1
|
Zhao J, Zhang Q, Hao X. Syringin ameliorates dextran sulphate colitis via alteration oxidative stress, inflammation NF-κB signalling pathway and gut microbiota. Basic Clin Pharmacol Toxicol 2025; 136:e14105. [PMID: 39548740 DOI: 10.1111/bcpt.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/24/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND The objective of the current study was to investigate the potential effects of syringin against dextran sulphate colitis (DSS)-induced ulcerative colitis (UC) in mice. MATERIAL AND METHODS In vitro study was performed on the RAW 264.7 cells and cytokines and inflammatory level were estimated. The oxidative stress, inflammatory cytokines, apoptosis and inflammatory parameters were estimated. The mRNA expression and faecal samples were estimated in the colon tissue. RESULTS Syringin treatment enhanced the body weight, colon length and reduced the disease activity index (DAI), spleen index. Syringin treatment remarkably suppressed the level of nitric oxide (NO), myeloperoxidase (MPO), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) along with alteration of antioxidant parameters. Syringin treatment also altered level of cytokines in the serum and colon tissue; inflammatory parameters viz., platelet-activating factor (PAF), cyclooxygenase-2 (COX-2), prostaglandin (PGE2), inducible nitric oxide synthetase (iNOS), nuclear factor κ-B (NF-κB); matrix metalloproteinases (MMP) level. Syringin significantly (p < 0.001) enhanced the level of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1). Syringin remarkably altered the relative abundance of gut microbiota like Firmicutes, Bacteroidetes, F/B ratio, Verrucomicrobia and Actinobacteria. CONCLUSION Syringin exhibited the protective effect against DSS-induced UC in mice via alteration of NF-κB signalling pathway.
Collapse
Affiliation(s)
- Juhui Zhao
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Qingqing Zhang
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Xudong Hao
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| |
Collapse
|
2
|
Liu X, Zhai X, Wang X, Zhu X, Wang Z, Jiang Z, Bao H, Chen Z. Nuclear Factor Erythroid 2-Related Factor 2 Activator DDO-1039 Ameliorates Podocyte Injury in Diabetic Kidney Disease via Suppressing Oxidative Stress, Inflammation, and Ferroptosis. Antioxid Redox Signal 2024. [PMID: 39723566 DOI: 10.1089/ars.2024.0653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Aims: Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease, and podocyte injury is one of the major contributors to DKD. As a crucial transcriptional factor that regulates cellular response to oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) is an attractive therapeutic target for DKD. In this study, we evaluated the therapeutic potential of DDO-1039, a novel small-molecule Nrf2 activator developed with protein-protein interaction strategy, on podocyte injury in DKD. Results: DDO-1039 treatment significantly increased Nrf2 protein level and Nrf2 nuclear translocation, thereby upregulating Nrf2 target genes [heme oxygenase 1, NAD(P)H quinone dehydrogenase 1, glutamate-cysteine ligase modifier, and tyrosine-protein kinase receptor] both in vitro and in vivo. DDO-1039 attenuated glomerular sclerosis and podocyte injury in the high-fat diet/streptozotocin-induced (HFD/STZ) diabetic mice and db/db diabetic mice. It also significantly improved hyperglycemia in both diabetic mice and mitigated proteinuria in HFD/STZ mice. Meanwhile, DDO-1039 attenuated oxidative stress and inflammation as well as apoptosis in vivo and in podocytes stimulated with palmitic acid and high glucose. Interestingly, we identified podocyte protective factor Tyro3 as a novel Nrf2-regulated gene. In addition, podocyte ferroptosis is reduced via activation of glutathione peroxidase 4 by the novel Nrf2 activator. Innovation and conclusion: DDO-1039 activates the Nrf2-based cytoprotective system to mitigate podocyte injury in the context of diabetes, suggesting the potential of DDO-1039 in the treatment of DKD. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Xing Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiuwen Zhai
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaoyu Wang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ziyue Wang
- Nanjing University School of Medicine, Nanjing, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Hao Bao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- Nanjing University School of Medicine, Nanjing, China
| | - ZhaoHong Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
3
|
Alqudah A, Qnais E, Gammoh O, Bseiso Y, Wedyan M, Oqal M. Panduratin A mitigates inflammation and oxidative stress in DSS-induced colitis mice model. Future Sci OA 2024; 10:2428129. [PMID: 39559852 PMCID: PMC11581177 DOI: 10.1080/20565623.2024.2428129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
AIM This study explored Panduratin A's protective effects against DSS-induced colitis in mice, focusing on reducing inflammation and oxidative stress in the colon. METHODS Mice were treated with dextran sodium sulfate (DSS) and Panduratin A (3, 6, 18 mg/kg), and changes in body weight, colon length, Disease Activity Index (DAI), histopathology, inflammation markers including tumor necrosis factor- α (TNF-α), Interleukin-1 β (IL-1β), Myeloperoxidase (MPO), and oxidative stress, Malondialdehyde (MDA) were evaluated. RESULTS Panduratin A significantly reversed DSS-induced symptoms, including body weight loss, colonic length shortening, and DAI increase, while reducing histopathological damage. It lowered inflammatory markers and oxidative stress, suppressed NF-κB activation, and enhanced Nrf2 and HO-1 expression. CONCLUSION Panduratin A shows promise as a colitis treatment, warranting further research for broader clinical application.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Yousra Bseiso
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Muna Oqal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
4
|
Xie H, Cao C, Shu D, Liu T, Zhang T. The important role of ferroptosis in inflammatory bowel disease. Front Med (Lausanne) 2024; 11:1449037. [PMID: 39434776 PMCID: PMC11491328 DOI: 10.3389/fmed.2024.1449037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Ferroptosis is a type of regulated cell death that occurs due to the iron-dependent accumulation of lethal reactive oxygen species (ROS) from lipids. Ferroptosis is characterized by distinct morphological, biochemical, and genetic features that differentiate it from other regulated cell death (RCD) types, which include apoptosis, various necrosis types, and autophagy. Recent reports show that ferritin formation is correlated to many disorders, such as acute injury, infarction, inflammation, and cancer. Iron uptake disorders have also been associated with intestinal epithelial dysfunction, particularly inflammatory bowel disease (IBD). Studies of iron uptake disorders may provide new insights into the pathogenesis of IBD, thereby improving the efficacy of medical interventions. This review presents an overview of ferroptosis, elucidating its fundamental mechanisms and highlighting its significant involvement in IBD.
Collapse
Affiliation(s)
- Hanhan Xie
- The Second Affiliated Hospital of Chengdu Medical College, China Nation Nuclear Corporation 416 Hospital, Chengdu, China
| | - Chun Cao
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Dan Shu
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Tong Liu
- The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Tao Zhang
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
5
|
Hu M, Yuan L, Zhu J. The Dual Role of NRF2 in Colorectal Cancer: Targeting NRF2 as a Potential Therapeutic Approach. J Inflamm Res 2024; 17:5985-6004. [PMID: 39247839 PMCID: PMC11380863 DOI: 10.2147/jir.s479794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC), as the third most common bisexual cancer worldwide, requires urgent research on its underlying mechanisms and intervention methods. NRF2 is an important transcription factor involved in the regulation of redox homeostasis, protein degradation, DNA repair, and other cancer processes, playing an important role in cancer. In recent years, the complex role of NRF2 in CRC has been continuously revealed: on the one hand, it exhibits a chemopreventive effect on cancer by protecting normal cells from oxidative stress, and on the other hand, it also exhibits a protective effect on malignant cells. Therefore, this article explores the dual role of NRF2 and its related signaling pathways in CRC, including their chemical protective properties and promoting effects in the occurrence, development, metastasis, and chemotherapy resistance of CRC. In addition, this article focuses on exploring the regulation of NRF2 in CRC ferroptosis, as well as NRF2 drug modulators (activators and inhibitors) targeting CRC, including natural products, compounds, and traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Mengyun Hu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lingling Yuan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jie Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Oncology Department II, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Muro P, Zhang L, Li S, Zhao Z, Jin T, Mao F, Mao Z. The emerging role of oxidative stress in inflammatory bowel disease. Front Endocrinol (Lausanne) 2024; 15:1390351. [PMID: 39076514 PMCID: PMC11284038 DOI: 10.3389/fendo.2024.1390351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/19/2024] [Indexed: 07/31/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated condition that affects the digestive system and includes Crohn's disease (CD) and ulcerative colitis (UC). Although the exact etiology of IBD remains uncertain, dysfunctional immunoregulation of the gut is believed to be the main culprit. Amongst the immunoregulatory factors, reactive oxygen species (ROS) and reactive nitrogen species (RNS), components of the oxidative stress event, are produced at abnormally high levels in IBD. Their destructive effects may contribute to the disease's initiation and propagation, as they damage the gut lining and activate inflammatory signaling pathways, further exacerbating the inflammation. Oxidative stress markers, such as malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and serum-free thiols (R-SH), can be measured in the blood and stool of patients with IBD. These markers are elevated in patients with IBD, and their levels correlate with the severity of the disease. Thus, oxidative stress markers can be used not only in IBD diagnosis but also in monitoring the response to treatment. It can also be targeted in IBD treatment through the use of antioxidants, including vitamin C, vitamin E, glutathione, and N-acetylcysteine. In this review, we summarize the role of oxidative stress in the pathophysiology of IBD, its diagnostic targets, and the potential application of antioxidant therapies to manage and treat IBD.
Collapse
Affiliation(s)
- Peter Muro
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Zhang
- Nanjing Lishui People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Shuxuan Li
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zihan Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Tao Jin
- Department of Gastrointestinal and Endoscopy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenwei Mao
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Zhang D, Wan H, Zhao R, Zhang Y, Chen H. Eudragit S100 coated iron oxide-chitosan nanocomposites for colon targeting of 5-aminosalicylic acid ameliorate ulcerative colitis by improving intestinal barrier function and inhibiting NLRP3 inflammasome. Int Immunopharmacol 2024; 139:112661. [PMID: 39008936 DOI: 10.1016/j.intimp.2024.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
The therapeutic effect of 5-amino salicylic acid (5-ASA), a first-line therapeutic agent for the treatment of ulcerative colitis (UC), is limited by the modest bioavailability afforded by its oral administration. In this study, a 5-ASA oral delivery system was developed using Eudragit S100-coated iron oxide-chitosan nanocomposites (ES-IOCS/5-ASA) to address this issue. According to drug release studies in vitro, ES-IOCS/5-ASA only released a small amount of drug in simulated gastric fluid with a pH of 1.2. However, in a medium with a pH of 7.5, a relatively rapid and complete release was noted. 5-ASA-loaded iron oxide-chitosan nanocomposites (IOCS/5-ASA) could be effectively taken up by NCM460 cells and performed better anti-inflammatory effects than free 5-ASA. At the same time, IOCS/5-ASA improved barrier damage in DSS-induced NCM460 cells. In vivo models of dextran sulphate sodium (DSS)-induced colitis were used to assess the therapeutic efficacy of oral administration of ES-IOCS/5-ASA. ES-IOCS/5-ASA significantly relieved DSS-induced colitis and enhanced the integrity of the intestinal epithelial barrier. ES-IOCS/5-ASA also reduced the expression of NLRP3, ASC and IL-1β. Additionally, iron oxide nanoparticles used as nanozymes could alleviate inflammation. In summary, this study indicates that ES-IOCS/5-ASA exert anti-inflammatory effects on DSS-induced colitis by improving intestinal barrier function and inhibiting NLRP3 inflammasome expression, presenting a viable therapeutic choice for the treatment of UC.
Collapse
Affiliation(s)
- Dandan Zhang
- Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Hao Wan
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China
| | - Ran Zhao
- Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yu Zhang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China.
| | - Hong Chen
- Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Dubey H, Ray A, Dubey A, Gulati K. S-Nitrosoglutathione Attenuates Oxidative Stress and Improves Retention Memory Dysfunctions in Intra-Cerebroventricular-Streptozotocin Rat Model of Sporadic Alzheimer's Disease via Activation of BDNF and Nuclear Factor Erythroid 2-Related Factor-2 Antioxidant Signaling Pathway. Neuropsychobiology 2024; 83:101-113. [PMID: 38744261 DOI: 10.1159/000538348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/05/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION The brain-derived neurotrophic factor (BDNF) and transcription nuclear factor erythroid 2-related factor-2 (NRF-2) play an important role in Alzheimer's disease (AD). However, the interactive involvement of BDNF and NRF-2 in respect to antioxidant mechanisms in different parts of the AD brain is still unclear. Considering the above condition, used S-nitrosoglutathione (GSNO) to examine whether it modulates the BDNF and NRF-2 levels to activate signaling pathway to promote antioxidant levels in AD brains. METHOD AD was induced by intracerebroventricular infusion of streptozotocin (ICV-STZ, 3 mg/kg) in Wistar rats. The effect of GSNO was analyzed by evaluating the retention of memory in months 1, 2, and 3. After the behavior study, rats were sacrificed and accessed the amyloid beta (Aβ)-40, Aβ42, glutathione (GSH), BDNF, and NRF-2 levels in the hippocampus, cortex, and amygdala tissue. RESULTS Pretreatment with GSNO (50 µg/kg/intraperitoneal/day) restored the BDNF, and NRF-2 levels toward normalcy as compared with ICV-STZ + saline-treated animals. Also, GSNO treatment reversed the oxidative stress and increased the GSH levels toward normal levels. Further, reduced Aβ levels and neuronal loss in different brain regions. As a result, GSNO treatment improved the cognitive deficits in ICV-STZ-treated rats. CONCLUSION The results showed that endogenous nitric oxide donor GSNO improved the cognitive deficits and ICV-STZ-induced AD pathological conditions, possibly via attenuating the oxidative stress. Hence, the above finding supported that GSNO treatment may activate BDNF and NRF-2 antioxidant signaling pathways in the AD brain to normalize oxidative stress, which is the main causative factor for ICV-STZ-induced AD pathogenesis.
Collapse
Affiliation(s)
- Harikesh Dubey
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
- The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Arunabha Ray
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
- Departments of Pharmacology, Hamdard Institute of Medical Sciences and Research (HIMSR), Hamdard University, New Delhi, India
| | - Anamika Dubey
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Kavita Gulati
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| |
Collapse
|
9
|
Salem MB, El-Lakkany NM, Seif el-Din SH, Hammam OA, Samir S. Diosmin alleviates ulcerative colitis in mice by increasing Akkermansia muciniphila abundance, improving intestinal barrier function, and modulating the NF-κB and Nrf2 pathways. Heliyon 2024; 10:e27527. [PMID: 38500992 PMCID: PMC10945203 DOI: 10.1016/j.heliyon.2024.e27527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Ulcerative colitis is a common type of inflammatory bowel disease that affects millions of individuals around the world. Traditional UC treatment has focused on suppressing immune responses rather than treating the underlying causes of UC, which include oxidative stress, inflammation, and microbiota dysbiosis. Diosmin (DIO), a naturally occurring flavonoid, possesses antioxidant and anti-inflammatory properties. This study aimed to assess the efficacy of DIO in treating dextran-sulfate sodium (DSS)-induced colitis, and to investigate some of its underlying mechanisms, with an emphasis on Akkermansia muciniphila abundance, inflammatory markers, and intestinal barrier function. C57BL/6 mice were given 4% (w/v) DSS to induce colitis. DSS-induced mice were administered DIO (100 and 200 mg/kg) or sulfasalazine orally for 7 days. Every day, the disease activity index (DAI) was determined by recording body weight, diarrhea, and bloody stool. Changes in fecal A. muciniphila abundance, colonic MUC1 and MUC2 expression, as well as oxidative stress and inflammatory markers were all assessed. Histopathological changes, colonic PIK3PR3 and ZO-1 levels, and immunohistochemical examinations of occludin and claudin-1, were investigated. DIO administration resulted in a dose-dependent decrease in DAI, as well as increase in A. muciniphila abundance and MUC2 expression while decreasing MUC1 expression. DIO also dramatically reduced colonic oxidative stress and inflammation by regulating the NF-κB and Nrf2 cascades, restored intestinal barrier integrity by inhibiting PIK3R3 and inducing ZO-1, and improved occludin/claudin-1 gene expression and immunostaining. This study provides the first evidence that DIO preserves intestinal barrier integrity and increases A. muciniphila abundance in DSS-induced colitis. However, more research is required to explore the impact of DIO on the overall composition and diversity of the gut microbiota. Likewise, it will be important to fully understand the molecular mechanisms by which A. muciniphila maintains intestinal barrier function and its potential use as an adjuvant in the treatment of UC.
Collapse
Affiliation(s)
- Maha Badr Salem
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Naglaa Mohamed El-Lakkany
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Sayed Hassan Seif el-Din
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Olfat Ali Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| |
Collapse
|
10
|
Liu W, Zeng H. IGF2BP2 attenuates intestinal epithelial cell ferroptosis in colitis by stabilizing m 6A-modified GPX4 mRNA. Cytokine 2024; 173:156388. [PMID: 38039694 DOI: 10.1016/j.cyto.2023.156388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic and uncontrolled inflammatory bowel disease. N6-methyladenine (m6A) is a reversible mRNA modification method. IGF2BP2 is an RNA-binding protein regulated by m6A methylation. However, understanding of m6A-related proteins in UC is limited. This study was to analyze the function and related mechanism of IGF2BP2 in UC. METHODS The UC models were established by dextran sulfate sodium (DSS) in NCM460 cells and mice. The expression of IGF2BP2 and GPX4 in UC were detected by qPCR and western blot. The effects of IGF2BP2 on inflammation, ferroptosis and colon injury were measured by gain- and loss-of-function experiments. This study conducted a clinical evaluation of mice using the Disease Activity Index score. The molecular mechanism of IGF2BP2 in ferroptosis were analyzed by m6A RNA methylation quantification kit, RNA immunoprecipitation-qPCR analysis, and RNA stability assay. RESULTS IGF2BP2 and GPX4 were under-expressed in DSS-treated UC. IGF2BP2 enhanced the stability of GPX4 mRNA modified by m6A. IGF2BP2 overexpression repressed the ROS, MDA, and iron levels but enhanced the GSH and GPX4 levels in DSS-triggered NCM460 cells, which were partially reversed by GPX4 silencing. In UC mice, IGF2BP2 high-expression ameliorated symptoms, Disease Activity Index score, pathological changes, inflammatory reaction, and ferroptosis, which were also partly neutralized by GPX4 inhibition. CONCLUSIONS IGF2BP2 augmented the GPX4 expression by the m6A modification to weaken UC progression via suppressing ferroptosis.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pediatric Gastroenterology, Children's Hospital of The First People's Hospital of Chenzhou City, Chenzhou 423000, Hunan Province, PR China
| | - Hui Zeng
- Department of Pediatric Gastroenterology, Children's Hospital of The First People's Hospital of Chenzhou City, Chenzhou 423000, Hunan Province, PR China.
| |
Collapse
|
11
|
Barreca M, Qin Y, Cadot MEH, Barraja P, Bach A. Advances in developing noncovalent small molecules targeting Keap1. Drug Discov Today 2023; 28:103800. [PMID: 37852355 DOI: 10.1016/j.drudis.2023.103800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Kelch-like ECH-associated protein 1 (Keap1) is a drug target for diseases involving oxidative stress and inflammation. There are three covalent Keap1-binding drugs on the market, but noncovalent compounds that inhibit the interaction between Keap1 and nuclear factor erythroid 2-related factor 2 (Nrf2) represent an attractive alternative. Both compound types prevent degradation of Nrf2, leading to the expression of antioxidant and antiinflammatory proteins. However, their off-target profiles differ as do their exact pharmacodynamic effects. Here, we discuss the opportunities and challenges of targeting Keap1 with covalent versus noncovalent inhibitors. We then provide a comprehensive overview of current noncovalent Keap1-Nrf2 inhibitors, with a focus on their pharmacological effects, to examine the therapeutic potential for this compound class.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Yuting Qin
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Marie Elodie Hélène Cadot
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
12
|
Alharthi F. Chicoric acid enhances the antioxidative defense system and protects against inflammation and apoptosis associated with the colitis model induced by dextran sulfate sodium in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119814-119824. [PMID: 37930572 DOI: 10.1007/s11356-023-30742-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Although several anticolitic drugs are available, their application is associated with numerous side effects. Chicoric acid (CA) is a hydroxycinnamic acid found naturally in chicory (Cichorium intybus), purple coneflower (Echinacea purpurea), and basil with numerous health benefits, such as antioxidative and anti-inflammatory activities. Here, the potential anticolitic efficiency of CA against dextran sulfate sodium (DSS)-induced colitis in rats was examined in rats. Animals were randomly assigned to the following five groups: control, CA (100 mg/kg body weight), DSS [(DSS); 4% w/v], CA + DSS (100 mg/kg), and the 5-aminosalicylic acid (100 mg/kg) + DSS group. The obtained data revealed that CA significantly prevented the shortening of colon length. Meanwhile, the oxidative stress-related enzymes were increased, while malondialdehyde and nitric oxide, were markedly decreased significantly by CA. The results also indicated that CA administration decreased significantly the pro-apoptogenic indices (Bax and caspase-3) and enhanced significantly Bcl-2, the anti-apoptogenic protein. Moreover, DSS caused a significant elevation of pro-inflammatory mediators, including interleukin-1β, tumor necrosis factor-α, myeloperoxidase, cyclooxygenase II, prostaglandin E2, and peroxisome proliferator-activated receptor gamma. Interestingly, these changes were significantly decreased following the CA administration. At the molecular level, CA supplementation has increased significantly the expression level of nuclear factor erythroid 2-related factor-2 (Nrf2) and decreased the expressions of nitric oxide synthase and mitogen-activated protein kinase 14. CA has been determined to significantly lessen DSS-induced colitis by activating Nrf2 and its derived antioxidant molecules and suppressing inflammation and apoptosis cascades associated with the development of colitis; suggesting that CA could be used as an alternative naturally-derived anticolitic agent.
Collapse
Affiliation(s)
- Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.
| |
Collapse
|
13
|
Ates I, Yılmaz AD, Buttari B, Arese M, Saso L, Suzen S. A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases. Brain Sci 2023; 13:1532. [PMID: 38002492 PMCID: PMC10669303 DOI: 10.3390/brainsci13111532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
An autoimmune disease is the consequence of the immune system attacking healthy cells, tissues, and organs by mistake instead of protecting them. Inflammation and oxidative stress (OS) are well-recognized processes occurring in association with acute or chronic impairment of cell homeostasis. The transcription factor Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is of major importance as the defense instrument against OS and alters anti-inflammatory activities related to different pathological states. Researchers have described Nrf2 as a significant regulator of innate immunity. Growing indications suggest that the Nrf2 signaling pathway is deregulated in numerous diseases, including autoimmune disorders. The advantageous outcome of the pharmacological activation of Nrf2 is an essential part of Nrf2-based chemoprevention and intervention in other chronic illnesses, such as neurodegeneration, cardiovascular disease, autoimmune diseases, and chronic kidney and liver disease. Nevertheless, a growing number of investigations have indicated that Nrf2 is already elevated in specific cancer and disease steps, suggesting that the pharmacological agents developed to mitigate the potentially destructive or transformative results associated with the protracted activation of Nrf2 should also be evaluated. The activators of Nrf2 have revealed an improvement in the progress of OS-associated diseases, resulting in immunoregulatory and anti-inflammatory activities; by contrast, the depletion of Nrf2 worsens disease progression. These data strengthen the growing attention to the biological properties of Nrf2 and its possible healing power on diseases. The evidence supporting a correlation between Nrf2 signaling and the most common autoimmune diseases is reviewed here. We focus on the aspects related to the possible effect of Nrf2 activation in ameliorating pathologic conditions based on the role of this regulator of antioxidant genes in the control of inflammation and OS, which are processes related to the progression of autoimmune diseases. Finally, the possibility of Nrf2 activation as a new drug development strategy to target pathogenesis is proposed.
Collapse
Affiliation(s)
- Ilker Ates
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey
| | - Ayşe Didem Yılmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, 00161 Rome, Italy;
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzae Aldo Moro 5, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology ‘‘Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| |
Collapse
|
14
|
Geertsema S, Bourgonje AR, Fagundes RR, Gacesa R, Weersma RK, van Goor H, Mann GE, Dijkstra G, Faber KN. The NRF2/Keap1 pathway as a therapeutic target in inflammatory bowel disease. Trends Mol Med 2023; 29:830-842. [PMID: 37558549 DOI: 10.1016/j.molmed.2023.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Oxidative stress (OS) is an important pathophysiological mechanism in inflammatory bowel disease (IBD). However, clinical trials investigating compounds directly targeting OS in IBD yielded mixed results. The NRF2 (nuclear factor erythroid 2-related factor 2)/Keap1 (Kelch-like ECH-associated protein 1) pathway orchestrates cellular responses to OS, and dysregulation of this pathway has been implicated in IBD. Activation of the NRF2/Keap1 pathway may enhance antioxidant responses. Although this approach could help to attenuate OS and potentially improve clinical outcomes, an overview of human evidence for modulating the NRF2/Keap1 axis and more recent developments in IBD is lacking. This review explores the NRF2/Keap1 pathway as potential therapeutic target in IBD and presents compounds activating this pathway for future clinical applications.
Collapse
Affiliation(s)
- Sem Geertsema
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Raphael R Fagundes
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ranko Gacesa
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas N Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
BinMowyna MN. Zingerone attenuates intestinal injury and colitis caused by a high-fat diet through Nrf2 signaling regulation. Saudi J Biol Sci 2023; 30:103775. [PMID: 37766888 PMCID: PMC10519856 DOI: 10.1016/j.sjbs.2023.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
This study examined the protective effect of Zingerone against a high-fat diet (HFD)-induced intestinal damage. Control and HFD rats were treated with the vehicle or Zingerone (100 mg/kg, orally) (n = 8 rats/groups). An extra group, HFD + Zingerone + brusatol (an Nrf2 inhibitor). This study treatment lasted four weeks. Zingerone reduced the nuclear levels of NF-B p65 in control and HFD-fed rats while increasing SOD, CAT, GSH, levels of mRNA, cytoplasmic levels, and Nrf2 nuclear levels. Zingerone treatment attenuated the duodenal epithelial damage and maintained the mucosal barrier by reducing plasma FITC-DX and serum LPS in rats fed with HFD. Concomitantly, it lowered the duodenal MDA, TNF-α, IL-6, and IL-1β levels. These impacts included changes in body weight, duodenal lipid levels, and Keap-1 expression, a natural Nrf2 inhibitor. We concluded that Zingerone reduces HFD-induced duodenal injury. These findings support Zingerone's clinical applicability against various inflammatory diseases of the intestine.
Collapse
Affiliation(s)
- Mona N. BinMowyna
- College of Science and Humanities-Dawadmi, Shaqra University, Saudi Arabia
| |
Collapse
|
16
|
Peng S, Shen L, Yu X, Zhang L, Xu K, Xia Y, Zha L, Wu J, Luo H. The role of Nrf2 in the pathogenesis and treatment of ulcerative colitis. Front Immunol 2023; 14:1200111. [PMID: 37359553 PMCID: PMC10285877 DOI: 10.3389/fimmu.2023.1200111] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease involving mainly the colorectal mucosa and submucosa, the incidence of which has been on the rise in recent years. Nuclear factor erythroid 2-related factor 2 (Nrf2), known for its key function as a transcription factor, is pivotal in inducing antioxidant stress and regulating inflammatory responses. Numerous investigations have demonstrated the involvement of the Nrf2 pathway in maintaining the development and normal function of the intestine, the development of UC, and UC-related intestinal fibrosis and carcinogenesis; meanwhile, therapeutic agents targeting the Nrf2 pathway have been widely investigated. This paper reviews the research progress of the Nrf2 signaling pathway in UC.
Collapse
Affiliation(s)
- Shuai Peng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Xiaoyun Yu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Xu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Lanlan Zha
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Jing Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| |
Collapse
|
17
|
Ikeda Y, Matsuda S. Gut Protective Effect from D-Methionine or Butyric Acid against DSS and Carrageenan-Induced Ulcerative Colitis. Molecules 2023; 28:4392. [PMID: 37298868 PMCID: PMC10254188 DOI: 10.3390/molecules28114392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Microbiome dysbiosis resulting in altered metabolite profiles may be associated with certain diseases, including inflammatory bowel diseases (IBD), which are characterized by active intestinal inflammation. Several studies have indicated the beneficial anti-inflammatory effect of metabolites from gut microbiota, such as short-chain fatty acids (SCFAs) and/or D-amino acids in IBD therapy, through orally administered dietary supplements. In the present study, the potential gut protective effects of d-methionine (D-Met) and/or butyric acid (BA) have been investigated in an IBD mouse model. We have also built an IBD mouse model, which was cost-effectively induced with low molecular weight DSS and kappa-carrageenan. Our findings revealed that D-Met and/or BA supplementation resulted in the attenuation of the disease condition as well as the suppression of several inflammation-related gene expressions in the IBD mouse model. The data shown here may suggest a promising therapeutic potential for improving symptoms of gut inflammation with an impact on IBD therapy. However, molecular metabolisms need to be further explored.
Collapse
Affiliation(s)
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan;
| |
Collapse
|
18
|
Ekhtiar M, Ghasemi-Dehnoo M, Mirzaei Y, Azadegan-Dehkordi F, Amini-Khoei H, Lorigooini Z, Samiei-Sefat A, Bagheri N. The coumaric acid and syringic acid ameliorate acetic acid-induced ulcerative colitis in rats via modulator of Nrf2/HO-1 and pro-inflammatory cytokines. Int Immunopharmacol 2023; 120:110309. [PMID: 37182450 DOI: 10.1016/j.intimp.2023.110309] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that causes uncontrolled inflammation and ulcers in your digestive tract. The coumaric acid and syringic acid are phenolic derivative found in many fruits and vegetables and is widely recognized for the ability of anti-parasitic, anti-microbial, anti-viral, anti-inflammatory, and antioxidant. The purpose of this study was to investigate the anti-inflammatory and antioxidant properties of coumaric acid and syringic acid on acetic acid-induced colitis in rats. METHODS A total of 64 male Wistar rats were divided into eight equal groups (n = 8). Colitis was induced by intrarectal administration of acetic acid, and rats orally received coumaric acid (100 and 150 mg/kg), syringic acid (10, 25, and 50 mg/kg), and dexamethasone (2 mg/kg) once per day for four days after colitis induction. Then, HO-1, Nrf2, and NQO1 mRNA expression were quantified by real time-PCR. Finally, the tissue levels of TNF-α and IL-1β protein were measured by ELISA. RESULTS Colitis led to a decrease in HO-1, Nrf2, and NQO1 mRNA expression and an increase in the tissue levels of TNF-α and IL-1β protein in the colon tissue. Treatment with dexamethasone significantly increased HO-1, Nrf2, and NQO1 mRNA expression and decreased the tissue levels of TNF-α and IL-1β protein compared to the UC group. Treatment with 150 mg/kg of coumaric acid and 50 mg/kg of syringic acid significantly increased HO-1, Nrf2, and NQO1 mRNA expression compared to the UC group. Also, treatment with 100 and 150 mg/kg of coumaric acid and 10, 25, and 50 mg/kg of syringic acid significantly decreased the tissue levels of TNF-α and IL-1β protein compared to the UC group. CONCLUSION The coumaric acid and syringic acid, especially at high doses, may be an alternative strategy for the treatment of UC by the reduction of TNF-α and IL-1β levels and upregulation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Mahsa Ekhtiar
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Ghasemi-Dehnoo
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Azadeh Samiei-Sefat
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
19
|
Zhang X, Cui K, Wang X, Tong Y, Liu C, Zhu Y, You Q, Jiang Z, Guo X. Novel Hydrogen Sulfide Hybrid Derivatives of Keap1-Nrf2 Protein-Protein Interaction Inhibitor Alleviate Inflammation and Oxidative Stress in Acute Experimental Colitis. Antioxidants (Basel) 2023; 12:antiox12051062. [PMID: 37237928 DOI: 10.3390/antiox12051062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Ulcerative colitis (UC) is an idiopathic inflammatory disease of unknown etiology possibly associated with intestinal inflammation and oxidative stress. Molecular hybridization by combining two drug fragments to achieve a common pharmacological goal represents a novel strategy. The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway provides an effective defense mechanism for UC therapy, and hydrogen sulfide (H2S) shows similar and relevant biological functions as well. In this work, a series of hybrid derivatives were synthesized by connecting an inhibitor of Keap1-Nrf2 protein-protein interaction with two well-established H2S-donor moieties, respectively, via an ester linker, to find a drug candidate more effective for the UC treatment. Subsequently, the cytoprotective effects of hybrids derivatives were investigated, and DDO-1901 was identified as a candidate showing the best efficacy and used for further investigation on therapeutic effect on dextran sulfate sodium (DSS)-induced colitis in vitro and in vivo. Experimental results indicated that DDO-1901 could effectively alleviate DSS-induced colitis by improving the defense against oxidative stress and reducing inflammation, more potent than parent drugs. Compared with either drug alone, such molecular hybridization may offer an attractive strategy for the treatment of multifactorial inflammatory disease.
Collapse
Affiliation(s)
- Xian Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Keni Cui
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaolu Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Tong
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chihong Liu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuechao Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
20
|
Wani FA, Ibrahim MA, Ameen SH, Farage AE, Ali ZAE, Saleh K, Farag MM, Sayeed MU, Alruwaili MAY, Alruwaili AHF, Aljared AZA, Galhom RA. Platelet Rich Plasma and Adipose-Derived Mesenchymal Stem Cells Mitigate Methotrexate-Induced Nephrotoxicity in Rat via Nrf2/Pparγ/HO-1 and NF-Κb/Keap1/Caspase-3 Signaling Pathways: Oxidative Stress and Apoptosis Interplay. TOXICS 2023; 11:toxics11050398. [PMID: 37235213 DOI: 10.3390/toxics11050398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND the nephrotoxicity of methotrexate (MTX) is observed in high-dose therapy. Moreover, low-dose MTX therapy for rheumatic diseases is debatable and claimed to cause renal impairment. This study aimed at studying the effect of methotrexate in repeated low doses on rat kidneys and assessing the efficacy of adipose-derived mesenchymal stem cells (AD-MSCs) and platelet rich plasma (PRP) for attenuating this effect. METHODS Forty-two male Wistar rats were used, 10 rats were donors of AD-MSCs and PRP, 8 rats served as control, and the remaining rats were subjected to induction of nephrotoxicity by MTX intraperitoneal injection once weekly for successive 8 weeks and then assigned into 3 groups of 8 animals each: Group II: received MTX only. Group III: received MTX + PRP. Group IV: received MTX + AD-MSCs. After one month, rats were anaesthetized, serum-sampled, and renal tissue removed for biochemical, histological, and ultrastructural evaluation. RESULTS there was significant tubular degeneration, glomerulosclerosis, fibrosis, decreased renal index, along with increased levels of urea and creatinine in the MTX group compared to the control group. Immunohistochemical expression of caspase-3 and iNOS in the renal tissue was significantly increased in group II compared to groups III and IV. Biochemical results revealed higher tissue malondialdehyde (MDA) concentration in the MTX-injected group which decreased significantly in co-treatment with either AD-MSC or PRP + MTX. MSC promoted the activation of the Nrf2/PPARγ/HO-1 and NF-κB/Keap1/caspase-3 pathways, increased antioxidant enzyme activities, reduced lipid peroxidation levels, and alleviated oxidative damage and apoptosis. PRP showed therapeutic effects and molecular mechanisms similar to MSC. Furthermore, MSC and PRP treatment significantly reduced MTX-induced upregulation of the pro-inflammatory (NF-κB, interleukin-1ß, and TNF-α), oxidative stress (Nrf-2, hemoxygenase-1, glutathione, and malondialdehyde), and nitrosative stress (iNOS) markers in the kidney. CONCLUSION repeated administration of low-dose MTX resulted in massive renal tissue toxicity and deterioration of renal function in rats which proved to be attenuated by PRP and AD-MSCs through their anti-inflammatory, anti-apoptotic and anti-fibrotic properties.
Collapse
Affiliation(s)
- Farooq A Wani
- Pathology Department, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | - Mahrous A Ibrahim
- Forensic Medicine and Clinical Toxicology, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
| | - Shimaa H Ameen
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharqia 44519, Egypt
| | - Amira E Farage
- Department of Anatomy, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Zinab Abd-Elhady Ali
- Vice Deanship for Academic Affairs, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Khaldoon Saleh
- Vice Deanship for Academic Affairs, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Medhat M Farag
- Medical Biochemistry Department, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammed U Sayeed
- Pathology Department, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | | | | | | | - Rania A Galhom
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Human Anatomy and Embryology Department, Faculty of Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
| |
Collapse
|
21
|
Zeng Z, Li C, Liu Y, Chen H, Feng X. Delivery of Transcriptional Factors for Activating Antioxidant Defenses against Inflammatory Bowel Disease. ACS APPLIED BIO MATERIALS 2023; 6:1306-1312. [PMID: 36881502 DOI: 10.1021/acsabm.3c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Oxidative stress caused by the overproduction of reactive oxygen species (ROS) plays an important role in inflammatory bowel disease (IBD). It is well-known that the Nrf2-ARE (antioxidative response element) pathway is important in the regulation mechanism of antioxidant defense. Therefore, Nrf2 activation may be an effective therapeutic strategy for IBD. Here, we reported the development of a nucleus-targeted Nrf2 delivery nanoplatform, termed N/LC, that could accumulate in inflamed colonic epithelium, reduce inflammatory responses, and restore epithelium barriers in a murine model of acute colitis. N/LC nanocomposites could quickly escape from lysosomes, so Nrf2 largely accumulated in the nucleus of colonic cells, activated the Nrf2-ARE signaling pathway, further elevated the expression levels of downstream detoxification and antioxidant genes, and protected cells from oxidative damage. These results suggested that N/LC might be a potential nanoplatform for IBD therapy. The study provided the basis for the biomedical applications of Nrf2-based therapeutics in various diseases.
Collapse
Affiliation(s)
- Zhiying Zeng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Changying Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ye Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
22
|
Ji J, Ma S, Zhu Y, Zhao J, Tong Y, You Q, Jiang Z. ARE-PROTACs Enable Co-degradation of an Nrf2-MafG Heterodimer. J Med Chem 2023; 66:6070-6081. [PMID: 36892138 DOI: 10.1021/acs.jmedchem.2c01909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Proteolysis-targeting chimera (PROTAC) technology has emerged as a potential strategy to degrade "undruggable" proteins in recent years. Nrf2, an aberrantly activated transcription factor in cancer, is generally considered undruggable as lacking active sites or allosteric pockets. Here, we constructed the chimeric molecule C2, which consists of an Nrf2-binding element and a CRBN ligand, as a first-in-class Nrf2 degrader. Surprisingly, C2 was found to selectively degrade an Nrf2-MafG heterodimer simultaneously via the ubiquitin-proteasome system. C2 impeded Nrf2-ARE transcriptional activity significantly and improved the sensitivity of NSCLC cells to ferroptosis and therapeutic drugs. The degradation character of ARE-PROTACs suggests that the PROTAC hijacking the transcription element of TFs could achieve co-degradation of the transcription complex.
Collapse
Affiliation(s)
- Jianai Ji
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Sinan Ma
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Zhu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jinglong Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Tong
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
23
|
Tan R, Jin M, Chen Z, Shao Y, Song Y, Yin J, Wang L, Chen T, Li J, Yang D. Exogenous antibiotic resistance gene contributes to intestinal inflammation by modulating the gut microbiome and inflammatory cytokine responses in mouse. Gut Microbes 2023; 15:2156764. [PMID: 36573825 PMCID: PMC9809935 DOI: 10.1080/19490976.2022.2156764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dysregulation of the gut microbiota by environmental factors is associated with a variety of autoimmune and immune-mediated diseases. In addition, naturally-occurring extracellular antibiotic resistance genes (eARGs) might directly enter the gut via the food chain. However, following gut microbiota exposure to eARGs, the ecological processes shaping the microbiota community assembly, as well as the interplay between the microbiota composition, metabolic function, and the immune responses, are not well understood. Increasing focus on the One Health approach has led to an urgent need to investigate the direct health damage caused by eARGs. Herein, we reveal the significant influence of eARGs on microbiota communities, strongly driven by stochastic processes. How eARGs-stimulate variations in the composition and metabolomic function of the gut microbiota led to cytokine responses in mice of different age and sex were investigated. The results revealed that cytokines were significantly associated with immunomodulatory microbes, metabolites, and ARGs biomarkers. Cytokine production was associated with specific metabolic pathways (arachidonic acid and tryptophan metabolic pathways), as confirmed by ex vivo cytokine responses and recovery experiments in vivo. Furthermore, the gut microbial profile could be applied to accurately predict the degree of intestinal inflammation ascribed to the eARGs (area under the curve = 0.9616). The present study provided a comprehensive understanding of the influence of an eARGs on immune responses and intestinal barrier damage, shedding light on the interplay between eARGs, microbial, metabolites, and the gut antibiotic resistome in modulating the human immune system.
Collapse
Affiliation(s)
- Rong Tan
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China,Junwen Li Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Zhengshan Chen
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Yifan Shao
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Yuanyuan Song
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Lifang Wang
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China,Junwen Li Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China,CONTACT Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin300050, China
| |
Collapse
|
24
|
Crisman E, Duarte P, Dauden E, Cuadrado A, Rodríguez-Franco MI, López MG, León R. KEAP1-NRF2 protein-protein interaction inhibitors: Design, pharmacological properties and therapeutic potential. Med Res Rev 2023; 43:237-287. [PMID: 36086898 PMCID: PMC10087726 DOI: 10.1002/med.21925] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/27/2022] [Accepted: 08/18/2022] [Indexed: 02/04/2023]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is considered the master regulator of the phase II antioxidant response. It controls a plethora of cytoprotective genes related to oxidative stress, inflammation, and protein homeostasis, among other processes. Activation of these pathways has been described in numerous pathologies including cancer, cardiovascular, respiratory, renal, digestive, metabolic, autoimmune, and neurodegenerative diseases. Considering the increasing interest of discovering novel NRF2 activators due to its clinical application, initial efforts were devoted to the development of electrophilic drugs able to induce NRF2 nuclear accumulation by targeting its natural repressor protein Kelch-like ECH-associated protein 1 (KEAP1) through covalent modifications on cysteine residues. However, off-target effects of these drugs prompted the development of an innovative strategy, the search of KEAP1-NRF2 protein-protein interaction (PPI) inhibitors. These innovative activators are proposed to target NRF2 in a more selective way, leading to potentially improved drugs with the application for a variety of diseases that are currently under investigation. In this review, we summarize known KEAP1-NRF2 PPI inhibitors to date and the bases of their design highlighting the most important features of their respective interactions. We also discuss the preclinical pharmacological properties described for the most promising compounds.
Collapse
Affiliation(s)
- Enrique Crisman
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Duarte
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain.,Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Esteban Dauden
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Cuadrado
- Departmento de Bioquímica, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manuela G López
- Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| |
Collapse
|
25
|
He J, Li X, Yang S, Shi Y, Dai Y, Han S, Wang Y, Lin X, Wei B, Liu Y, Xiu M. Protective effect of astragalus membranaceus and its bioactive compounds against the intestinal inflammation in Drosophila. Front Pharmacol 2022; 13:1019594. [PMID: 36578550 PMCID: PMC9792096 DOI: 10.3389/fphar.2022.1019594] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic and relapsing intestinal inflammation, which currently lacks safe and effective medicines. Astragalus membranaceus (AM), also named Huangqi, is one of the most commonly used fundamental herbs in China. Here, we aimed to investigate mechanism and bioactive compounds of AM on treating sodium dodecyl sulfate (SDS)- induced colitis in Drosophila flies. Our data showed that AM extract (AME) supplementation had no toxic effect in flies, and protected flies against SDS-induced lifespan shortening, intestinal morphological damage, and colon length shortening. Moreover, AME supplementation remarkably rescued SDS-induced intestinal stem cell (ISC) overproliferation and increased reactive oxygen species (ROS) level in the intestine. Mechanistically, AME remarkably rescued the altered expression levels of genes and proteins in c-Jun N-terminal kinase (JNK) and JAK-STAT signaling pathways induced by SDS in gut. Additionally, formononetin, isoliquiritigenin, isorhamnetin, astragaloside I, astragaloside III, vanillic acid, and caffeic acid in AM had protection against SDS-induced inflammatory damage in flies. Taken together, AME could ameliorate the intestinal inflammation partially by suppressing oxidative stress-associated JNK signaling and JAK-STAT signaling pathways. AME may provide a theoretical basis for natural medicine toward treating intestinal inflammatory disease in human.
Collapse
Affiliation(s)
- Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xu Li
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shipei Yang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Shi
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuting Dai
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shuzhen Han
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xingyao Lin
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China,Research Center of Traditional Chinese Medicine in Gansu, Gansu University of Chinese Medicine, Lanzhou, China
| | - Benjun Wei
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China,Research Center of Traditional Chinese Medicine in Gansu, Gansu University of Chinese Medicine, Lanzhou, China,*Correspondence: Minghui Xiu, ; Yongqi Liu,
| | - Minghui Xiu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China,Research Center of Traditional Chinese Medicine in Gansu, Gansu University of Chinese Medicine, Lanzhou, China,*Correspondence: Minghui Xiu, ; Yongqi Liu,
| |
Collapse
|
26
|
Ji Y, Yang Y, Sun S, Dai Z, Ren F, Wu Z. Insights into diet-associated oxidative pathomechanisms in inflammatory bowel disease and protective effects of functional amino acids. Nutr Rev 2022; 81:95-113. [PMID: 35703919 DOI: 10.1093/nutrit/nuac039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There has been a substantial rise in the incidence and prevalence of clinical patients presenting with inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis. Accumulating evidence has corroborated the view that dietary factors (particularly diets with high levels of saturated fat or sugar) are involved in the development and progression of IBD, which is predominately associated with changes in the composition of the gut microbiota and an increase in the generation of reactive oxygen species. Notably, the ecological imbalance of the gut microbiome exacerbates oxidative stress and inflammatory responses, leading to perturbations of the intestinal redox balance and immunity, as well as mucosal integrity. Recent findings have revealed that functional amino acids, including L-glutamine, glycine, L-arginine, L-histidine, L-tryptophan, and hydroxyproline, are effectively implicated in the maintenance of intestinal redox and immune homeostasis. These amino acids and their metabolites have oxygen free-radical scavenging and inflammation-relieving properties, and they participate in modulation of the microbial community and the metabolites in the gut. The principal focus of this article is a review of recent advances in the oxidative pathomechanisms of IBD development and progression in relation to dietary factors, with a particular emphasis on the redox and signal transduction mechanisms of host cells in response to unbalanced diets and enterobacteria. In addition, an update on current understanding of the protective effects of functional amino acids against IBD, together with the underlying mechanisms for this protection, have been provided.
Collapse
Affiliation(s)
- Yun Ji
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ying Yang
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Shiqiang Sun
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, ChinaChina
| | - Fazheng Ren
- are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Ahsan H, Islam SU, Ahmed MB, Lee YS. Role of Nrf2, STAT3, and Src as Molecular Targets for Cancer Chemoprevention. Pharmaceutics 2022; 14:1775. [PMID: 36145523 PMCID: PMC9505731 DOI: 10.3390/pharmaceutics14091775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/23/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a complex and multistage disease that affects various intracellular pathways, leading to rapid cell proliferation, angiogenesis, cell motility, and migration, supported by antiapoptotic mechanisms. Chemoprevention is a new strategy to counteract cancer; to either prevent its incidence or suppress its progression. In this strategy, chemopreventive agents target molecules involved in multiple pathways of cancer initiation and progression. Nrf2, STAT3, and Src are promising molecular candidates that could be targeted for chemoprevention. Nrf2 is involved in the expression of antioxidant and phase II metabolizing enzymes, which have direct antiproliferative action as well as indirect activities of reducing oxidative stress and eliminating carcinogens. Similarly, its cross-talk with NF-κB has great anti-inflammatory potential, which can be utilized in inflammation-induced/associated cancers. STAT3, on the other hand, is involved in multiple pathways of cancer initiation and progression. Activation, phosphorylation, dimerization, and nuclear translocation are associated with tumor cell proliferation and angiogenesis. Src, being the first oncogene to be discovered, is important due to its convergence with many upstream stimuli, its cross-talk with other potential molecular targets, such as STAT3, and its ability to modify the cell cytoskeleton, making it important in cancer invasion and metastasis. Therefore, the development of natural/synthetic molecules and/or design of a regimen that can reduce oxidative stress and inflammation in the tumor microenvironment and stop multiple cellular targets in cancer to stop its initiation or retard its progression can form newer chemopreventive agents.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Salman Ul Islam
- Department of Pharmacy, CECOS University, Peshawar 25000, Pakistan
| | - Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
28
|
Yang S, Li X, Xiu M, Dai Y, Wan S, Shi Y, Liu Y, He J. Flos puerariae ameliorates the intestinal inflammation of Drosophila via modulating the Nrf2/Keap1, JAK-STAT and Wnt signaling. Front Pharmacol 2022; 13:893758. [PMID: 36059974 PMCID: PMC9432424 DOI: 10.3389/fphar.2022.893758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
Gut homeostasis is important for human health, and its disruption can lead to inflammatory bowel disease (IBD). Flos Puerariae is a herb with a wide variety of pharmacological activities including antioxidant, antidiabetic, antialcoholismic and anti-inflammatory properties. However, the role of Flos Puerariae on treating IBD remains obscure. Here, we employed Drosophila melanogaster as a model organism to investigate the protective effect of Flos Puerariae extract (FPE) against sodium dodecyl sulfate (SDS)-induced intestinal injury. Our data showed that FPE had no toxic effect in flies, and significantly extended lifespan in SDS-inflamed flies, reduced stem cell proliferation in the midgut, and maintained intestinal morphological integrity. Furthermore, FPE remarkably recused the altered expression level of genes and proteins in Nrf2/Keap1 signaling, JAK-STAT signaling and Wnt signaling pathways in gut of inflammation flies. Thus, FPE has a protective effect against intestinal injury possibly via increasing the Nrf2/keap1 pathway and suppressing the JAK-STAT and Wnt signaling pathways, which would have tremendous potential for treating IBD.
Collapse
Affiliation(s)
- Shipei Yang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xu Li
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Minghui Xiu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Research Center of Traditional Chinese Medicine in Gansu, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuting Dai
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shengfang Wan
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Shi
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Jianzheng He, ; Yongqi Liu,
| | - Jianzheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Jianzheng He, ; Yongqi Liu,
| |
Collapse
|
29
|
Cheng J, Ma X, Zhang H, Wu X, Li M, Ai G, Zhan R, Xie J, Su Z, Huang X. 8-Oxypalmatine, a novel oxidative metabolite of palmatine, exhibits superior anti-colitis effect via regulating Nrf2 and NLRP3 inflammasome. Biomed Pharmacother 2022; 153:113335. [PMID: 35779424 DOI: 10.1016/j.biopha.2022.113335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Palmatine (PAL) is an isoquinoline alkaloid derived from Fibraureae caulis Pierre that has been used to relieve inflammatory diseases like ulcerative colitis (UC). The metabolites of PAL were believed to contribute significantly to its outstanding biological activities. 8-Oxypalmatine (OPAL), a liver-mediated oxidative metabolite of PAL, has been firstly identified in the present work. We aimed to comparatively investigate the potential effect and mechanism of OPAL and PAL on dextran sodium sulfate (DSS)-induced colitis in Balb/c mice. Results indicated that OPAL and PAL effectively mitigated clinical manifestations, DAI scores and pathological damage compared with the model group. Moreover, treatment with OPAL and PAL effectively mitigated oxidative stress markers and inflammatory mediators in colon. Additionally, OPAL and PAL significantly activated the Nrf2 pathway, while substantially suppressed the activation of NLRP3 inflammasome. Furthermore, OPAL showed superior anti-colitis effect to PAL, which was similar to the positive drug mesalazine with much smaller dosage. These findings suggested that OPAL exerted appreciable protective effect on DSS-induced colitis, at least in part, via activating Nrf2 pathway and inhibiting NLRP3 inflammasome. OPAL might have the potential to be further developed into a promising candidate for the treatment of UC.
Collapse
Affiliation(s)
- Juanjuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xingdong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Haitao Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Xiaoyan Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Minhua Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Gaoxiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Ruoting Zhan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, PR China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Xiaoqi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, PR China.
| |
Collapse
|
30
|
Antioxidant Therapy in Cancer: Rationale and Progress. Antioxidants (Basel) 2022; 11:antiox11061128. [PMID: 35740025 PMCID: PMC9220137 DOI: 10.3390/antiox11061128] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is characterized by increased oxidative stress, an imbalance between reactive oxygen species (ROS) and antioxidants. Enhanced ROS accumulation, as a result of metabolic disturbances and signaling aberrations, can promote carcinogenesis and malignant progression by inducing gene mutations and activating pro-oncogenic signaling, providing a possible rationale for targeting oxidative stress in cancer treatment. While numerous antioxidants have demonstrated therapeutic potential, their clinical efficacy in cancer remains unproven. Here, we review the rationale for, and recent advances in, pre-clinical and clinical research on antioxidant therapy in cancer, including targeting ROS with nonenzymatic antioxidants, such as NRF2 activators, vitamins, N-acetylcysteine and GSH esters, or targeting ROS with enzymatic antioxidants, such as NOX inhibitors and SOD mimics. In addition, we will offer insights into prospective therapeutic options for improving the effectiveness of antioxidant therapy, which may expand its applications in clinical cancer treatment.
Collapse
|
31
|
Lin C, Zhou Z, Zhang L, Wang H, Lu J, Wang X, An R. Gegen Qinlian Decoction Relieves Ulcerative Colitis via Adjusting Dysregulated Nrf2/ARE Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2934552. [PMID: 35509629 PMCID: PMC9060978 DOI: 10.1155/2022/2934552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/25/2022] [Accepted: 04/09/2022] [Indexed: 11/30/2022]
Abstract
Objective Oxidative stress has been proven to be essential in the pathogenesis of ulcerative colitis (UC). Therefore, this study was designed to investigate the effect of Gegen Qinlian decoction (GQ) on the Nrf2 pathway in the treatment of UC and explore the potential mechanism. Methods The UC rat model was induced by 5% dextran sodium sulfate (DSS) aqueous solution, and UC rats were treated with GQ orally. The effect of GQ on UC rats was recorded. Human clonal colon adenocarcinoma cells (Caco-2) stimulated by tumor necrosis factor-α (TNF-α) were employed in this study. After being stimulated with TNF-α for 2 hours, Caco-2 cells were cultured with GQ or its major components (puerarin, baicalin, berberine, and liquiritin) for 22 hours. In addition, the Nrf2 gene of Caco-2 cells was silenced and then cultured with GQ for 22 hours. The contents of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA) in colonic tissues and Caco-2 cells were detected by assay kits. Reactive oxygen species (ROS) in Caco-2 cells were analyzed by flow cytometry. Quantitative real-time PCR and western blot were employed to detect the mRNA and protein expression of Nrf2 and its related target genes in colon tissues and Caco-2 cells. Results GQ alleviated the injured colonic mucosa and activated the expression of Nrf2 in UC rats. In TNF-α stimulated Caco-2 cells and Nrf2 silenced Caco-2 cells, GQ also reversed the inhibitory effect of Nrf2. Furthermore, the major components of GQ could activate Nrf2 signaling in TNF-α stimulated cells as well. Moreover, the contents of SOD, GSH, MDA, and ROS were restored to normal after treatment with GQ or its major components. Among these components, puerarin, berberine, and liquiritin appear to have a better effect on activating Nrf2 in vitro. Overall, GQ can alleviate UC by increasing the activity of Nrf2/ARE signaling and enhancing the effect of antioxidant stress.
Collapse
Affiliation(s)
- Chuan Lin
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zehua Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongqing Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Lu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinhong Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui An
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
32
|
Alsharif IA, Fayed HM, Abdel-Rahman RF, Abd-Elsalam RM, Ogaly HA. Miconazole Mitigates Acetic Acid-Induced Experimental Colitis in Rats: Insight into Inflammation, Oxidative Stress and Keap1/Nrf-2 Signaling Crosstalk. BIOLOGY 2022; 11:303. [PMID: 35205169 PMCID: PMC8869207 DOI: 10.3390/biology11020303] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/23/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023]
Abstract
Ulcerative colitis (UC) is the most common type of inflammatory bowel disease, characterized by oxidative stress and elevated pro-inflammatory cytokines. Miconazole is an azole antifungal that stimulates the expression of antioxidant enzymes via Nrf2 activation, which consequently inhibits ROS formation and NF-κB activation. Hence, the present study aimed to investigate the protective effect of miconazole, sulfasalazine (as a reference drug) and their combination on acetic acid (AA)-induced UC in a rat model which was induced by intra-rectal administration of 4% AA. Rats were pretreated with miconazole (20 and 40 mg/kg, orally) or sulfasalazine (100 mg/kg, orally), or their combination (20 mg/kg miconazole and 50 mg/Kg of sulfasalazine, orally). Pretreatment with miconazole significantly reduced wet colon weight and macroscopic scores, accompanied by a significant amelioration of the colonic architecture disorder. Moreover, the treatment also significantly decreased the malondialdehyde (MDA) level and prevented the depletion of superoxide dismutase (SOD) activity and GSH content in inflamed colons. Additionally, the treatment showed suppressive activities on pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and C-reactive protein (CRP), and upregulated the anti-inflammatory cytokine interleukin-10 (IL-10). Moreover, the treatment upregulated the protein levels of Nrf-2 and heme oxygenase-1 (HO-1) in the colon tissue. Taken together, miconazole is effective in alleviating AA-induced colitis in rats, and the mechanism of its action is associated with the activation of Nrf2-regulated cytoprotective protein expression.
Collapse
Affiliation(s)
- Ifat A. Alsharif
- Biology Department, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Hany M. Fayed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Rehab F. Abdel-Rahman
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Reham M. Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Hanan A. Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha 61421, Saudi Arabia;
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
33
|
Dayalan Naidu S, Suzuki T, Dikovskaya D, Knatko EV, Higgins M, Sato M, Novak M, Villegas JA, Moore TW, Yamamoto M, Dinkova-Kostova AT. The isoquinoline PRL-295 increases the thermostability of Keap1 and disrupts its interaction with Nrf2. iScience 2022; 25:103703. [PMID: 35036882 PMCID: PMC8749459 DOI: 10.1016/j.isci.2021.103703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/17/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Transcription factor Nrf2 and its negative regulator Keap1 orchestrate a cytoprotective response against oxidative, metabolic, and inflammatory stress. Keap1 is a drug target, with several small molecules in drug development. Here, we show that the isoquinoline PRL-295 increased Keap1 thermostability in lysates from cells expressing fluorescently tagged Keap1. The thermostability of endogenous Keap1 also increased in intact cells and murine liver following PRL-295 treatment. Fluorescence Lifetime Imaging-Förster Resonance Energy Transfer (FLIM-FRET) experiments in cells co-expressing sfGFP-Nrf2 and Keap1-mCherry further showed that PRL-295 prolonged the donor fluorescence lifetime, indicating disruption of the Keap1-Nrf2 protein complex. Orally administered PRL-295 to mice activated the Nrf2transcriptional target NAD(P)H:quinone oxidoreductase 1 (NQO1) in liver and decreased the levels of plasma alanine aminotransferase and aspartate aminotransferase upon acetaminophen-induced hepatic injury. Thus, PRL-295 engages the Keap1 protein target in cells and in vivo, disrupting its interaction with Nrf2, leading to activation of Nrf2-dependent transcription and hepatocellular protection.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Division of Cellular Medicine, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, James Arnott Drive, Dundee, Scotland DD1 9SY, UK
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Dina Dikovskaya
- Division of Cellular Medicine, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, James Arnott Drive, Dundee, Scotland DD1 9SY, UK
| | - Elena V. Knatko
- Division of Cellular Medicine, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, James Arnott Drive, Dundee, Scotland DD1 9SY, UK
| | - Maureen Higgins
- Division of Cellular Medicine, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, James Arnott Drive, Dundee, Scotland DD1 9SY, UK
| | - Miu Sato
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miroslav Novak
- Division of Cellular Medicine, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, James Arnott Drive, Dundee, Scotland DD1 9SY, UK
| | - José A. Villegas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Terry W. Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Albena T. Dinkova-Kostova
- Division of Cellular Medicine, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, James Arnott Drive, Dundee, Scotland DD1 9SY, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
34
|
Nrf2 in the Field of Dentistry with Special Attention to NLRP3. Antioxidants (Basel) 2022; 11:antiox11010149. [PMID: 35052653 PMCID: PMC8772975 DOI: 10.3390/antiox11010149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this review article was to summarize the functional implications of the nuclear factor E2-related factor or nuclear factor (erythroid-derived 2)-like 2 (Nrf2), with special attention to the NACHT (nucleotide-binding oligomerization), LRR (leucine-rich repeat), and PYD (pyrin domain) domains-containing protein 3 (NLRP3) inflammasome in the field of dentistry. NLRP3 plays a crucial role in the progression of inflammatory and adaptive immune responses throughout the body. It is already known that this inflammasome is a key regulator of several systemic diseases. The initiation and activation of NLRP3 starts with the oral microbiome and its association with the pathogenesis and progression of several oral diseases, including periodontitis, periapical periodontitis, and oral squamous cell carcinoma (OSCC). The possible role of the inflammasome in oral disease conditions may involve the aberrant regulation of various response mechanisms, not only in the mouth but in the whole body. Understanding the cellular and molecular biology of the NLRP3 inflammasome and its relationship to Nrf2 is necessary for the rationale when suggesting it as a potential therapeutic target for treatment and prevention of oral inflammatory and immunological disorders. In this review, we highlighted the current knowledge about NLRP3, its likely role in the pathogenesis of various inflammatory oral processes, and its crosstalk with Nrf2, which might offer future possibilities for disease prevention and targeted therapy in the field of dentistry and oral health.
Collapse
|
35
|
Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Zhang X, Ma L, Shen Y, Zhang C, Hou B, Zhou Y. Transcription factor paired related homeobox 1 (PRRX1) activates matrix metalloproteinases (MMP)13, which promotes the dextran sulfate sodium-induced inflammation and barrier dysfunction of NCM460 cells. Bioengineered 2021; 13:645-654. [PMID: 34967278 PMCID: PMC8805821 DOI: 10.1080/21655979.2021.2012549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Paired related homeobox 1 (PRRX1) is a newly identified transcription factor that regulates the expression of various genes. We aimed to investigate the roles of PRRX1 and Matrix metalloproteinases (MMP)13 in dextran sulfate sodium (DSS)-induced inflammation and barrier dysfunction of NCM460 cells. PRRX1 expression in the mucosal tissues of patients with ulcerative colitis was analyzed using the GSE87466 microarray. PRRX1 and MMP13 expression was examined using Western blotting and RT-qPCR following the exposure of the NCM460 cells to DSS. The JASPAR database was used to predict the binding sites of PRRX1 to the MMP13 promoter, which was verified by luciferase reporter and chromatin immunoprecipitation assays. MMP13 expression was then detected following PRRX1 silencing or overexpression. The levels of inflammatory factors were determined using ELISA. Finally, the expression of intestinal barrier function-related proteins was evaluated using Western blotting and cellular permeability was detected by Transepithelial electrical resistance. PRRX1 was upregulated in the mucosal tissue samples of patients with UC. DSS induction upregulated PRRX1 and MMP13 expression. PRRX1 bound to the promoter of MMP13, which was further supported by the decreased expression of MMP13 observed following PRRX1 knockdown and its increased expression following PRRX1 overexpression. Furthermore, PRRX1 deletion decreased TNF-α, IL-1β and IL-6 levels in the DSS-challenged NCM460 cells, which were subjected to MMP13 overexpression. Moreover, PRRX1 silencing upregulated ZO-1, occludin and claudin-1 expression and elevated the TEER value, whereas MMP13 overexpression attenuated these effects. Collectively, PRRX1 activates MMP13, which in turn promotes the DSS-induced inflammation and barrier dysfunction of NCM460 cells.
Collapse
Affiliation(s)
- Xiujing Zhang
- Division of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Lizhuan Ma
- Division of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Ying Shen
- Department of Endoscopic Therapy, Tangshan People's Hospital, Tangshan, Hebei, China
| | - Chao Zhang
- Division of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Bingxu Hou
- Division of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Yanli Zhou
- Division of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| |
Collapse
|
37
|
Guo F, Tsao R, Li C, Wang X, Zhang H, Jiang L, Sun Y, Xiong H. Green Pea ( Pisum sativum L.) Hull Polyphenol Extracts Ameliorate DSS-Induced Colitis through Keap1/Nrf2 Pathway and Gut Microbiota Modulation. Foods 2021; 10:2765. [PMID: 34829046 PMCID: PMC8624850 DOI: 10.3390/foods10112765] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
As a processing by-product, green pea hull (GPH) was found to be rich in phenolic components in our previous studies. In this study, UHPLC-LTQ-OrbiTrap-MS (Ultra performance liquid chromatography-linear ion trap orbitrap tandem mass spectrometry) technique was used to quantify polyphenols, and DSS (sodium dextran sulfate)-induced colitis mouse model was established to explore the effect of GPH extracts on colitis. The results showed that quercetin and its derivatives, kaempferol trihexanside and catechin and its derivatives were the main phenolic substances in the extract, reaching 2836.57, 1482.00 and 1339.91 µg quercetin/g GPH extract, respectively; GPH extracts can improved inflammatory status, repaired colonic function, regulated inflammatory factors, and restored oxidative balance in mice. Further, GPH extracts can activate Keap1-Nrf2-ARE signaling pathway, regulate downstream antioxidant protease and gut microbiota by increasing F/B value and promoting the growth of Lactobacillaceae and Lachnospiraceae, and improve the level of SCFAs (short-chain fatty acids) to relieve DSS-induced colitis in mice. Therefore, GPH may be a promising dietary resource for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Fanghua Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China;
| | - Rong Tsao
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada;
| | - Chuyao Li
- Nanchang Inspection and Testing Center, Nanchang 330029, China;
| | - Xiaoya Wang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; (X.W.); (H.Z.); (L.J.)
| | - Hua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; (X.W.); (H.Z.); (L.J.)
| | - Li Jiang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; (X.W.); (H.Z.); (L.J.)
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China;
| | - Hua Xiong
- College of Food Science, Nanchang University, Nanchang 330047, China
| |
Collapse
|
38
|
Asperuloside suppressing oxidative stress and inflammation in DSS-induced chronic colitis and RAW 264.7 macrophages via Nrf2/HO-1 and NF-κB pathways. Chem Biol Interact 2021; 344:109512. [PMID: 33974900 DOI: 10.1016/j.cbi.2021.109512] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/18/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs), which mainly include Crohn's disease (CD) and ulcerative colitis (UC), are chronic idiopathic inflammatory disease of the gastrointestinal tract for which effective pharmacological treatments are lacking or options are very limited. PURPOSE Here, we aim to investigate the therapeutic effects of an iridoid glycoside, asperuloside (ASP) on mice experimental chronic colitis induced by dextran sulfate sodium (DSS) and further explore underlying mechanisms in vitro and in vivo. METHODS LPS-treated RAW 264.7 cells showed inflammation and were assessed for various physiological, morphological and biochemical parameters in the absence or presence of ASP. Chronic colitis was induced by 2% DSS in mice, which were used as an animal model to explore the pharmacodynamics of ASP. We detected p65 and Nrf2 pathway proteins via Western blot and RT-PCR analysis, assessed the cytokines TNF-α and IL-6 via ELISA, tested p65 and Nrf2 nuclear translocation via fluorescence. In addition, the docking affinity of ASP and p65 or Nrf2 proteins in the MOE 2015 software. RESULTS We found that ASP attenuated weight loss, disease activity index (DAI) and colonic pathological damage in colitis mice and restored the expressions of inflammatory cytokines in the colon. In addition, ASP restored antioxidant capacity in DSS-induced chronic colitis mice and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Furthermore, ASP suppressed oxidative stress through increasing Nrf2, HO-1 and NQO-1 proteins expressions, and down-regulated nuclear levels of p65 to inhibit DSS-induced colonic oxidative stress and inflammation. Validation of the molecular docking results also indicated that ASP interacts with Nrf2 or p65 proteins. In summary, ASP improved DSS-induced chronic colitis by alleviating inflammation and oxidative stress, activating Nrf2/HO-1 signaling and limiting NF-κB signaling pathway, which may be an effective candidate for the treatment of IBD.
Collapse
|
39
|
Abstract
The transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) triggers homeostatic responses against a plethora of environmental or endogenous deviations in redox metabolism, inflammation, proteostasis, etc. Therefore, pharmacological activation of NRF2 is a promising therapeutic strategy for several chronic diseases that are underlined by low-grade oxidative inflammation and dysregulation of redox metabolism, such as neurodegenerative, cardiovascular, and metabolic diseases. While NRF2 activation is useful in inhibiting carcinogenesis, its inhibition is needed in constituted tumors where NRF2 provides a survival advantage in the challenging tumor niche. This review describes the electrophilic and non-electrophilic NRF2 activators with clinical projection in various chronic diseases. We also analyze the status of NRF2 inhibitors, which are for the moment in a proof-of-concept stage. Advanced in silico screening and medicinal chemistry are expected to provide new or repurposing small molecules with increased potential for fostering the development of targeted NRF2 modulators. The nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2) is rapidly degraded by proteasomes under a basal condition in a Keap1-dependent manner. ROS oxidatively modifies Keap1 to release NRF2 and allow its nuclear translocation. Here it binds to the antioxidant response element to regulate gene transcription. An alternative mechanism controlling NRF2 stability is glycogen synthase kinase 3 (GSK-3)-induced phosphorylation. Indicated in blue are NRF2-activating and NRF2-inhibiting drugs.
Collapse
|
40
|
Serrya MS, El-Sheakh AR, Makled MN. Evaluation of the therapeutic effects of mycophenolate mofetil targeting Nrf-2 and NLRP3 inflammasome in acetic acid induced ulcerative colitis in rats. Life Sci 2021; 271:119154. [PMID: 33539910 DOI: 10.1016/j.lfs.2021.119154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 01/01/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease that increases the risk of colorectal cancer. UC is highly associated with the disturbance of the immune system leading to oxidative stress and chronic inflammation of intestine. Therefore, the current study was conducted to investigate the potential anti-oxidant and anti-inflammatory effects of MMF against acetic acid-induced UC that might be associated with the regulation of Nrf-2 and NLRP3 inflammasome signaling. UC was induced in Sprague-Dawley rats by intracolonic instillation of acetic acid. Forty-eight hours post UC induction, MMF (50 mg/kg/day, orally) was given for 8 consecutive days. Then, colon tissues and blood samples were collected. Results showed that MMF significantly attenuated the acetic acid-induced functional, biochemical, and inflammatory injuries in colon. MMF significantly decreased oxidative stress as indicated by the decreased malondialdehyde concentration and the increased total antioxidant capacity, glutathione, catalase, and superoxide dismutase concentrations in colon tissues. MMF also significantly increased Nrf-2 and decreased NLRP3 inflammasome expressions. Moreover, MMF decreased expression of interferon-gamma and increased expression of interferon-alpha. MMF also significantly decreased expression of pro-inflammatory cytokines, interleukin (IL)-1β and IL-18. These results suggest that MMF has antioxidant and anti-inflammatory effects against acetic acid-induced UC through the upregulation of Nrf-2, and INF-α expression in addition to the suppression of NLRP3 inflammasome and subsequent release of IL1β, IL-18 and INF-γ.
Collapse
Affiliation(s)
- Marwa S Serrya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
41
|
Ala M, Kheyri Z. The rationale for selenium supplementation in inflammatory bowel disease: A mechanism-based point of view. Nutrition 2021; 85:111153. [PMID: 33578241 DOI: 10.1016/j.nut.2021.111153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Management of inflammatory bowel disease (IBD) has always been a challenge for physicians. Current treatment protocols may cause numerous adverse effects. Selenium is known for its putative antiinflammatory properties. Selenium is needed for the biosynthesis of enzymatically active selenoproteins, which contribute to antioxidative defense, and effective function of immune systems. Several studies have shown that patients with IBD have a lower selenium level compared to healthy subjects. Hence, experimental studies mimicking ulcerative colitis and Crohn's disease investigated the effect of selenium supplementation on IBD. Previous studies indicated the following: 1) Selenoproteins can curb the inflammatory response and attenuate oxidative stress. This antiinflammatory property caused remission in animal models of colitis. 2) Selenium supports protective gut microbiota, which indirectly improves management of IBD. 3) Selenium may block some of the predominant tumorigenesis pathways proposed in colitis-associated colorectal cancer. 4) Selenium supplementation showed promising results in preliminary clinical studies, particularly in patients with selenium deficiency. While selenium supplementation seems to be beneficial for IBD, clinical studies have remained too preliminary in this regard. Randomized clinical trials are needed to measure the short-term and long-term effects of selenium on both active and quiescent IBD, particularly in patients with IBD who have documented selenium deficiency.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zahedin Kheyri
- Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
He F, Antonucci L, Karin M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 2020; 41:405-416. [PMID: 32347301 DOI: 10.1093/carcin/bgaa039] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/11/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a master transcriptional regulator of genes whose products defend our cells for toxic and oxidative insults. Although NRF2 activation may reduce cancer risk by suppressing oxidative stress and tumor-promoting inflammation, many cancers exhibit elevated NRF2 activity either due to mutations that disrupt the negative control of NRF2 activity or other factors. Importantly, NRF2 activation is associated with poor prognosis and NRF2 has turned out to be a key activator of cancer-supportive anabolic metabolism. In this review, we summarize the diverse roles played by NRF2 in cancer focusing on metabolic reprogramming and tumor-promoting inflammation.
Collapse
Affiliation(s)
- Feng He
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA
| | - Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
43
|
Piotrowska M, Swierczynski M, Fichna J, Piechota-Polanczyk A. The Nrf2 in the pathophysiology of the intestine: Molecular mechanisms and therapeutic implications for inflammatory bowel diseases. Pharmacol Res 2020; 163:105243. [PMID: 33080322 DOI: 10.1016/j.phrs.2020.105243] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022]
Abstract
Nrf2 (nuclear factor erythroid 2-related factor 2) is a stress-responsive transcription factor, associated with cellular homeostasis. Under normal conditions Nrf2 is kept in the cytoplasm by Kelch-like ECH-associated protein 1 (Keap1) which facilitates its degradation. Meanwhile, oxidative or electrophilic stress trigger Keap1 dissociation from the Nrf2/Keap1 complex and Nrf2 translocation to the nucleus where it induces the expression of numerous anti-oxidative and anti-inflammatory genes. The Nrf2/Keap1 axis plays a crucial role in the development of gastrointestinal (GI) tract and the maintenance of its proper functionality. This axis also seems to be a promising candidate for prevention of inflammatory bowel diseases (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), as well as their severe complications such as intestinal fibrosis and colorectal cancer. This review focuses on the role of Nrf2/Keap1 in 1) the development and proper functionality of GI tract, 2) the pathophysiology of GI diseases and their long-term complications, 3) the effectiveness of currently used drugs and non-conventional treatments which influence Nrf2/Keap1 and are potentially effective in IBD treatment, as well as 4) the effect of gut microbiota on Nrf2/Keap1 pathway in IBD.
Collapse
Affiliation(s)
- Marta Piotrowska
- Department of Biochemistry, Faculty of Medicine, Medical UniverSity of Lodz, Poland
| | - Mikolaj Swierczynski
- Department of Biochemistry, Faculty of Medicine, Medical UniverSity of Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical UniverSity of Lodz, Poland
| | - Aleksandra Piechota-Polanczyk
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland.
| |
Collapse
|
44
|
Mostafa AF, Elalfy MM, Shata A, Elhadidy MG. Prophylactic effect of aquatic extract of stevia on acetic acid induced-ulcerative colitis in male rats: a possible role of Nrf2 and PPARγ. J Basic Clin Physiol Pharmacol 2020; 32:1093-1104. [PMID: 33035185 DOI: 10.1515/jbcpp-2020-0039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
Objectives Ulcerative colitis (UC) is a non-specific intestinal inflammatory disease. Several studies demonstrated that inflammation and oxidative stress play significant role in the pathogenesis of this disease. This study aimed to determine the protective effect and possible mechanism by which stevia affects the course of experimentally induced colitis. Methods Male rats were received stevia 20, 40, 80 mg/kg/day before induction of colitis by intra-rectal administration of 2 mL of 4% acetic acid, AA. Macroscopic and histopathological examination of the colon were done. Colonic content of catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), myeloperoxidase (MPO) and thiobarbituric acid reactive substances (TBARS) activities and serum levels of interleukin (IL)1- β and tumor necrosis factor (TNF)-α were assessed. Real time-PCR (RT-PCR) was done to determine the expression of NF-κB, Nrf2 and PPARγ genes. Spontaneous contraction and effects of increasing concentrations of acetylcholine and stevia have been studied on the isolated colonic segments. Results Stevia ameliorated colitis not only histopathologically but also it decreased the level of TNF-α, IL-1β, TBARS, MPO and the expression of NF-κB which were significantly increased in the AA group. The concentration of GSH, SOD, CAT and expression of Nrf2 and PPARγ were significantly increased with stevia. Moreover, stevia showed a relaxant effect on the colonic contractility which was increased in AA group. These all effects of stevia were more prominent with its highest dose. Conclusion Our results explored that, stevia acts protectively against UC by its anti-inflammatory and antioxidant properties which mediated by up-regulation of Nrf2 and PPARγ with downregulation of NF-κB. We suggest that stevia has the potential for treatment of chronic inflammatory diseases, such as UC.
Collapse
Affiliation(s)
- Abeer F Mostafa
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud M Elalfy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Shata
- Department of Clinical pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Pharmacy Practice Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mona G Elhadidy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
45
|
Zhou HS, Hu LB, Zhang H, Shan WX, Wang Y, Li X, Liu T, Zhao J, You QD, Jiang ZY. Design, Synthesis, and Structure–Activity Relationships of Indoline-Based Kelch-like ECH-Associated Protein 1-Nuclear Factor (Erythroid-Derived 2)-Like 2 (Keap1-Nrf2) Protein–Protein Interaction Inhibitors. J Med Chem 2020; 63:11149-11168. [DOI: 10.1021/acs.jmedchem.0c01116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hai-Shan Zhou
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lv-Bin Hu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Han Zhang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wen-Xin Shan
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Wang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xue Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tian Liu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Zhao
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zheng-Yu Jiang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
46
|
Sabzevary-Ghahfarokhi M, Soltani A, Luzza F, Larussa T, Rahimian G, Shirzad H, Bagheri N. The protective effects of resveratrol on ulcerative colitis via changing the profile of Nrf2 and IL-1β protein. Mol Biol Rep 2020; 47:6941-6947. [PMID: 32888128 DOI: 10.1007/s11033-020-05753-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) with increasing incidence and prevalence in developed countries. The presence of inflammatory cytokines is considered the main detrimental factor in severe types of IBD. The Nrf2 transcription factor plays an important role in reducing the expression of inflammatory agents such as interleukin (IL)-1β and increasing reparative factors such as IL-11. Resveratrol, a plant-derived phenolic compound, reduces the damage in chronic experimentally induced colitis. Twenty patients with UC and also 20 healthy controls were recruited in this study. The proteins expression of Nrf2 and IL-1β was assessed in colonic biopsies by Western blotting. Caco-2 cells were challenged with TNF-α (in vitro simulation of UC), in the presence or not of 190 nM (24 h) and 75 nM (48 h) Resveratrol. Then, Nrf2 and IL-1β in gene and protein expression were measured by real time-PCR and Western blotting in different treatments. Finally, IL-11 proteins expression was measured in culture supernatant by ELISA. A significant increase of IL-1β protein was detected in inflamed colonic tissues from UC patients compared with the control individuals. In Caco-2 cells challenged with TNF-α, protein expression of IL-1β and p-Nrf2 showed an increase, while gene expression of Nrf2 did not show a significant difference. After treatment with Resveratrol, both IL-1β mRNA and protein levels were reduced, while IL-11 protein levels showed any increase. The p-Nrf2 is a dominant form which is prevalent in inflamed tissues from UC patients. Resveratrol can reverse the inflammatory effects of TNF-α by reducing IL-1β and increasing IL-11 production.
Collapse
Affiliation(s)
- Milad Sabzevary-Ghahfarokhi
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Francesco Luzza
- Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100, Catanzaro, Italy
| | - Tiziana Larussa
- Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100, Catanzaro, Italy
| | - Ghorbanali Rahimian
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
47
|
Discovery of 2-oxy-2-phenylacetic acid substituted naphthalene sulfonamide derivatives as potent KEAP1-NRF2 protein-protein interaction inhibitors for inflammatory conditions. Eur J Med Chem 2020; 207:112734. [PMID: 32866756 DOI: 10.1016/j.ejmech.2020.112734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/26/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a pleiotropic transcription factor which regulates the constitutive and inducible transcription of a wide array of genes and confers protection against a variety of pathologies. Directly disrupting Kelch-like ECH-associated protein 1 (KEAP1)-NRF2 protein-protein interaction (PPI) has been explored as a promising strategy to activate NRF2. We reported here the first identification of a series of 2-oxy-2-phenylacetic acid substituted naphthalene sulfonamide derivatives as potent KEAP1-NRF2 inhibitors. Our efforts led to the potent small molecule KEAP1-NRF2 inhibitor, 20c, which exhibited a Kd of 24 nM to KEAP1 and an IC50 of 75 nM in disrupting KEAP1-NRF2 interaction. Subsequent biological studies provided consistent evidence across mouse macrophage cell-based and in vivo models that 20c induced NRF2 target gene expression and enhanced downstream antioxidant and anti-inflammatory activities. Our study not only demonstrated that small molecule KEAP1-NRF2 PPI inhibitors can be potential preventive and therapeutic agents for diseases and conditions involving oxidative stress and inflammation but also enriched the chemical diversity of the KEAP1-NRF2 inhibitors.
Collapse
|
48
|
Mou Y, Wen S, Li YX, Gao XX, Zhang X, Jiang ZY. Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors. Eur J Med Chem 2020; 202:112532. [PMID: 32668381 DOI: 10.1016/j.ejmech.2020.112532] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022]
Abstract
Therapeutic targeting the protein-protein interaction (PPI) of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and its main regulator, Kelch-like ECH-Associating protein 1 (Keap1) has been emerged as a feasible way to combat oxidative stress related diseases, due to the key role of Nrf2 in oxidative stress regulation. In recent years, many efforts have been made to develop potent Keap1-Nrf2 inhibitors with new chemical structures. Various molecules with diverse chemical structures have been reported and some compounds exhibit high potency. This review summarizes peptide and small molecule Keap1-Nrf2 inhibitors reported recently. We also highlight the pharmacological effects and discuss the possible therapeutic application of Keap1-Nrf2 inhibitors.
Collapse
Affiliation(s)
- Yi Mou
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Shuai Wen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Yu-Xiu Li
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Xin-Xing Gao
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Xin Zhang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Zheng-Yu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
49
|
Park HB, Goddard TN, Oh J, Patel J, Wei Z, Perez CE, Mercado BQ, Wang R, Wyche TP, Piizzi G, Flavell RA, Crawford JM. Bacterial Autoimmune Drug Metabolism Transforms an Immunomodulator into Structurally and Functionally Divergent Antibiotics. Angew Chem Int Ed Engl 2020; 59:7871-7880. [PMID: 32097515 PMCID: PMC7200298 DOI: 10.1002/anie.201916204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/01/2023]
Abstract
Tapinarof is a stilbene drug that is used to treat psoriasis and atopic dermatitis, and is thought to function through regulation of the AhR and Nrf2 signaling pathways, which have also been linked to inflammatory bowel diseases. It is produced by the gammaproteobacterial Photorhabdus genus, which thus represents a model to probe tapinarof structural and functional transformations. We show that Photorhabdus transforms tapinarof into novel drug metabolism products that kill inflammatory bacteria, and that a cupin enzyme contributes to the conversion of tapinarof and related dietary stilbenes into novel dimers. One dimer has activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE), and another undergoes spontaneous cyclizations to a cyclopropane-bridge-containing hexacyclic framework that exhibits activity against Mycobacterium. These dimers lack efficacy in a colitis mouse model, whereas the monomer reduces disease symptoms.
Collapse
Affiliation(s)
- Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- These authors contributed equally: Hyun Bong Park, Tyler N. Goddard
| | - Tyler N. Goddard
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- These authors contributed equally: Hyun Bong Park, Tyler N. Goddard
| | - Joonseok Oh
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jaymin Patel
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Zheng Wei
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Corey E. Perez
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical and Biophysical Instrumentation Center, Yale University, New Haven, CT 06520, USA
| | - Rurun Wang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Thomas P. Wyche
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Grazia Piizzi
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
50
|
Park HB, Goddard TN, Oh J, Patel J, Wei Z, Perez CE, Mercado BQ, Wang R, Wyche TP, Piizzi G, Flavell RA, Crawford JM. Bacterial Autoimmune Drug Metabolism Transforms an Immunomodulator into Structurally and Functionally Divergent Antibiotics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hyun Bong Park
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Tyler N. Goddard
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Joonseok Oh
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Jaymin Patel
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Molecular, Cellular, and Developmental Biology Yale University New Haven CT 06520 USA
| | - Zheng Wei
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Immunobiology Yale University School of Medicine New Haven CT 06520 USA
| | - Corey E. Perez
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Brandon Q. Mercado
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical and Biophysical Instrumentation Center Yale University New Haven CT 06520 USA
| | - Rurun Wang
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Thomas P. Wyche
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Grazia Piizzi
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Richard A. Flavell
- Department of Immunobiology Yale University School of Medicine New Haven CT 06520 USA
- Howard Hughes Medical Institute Yale University School of Medicine New Haven CT 06520 USA
| | - Jason M. Crawford
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Microbial Pathogenesis Yale School of Medicine New Haven CT 06536 USA
| |
Collapse
|