, Qian H, Lv J, Wang P. Advances in the Study of the Mechanisms of Physiological Root Resorption in Deciduous Teeth. Front Pediatr 2022; 10:850826. [PMID: 35433548 PMCID: PMC9005890 DOI: 10.3389/fped.2022.850826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/23/2022] [Indexed: 11/15/2022] Open
Abstract
Physiological root resorption of deciduous teeth is a complex physiological process that is essential for the normal replacement of deciduous teeth and permanent teeth in clinical practice, but its importance is often overlooked due to the presence of permanent teeth. This physiological process includes not only the resorption of hard tissues of deciduous teeth, such as dentin and cementum, but also the elimination of soft tissues, such as pulp and periodontal ligament (PDL). However, the mechanisms of physiological root resorption are not yet clear. In this article, the advances of research on the mechanisms related to physiological root resorption will be reviewed in two main aspects: hard tissues and soft tissues of deciduous teeth, specifically in relation to the effects of inflammatory microenvironment and mechanical stress on the resorption of hard tissues, the repair of hard tissues, and the elimination and the histological events of soft tissues.
Collapse
Affiliation(s)
- Manxue Xiao
- Department of Pediatric Dentistry, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hong Qian
- Department of Pediatric Dentistry, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jingwen Lv
- Department of Pediatric Dentistry, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Peixuan Wang
- Department of Pediatric Dentistry, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Snider TN, Louie KW, Zuzo G, Ruellas ACDO, Solem RC, Cevidanes LHS, Zhang H, Mishina Y. Quantification of three-dimensional morphology of craniofacial mineralized tissue defects in Tgfbr2/Osx-Cre mice. ORAL SCIENCE INTERNATIONAL 2021; 18:193-202. [PMID: 34720652 PMCID: PMC8552916 DOI: 10.1002/osi2.1099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Craniofacial morphology is affected by the growth, development, and three-dimensional (3D) relationship of mineralized structures including the skull, jaws, and teeth. Despite fulfilling different purposes within this region, cranial bones and tooth dentin are derived from mesenchymal cells that are affected by perturbations within the TGF-β signaling pathway. TGFBR2 encodes a transmembrane receptor that is part of the canonical, SMAD-dependent TGF-β signaling pathway and mutations within this gene are associated with Loeys-Dietz syndrome, a condition which often presents with craniofacial signs including craniosynostosis and cleft palate. To investigate the role of Tgfbr2 in immature, but committed, mineralized tissue forming cells, we analyzed postnatal craniofacial morphology in mice with conditional Tgfbr2 deletion in Osx-expressing cells. Novel application of a 3D shape-based comparative technique revealed that Tgfbr2 in Osx-expressing cells results in impaired postnatal molar root and anterior cranial growth. These findings support those from studies using similar Tgfbr2 conditional knockout models, highlight the anomalous facial and dental regions/structures using tomographic imaging-based techniques, and provide insight into the role of Tgfbr2 during postnatal craniofacial development.
Collapse
Affiliation(s)
- Taylor Nicholas Snider
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Ke’ale W. Louie
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Gabrielle Zuzo
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Richard Christian Solem
- Department of Pediatric and Orthodontic Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Lucia H. S. Cevidanes
- Department of Pediatric and Orthodontic Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Honghao Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Couasnay G, Madel MB, Lim J, Lee B, Elefteriou F. Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. J Bone Miner Res 2021; 36:1661-1679. [PMID: 34278610 DOI: 10.1002/jbmr.4415] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
The Cre/Lox system is a powerful tool in the biologist's toolbox, allowing loss-of-function and gain-of-function studies, as well as lineage tracing, through gene recombination in a tissue-specific and inducible manner. Evidence indicates, however, that Cre transgenic lines have a far more nuanced and broader pattern of Cre activity than initially thought, exhibiting "off-target" activity in tissues/cells other than the ones they were originally designed to target. With the goal of facilitating the comparison and selection of optimal Cre lines to be used for the study of gene function, we have summarized in a single manuscript the major sites and timing of Cre activity of the main Cre lines available to target bone mesenchymal stem cells, chondrocytes, osteoblasts, osteocytes, tenocytes, and osteoclasts, along with their reported sites of "off-target" Cre activity. We also discuss characteristics, advantages, and limitations of these Cre lines for users to avoid common risks related to overinterpretation or misinterpretation based on the assumption of strict cell-type specificity or unaccounted effect of the Cre transgene or Cre inducers. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Greig Couasnay
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
15
|
Skeletal Deformities in Osterix-Cre;Tgfbr2 f/f Mice May Cause Postnatal Death. Genes (Basel) 2021; 12:genes12070975. [PMID: 34202311 PMCID: PMC8307487 DOI: 10.3390/genes12070975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022] Open
Abstract
Transforming growth factor β (TGFβ) signaling plays an important role in skeletal development. We previously demonstrated that the loss of TGFβ receptor II (Tgfbr2) in Osterix-Cre-expressing mesenchyme results in defects in bones and teeth due to reduced proliferation and differentiation in pre-osteoblasts and pre-odontoblasts. These Osterix-Cre;Tgfbr2f/f mice typically die within approximately four weeks for unknown reasons. To investigate the cause of death, we performed extensive pathological analysis on Osterix-Cre- (Cre-), Osterix-Cre+;Tgfbr2f/wt (HET), and Osterix-Cre+;Tgfbr2f/f (CKO) mice. We also crossed Osterix-Cre mice with the ROSA26mTmG reporter line to identify potential off-target Cre expression. The findings recapitulated published skeletal and tooth abnormalities and revealed previously unreported osteochondral dysplasia throughout both the appendicular and axial skeletons in the CKO mice, including the calvaria. Alterations to the nasal area and teeth suggest a potentially reduced capacity to sense and process food, while off-target Cre expression in the gastrointestinal tract may indicate an inability to absorb nutrients. Additionally, altered nasal passages and unexplained changes in diaphragmatic muscle support the possibility of hypoxia. We conclude that these mice likely died due to a combination of breathing difficulties, malnutrition, and starvation resulting primarily from skeletal deformities that decreased their ability to sense, gather, and process food.
Collapse
|
16
|
Xu Y, Jin Y, Hong F, Ma Y, Yang J, Tang Y, Zhu Z, Wu J, Bao Q, Li L, Yao B, Li D, Ma C. MiR-664-3p suppresses osteoblast differentiation and impairs bone formation via targeting Smad4 and Osterix. J Cell Mol Med 2021; 25:5025-5037. [PMID: 33942497 PMCID: PMC8178280 DOI: 10.1111/jcmm.16451] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is a metabolic disorder characterized by low bone mass and deteriorated microarchitecture, with an increased risk of fracture. Some miRNAs have been confirmed as potential modulators of osteoblast differentiation to maintain bone mass. Our miRNA sequencing results showed that miR-664-3p was significantly down-regulated during the osteogenic differentiation of the preosteoblast MC3T3-E1 cells. However, whether miR-664-3p has an impact on bone homeostasis remains unknown. In this study, we identified overexpression of miR-664-3p inhibited the osteoblast activity and matrix mineralization in vitro. Osteoblastic miR-664-3p transgenic mice exhibited reduced bone mass due to suppressed osteoblast function. Target prediction analysis and experimental validation confirmed Smad4 and Osterix (Osx) are the direct targets of miR-664-3p. Furthermore, specific inhibition of miR-664-3p by subperiosteal injection with miR-664-3p antagomir protected against ovariectomy-induced bone loss. In addition, miR-664-3p expression was markedly higher in the serum from patients with osteoporosis compared to that from normal subjects. Taken together, this study revealed that miR-664-3p suppressed osteogenesis and bone formation via targeting Smad4 and Osx. It also highlights the potential of miR-664-3p as a novel diagnostic and therapeutic target for osteoporotic patients.
Collapse
Affiliation(s)
- Yuexin Xu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Department of Medical Genetics, Nanjing Medical University, Nanjing, China.,Department of Gynaecology and Obstetrics, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yucui Jin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Fangling Hong
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Yunfei Ma
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Jiashu Yang
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Yuting Tang
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Zhu Zhu
- Jiangsu Key Laboratory of Oral Disease, Department of Oral Special Consultation, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jiahui Wu
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Qianyi Bao
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Lingyun Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Bing Yao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Dong Li
- Department of Orthopedics, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Changyan Ma
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
The Effect of Transforming Growth Factor Beta 1 on the Mineralization of Human Cementoblasts. J Endod 2021; 47:606-611. [PMID: 33434566 DOI: 10.1016/j.joen.2020.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/19/2020] [Accepted: 12/14/2020] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Transforming growth factor beta 1 (TGF-β1) plays an important role in bone mineralization and has been reported to promote osteoblast proliferation and differentiation. However, there is no report about the effects of TGF-β1 on human cementoblasts. The purpose of this study was to clarify the effect of TGF-β1 on the proliferation and differentiation of the human cementoblast cell line (HCEM) in vitro. METHODS HCEM cells were stimulated with TGF-β1 at concentrations of 0.05, 0.5, 5, and 10 ng/mL. A proliferation assay was performed from 24-72 hours. The effect of TGF-β1 on mineralization was analyzed by quantifying the area stained with alizarin red on days 7 and 14. Real-time polymerase chain reaction was used to assess the effect of TGF-β1 on the mineralization-related genes alkaline phosphatase, bone sialoprotein, and type I collagen on days 3, 7, and 14. RESULTS TGF-β1 did not affect cell proliferation. TGF-β1 together with the mineralization medium (consisting of ascorbic acid, dexamethasone, and β-glycerophosphate) increased the alizarin red-stained area on days 7 and 14. Real-time polymerase chain reaction revealed that alkaline phosphatase messenger RNA expression was increased in TGF-β1-stimulated HCEM cells in mineralization medium on days 3 and 7, whereas bone sialoprotein and type I collagen messenger RNA expression was increased on day 7. CONCLUSIONS Although TGF-β1 does not affect cell proliferation, it does promote cell differentiation and mineralization of HCEM cells.
Collapse
|
18
|
Kang H, Jha S, Ivovic A, Fratzl-Zelman N, Deng Z, Mitra A, Cabral WA, Hanson EP, Lange E, Cowen EW, Katz J, Roschger P, Klaushofer K, Dale RK, Siegel RM, Bhattacharyya T, Marini JC. Somatic SMAD3-activating mutations cause melorheostosis by up-regulating the TGF-β/SMAD pathway. J Exp Med 2020; 217:151599. [PMID: 32232430 PMCID: PMC7201932 DOI: 10.1084/jem.20191499] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/06/2019] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
Melorheostosis is a rare sclerosing dysostosis characterized by asymmetric exuberant bone formation. Recently, we reported that somatic mosaicism for MAP2K1-activating mutations causes radiographical “dripping candle wax” melorheostosis. We now report somatic SMAD3 mutations in bone lesions of four unrelated patients with endosteal pattern melorheostosis. In vitro, the SMAD3 mutations stimulated the TGF-β pathway in osteoblasts, enhanced nuclear translocation and target gene expression, and inhibited proliferation. Osteoblast differentiation and mineralization were stimulated by the SMAD3 mutation, consistent with higher mineralization in affected than in unaffected bone, but differing from MAP2K1 mutation–positive melorheostosis. Conversely, osteoblast differentiation and mineralization were inhibited when osteogenesis of affected osteoblasts was driven in the presence of BMP2. Transcriptome profiling displayed that TGF-β pathway activation and ossification-related processes were significantly influenced by the SMAD3 mutation. Co-expression clustering illuminated melorheostosis pathophysiology, including alterations in ECM organization, cell growth, and interferon signaling. These data reveal antagonism of TGF-β/SMAD3 activation by BMP signaling in SMAD3 mutation–positive endosteal melorheostosis, which may guide future therapies.
Collapse
Affiliation(s)
- Heeseog Kang
- Section on Heritable Disorders of Bone and Extracellular Matrix, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Smita Jha
- Clinical and Investigative Orthopedics Surgery Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD.,Program in Reproductive and Adult Endocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Aleksandra Ivovic
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Wiener Gebietskrankenkasse, and Allgemeine Unfallversicherungsanstalt Trauma Center Meidling, First Medical Department Hanusch Hospital, Vienna, Austria
| | - Zuoming Deng
- Biodata Mining and Discovery Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Wayne A Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Eric P Hanson
- Immunodeficiency and Inflammation Unit, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Eileen Lange
- Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - James Katz
- Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Wiener Gebietskrankenkasse, and Allgemeine Unfallversicherungsanstalt Trauma Center Meidling, First Medical Department Hanusch Hospital, Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Wiener Gebietskrankenkasse, and Allgemeine Unfallversicherungsanstalt Trauma Center Meidling, First Medical Department Hanusch Hospital, Vienna, Austria
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Timothy Bhattacharyya
- Section on Congenital Disorders, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
19
|
Hu Y, Wang C, Ha S, Zhu N, Cao Z, Song Y. Peroxisome proliferator activated receptor γ promotes mineralization and differentiation in cementoblasts via inhibiting Wnt/β-catenin signaling pathway. J Cell Biochem 2020; 121:3700-3710. [PMID: 31709625 DOI: 10.1002/jcb.29509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023]
Abstract
Peroxisome proliferator activated receptor γ (PPARγ) is a member of the nuclear receptor family of transcription factors, which involved in inflammation regulating and bone remodeling. Rare studies explored the effects of PPARγ on mineralization and differentiation in cementoblasts. To explore the potential approaches to repair the damaged periodontal tissues especially for cementum, the present study aims to investigate the effects and the regulating mechanism of PPARγ on mineralization and differentiation in cementoblasts. Murine cementoblast cell lines (OCCM-30) were cultured in basic medium for 24 hours/48 hours or in mineralization medium for 3/7/10 days, respectively at addition of dimethyl sulphoxide, rosiglitazone (PPARγ agonist), GW9662 (PPARγ antagonist), lithium chloride (LiCl), tumor necrosis factor-α (TNF-α), or respective combination. Expression of mineralization genes alkaline phosphatase (ALP), runt related transcription factors 2 (RUNX2), and osteocalcin (OCN) were detected by quantitative real-time polymerase chain reaction or/and Western blot. ALP staining and alizarin red staining were used to evaluate the mineralization in OCCM-30 cells. The change of β-catenin expression and translocation in cytoplasm/nucleus was analyzed by Western blot and immunofluorescence. The results showed that PPARγ agonist rosiglitazone improved the expression of ALP, RUNX2, and OCN, deepened ALP staining, increased mineralized nodules formation, and decreased β-catenin expression in the nucleus. LiCl, an activator of the Wnt signaling pathway, inhibited the expression of mineralization genes and reversed the upregulated expression of mineralization genes resulted from rosiglitazone. Under inflammatory microenvironment, rosiglitazone not only suppressed the expression of interleukin-1β caused by TNF-α, but improved the expression of mineralization genes in OCCM-30 cells. In conclusion, PPARγ could promote mineralization and differentiation in cementoblasts via inhibiting the Wnt/β-catenin signaling pathway, which would shed new light on the treatment of periodontitis and periodontal tissue regeneration.
Collapse
Affiliation(s)
- Yingying Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, Hubei, China
| | - Changning Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, Hubei, China
| | - Shanshan Ha
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, Hubei, China
| | - Ningjing Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, Hubei, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, Hubei, China
| | - Yaling Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
20
|
Baranova J, Büchner D, Götz W, Schulze M, Tobiasch E. Tooth Formation: Are the Hardest Tissues of Human Body Hard to Regenerate? Int J Mol Sci 2020; 21:E4031. [PMID: 32512908 PMCID: PMC7312198 DOI: 10.3390/ijms21114031] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
With increasing life expectancy, demands for dental tissue and whole-tooth regeneration are becoming more significant. Despite great progress in medicine, including regenerative therapies, the complex structure of dental tissues introduces several challenges to the field of regenerative dentistry. Interdisciplinary efforts from cellular biologists, material scientists, and clinical odontologists are being made to establish strategies and find the solutions for dental tissue regeneration and/or whole-tooth regeneration. In recent years, many significant discoveries were done regarding signaling pathways and factors shaping calcified tissue genesis, including those of tooth. Novel biocompatible scaffolds and polymer-based drug release systems are under development and may soon result in clinically applicable biomaterials with the potential to modulate signaling cascades involved in dental tissue genesis and regeneration. Approaches for whole-tooth regeneration utilizing adult stem cells, induced pluripotent stem cells, or tooth germ cells transplantation are emerging as promising alternatives to overcome existing in vitro tissue generation hurdles. In this interdisciplinary review, most recent advances in cellular signaling guiding dental tissue genesis, novel functionalized scaffolds and drug release material, various odontogenic cell sources, and methods for tooth regeneration are discussed thus providing a multi-faceted, up-to-date, and illustrative overview on the tooth regeneration matter, alongside hints for future directions in the challenging field of regenerative dentistry.
Collapse
Affiliation(s)
- Juliana Baranova
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, Vila Universitária, São Paulo 05508-000, Brazil;
| | - Dominik Büchner
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Werner Götz
- Oral Biology Laboratory, Department of Orthodontics, Dental Hospital of the University of Bonn, Welschnonnenstraße 17, 53111 Bonn, NRW, Germany;
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| |
Collapse
|
21
|
Cavallari T, Arima LY, Ferrasa A, Moysés SJ, Tetu Moysés S, Hirochi Herai R, Iani Werneck R. Dental caries: Genetic and protein interactions. Arch Oral Biol 2019; 108:104522. [PMID: 31476523 DOI: 10.1016/j.archoralbio.2019.104522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/09/2019] [Accepted: 08/11/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To present a genetic and protein interaction analysis associated with dental caries. MATERIAL AND METHODS The first step was to conduct a systematic literature review (SLR) through an electronic database search. Case-controls that reported associations between genes and dental caries were the main type of study design used as inclusion criteria, retrieved from the PubMed and the Virtual Health Library databases, comprising the chronological range from 1982 to 2017. The SLR was guided by PRISMA protocol and the methodological quality of the studies was established through Newcastle-Ottawa Scale (NOS). In the second step, the String Protein Interaction (SPI) approach was used to analyze protein interaction (by esyN software) and also the Ingenuity Pathway Analysis (IPA) to check biological pathways associated with dental caries genes. RESULTS A total of 51 articles were included to perform this SLR, describing a number of 27 genes associated with dental caries development. At the genetic level, 23 genes have at least one other gene with which they interact. The genes TUFT1, VDR, TFIP11, LTF, HLA-DRB1, MMP2, MMP3 and MUC5B were shown to be connected in interactive networks by at least 10 other genes. CONCLUSION It is essential to apprehend the multifactorial pattern of inheritance in human disease. This study presents pathways which may be directly correlated with several dental caries phenotype and this contributes to a better understanding of this disease, opening up a wider range of biotechnology options for its effective control in the future.
Collapse
Affiliation(s)
- Tayla Cavallari
- Graduate Program in Dentistry, Dentistry Department, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Curitiba, Paraná, Brazil, 80215-901.
| | - Letícia Yumi Arima
- Graduate Program in Dentistry, Dentistry Department, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Curitiba, Paraná, Brazil, 80215-901.
| | - Adriano Ferrasa
- Graduate Program in Health Sciences (PPGCS), School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição 1155, Curitiba, Paraná, Brazil, 80215-901; Informatics Department, Universidade Estadual de Ponta Grossa (UEPG), Paraná, Brazil, 84030-900.
| | - Samuel Jorge Moysés
- Graduate Program in Dentistry, Dentistry Department, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Curitiba, Paraná, Brazil, 80215-901.
| | - Simone Tetu Moysés
- Graduate Program in Dentistry, Dentistry Department, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Curitiba, Paraná, Brazil, 80215-901.
| | - Roberto Hirochi Herai
- Graduate Program in Health Sciences (PPGCS), School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição 1155, Curitiba, Paraná, Brazil, 80215-901; Research Division, Lico Kaesemodel Institute, Paraná, Brazil, 80240-000.
| | - Renata Iani Werneck
- Graduate Program in Dentistry, Dentistry Department, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Curitiba, Paraná, Brazil, 80215-901.
| |
Collapse
|
22
|
Li X, He XT, Kong DQ, Xu XY, Wu RX, Sun LJ, Tian BM, Chen FM. M2 Macrophages Enhance the Cementoblastic Differentiation of Periodontal Ligament Stem Cells via the Akt and JNK Pathways. Stem Cells 2019; 37:1567-1580. [PMID: 31400241 DOI: 10.1002/stem.3076] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/21/2019] [Indexed: 12/11/2022]
Abstract
Although macrophage (Mφ) polarization has been demonstrated to play crucial roles in cellular osteogenesis across the cascade of events in periodontal regeneration, how polarized Mφ phenotypes influence the cementoblastic differentiation of periodontal ligament stem cells (PDLSCs) remains unknown. In the present study, human monocyte leukemic cells (THP-1) were induced into M0, M1, and M2 subsets, and the influences of these polarized Mφs on the cementoblastic differentiation of PDLSCs were assessed in both conditioned medium-based and Transwell-based coculture systems. Furthermore, the potential pathways and cyto-/chemokines involved in Mφ-mediated cementoblastic differentiation were screened and identified. In both systems, M2 subsets increased cementoblastic differentiation-related gene/protein expression levels in cocultured PDLSCs, induced more PDLSCs to differentiate into polygonal and square cells, and enhanced alkaline phosphatase activity in PDLSCs. Furthermore, Akt and c-Jun N-terminal Kinase (JNK) signaling was identified as a potential pathway involved in M2 Mφ-enhanced PDLSC cementoblastic differentiation, and cyto-/chemokines (interleukin (IL)-10 and vascular endothelial growth factor [VEGF]) secreted by M2 Mφs were found to be key players that promoted cell cementoblastic differentiation by activating Akt signaling. Our data indicate for the first time that Mφs are key modulators during PDLSC cementoblastic differentiation and are hence very important for the regeneration of multiple periodontal tissues, including the cementum. Although the Akt and JNK pathways are involved in M2 Mφ-enhanced cementoblastic differentiation, only the Akt pathway can be activated via a cyto-/chemokine-associated mechanism, suggesting that players other than cyto-/chemokines also participate in the M2-mediated cementoblastic differentiation of PDLSCs. Stem Cells 2019;37:1567-1580.
Collapse
Affiliation(s)
- Xuan Li
- Department of Periodontology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiao-Tao He
- Department of Periodontology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - De-Qin Kong
- Department of Toxicology, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xin-Yue Xu
- Department of Periodontology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rui-Xin Wu
- Department of Periodontology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Li-Juan Sun
- Department of Periodontology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Bei-Min Tian
- Department of Periodontology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Fa-Ming Chen
- Department of Periodontology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
23
|
Choi H, Liu Y, Jeong JK, Kim TH, Cho ES. Antagonistic interactions between osterix and pyrophosphate during cementum formation. Bone 2019; 125:8-15. [PMID: 31059863 DOI: 10.1016/j.bone.2019.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 01/04/2023]
Abstract
During cementum formation, the key roles of osterix (Osx) and inorganic pyrophosphate (PPi), mainly controlled by nucleotide pyrophosphatase 1 (Npp1; encoded by the Enpp1 gene) and progressive ankylosis protein (Ank), have been demonstrated by animal models displaying altered cementum formation. In this study, we analyzed the relationship of Osx and local PPi during cementum formation using compound mutant mice with their wildtype and corresponding single gene mutants. Importantly, functional defects in PPi regulation led to the induction of Osx expression at the cervical cementum as demonstrated by Enpp1 mutant mice and cementoblasts with the retroviral transduction of small hairpin RNA for Enpp1 or Ank. Conversely, cementoblasts exposed to inorganic PPi or with the enforced expression of Enpp1 or Ank reduced Osx expression in a concentration-dependent manner. Furthermore, the loss of Osx induced the higher expression of Npp1 and Ank at the apical region of the developing tooth root as observed in Osx-deficient mice. The activity of PPi-generating ectoenzymes (nucleoside triphosphate pyrophosphohydrolase, NTPPPHase) and the level of extracellular PPi were significantly increased in Osx-knockdown cementoblasts. However, the formation of ectopic cervical cementum was not completely diminished by inactivation of Osx in Enpp1 mutant mice. In addition, fibroblast growth factor (FGF) receptor 1 (Fgfr1) was strongly localized in cementoblasts lining the acellular cementum and involved in the inhibitory regulation of matrix accumulation and further mineralization by supporting PPi production. Taken together, these results suggest that local PPi suppresses matrix accumulation and further mineralization through an antagonistic interaction with Osx under the synergistic influence of FGF signaling during cementum formation.
Collapse
Affiliation(s)
- Hwajung Choi
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju 54896, South Korea
| | - Yudong Liu
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju 54896, South Korea
| | - Ju-Kyeong Jeong
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju 54896, South Korea
| | - Tak-Heun Kim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju 54896, South Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju 54896, South Korea.
| |
Collapse
|
24
|
Du Y, Li J, Hou Y, Chen C, Long W, Jiang H. Alteration of circular RNA expression in rat dental follicle cells during osteogenic differentiation. J Cell Biochem 2019; 120:13289-13301. [PMID: 30916823 DOI: 10.1002/jcb.28603] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 01/22/2023]
Abstract
Circular RNAs (circRNAs) are novel noncoding RNAs and play crucial roles in various biological processes. However, little is known about the functions of circRNAs in osteogenic differentiation. The current study aimed to investigate the differential expression of circRNAs in rat dental follicle cells (rDFCs) during osteogenic differentiation, identified by RNA high-throughput sequencing and quantitative real-time polymerase chain reaction. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to further explore the biofunctions of circRNA biofunctions. Two hundred sixty-six differentially-expressed circRNAs that are involved in several important signaling pathways, including mitogen-activated protein kinases (MAPK) and transforming growth factor-β (TGF-β) signaling pathways were revealed. Among these, circFgfr2 and its predicted downstream targets, miR-133 and BMP6 (bone morphogenetic protein-6), were identified both in vivo and in vitro. For further validation, circFgfr2 was overexpressed in rDFCs, the results showed that the expression of miR-133 was downregulated and the expression of BMP6 was upregulated. Taken together, the results revealed the circRNA expression profiles and indicated the importance of circRNAs of rDFCs. In addition, circFgfr2 might promote osteogenesis by controlling miR-133/BMP6, which is a potential new target for the manipulation of tooth regeneration and bone formation.
Collapse
Affiliation(s)
- Yu Du
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, People's Republic of China
| | - Jing Li
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, People's Republic of China
| | - Yuluan Hou
- Department of Clinical Immunology, Sun Yat-sen University Third Affiliated Hospital, Guangzhou, China
| | - Chanchan Chen
- Department of Stomatology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Weilin Long
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, People's Republic of China
| | - Hongwei Jiang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
25
|
Ripamonti U. Developmental pathways of periodontal tissue regeneration. J Periodontal Res 2018; 54:10-26. [DOI: 10.1111/jre.12596] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Ugo Ripamonti
- Bone Research Laboratory; School of Oral Health Sciences; Faculty of Health Sciences; University of the Witwatersrand; Johannesburg South Africa
| |
Collapse
|
26
|
Huo WT, Zhao LZ, Zhang W, Lu JW, Zhao YQ, Zhang YS. In vitro corrosion behavior and biocompatibility of nanostructured Ti6Al4V. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:268-279. [PMID: 30184751 DOI: 10.1016/j.msec.2018.06.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 06/02/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022]
Abstract
Ti6Al4V (TC4) alloy has long been used as a bone interfacing implant material in dentistry and orthopedics due to its excellent biocompatibility and mechanical properties. The performance of TC4 can be further tailored by altering its grain structures. In this study, by means of sliding friction treatment (SFT), a nano-grained (NG) surface layer with an average grain size of ≤100 nm on the topmost surface was successfully generated on coarse-grained (CG) TC4 alloy sheet. It was shown that the NG surface possessed notably enhanced corrosion resistance in physiological solution compared to the CG surface, due to the formation of thicker and denser passive film facilitated by surface nanocrystallization. Additionally, the NG surface with stronger hydrophilicity favorably altered the absorption of anchoring proteins such as fibronectin (Fn) and vitronectin (Vn) that can mediate subsequent osteoblast functions. The in vitro results indicated that the NG surface exhibited remarkable enhancement in osteoblast adherence, spreading and proliferation, and obviously accelerated the osteoblast differentiation as compared to CG surface. Moreover, the NG surface also demonstrated good hemocompatibility. These findings suggest that SFT can endure bio-metals with advanced multifunctional properties for biomedical applications.
Collapse
Affiliation(s)
- W T Huo
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - L Z Zhao
- State key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - W Zhang
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - J W Lu
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Y Q Zhao
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Y S Zhang
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China.
| |
Collapse
|
27
|
Moon JS, Kim MJ, Ko HM, Kim YJ, Jung JY, Kim JH, Kim SH, Kim MS. The role of Hedgehog signaling in cementoblast differentiation. Arch Oral Biol 2018; 90:100-107. [PMID: 29587133 DOI: 10.1016/j.archoralbio.2018.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/07/2018] [Accepted: 03/18/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE It has been well known that Hedgehog (Hh) signaling plays an important role in bone development, however, its function in cementogenesis has not yet been reported. This study was intended to elucidate the role of Hh signaling in cementoblast differentiation. DESIGN Expression changes of various Hh signaling components and levels of skeletogenic markers (alkaline phosphatase, osteocalcin, osteopontin) and osteogenic transcription factors (RUNX2, Osterix) by Hh signaling modulators during OCCM-30 cementoblast differentiation were determined by quantitative real-time reverse transcriptase polymerase chain reaction. To investigate effects of Hh signaling modulators on the mineralization of cementoblast, alkaline phosphatase and alizarin red S staining were used. Then, the interaction between Hh and BMP signaling during cementoblast differentiation was evaluated using co-treatment of BMP7 and Hh signaling modulators. RESULTS We observed the consistent expression of Hh signaling molecules in the OCCM-30, which were up-regulated during cementoblast differentiation. We also found that the treatment of cells with Purmo, an Hh activator, enhanced cementoblast differentiation by increasing the mRNA expression of skeletogenic markers and osteogenic transcription factors, as well as increasing alkaline phosphate activity and mineralization capability. On the contrary, an Hh antagonist, like Cyclo, effectively inhibited cementoblast differentiation. Furthermore, BMP7 promoted cementoblast differentiation through crosstalk with the Hh signaling. CONCLUSION These results suggest that Hh signaling is involved in cementoblast differentiation, and Hh signaling molecules may therefore represent new therapeutic targets in periodontal treatment and regeneration.
Collapse
Affiliation(s)
- Jung-Sun Moon
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Ju Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Hyun-Mi Ko
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Jun Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Yeon Jung
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Hyung Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sun-Hun Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Seok Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
28
|
Savi FM, Brierly GI, Baldwin J, Theodoropoulos C, Woodruff MA. Comparison of Different Decalcification Methods Using Rat Mandibles as a Model. J Histochem Cytochem 2017; 65:705-722. [PMID: 28958188 DOI: 10.1369/0022155417733708] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Selection of decalcification agents is an essential consideration when processing mineralized tissues because the integrity and immunohistochemical characteristics of the tissues may be affected. Here, we report results obtained from the decalcification of rat mandibles using 10% ethylenediaminetetraacetic acid (EDTA) at room temperature (RT), 10% EDTA at 37C, 5% nitric acid, and 10% formic acid at RT. Decalcification endpoints were determined by microcomputed tomography. Morphological preservation and antigenicity were evaluated by hematoxylin and eosin staining and immunohistochemistry. Decalcification of the anterior and posterior portions of the mandible took 220 and 191 hr in 10% EDTA RT, 102 and 73 hr in 10% EDTA 37C, 13.5 and 4.3 hr in 5% nitric acid, and 140 and 36 hr in 10% formic acid, respectively. Decalcification in 10% EDTA at 37C was accelerated, but 10% EDTA at RT provided optimal results for immunohistochemistry and cellular and structural details. Decalcification using 5% nitric acid was accomplished in the shortest time and exhibited good cellular and architectural morphology, whereas 10% formic acid was suboptimal with respect to tissue and cellular morphology. Despite being the slowest method, EDTA at RT is still the recommended method for decalcifying mineralized tissues; however, if rapid decalcification is needed, 5% nitric acid is the best option, yielding acceptable tissue integrity and speed.
Collapse
Affiliation(s)
- Flavia M Savi
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Gary I Brierly
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jeremy Baldwin
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Christina Theodoropoulos
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Maria A Woodruff
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Choi H, Kim TH, Yang S, Lee JC, You HK, Cho ES. A Reciprocal Interaction between β-Catenin and Osterix in Cementogenesis. Sci Rep 2017; 7:8160. [PMID: 28811640 PMCID: PMC5558006 DOI: 10.1038/s41598-017-08607-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/12/2017] [Indexed: 01/13/2023] Open
Abstract
Although accumulating evidence indicates that both β-catenin and osterix (Osx) are essential for bone and tooth development, few studies have investigated the interaction of these two key proteins in the context of cementogenesis. In this study, we used transgenic mice with constitutively active β-catenin and inactive Osx in the dental mesenchyme to address this question. We found that cementoblasts with constitutively active β-catenin require Osx to produce excessive cellular cementum, and that ablation of Osx prevents this abnormal accumulation. Importantly, cementoblasts transduced with retrovirus expressing constitutively active β-catenin exhibited upregulation of Osx expression through direct binding to the promoter region of Osx. Osx regulates Lef1 expression and consequently could regulate T-cell factor/lymphoid enhancer factor (Tcf/Lef) binding activity in Wnt/β-catenin signaling. However, the loss of Tcf/Lef binding activity by Osx ablation was not rescued by transduction of retrovirus expressing constitutively active β-catenin or ectopic Lef1 overexpression. These results suggest that the Tcf/Lef binding activity of Wnt/β-catenin signaling is Osx-dependent during cementogenesis. Moreover, Osx differentially regulates the expression of various Tcf family members, suggesting that Osx regulates cementogenesis by utilizing various Tcf/Lef-dependent mechanisms. This is the first report to show that downstream Osx signaling through Tcf/Lefs is critical for cementogenesis.
Collapse
Affiliation(s)
- Hwajung Choi
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea
| | - Tak-Heun Kim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea
| | - Siqin Yang
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea
| | - Hyung-Keun You
- Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, 54538, South Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea.
| |
Collapse
|
30
|
Wang X, Sun H, Liao H, Wang C, Jiang C, Zhang Y, Cao Z. MicroRNA-155-3p Mediates TNF-α-Inhibited Cementoblast Differentiation. J Dent Res 2017; 96:1430-1437. [PMID: 28692806 DOI: 10.1177/0022034517718790] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- X. Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H. Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H. Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - C. Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - C. Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y. Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z. Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
ITAYA S, OKA K, OGATA K, TAMURA S, KIRA -TATSUOKA M, FUJIWARA N, OTSU K, TSURUGA E, OZAKI M, HARADA H. Hertwig’s epithelial root sheath cells contribute to formation of periodontal ligament through epithelial-mesenchymal transition by TGF-β . Biomed Res 2017; 38:61-69. [DOI: 10.2220/biomedres.38.61] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Satoshi ITAYA
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College
| | - Kyoko OKA
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College
| | - Kayoko OGATA
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College
| | - Shougo TAMURA
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College
| | - Michiko KIRA -TATSUOKA
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College
| | - Naoki FUJIWARA
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University
| | - Keishi OTSU
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University
| | - Eichi TSURUGA
- Department of Radiation Science, Graduate School of Health Sci-ences, Hirosaki University
| | - Masao OZAKI
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College
| | - Hidemitsu HARADA
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University
| |
Collapse
|
32
|
Wang L, Hu H, Cheng Y, Chen J, Bao C, Zou S, Wu G. Screening the Expression Changes in MicroRNAs and Their Target Genes in Mature Cementoblasts Stimulated with Cyclic Tensile Stress. Int J Mol Sci 2016; 17:ijms17122024. [PMID: 27941605 PMCID: PMC5187824 DOI: 10.3390/ijms17122024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 02/05/2023] Open
Abstract
Cementum is a thin layer of cementoblast-produced mineralized tissue covering the root surfaces of teeth. Mechanical forces, which are produced during masticatory activity, play a paramount role in stimulating cementoblastogenesis, which thereby facilitates the maintenance, remodeling and integrity of cementum. However, hitherto, the extent to which a post-transcriptional modulation mechanism is involved in this process has rarely been reported. In this study, a mature murine cementoblast cell line OCCM-30 cells (immortalized osteocalcin positive cementoblasts) was cultured and subjected to cyclic tensile stress (0.5 Hz, 2000 µstrain). We showed that the cyclic tensile stress could not only rearrange the cell alignment, but also influence the proliferation in an S-shaped manner. Furthermore, cyclic tensile stress could significantly promote cementoblastogenesis-related genes, proteins and mineralized nodules. From the miRNA array analyses, we found that 60 and 103 miRNAs were significantly altered 6 and 18 h after the stimulation using cyclic tensile stress, respectively. Based on a literature review and bioinformatics analyses, we found that miR-146b-5p and its target gene Smad4 play an important role in this procedure. The upregulation of miR-146b-5p and downregulation of Smad4 induced by the tensile stress were further confirmed by qRT-PCR. The direct binding of miR-146b-5p to the three prime untranslated region (3' UTR) of Smad4 was established using a dual-luciferase reporter assay. Taken together, these results suggest an important involvement of miR-146b-5p and its target gene Smad4 in the cementoblastogenesis of mature cementoblasts.
Collapse
Affiliation(s)
- Liao Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu 610041, China.
| | - Haikun Hu
- China Dental Implantology Center, West China Dental Implantology Hospital, Sichuan University, No. 75 Xiaotianzhu Street, Chengdu 610041, China.
| | - Ye Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu 610041, China.
| | - Jianwei Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu 610041, China.
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu 610041, China.
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu 610041, China.
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University Amsterdam and University of Amsterdam, MOVE Research Institute, Gustav Mahlerlaan 3004, 1081LA Amsterdam, The Netherlands.
| |
Collapse
|