1
|
Yang S, Liu Y, Wu T, Zhang X, Xu S, Pan Q, Zhu L, Zheng P, Qiao D, Zhu W. Synthesis and Application of a Novel Multifunctional Nanoprodrug for Synergistic Chemotherapy and Phototherapy with Hydrogen Sulfide Gas. J Med Chem 2025. [PMID: 39786725 DOI: 10.1021/acs.jmedchem.4c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
With the dilemma of limited efficacy of individual therapies, it is crucial to develop innovative combination therapy systems to target the complex pathogenesis of cancer. In this study, we designed a nanoprodrug ISL@MIL-101-ADT to facilitate synergistic delivery of hydrogen sulfide (H2S) and prodrug ISL for specific eradication of tumor cells with minimal toxicity and maximal efficacy. The nanoprodrug passively targeted tumors through enhanced permeation and retention effects, followed by disintegration and release of IR780, lonidamine (LND), and H2S. IR780 localizes LND to mitochondria to enhance therapeutic effects and turn on the phototherapy and chemotherapy when exposed to a laser; H2S inhibits procancer signaling pathways and mitochondrial function. In vivo experiments have demonstrated that ISL@MIL-101-ADT exhibits excellent pharmacokinetic properties and significant tumor inhibitory effects. Additionally, this nanoprodrug possesses outstanding photothermal and fluorescence imaging capabilities. Therefore, we strongly believe that the nanoprodrug present herein holds great potential for application in cancer therapy.
Collapse
Affiliation(s)
- Silan Yang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Yijun Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Tianyu Wu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Xuan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Lianghui Zhu
- Jiang Xi Institute for Drug Control, Jiangxi Provincial Drug Administration, 1566 Beijing East Road, Nanchang, Jiangxi 330029, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| |
Collapse
|
2
|
Lafi Z, Matalqah S, Abu-Saleem E, Asha N, Mhaidat H, Asha S, Al-Nashash L, Janabi HS. Metal-organic frameworks as nanoplatforms for combination therapy in cancer treatment. Med Oncol 2024; 42:26. [PMID: 39653960 DOI: 10.1007/s12032-024-02567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024]
Abstract
The integration of nanotechnology into cancer treatment has revolutionized chemotherapy, boosted its effectiveness while reduced side effects. Among the various nanotherapeutic approaches, metal-organic frameworks (MOFs) stand out as promising carriers for targeted chemotherapy, with the added benefit of enabling combination therapies. MOFs, composed of metal ions or clusters linked by coordination bonds, tackle critical issues in traditional cancer treatments, such as poor stability, limited efficacy, and severe side effects. Their key advantages include customizable size and shape, diverse compositions, controlled porosity, large surface areas, ease of modification, and biocompatibility. This review highlights recent advancements in the use of MOFs for cancer therapy, showcasing their role in both monotherapies and combination strategies. Additionally, it explores the future potential and challenges of MOF-based platforms in tumor treatment.
Collapse
Affiliation(s)
- Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan.
| | - Sina Matalqah
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan
| | - Ebaa Abu-Saleem
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan
| | - Nisreen Asha
- The University of Oklahoma Health Sciences, Oklahoma, USA
| | - Hala Mhaidat
- King Abdullah University Hospital, Irbid, Jordan
| | | | - Lara Al-Nashash
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan
| | - Hussein S Janabi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan
| |
Collapse
|
3
|
Roth J, Trukhina O, Allouss D, Stoian D, Schertenleib T, Felder T, Queen WL. Post-Synthetic Modification of a MOF via Continuous Flow Methods for Gold E-Waste Recycling. CHEMSUSCHEM 2024:e202401642. [PMID: 39431488 DOI: 10.1002/cssc.202401642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
This work represents a pioneering effort in utilizing continuous flow methods for the post-synthetic modification of a nanoporous metal-organic framework (Fe-BTC or MIL-100(Fe)) with short-chain redox-active oligomers (poly-p-phenylenediamine, PpPDA). The Fe-BTC/PpPDA composite has been previously demonstrated to rapidly and selectively extract gold from complex liquids. Thus, in the present study, Fe-BTC/PpPDA was synthesized on a 250 g scale and tested in eight industrially relevant solutions used for leaching metals from electronic waste. These leachates (e. g., cyanide, thiourea, and aqua regia) exhibited varying effectiveness, pH, and gold speciation, which led to significant differences in the composite's performance during gold extraction. Notably, Fe-BTC/PpPDA performed best in leaching solutions containing [AuCl4]- species. Subsequently, Fe-BTC/PpPDA was structured into spherical beads using a novel microdroplet technique in continuous flow. These structured adsorbents were then placed in a column and assessed for gold recovery from real e-waste solutions containing [AuCl4]- species. The composite reached a capacity of ~600 mg of gold per gram before breakthrough and a capacity of ~900 mg of gold per gram at a gold recovery rate of ~60 %. The selectivity of the composite was calculated to be 972, 262, and 193 for Au/Ni, Au/Co, and Au/Fe, respectively. Also, in situ X-ray absorption near edge spectroscopy (XANES) was employed to monitor the gold oxidation state, providing the first evidence of gold reduction occurring on a timescale relevant to flow-through experiments. It was confirmed that the redox-active oligomers facilitate the reduction of Au3+ to metallic Au during extraction, enhancing the composite's capacity and selectivity. Additionally, Fe-BTC/PpPDA outperformed several commercial resins commonly used in gold recovery. Considering the scalability of the composite and its outstanding performance in realistic solutions, this work suggests a promising future for MOF/polymer composites in selective metal recovery from waste streams. Furthermore, the continuous flow methods used for post-synthetic modification of the MOF may pave the way for more scalable production in the future.
Collapse
Affiliation(s)
- Jocelyn Roth
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), CH-1950, Sion, Switzerland
| | - Olga Trukhina
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), CH-1950, Sion, Switzerland
| | - Dalia Allouss
- Laboratoire de Matériaux, Catalyse et Valorisation des Ressources Naturelles, URAC 24, FST, Université Hassan II-Casablanca, Casablanca, 28806, Morocco
| | | | - Till Schertenleib
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), CH-1950, Sion, Switzerland
| | - Timo Felder
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), CH-1950, Sion, Switzerland
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), CH-1950, Sion, Switzerland
| |
Collapse
|
4
|
Lin Z, Liao D, Jiang C, Nezamzadeh-Ejhieh A, Zheng M, Yuan H, Liu J, Song H, Lu C. Current status and prospects of MIL-based MOF materials for biomedicine applications. RSC Med Chem 2023; 14:1914-1933. [PMID: 37859709 PMCID: PMC10583815 DOI: 10.1039/d3md00397c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 10/21/2023] Open
Abstract
This article mainly reviews the biomedicine applications of two metal-organic frameworks (MOFs), MIL-100(Fe) and MIL-101(Fe). These MOFs have advantages such as high specific surface area, adjustable pore size, and chemical stability, which make them widely used in drug delivery systems. The article first introduces the properties of these two materials and then discusses their applications in drug transport, antibacterial therapy, and cancer treatment. In cancer treatment, drug delivery systems based on MIL-100(Fe) and MIL-101(Fe) have made significant progress in chemotherapy (CT), chemodynamic therapy (CDT), photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy (IT), nano-enzyme therapy, and related combined therapy. Overall, these MIL-100(Fe) and MIL-101(Fe) materials have tremendous potential and diverse applications in the field of biomedicine.
Collapse
Affiliation(s)
- Zengqin Lin
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Chenyi Jiang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | | | - Minbin Zheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Hui Yuan
- Department of Gastroenterology, Huizhou Municipal Central Hospital Huizhou Guangdong 516001 China
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Hailiang Song
- Department of General Surgery, Dalang Hospital Dongguan 523770 China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| |
Collapse
|
5
|
Gulati S, Choudhury A, Mohan G, Katiyar R, Kurikkal M P MA, Kumar S, Varma RS. Metal-organic frameworks (MOFs) as effectual diagnostic and therapeutic tools for cancer. J Mater Chem B 2023. [PMID: 37377082 DOI: 10.1039/d3tb00706e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of multifunctional organometallic compounds that include metal ions combined with assorted organic linkers. Recently, these compounds have received widespread attention in medicine, due to their exceptional qualities, including a wide surface area, high porosity, outstanding biocompatibility, non-toxicity, etc. Such characteristic qualities make MOFs superb candidates for biosensing, molecular imaging, drug delivery, and enhanced cancer therapies. This review illustrates the key attributes of MOFs and their importance in cancer research. The structural and synthetic aspects of MOFs are briefly discussed with primary emphasis on diagnostic and therapeutic features, as well as their performance and significance in modern therapeutic methods and synergistic theranostic strategies including biocompatibility. This review offers cumulative scrutiny of the widespread appeal of MOFs in modern-day oncological research, which may stimulate further explorations.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India.
| | - Akangkha Choudhury
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Gauravya Mohan
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Riya Katiyar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India.
| | | | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565 905 São Carlos - SP, Brazil.
| |
Collapse
|
6
|
Zhu R, Cai M, Fu T, Yin D, Peng H, Liao S, Du Y, Kong J, Ni J, Yin X. Fe-Based Metal Organic Frameworks (Fe-MOFs) for Bio-Related Applications. Pharmaceutics 2023; 15:1599. [PMID: 37376050 DOI: 10.3390/pharmaceutics15061599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) are porous materials composed of metal ions and organic ligands. Due to their large surface area, easy modification, and good biocompatibility, MOFs are often used in bio-related fields. Fe-based metal-organic frameworks (Fe-MOFs), as important types of MOF, are favored by biomedical researchers for their advantages, such as low toxicity, good stability, high drug-loading capacity, and flexible structure. Fe-MOFs are diverse and widely used. Many new Fe-MOFs have appeared in recent years, with new modification methods and innovative design ideas, leading to the transformation of Fe-MOFs from single-mode therapy to multi-mode therapy. In this paper, the therapeutic principles, classification, characteristics, preparation methods, surface modification, and applications of Fe-MOFs in recent years are reviewed to understand the development trends and existing problems in Fe-MOFs, with the view to provide new ideas and directions for future research.
Collapse
Affiliation(s)
- Rongyue Zhu
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengru Cai
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tingting Fu
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongge Yin
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hulinyue Peng
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shilang Liao
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuji Du
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiahui Kong
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Ni
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xingbin Yin
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
7
|
Alvares E, Tantoro S, Wijaya CJ, Cheng KC, Soetaredjo FE, Hsu HY, Angkawijaya AE, Go AW, Hsieh CW, Santoso SP. Preparation of MIL100/MIL101-alginate composite beads for selective phosphate removal from aqueous solution. Int J Biol Macromol 2023; 231:123322. [PMID: 36690234 DOI: 10.1016/j.ijbiomac.2023.123322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Numerous studies have reported various approaches for synthesizing phosphate-capturing adsorbents to mitigate eutrophication. Despite the efforts, concerns about production cost, the complexity of synthesis steps, environmental friendliness, and applicability in industrial settings continue to be a problem. Herein, phosphate-selective composite adsorbents were prepared by incorporating alginate (Alg) with MIL100 and MIL101 to produce the MIL100/Alg and MIL101/Alg beads, where Fe3+ served as the crosslinker. The unsaturated coordination bond of MIL100 and MIL101 serves as a Lewis acid that can attract phosphate. The adsorption equilibrium isotherm, uptake kinetics, and effects of operating parameters were studied. The phosphate adsorption capacity of MIL100/Alg (103.3 mg P/g) and MIL101/Alg (109.5 mg P/g) outperformed their constituting components at pH 6 and 30 °C. Detailed evaluation of the adsorbent porosity using N2 sorption reveals the formation of mesoporous structures on the Alg network upon incorporation of MIL100 and MIL101. The composite adsorbents have excellent selectivity toward anionic phosphate and can be easily regenerated. Phosphate adsorption by MIL100/Alg and MIL101/Alg was driven by electrostatic attraction and ligand exchange. Preliminary economic analysis on the synthesis of the adsorbents indicates that the composites, MIL100/Alg and MIL101/Alg, are economically viable adsorbents.
Collapse
Affiliation(s)
- Eric Alvares
- Chemical Engineering Department, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia
| | - Stanley Tantoro
- Chemical Engineering Department, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia
| | - Christian Julius Wijaya
- Chemical Engineering Department, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Kuan-Chen Cheng
- Institute of Food Science and Technology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Institute of Biotechnology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan; Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan.
| | - Felycia Edi Soetaredjo
- Chemical Engineering Department, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | | | - Alchris Woo Go
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 40227, Taiwan; Department of Medical Research, China Medical University Hospital, North Dist., Taichung City 404333, Taiwan
| | - Shella Permatasari Santoso
- Chemical Engineering Department, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia.
| |
Collapse
|
8
|
Nguyen YT, Kim N, Lee HJ. Metal Complexes as Promising Matrix Metalloproteinases Regulators. Int J Mol Sci 2023; 24:ijms24021258. [PMID: 36674771 PMCID: PMC9861486 DOI: 10.3390/ijms24021258] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Nowadays, cancers and dementia, such as Alzheimer's disease, are the most fatal causes of death. Many studies tried to understand the pathogenesis of those diseases clearly and develop a promising way to treat the diseases. Matrix metalloproteinases (MMPs) have been reported to be involved in the pathology of cancers and AD through tumor cell movement and amyloid degradation. Therefore, control of the levels and actions of MMPs, especially MMP-2 and MMP-9, is necessary to care for and/or cure cancer and AD. Various molecules have been examined for their potential application as regulators of MMPs expression and activity. Among the molecules, multiple metal complexes have shown advantages, including simple synthesis, less toxicity and specificity toward MMPs in cancer cells or in the brain. In this review, we summarize the recent studies and knowledge of metal complexes (e.g., Pt-, Ru-, Au-, Fe-, Cu-, Ni-, Zn-, and Sn-complexes) targeting MMPs and their potentials for treating and/or caring the most fatal human diseases, cancers and AD.
Collapse
Affiliation(s)
- Yen Thi Nguyen
- Department of Chemistry, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
- Correspondence: (N.K.); (H.J.L.)
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
- Correspondence: (N.K.); (H.J.L.)
| |
Collapse
|
9
|
Larasati L, Lestari WW, Firdaus M. Dual-Action Pt(IV) Prodrugs and Targeted Delivery in Metal-Organic Frameworks: Overcoming Cisplatin Resistance and Improving Anticancer Activity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Larasati Larasati
- Master of Chemistry Program, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta, Jl. Ir. Sutami No. 36A, Kentingan Jebres, Surakarta, Central Java, Indonesia, 57126
| | - Witri Wahyu Lestari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta, Jl. Ir. Sutami No. 36A, Kentingan Jebres, Surakarta, Central Java, Indonesia, 57126
| | - Maulidan Firdaus
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta, Jl. Ir. Sutami No. 36A, Kentingan Jebres, Surakarta, Central Java, Indonesia, 57126
| |
Collapse
|
10
|
Neuer AL, Jessernig A, Gerken LRH, Gogos A, Starsich FHL, Anthis AHC, Herrmann IK. Cellular fate and performance of group IV metal organic framework radioenhancers. Biomater Sci 2022; 10:6558-6569. [PMID: 36215095 PMCID: PMC9641950 DOI: 10.1039/d2bm00973k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/12/2022] [Indexed: 08/09/2023]
Abstract
Nano-sized metal organic frameworks (nanoMOFs) have gained increasing importance in biomedicine due to their tunable properties. In addition to their use as carriers in drug delivery, nanoMOFs containing hafnium have been successfully employed as radio-enhancers augmenting damage caused by X-ray irradiation in tumor tissue. While results are encouraging, there is little mechanistic understanding available, and the biological fate of these radio-enhancer nanoparticles remains largely unexplored. Here, we synthesized a selection of group IV metal-based (Hf, Ti, Ti/Zr) nanoMOFs and investigated their cell compatibility and radio-enhancement performance in direct comparison to the corresponding metal oxides. We report surprising radio-enhancement performance of Ti-containing nanoMOFs reaching dose modifying ratios of 3.84 in human sarcoma cells and no relevant dose modification in healthy human fibroblasts. These Ti-based nanoMOFs even outperformed previously reported Hf-based nanoMOFs as well as equimolar group IV metal oxides in direct benchmarking experiments. While group IV nanoMOFs were well-tolerated by cells in the absence of irradiation, the nanoMOFs partially dissolved in lysosomal buffer conditions showing distinctly different chemical stability compared to widely researched group IV oxides (TiO2, ZrO2, and HfO2). Taken together, this study illustrates the promising potential of Ti-based nanoMOFs for radio-enhancement and provides insight into the intracellular fate and stability of group IV nanoMOFs.
Collapse
Affiliation(s)
- Anna Lena Neuer
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Alexander Jessernig
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Lukas R H Gerken
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Alexander Gogos
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Fabian H L Starsich
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Alexandre H C Anthis
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Inge K Herrmann
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| |
Collapse
|
11
|
Lan S, Zhang J, Li X, Pan L, Li J, Wu X, Yang ST. Low Toxicity of Metal-Organic Framework MOF-74(Co) Nano-Particles In Vitro and In Vivo. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193398. [PMID: 36234530 PMCID: PMC9565312 DOI: 10.3390/nano12193398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 06/03/2023]
Abstract
With the rapid development of metal-organic frameworks (MOF), the toxicity and environmental safety of MOF materials should be thoroughly investigated. The behaviors and bio-effects of MOF materials after oral exposure are largely unknown. In this study, we performed a pilot toxicity evaluation of MOF-74(Co) nanoparticles (NPs) both in vitro and in vivo. The cell viability and cell cycle were monitored after LO2 cells were incubated with MOF-74(Co). The Co contents, bodyweight, serum biochemistry, histopathological changes, and oxidative stress parameters were measured after oral exposure to MOF-74(Co) NPs in mice. LO2 cells showed viability loss at 100 mg/L. The cell cycle arrest was more sensitive, which was observed even at 12.5 mg/L. MOF-74(Co) NPs led to a significant accumulation of Co in the liver and kidneys. No bodyweight loss was observed and the serum biochemical index was mainly unchanged. Except for slight inflammation, the histopathological images of the liver and kidneys after oral exposure to MOF-74(Co) NPs were normal compared to the control. Meaningful oxidative stress was found in the liver and kidneys. The results collectively indicated the low toxicity of MOF-74(Co) NPs after oral exposure in mice.
Collapse
Affiliation(s)
- Suke Lan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jiahao Zhang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xin Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Lejie Pan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Juncheng Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xian Wu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Sheng-Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
12
|
FeMOF-based nanostructured platforms for T-2 toxin detection in beer by a “fence-type” aptasensing principle. Anal Bioanal Chem 2022; 414:7999-8008. [DOI: 10.1007/s00216-022-04330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/01/2022]
|
13
|
Structural Diversity of Co(II) Coordination Polymers: Treatment Activity on Hypotension During Surgery by Blocking α Receptor on Peripheral Blood Vessels. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Parsaei M, Akhbari K. MOF-801 as a Nanoporous Water-Based Carrier System for In Situ Encapsulation and Sustained Release of 5-FU for Effective Cancer Therapy. Inorg Chem 2022; 61:5912-5925. [PMID: 35377632 DOI: 10.1021/acs.inorgchem.2c00380] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoporous metal-organic frameworks (MOFs) have been gaining a reputation for their drug delivery applications. In the current work, MOF-801 was successfully prepared by a facile, cost-efficient, and environmentally friendly approach through the reaction of ZrCl4 and fumaric acid as organic linkers to deliver 5-fluorouracil (5-FU). The prepared nanostructure was fully characterized by a series of analytical techniques including Fourier transform infrared spectroscopy, powder X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-vis spectroscopy, 1H NMR spectroscopy, thermogravimetric analysis, high-performance liquid chromatography, and Brunauer-Emmett-Teller analysis. MOF-801 could be used for the delivery of the anticancer drug 5-FU due to its high surface area, suitable pore size, and biocompatible ingredients. Based on in vitro loading and release studies, a high 5-FU loading capacity and pH-dependent drug release behavior were observed. Moreover, the interactions between the structure of MOFs and 5-FU were investigated through Monte Carlo simulation calculations. An in vitro cytotoxicity test was done, and the results indicated that 5-FU@MOF-801 was more potent than 5-FU on SW480 cancerous cells, indicating the highlighted role of this drug delivery system. Finally, the kinetics of drug release was investigated.
Collapse
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| |
Collapse
|
15
|
Li L, Qi Z, Han S, Li X, Liu B, Liu Y. Advances and Applications of Metal-Organic Framework Nanomaterials as Oral Delivery Carriers: A Review. Mini Rev Med Chem 2022; 22:2564-2580. [PMID: 35362373 DOI: 10.2174/1389557522666220330152145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 11/22/2022]
Abstract
Oral administration is a commonly used, safe, and patient-compliant method of drug delivery. However, due to the multiple absorption barriers in the gastrointestinal tract (GIT), the oral bioavailability of many drugs is low, resulting in a limited range of applications for oral drug delivery. Nanodrug delivery systems have unique advantages in overcoming the multiple barriers to oral absorption and improving the oral bioavailability of encapsulated drugs. Metal-organic frameworks (MOFs) are composed of metal ions and organic linkers assembled by coordination chemistry. Unlike other nanomaterials, nanoscale metal-organic frameworks (nano-MOFs, NMOFs) are increasingly popular for drug delivery systems (DDSs) due to their tunable pore size and easily modified surfaces. This paper summarizes the literature on MOFs in pharmaceutics included in SCI for the past ten years. Then, the GIT structure and oral drug delivery systems are reviewed, and the advantages, challenges, and solution strategies possessed by oral drug delivery systems are discussed. Importantly, two major classes of MOFs suitable for oral drug delivery systems are summarized, and various representative MOFs as oral drug carriers are evaluated in the context of oral drug delivery systems. Finally, the challenges faced by DDSs in the development of MOFs, such as biostability, biosafety, and toxicity, are examined.
Collapse
Affiliation(s)
- Li Li
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China;
- Institute of Forensic Expertise, Liaoning University, Shenyang, 110000, China
| | - Zhaorui Qi
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China
| | - Shasha Han
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China
| | - Xurui Li
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China
| | - Bingmi Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China;
- Institute of Forensic Expertise, Liaoning University, Shenyang, 110000, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China;
- Institute of Forensic Expertise, Liaoning University, Shenyang, 110000, China
| |
Collapse
|
16
|
Chen D, Jiang L, Lei T, Xiao G, Wang Y, Zuo X, Li B, Li L, Wang J. Magnetic CuFe 2O 4 with intrinsic protease-like activity inhibited cancer cell proliferation and migration through mediating intracellular proteins. BIOMATERIALS AND BIOSYSTEMS 2022; 5:100038. [PMID: 36825110 PMCID: PMC9934488 DOI: 10.1016/j.bbiosy.2021.100038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Protease has been widely used in biological and industrial fields. Developing efficient artificial enzyme mimics remains a major technical challenge due to the high stability of peptide bonds. Nanoenzymes with high stability, high activity and low cost, provided new opportunities to break through natural enzyme inherent limitations. However, compared with many nanomaterials with inherent peroxidase activity, the intrinsic mimic proteases properties of magnetic nanomaterials were seldom explored, let alone the interaction between magnetic nanomaterials and cellular proteins. Herein, we reported for the first time that magnetic CuFe2O4 possesses inherent protease activity to hydrolyze bovine serum albumin (BSA) and casein under physiological conditions, and the CuFe2O4 is more resistant to high temperature than the natural trypsin. It also exhibited significantly higher catalytic efficiency than other copper nanomaterials and can be recycled for many times. Protease participated in pathophysiological processes and all stages of tumor progression. Interesting, CuFe2O4 exhibited anti-proliferative effect on A549, SKOV3, HT-29, BABL-3T3 and HUVEC cells, as well as it was particularly sensitive against SKOV3 cells. CuFe2O4 was about 30 times more effective than conventional chemotherapy drugs oxaliplatin and artesunate against SKOV3 cells. In addition, CuFe2O4 also mediated the expression of intracellular proteins, such as MMP-2, MMP-9, F-actin, and NF-kB, which may be associated with global protein hydrolysis by CuFe2O4, leading to inhibition of cell migration. The merits of the high magnetic properties, good protease-mimic and antitumor activities make CuFe2O4 nanoparticles very prospective candidates for many applications such as proteomics and biotechnology.
Collapse
Affiliation(s)
- Daomei Chen
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P R China
| | - Liang Jiang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P R China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P R China
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P R China
| | - Tao Lei
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P R China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P R China
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P R China
| | - Guo Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P R China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P R China
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P R China
| | - Yuanfeng Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P R China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P R China
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P R China
| | - Xiaoqiong Zuo
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P R China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P R China
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P R China
| | - Bin Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P R China
- Corresponding authors.
| | - Lingli Li
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P R China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P R China
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P R China
| | - Jiaqiang Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P R China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P R China
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P R China
- Corresponding authors.
| |
Collapse
|
17
|
Lv M, Sun DW, Huang L, Pu H. Precision release systems of food bioactive compounds based on metal-organic frameworks: synthesis, mechanisms and recent applications. Crit Rev Food Sci Nutr 2021; 62:3991-4009. [PMID: 34817301 DOI: 10.1080/10408398.2021.2004086] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Controlled release (CR) systems have become a powerful platform for accurate and effective delivery of bioactive compounds (BCs). Metal-organic frameworks (MOFs) are one of the best BCs-loaded carriers for CR systems. In the review, the principles and methods of the design and synthesis of MOFs-CR systems are summarized in detail, the encapsulation of BCs by MOFs and CR mechanisms are explored, and their biological toxicity and biocompatibility are highlighted and applications in the food industry are discussed. In addition, current challenges in this field and possible future development directions are also presented. MOFs have been proven to encapsulate BCs effectively, including gaseous and solid molecules, and control the release of BCs through spontaneous diffusion or stimulus-response. The solubility, stability and biocompatibility of BCs encapsulated by MOFs are greatly improved, which expands their applications in foods. The effective CR of BCs by MOFs-CR systems is beneficial to assist in maintaining or even improving the quality and safety of food, reduce the BCs usage while increasing the bioavailability. Low- or non-biotoxic MOFs, especially bio-MOFs, show greater application prospects in the food industry.
Collapse
Affiliation(s)
- Mingchun Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| | - Lunjie Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| |
Collapse
|
18
|
Simonsson I, Gärdhagen P, Andrén M, Tam PL, Abbas Z. Experimental investigations into the irregular synthesis of iron(iii) terephthalate metal-organic frameworks MOF-235 and MIL-101. Dalton Trans 2021; 50:4976-4985. [PMID: 33877196 DOI: 10.1039/d0dt04341a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
MOF-235(Fe) and MIL-101(Fe) are two well-studied metal-organic frameworks (MOFs) with dissimilar crystal structures and topologies. Previously reported syntheses of the former show that it has greatly varying surface areas, indicating a lack of phase purity of the products, i.e. the possible presence of both MOFs in the same sample. To find the reason for this, we have tested and modified the commonly used synthesis protocol of MOF-235(Fe), where a 3 : 5 molar ratio of iron(iii) ions and a terephthalic acid linker is heated in a 1 : 1 DMF : ethanol solvent at 80 °C for 24 h. Using XRD and BET surface area (SABET) measurements, we found that it is difficult to obtain a pure phase of MOF-235, as MIL-101 also appears to form during the solvothermal treatment. Comparison of the XRD peak height ratios of the synthesis products revealed a direct correlation between the MOF-235/MIL-101 content and surface area; more MOF-235 yields a lower surface area and vice versa. In general, using a larger (3 : 1) DMF : ethanol ratio than that reported in the literature and a stoichiometric (4 : 3) Fe(iii) : TPA ratio yields a nearly pure MOF-235 product (SABET = 295 m2 g-1, 67% yield). An optimized synthesis procedure was developed to obtain high-surface area MIL-101(Fe) (SABET > 2400 m2 g-1) in a large yield and at a previously unreported temperature (80 °C vs. previously used 110-150 °C). In situ X-ray scattering was utilized to investigate the crystallization of MOF-235 and MIL-101. At 80 °C, only MOF-235 formed and at 85 and 90 °C, only MIL-101 formed.
Collapse
Affiliation(s)
- Isabelle Simonsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
19
|
Li A, Yang X, Chen J. A novel route to size-controlled MIL-53(Fe) metal-organic frameworks for combined chemodynamic therapy and chemotherapy for cancer. RSC Adv 2021; 11:10540-10547. [PMID: 35423581 PMCID: PMC8695691 DOI: 10.1039/d0ra09915e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
Metal-organic frameworks (MOFs), such as MIL-53(Fe), have considerable potential as drug carriers in cancer treatment due to their notable characteristics, including controllable particle sizes, high catalytic activity, biocompatibility and large porosity, and are widely used in a broad range of drugs. In this study, a new approach for the synthesis of MIL-53(Fe) nanocrystals with controlled sizes has been developed using a non-ionic surfactant PVP as the conditioning and stabilizing agent, respectively. During the nucleation of MIL-53(Fe), the PVP droplet, as a nano-reactor, controlled the growth of the crystal nucleus. The size and aspect ratio (length/width) of nanocrystals increased with an increase in PVP in the synthetic mixture. The MIL-53(Fe) nanocrystals showed a homogeneous morphology, with approximately 190 nm in length and 100 nm in width. MIL-53(Fe) not only was used to load the anticancer drug doxorubicin (DOX) but also generated hydroxyl radicals (˙OH) via a Fenton-like reaction for ROS-mediated/chemo-therapy of cancer cells. The approach was expected to synthesize numerous types of nano-size iron(iii)-based MOFs, such as MIL-53, 89, 88A, 88B and 101. The MIL-53(Fe) nanocrystals hold great promise as a candidate to improve the controlled release of drugs and treatment effect for cancer therapy.
Collapse
Affiliation(s)
- Anxia Li
- Sanya Central Hospital (Hainan Third People's Hospital) Sanya Hainan 572000 China
| | - Xiaoxin Yang
- College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
| | - Juan Chen
- Sanya Central Hospital (Hainan Third People's Hospital) Sanya Hainan 572000 China
| |
Collapse
|
20
|
Chen D, Li B, Lei T, Na D, Nie M, Yang Y, Congjia, Xie, He Z, Wang J. Selective mediation of ovarian cancer SKOV3 cells death by pristine carbon quantum dots/Cu 2O composite through targeting matrix metalloproteinases, angiogenic cytokines and cytoskeleton. J Nanobiotechnology 2021; 19:68. [PMID: 33663548 PMCID: PMC7934478 DOI: 10.1186/s12951-021-00813-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/22/2021] [Indexed: 01/07/2023] Open
Abstract
It was shown that some nanomaterials may have anticancer properties, but lack of selectivity is one of challenges, let alone selective suppression of cancer growth by regulating the cellular microenvironment. Herein, we demonstrated for the first time that carbon quantum dots/Cu2O composite (CQDs/Cu2O) selectively inhibited ovarian cancer SKOV3 cells by targeting cellular microenvironment, such as matrix metalloproteinases, angiogenic cytokines and cytoskeleton. The result was showed CQDs/Cu2O possessed anticancer properties against SKOV3 cells with IC50 = 0.85 μg mL-1, which was approximately threefold lower than other tested cancer cells and approximately 12-fold lower than normal cells. Compared with popular anticancer drugs, the IC50 of CQDs/Cu2O was approximately 114-fold and 75-fold lower than the IC50 of commercial artesunate (ART) and oxaliplatin (OXA). Furthermore, CQDs/Cu2O possessed the ability to decrease the expression of MMP-2/9 and induced alterations in the cytoskeleton of SKOV3 cells by disruption of F-actin. It also exhibited stronger antiangiogenic effects than commercial antiangiogenic inhibitor (SU5416) through down-regulating the expression of VEGFR2. In addition, CQDs/Cu2O has a vital function on transcriptional regulation of multiple genes in SKOV3 cells, where 495 genes were up-regulated and 756 genes were down-regulated. It is worth noting that CQDs/Cu2O also regulated angiogenesis-related genes in SKOV3 cells, such as Maspin and TSP1 gene, to suppress angiogenesis. Therefore, CQDs/Cu2O selectively mediated of ovarian cancer SKOV3 cells death mainly through decreasing the expression of MMP-2, MMP-9, F-actin, and VEGFR2, meanwhile CQDs/Cu2O caused apoptosis of SKOV3 via S phase cell cycle arrest. These findings reveal a new application for the use of CQDs/Cu2O composite as potential therapeutic interventions in ovarian cancer SKOV3 cells.
Collapse
Affiliation(s)
- Daomei Chen
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Bin Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Tao Lei
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Di Na
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Minfang Nie
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yepeng Yang
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | | | - Xie
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Zijuan He
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jiaqiang Wang
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China.
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China.
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
21
|
Zhang Y, Khan AR, Yang X, Fu M, Wang R, Chi L, Zhai G. Current advances in versatile metal-organic frameworks for cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Jiang Y, Li X, Piao H, Qin Z, Li J, Sun Y, Wang X, Ma P, Song D. A semi-automatic solid phase extraction system based on MIL-101(Cr) foam-filled syringe for detection of triazines in vegetable oils. J Sep Sci 2021; 44:1089-1097. [PMID: 33410576 DOI: 10.1002/jssc.202001098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
In this study, several metal-organic framework-melamine foam columns were first developed and used as a laboratory-made semi-automatic solid phase extraction packed in syringe adsorber for the extraction of six triazine herbicides from vegetable oil samples coupled to high-performance liquid chromatography-tandem mass spectrometry. The metal-organic framework-foam columns were prepared using a simple approach by embedding the solid particles in melamine foam using polyvinylidene difluoride physical encapsulation. The method was applicable to a wide variety of metal-organic framework materials, and the incorporated materials retained their unique properties. Key factors that affect the extraction efficiency, including the MIL-101(Cr) amount, sample flow rate, type and volume of the eluting solvent, and flow rate of eluting solvent, were investigated. Under optimum conditions, the proposed method exhibited low limits of detection (0.017-0.096 ng/mL, S/N = 3) for six triazines. The relative standard deviations calculated for all herbicides ranged from 0.2 to 14.9%. This study demonstrated that the MIL-101(Cr)-foam column can be used as a high-quality adsorption material for the detection of triazines in vegetable oils.
Collapse
Affiliation(s)
- Yanxiao Jiang
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Xu Li
- Department of Ophthalmology, The Second Hospital, Jilin University, Changchun, P. R. China
| | - Huilan Piao
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Zucheng Qin
- Hunan Warrant Pharmaceutical Company Ltd., Changsha, P. R. China
| | - Jingkang Li
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Ying Sun
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Xinghua Wang
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Pinyi Ma
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Daqian Song
- College of Chemistry, Jilin University, Changchun, P. R. China
| |
Collapse
|
23
|
Zhao W, Deng J, Ren Y, Xie L, Li W, Wang Q, Li S, Liu S. Antibacterial application and toxicity of metal-organic frameworks. Nanotoxicology 2020; 15:311-330. [PMID: 33259255 DOI: 10.1080/17435390.2020.1851420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metal-organic frameworks (MOFs), which are also referred to as coordination polymers, have been widely used in adsorption separation and catalysis, especially in the field of physical chemistry in the past few years, because of their unique physical structure and potential chemical properties. In recent years, particularly with the continuous expansion of the research field, deepening of research levels, and sustained advancements in science and technology, powerful and diverse MOFs that have demonstrated great biomedical application potential have been successively developed. Consequently, this study summarizes the origin, development, and common synthesis methods of MOFs, with major emphasis on their antibacterial application and safety evaluation in biomedicine.
Collapse
Affiliation(s)
- Wanling Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinqiong Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Ren
- Guangdong Provincial People's Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liyuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengqing Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sijun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Markopoulou P, Panagiotou N, Li A, Bueno-Perez R, Madden D, Buchanan S, Fairen-Jimenez D, Shiels PG, Forgan RS. Identifying Differing Intracellular Cargo Release Mechanisms by Monitoring In Vitro Drug Delivery from MOFs in Real Time. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:100254. [PMID: 33244524 PMCID: PMC7674849 DOI: 10.1016/j.xcrp.2020.100254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 05/09/2023]
Abstract
Metal-organic frameworks (MOFs) have been proposed as biocompatible candidates for the targeted intracellular delivery of chemotherapeutic payloads, but the site of drug loading and subsequent effect on intracellular release is often overlooked. Here, we analyze doxorubicin delivery to cancer cells by MIL-101(Cr) and UiO-66 in real time. Having experimentally and computationally verified that doxorubicin is pore loaded in MIL-101(Cr) and surface loaded on UiO-66, different time-dependent cytotoxicity profiles are observed by real-time cell analysis and confocal microscopy. The attenuated release of aggregated doxorubicin from the surface of Dox@UiO-66 results in a 12 to 16 h induction of cytotoxicity, while rapid release of pore-dispersed doxorubicin from Dox@MIL-101(Cr) leads to significantly higher intranuclear localization and rapid cell death. In verifying real-time cell analysis as a versatile tool to assess biocompatibility and drug delivery, we show that the localization of drugs in (or on) MOF nanoparticles controls delivery profiles and is key to understanding in vitro modes of action.
Collapse
Affiliation(s)
- Panagiota Markopoulou
- Joseph Black Building, College of Science and Engineering, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Nikolaos Panagiotou
- Joseph Black Building, College of Science and Engineering, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary, & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Aurelia Li
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Rocio Bueno-Perez
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - David Madden
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Sarah Buchanan
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary, & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - David Fairen-Jimenez
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Paul G. Shiels
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary, & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Ross S. Forgan
- Joseph Black Building, College of Science and Engineering, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
25
|
Chen D, Li B, Jiang L, Li Y, Yang Y, Luo Z, Wang J. Pristine Cu-MOF Induces Mitotic Catastrophe and Alterations of Gene Expression and Cytoskeleton in Ovarian Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:4081-4094. [PMID: 35025483 DOI: 10.1021/acsabm.0c00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metals-organic frameworks (MOFs) have been widely explored in biomedicine, mostly in drug delivery, biosensing, and bioimaging due to their large surface area, tunable porosity, readily chemical functionalization, and good biocompatibility. However, the underlining cellular mechanisms controlling the process for MOF cytotoxicity remains almost completely unknown. Here, we demonstrate that pristine Cu-MOF without any loaded drug selectively inhibited ovarian cancer mainly through promoting tubulin polymerization and destroying the cell actin cytoskeleton (F-actin) to trigger the mitotic catastrophe, accompanying by conventional programmed cell death. To our knowledge, this is the first report claiming that mitotic catastrophe may be an explaining mechanism of MOF cytotoxicity. Cu-MOF with an intrinsic protease-like activity also hydrolyzed cellular cytoskeleton proteins (F-actin). The RNA sequencing data indicated the differential expressional mRNA of cell proliferation and actin cytoskeleton (ACTA2, ACTN3, FSCN2, and SCIN) and mitotic spindles (PLK1 and TPX2) related genes. We found that Cu-MOF as a promising candidate in the disruption of cellular cytoskeleton and the change of the gene expression could be actin altering and antimitotic agents against cancer cells, allowing for fundamental biological and biophysical studies of MOFs.
Collapse
Affiliation(s)
- Daomei Chen
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P.R. China
| | - Bin Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P.R. China
| | - Liang Jiang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Yizhou Li
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Yepeng Yang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Zhifang Luo
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Jiaqiang Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| |
Collapse
|
26
|
Li S, Si H, Li J, Jia M, Hou X. Metal organic framework/chitosan foams functionalized with polyethylene oxide as a sorbent for enrichment and analysis of bisphenols in beverages and water. NEW J CHEM 2020. [DOI: 10.1039/c9nj05196a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MIL-53(Al)/CS/PEO foam as a sorbent for the vortex assisted solid phase extraction of a trace amount of five bisphenols in beverages and water.
Collapse
Affiliation(s)
- Shuo Li
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Huizhong Si
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Jianshu Li
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Mengtian Jia
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| |
Collapse
|
27
|
Mendes RF, Figueira F, Leite JP, Gales L, Almeida Paz FA. Metal–organic frameworks: a future toolbox for biomedicine? Chem Soc Rev 2020; 49:9121-9153. [DOI: 10.1039/d0cs00883d] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present review focuses on the use of Metal–Organic Frameworks, (MOFs) highlighting the most recent developments in the biological field and as bio-sensors.
Collapse
Affiliation(s)
- Ricardo F. Mendes
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Flávio Figueira
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - José P. Leite
- Abel Salazar Biomedical Sciences Institute
- University of Porto
- 4169-007 Porto
- Portugal
- IBMC – Instituto de Biologia Molecular e Celular
| | - Luís Gales
- Abel Salazar Biomedical Sciences Institute
- University of Porto
- 4169-007 Porto
- Portugal
- IBMC – Instituto de Biologia Molecular e Celular
| | - Filipe A. Almeida Paz
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
28
|
Sun L, Xu Y, Gao Y, Huang X, Feng S, Chen J, Wang X, Guo L, Li M, Meng X, Zhang J, Ge J, An X, Ding D, Luo Y, Zhang Y, Jiang Q, Ning X. Synergistic Amplification of Oxidative Stress-Mediated Antitumor Activity via Liposomal Dichloroacetic Acid and MOF-Fe 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901156. [PMID: 31074196 DOI: 10.1002/smll.201901156] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/21/2019] [Indexed: 06/09/2023]
Abstract
Cancer cells are susceptible to oxidative stress; therefore, selective elevation of intracellular reactive oxygen species (ROS) is considered as an effective antitumor treatment. Here, a liposomal formulation of dichloroacetic acid (DCA) and metal-organic framework (MOF)-Fe2+ (MD@Lip) has been developed, which can efficiently stimulate ROS-mediated cancer cell apoptosis in vitro and in vivo. MD@Lip can not only improve aqueous solubility of octahedral MOF-Fe2+ , but also generate an acidic microenvironment to activate a MOF-Fe2+ -based Fenton reaction. Importantly, MD@Lip promotes DCA-mediated mitochondrial aerobic oxidation to increase intracellular hydrogen peroxide (H2 O2 ), which can be consequently converted to highly cytotoxic hydroxyl radicals (•OH) via MOF-Fe2+ , leading to amplification of cancer cell apoptosis. Particularly, MD@Lip can selectively accumulate in tumors, and efficiently inhibit tumor growth with minimal systemic adverse effects. Therefore, liposome-based combination therapy of DCA and MOF-Fe2+ provides a promising oxidative stress-associated antitumor strategy for the management of malignant tumors.
Collapse
Affiliation(s)
- Lei Sun
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Ya Gao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Xinyu Huang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Shujun Feng
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmei Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Xuekun Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Leilei Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceutics and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Meng Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Xia Meng
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Jikang Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Junliang Ge
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210093, China
| | - Dang Ding
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Yadong Luo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Yu Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210093, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
29
|
Choudhury H, Gorain B, Pandey M, Khurana RK, Kesharwani P. Strategizing biodegradable polymeric nanoparticles to cross the biological barriers for cancer targeting. Int J Pharm 2019; 565:509-522. [PMID: 31102804 DOI: 10.1016/j.ijpharm.2019.05.042] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
The biological barriers in the body have been fabricated by nature to protect the body from foreign molecules. The successful delivery of drugs is limited and being challenged by these biological barriers including the gastrointestinal tract, brain, skin, lungs, nose, mouth mucosa, and immune system. In this review article, we envisage to understand the functionalities of these barriers and revealing various drug-loaded biodegradable polymeric nanoparticles to overcome these barriers and deliver the entrapped drugs to cancer targeted site. Apart from it, tissue-specific multifunctional ligands, linkers and transporters when employed imparts an effective active delivery strategy by receptor-mediated transcytosis. Together, these strategies enable to deliver various drugs across the biological membranes for the treatment of solid tumors and malignant cancer.
Collapse
Affiliation(s)
- Hira Choudhury
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, 47500 Selangor, Malaysia.
| | - Manisha Pandey
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Rajneet Kaur Khurana
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Prashant Kesharwani
- School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|
30
|
Ranji-Burachaloo H, Reyhani A, Gurr PA, Dunstan DE, Qiao GG. Combined Fenton and starvation therapies using hemoglobin and glucose oxidase. NANOSCALE 2019; 11:5705-5716. [PMID: 30865742 DOI: 10.1039/c8nr09107b] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Separately, Fenton and starvation cancer therapies have been recently reported as impressive methods for tumor destruction. Here, we introduce natural hemoglobin and glucose oxidase (GOx) for efficient cancer treatment following combined Fenton and starvation therapies. GOx and hemoglobin were encapsulated in zeolitic imidazolate frameworks 8 (ZIF-8) to fabricate a pH-sensitive MOF activated by tumor acidity. In the slightly acidic environment of cancer cells, GOx is released and it consumes d-glucose and molecular oxygen, nutrients essential for the survival of cancer cells, and produces gluconic acid and hydrogen peroxide, respectively. The produced gluconic acid increases the acidity of the tumor microenvironment leading to complete MOF destruction and enhances hemoglobin and GOx release. The Fe ions from the heme groups of hemoglobin also release in the presence of both endogenous and produced H2O2 and generate hydroxyl radicals. The produced OH˙ radical can rapidly oxidize the surrounding biomacromolecules in the biological system and treat the cancer cells. In vitro experiments demonstrate that this novel nanoparticle is cytotoxic to cancer cells HeLa and MCF-7, at very low concentrations (<2 μg mL-1). In addition, the selectivity index values are 5.52 and 11.04 for HeLa and MCF-7 cells, respectively, which are much higher than those of commercial drugs and those of similar studies reported by other research groups. This work thus demonstrates a novel pH-sensitive system containing hemoglobin and GOx for effective and selective cancer treatment using both radical generation and nutrient starvation.
Collapse
Affiliation(s)
- Hadi Ranji-Burachaloo
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | | | | | |
Collapse
|
31
|
Chen K, Wang C, Fan Y, Gu J, Han Z, Wang Y, Gao L, Zeng H. Identification of mundoserone by zebrafish in vivo screening as a natural product with anti-angiogenic activity. Exp Ther Med 2018; 16:4562-4568. [PMID: 30542405 PMCID: PMC6257818 DOI: 10.3892/etm.2018.6748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/15/2018] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to screen natural products with anti-angiogenic potential from the Natural Products Collection of MicroSource. The anti-angiogenic activity of 240 natural products was assessed using the zebrafish line Tg(fli1a: EGFP)y1. At 24 h post-fertilization, the embryos were treated with the library compounds for 24 h and, the morphology of the intersegmental vessels (ISVs) was then assessed using a fluorescence microscope, followed by counting of ISVs and calculation of the inhibition ratio. The expression of angiogenesis-associated genes was determined by quantitative polymerase chain reaction. The results indicated that mundoserone inhibited ISV formation in zebrafish embryos in a dose-dependent manner, with a significant anti-angiogenic activity observed at a concentration of 10 µM, leading to an ISV inhibition ratio of 73.6±1.3%. Mundoserone significantly reduced the expression of slit guidance ligand 3 (SLIT3), roundabout guidance receptor 1 (ROBO1) and -2, fibroblast growth factor receptor (FGFR)2 and -3, as well as protein tyrosine phosphatase, receptor type B (PTP-RB), but increased the expression of NOTCH1A. Accordingly, mundoserone may be an effective angiogenic inhibitor, which acts via downregulation of SLIT/ROBO1 and FGFR/PTP-RB, and upregulation of NOTCH1A signaling.
Collapse
Affiliation(s)
- Kan Chen
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Yuqi Fan
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Jun Gu
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhihua Han
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Yue Wang
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Lin Gao
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Huasu Zeng
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
32
|
Li S, Jia M, Guo H, Hou X. Development and application of metal organic framework/chitosan foams based on ultrasound-assisted solid-phase extraction coupling to UPLC-MS/MS for the determination of five parabens in water. Anal Bioanal Chem 2018; 410:6619-6632. [DOI: 10.1007/s00216-018-1269-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
|
33
|
Ranji-Burachaloo H, Fu Q, Gurr PA, Dunstan DE, Qiao GG. Improved Fenton Therapy Using Cancer Cell Hydrogen Peroxide. Aust J Chem 2018. [DOI: 10.1071/ch18281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fenton cancer therapy as a new methodology for the treatment of tumour cells is largely restricted owing to the low stability, high aggregation, and poor selectivity of reported nanoparticles. In this study, an improved approach for the selective destruction of cancer cells is reported. Metal–organic framework (MOF) nanoparticles were synthesized and reduced via a hydrothermal method, and then PEGylated through the surface-initiated atom transfer radical polymerization (SI-ATRP) reaction to produce a PEGylated reduced MOF (P@rMOF). The ratio of PEG to nanoparticles was used to optimize the size and aggregation of the nanoparticles, with 2P@rMOF (2 : 1 mass ratio) having the smallest hydrodynamic diameter. The nanoparticles were further conjugated with folic acid for cell targeting. In vitro cell uptake experiments demonstrated that the internalization of 2P@rMOF-FA nanoparticles into cancer cells (HeLa) was almost 3-fold that of normal cells (NIH-3T3). In the presence of 2P@rMOF-FA, the HeLa cell viability decreased dramatically to 22 %, whereas the NIH-3T3 cell viability remained higher than 80 % after 24 h incubation. The selectivity index for 2P@rMOF-FA is 4.48, which is significantly higher than those reported in the literature for similar strategies. This work thus demonstrates the most stable and selective nanoparticle system for the treatment of cancer cells using the cell’s own H2O2.
Collapse
|
34
|
Mei LL, Qiu YT, Huang MB, Wang WJ, Bai J, Shi ZZ. MiR-99a suppresses proliferation, migration and invasion of esophageal squamous cell carcinoma cells through inhibiting the IGF1R signaling pathway. Cancer Biomark 2017; 20:527-537. [DOI: 10.3233/cbm-170345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Zhang Y, Chen Q. Relationship between matrix metalloproteinases and the occurrence and development of ovarian cancer. ACTA ACUST UNITED AC 2017; 50:e6104. [PMID: 28538838 PMCID: PMC5479390 DOI: 10.1590/1414-431x20176104] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/17/2017] [Indexed: 01/07/2023]
Abstract
Ovarian cancer is one of the most malignant genital cancers, with a high mortality rate. Many researchers have suggested that matrix metalloproteinases (MMPs) have remarkably high expression in ovarian cancer tissues. MMPs are considered to be related to the occurrence, development, invasion and metastasis of ovarian cancer. Moreover, some studies have discovered that the unbalance between MMPs and tissue inhibitor of metalloproteinases (TIMPs) are associated with the malignant phenotype of tumors. This review summarizes the latest research progress of MMPs in ovarian cancer. The investigation of MMP mechanism in ovarian cancer will facilitate the development of effective anti-tumor drugs, and thereby improve the survival rate of patients with ovarian cancer.
Collapse
Affiliation(s)
- Y Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Q Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Cheplakova AM, Solovieva AO, Pozmogova TN, Vorotnikov YA, Brylev KA, Vorotnikova NA, Vorontsova EV, Mironov YV, Poveshchenko AF, Kovalenko KA, Shestopalov MA. Nanosized mesoporous metal–organic framework MIL-101 as a nanocarrier for photoactive hexamolybdenum cluster compounds. J Inorg Biochem 2017; 166:100-107. [DOI: 10.1016/j.jinorgbio.2016.11.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/03/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022]
|
37
|
Zhang M, Chen X, Ying M, Gao J, Zhan C, Lu W. Glioma-Targeted Drug Delivery Enabled by a Multifunctional Peptide. Bioconjug Chem 2016; 28:775-781. [PMID: 27966896 DOI: 10.1021/acs.bioconjchem.6b00617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rapid proliferation of glioma relies on vigorous angiogenesis for the supply of essential nutrients; thus, a radical method of antiglioma therapy should include blocking tumor neovasculature formation. A phage display selected heptapeptide, the glioma-initiating cell peptide GICP, was previously reported as a ligand of VAV3 protein (a Rho GTPase guanine nucleotide exchange factor), which is overexpressed on glioma cells and tumor neovasculature. Therefore, GICP holds potential for the multifunctional targeting of glioma (tumor cells and neovasculature). We developed GICP-modified micelle-based paclitaxel delivery systems for antiglioma therapy in vitro and in vivo. GICP and GICP-modified PEG-PLA micelles (GICP-PEG-PLA) could be significantly taken up by U87MG cells, a human cell line derived from malignant gliomas and human umbilical vein endothelial cells (HUVECs). Furthermore, GICP-PEG-PLA micelles demonstrated enhanced penetration in a tumor spheroid model in vitro in comparison to unmodified micelles. In vivo, DiR-loaded GICP-PEG-PLA micelles exhibited superior accumulation in the tumor region by targeting neovasculature and glioma cells in nude mice bearing subcutaneous glioma. When loaded with paclitaxel, GICP-PEG-PLA micelles could more effectively suppress tumor growth and neovasculature formation than unmodified micelles in vivo. Our results indicated that GICP could serve as a promising multifunctional ligand for glioma targeting.
Collapse
Affiliation(s)
- Mingfei Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery , Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Xishan Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery , Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Man Ying
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery , Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Jie Gao
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery , Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | | | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery , Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|