1
|
Chatterjee S, Paul N, Das A, Bank S, Bankura B, Sarkar K, Saha S, Malakar S, Choudhury S, Ghosh S, Das M. Investigating the association of VHL gene variants with disease risk and clinicopathological outcomes in ccRCC patients from West Bengal, India. Urol Oncol 2025:S1078-1439(24)01046-9. [PMID: 39809638 DOI: 10.1016/j.urolonc.2024.12.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a prevalent and aggressive malignancy, with the von Hippel-Lindau (VHL) gene playing a critical role in its pathogenesis. However, the association between VHL gene variants and sporadic ccRCC risk remains unexplored in the Indian population. This study aimed to investigate the somatic and germline variants of the VHL gene in sporadic ccRCC patients from West Bengal, India, and their association with disease risk and clinicopathological parameters. METHODS A total of 210 ccRCC patients and 255 ethnicity-matched healthy controls were enrolled. Genomic DNA from blood and tissue samples was analyzed using PCR-based Sanger sequencing. The association of VHL variants with ccRCC risk was assessed using Chi-square tests. The impact of genetic variants on patient clinicopathological features and overall survival was evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. RESULTS We identified twenty-three single nucleotide variants (SNVs) in the VHL gene, including 3 novel variants, OR250433 T > G, OR125589 C > T and OQ627404 G > C. The intronic variant rs61758376 G > C and 3'UTR variant rs1642742 A > G were significantly associated with an increased risk of ccRCC (OR = 1.676, P = 0.0074; OR = 1.735, P = 0.0171, respectively). The rs1642742 GG genotype was also significantly associated with larger tumor size (P < 0.05) and advanced tumor stage (pT4). Kaplan-Meier analysis indicated poorer overall survival for patients with the rs1642742 GG genotype (log-rank P = 0.029). CONCLUSION Our study is the first to document the association of VHL gene variants with sporadic ccRCC risk and clinical outcomes in the Indian population. The identified variants, particularly rs61758376 and rs1642742, could serve as potential biomarkers for ccRCC susceptibility and prognosis.
Collapse
Affiliation(s)
| | - Nirvika Paul
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Anwesha Das
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Sarbashri Bank
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Biswabandhu Bankura
- Multidisciplinary Research Unit, Calcutta Medical College and Hospital, Kolkata, West Bengal, India
| | - Kunal Sarkar
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Soumen Saha
- Department of Urology, Calcutta Medical College and Hospital, Kolkata, West Bengal, India
| | - Subhajit Malakar
- Department of Urology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Sunirmal Choudhury
- Department of Urology, Calcutta Medical College and Hospital, Kolkata, West Bengal, India
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, Kolkata, West Bengal, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Du R, Li K, Guo K, Chen Z, Han L, Bian H. FSTL1: A double-edged sword in cancer development. Gene 2024; 906:148263. [PMID: 38346455 DOI: 10.1016/j.gene.2024.148263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Flolistatin-related protein 1 (FSTL1), a secreted glycoprotein that is involved in many physiological functions, has attracted much interest and has been implicated in a wide range of diseases, including heart diseases and inflammatory diseases. In recent years, the involvement of FSTL1 in cancer progression has been implicated and researched. FSTL1 plays a contradictory role in cancer, depending on the cancer type as well as the contents of the tumor microenvironment. As reviewed here, the structure and distribution of FSTL1 are first introduced. Subsequently, the expression and clinical significance of FSTL1 in various types of cancer as a tumor enhancer or inhibitor are addressed. Furthermore, we discuss the functional role of FSTL1 in various processes that involve tumor cell proliferation, metastasis, immune responses, stemness, cell apoptosis, and resistance to chemotherapy. FSTL1 expression is tightly controlled in cancer, and a multitude of cancer-related signaling cascades like TGF-β/BMP/Smad signaling, AKT, NF-κB, and Wnt-β-catenin signaling pathways are modulated by FSTL1. Finally, FSTL1 as a therapeutic target using monoclonal antibodies is stated. Herein, we review recent findings showing the double-edged characteristics and mechanisms of FSTL1 in cancer and elaborate on the current understanding of therapeutic approaches targeting FSTL1.
Collapse
Affiliation(s)
- Ruijuan Du
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China
| | - Kai Li
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China
| | - Kelei Guo
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China
| | - Zhiguo Chen
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China
| | - Li Han
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China.
| | - Hua Bian
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, PR China; Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, Henan Province, PR China.
| |
Collapse
|
3
|
Liu Z, Zhang H, Hu X. Analysis of the expression and mechanism of follistatin‑like protein 1 in cervical cancer. Oncol Rep 2023; 50:215. [PMID: 37888756 PMCID: PMC10636721 DOI: 10.3892/or.2023.8652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
The abnormal expression of follistatin‑like protein 1 (FSTL1) in various tumors is a crucial regulator of the biological process of tumorigenesis. Nonetheless, the regulatory role of FSTL1 in cervical cancer is yet to be elucidated. Hence, the present study aimed to explore the expression, function, and molecular mechanism of FSTL1 in cervical cancer. The expression of FSTL1 in normal and cervical cancer tissues was examined using quantitative reverse transcription‑polymerase chain reaction and immunohistochemistry assays. The effects of abnormal expression of FSTL1 on cervical cancer cells were assessed using colony formation, MTT, wound‑healing, Transwell, apoptosis, and nude mouse tumorigenicity assays. FSTL1‑related molecular mechanisms were screened using gene chip analysis. Western blotting analysis was used to verify the regulatory mechanisms of FSTL1 in cervical cancer. The results indicated that the expression of FSTL1 was downregulated in cervical cancer tissues and that its downregulation was associated with tumor differentiation, pathologic type, and infiltration depth. Moreover, FSTL1 inhibited the proliferation, migration, and invasion of cervical cancer cells as well as xenograft tumor growth and promoted cell apoptosis. In addition, the findings of gene chip analysis suggested that the differentially expressed genes of FSTL1 were predominantly enriched in multiple signaling pathways, of which the insulin‑like growth factor (IGF)‑1 signaling pathway was significantly activated. Western blotting suggested the involvement of FSTL1 in the regulation of the IGF‑1R/PI3K/AKT/BCL‑2 signaling pathway. These data establish the downregulation of FSTL1 in cervical cancer tissues. FSTL1 inhibited the proliferation, migration, and invasion of cervical cancer cells and promoted their apoptosis. Furthermore, xenograft tumor growth in nude mice was inhibited. FSTL1 may be involved in the regulation of the IGF‑1R/PI3K/AKT/BCL‑2 signaling pathway in cervical cancer. Therefore, FSTL1 may be employed as a novel biomarker to determine the extent of disease progression in patients with cervical cancer.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Zhang
- Department of Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaoxia Hu
- Department of Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
4
|
Innes H, Morgan MY, Hampe J, Stickel F, Buch S. The rs72613567:TA polymorphism in HSD17B13 is associated with survival benefit after development of hepatocellular carcinoma. Aliment Pharmacol Ther 2023; 58:623-631. [PMID: 37470344 DOI: 10.1111/apt.17638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/08/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND The influence of genetic factors on survival following a diagnosis of hepatocellular carcinoma (HCC) remains unclear. AIM To assess whether genetic polymorphisms influencing the susceptibility to develop HCC are also associated with HCC prognosis. METHODS We included United Kingdom Biobank (UKB) participants diagnosed with HCC after study enrolment. The primary outcome was all-cause mortality. Patients were followed from the date of HCC diagnosis to death or the registry completion date. Five HCC susceptibility loci were investigated: rs738409 (PNPLA3), rs58542926 (TM6SF2); rs72613567 (HSD17B13); rs2242652 (TERT) and rs708113 (WNT3A). The associations between these genetic variants and HCC mortality risk were assessed using Cox regression, adjusted for age, sex, ethnicity, aetiology, severity of the underlying liver disease and receipt of curative HCC treatment. RESULTS The final sample included 439 patients; 74% had either non-alcoholic fatty liver disease or alcohol-related liver disease. There were 321 deaths during a mean follow-up of 1.9 years per participant. Kaplan-Meier survival estimates at 1, 3 and 5 years were 53.2%, 31.2% and 22.6% respectively. In multivariate analysis, rs72613567:TA (HSD17B13) was the only genetic susceptibility variant significantly associated with all-cause mortality risk (aHR: 0.74; 95% CI: 0.61-0.90; p = 0.003). Other associated factors were Baveno stage 3-4 (aHR: 1.65; 95% CI: 1.05-2.59; p = 0.03) and HCC treatment with curative intent (aHR: 0.25; 95% CI: 0.17-0.37; p < 0.001). CONCLUSIONS The rs72613567:TA polymorphism in HSD17B13 is not only associated with a reduction in the risk of developing HCC but with a survival benefit in HCC once established. Therapeutic inhibition of HSD17B13 may augment survival in individuals with HCC.
Collapse
Affiliation(s)
- Hamish Innes
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
- Public Health Scotland, Glasgow, UK
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| | - Marsha Y Morgan
- Division of Medicine, UCL Institute for Liver & Digestive Health, Royal Free Campus, University College London, London, UK
| | - Jochen Hampe
- Medical Department, University Hospital Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Stephan Buch
- Medical Department, University Hospital Dresden, TUD Dresden University of Technology, Dresden, Germany
| |
Collapse
|
5
|
Abstract
Liver diseases, including viral hepatitis, fatty liver, metabolic-associated fatty liver disease, liver cirrhosis, alcoholic liver disease, and liver neoplasms, are major global health challenges. Despite the continued development of new drugs and technologies, the prognosis of end-stage liver diseases, including advanced liver cirrhosis and liver neoplasms, remains poor. Follistatin-like protein 1 (FSTL1), an extracellular glycoprotein, is secreted by various cell types. It is a glycoprotein that belongs to the family of secreted proteins acidic and rich in cysteine (SPARC). It is also known as transforming growth factor-beta inducible TSC-36 and follistatin-related protein (FRP). FSTL1 plays a key role in cell survival, proliferation, differentiation, and migration, as well as the regulation of inflammation and immunity. Studies have demonstrated that FSTL1 significantly affects the occurrence and development of liver diseases. This article reviews the role and mechanism of FSLT1 in liver diseases.
Collapse
Affiliation(s)
- Chuansha Gu
- Xinxiang Key Laboratory of Tumor
Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical
University, Xinxiang 453003, China
| | - Hua Xue
- The Third Affiliated Hospital of Xinxiang
Medical University, Xinxiang 453000, China
| | - Xiaoli Yang
- Xinxiang Key Laboratory of Tumor
Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical
University, Xinxiang 453003, China
| | - Yu Nie
- School of Basic Medicine, Xinxiang Medical
University, Xinxiang 453003, China
| | - Xinlai Qian
- The Third Affiliated Hospital of Xinxiang
Medical University, Xinxiang 453000, China
| |
Collapse
|
6
|
Zhao C, Chen Z, Zhu L, Miao Y, Guo J, Yuan Z, Wang P, Li L, Ning W. The BMP inhibitor follistatin-like 1 (FSTL1) suppresses cervical carcinogenesis. Front Oncol 2023; 13:1100045. [PMID: 36756161 PMCID: PMC9901576 DOI: 10.3389/fonc.2023.1100045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Follistatin-like 1 (FSTL1) is a cancer-related matricellular secretory protein with contradictory organ-specific roles. Its contribution to the pathogenesis of cervical carcinoma is still not clear. Meanwhile, it is necessary to identify novel candidate genes to understand cervical carcinoma's pathogenesis further and find potential therapeutic targets. We collected cervical carcinoma samples and matched adjacent tissues from patients with the locally-advanced disease and used cervical carcinoma cell lines HeLa and C33A to evaluate the effects of FSTL1 on CC cells. The mRNA transcription and protein expression of FSTL1 in cervical carcinoma tumor biopsy tissues were lower than those of matched adjacent tissues. Patients with a lower ratio of FSTL1 mRNA between the tumor and its matched adjacent tissues showed a correlation with the advanced cervical carcinoma FIGO stages. High expression of FSTL1 markedly inhibited the proliferation, motility, and invasion of HeLa and C33A. Regarding mechanism, FSTL1 plays its role by negatively regulating the BMP4/Smad1/5/9 signaling. Our study has demonstrated the tumor suppressor effect of FSTL1, and these findings suggested a potential therapeutic target and biomarker for cervical carcinoma.
Collapse
Affiliation(s)
- Chenjing Zhao
- State Key Laboratory of Medical Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhongjie Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Li Zhu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yunheng Miao
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiasen Guo
- State Key Laboratory of Medical Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lian Li
- State Key Laboratory of Medical Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, China,*Correspondence: Wen Ning, ; Lian Li,
| | - Wen Ning
- State Key Laboratory of Medical Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, China,*Correspondence: Wen Ning, ; Lian Li,
| |
Collapse
|
7
|
Yang M, Lu Z, Yu B, Zhao J, Li L, Zhu K, Ma M, Long F, Wu R, Hu G, Huang L, Chou J, Gong N, Yang K, Li X, Zhang Y, Lin C. COL5A1 Promotes the Progression of Gastric Cancer by Acting as a ceRNA of miR-137-3p to Upregulate FSTL1 Expression. Cancers (Basel) 2022; 14:3244. [PMID: 35805015 PMCID: PMC9264898 DOI: 10.3390/cancers14133244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) and their target genes have been shown to play an important role in gastric cancer but have not been fully clarified. Therefore, our goal was to identify the key miRNA-mRNA regulatory network in gastric cancer by utilizing a variety of bioinformatics analyses and experiments. A total of 242 miRNAs and 1080 genes were screened from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. Then, survival-related differentially expressed miRNAs and their differentially expressed target genes were screened. Twenty hub genes were identified from their protein-protein interaction network. After weighted gene co-expression network analysis was conducted, we selected miR-137-3p and its target gene, COL5A1, for further research. We found that miR-137-3p was significantly downregulated and that overexpression of miR-137-3p suppressed the proliferation, invasion, and migration of gastric cancer cells. Furthermore, we found that its target gene, COL5A1, could regulate the expression of another hub gene, FSTL1, by sponging miR-137-3p, which was confirmed by dual-luciferase reporter assays. Knockdown of COL5A1 inhibited the proliferation, invasion, and migration of gastric cancer cells, which could be rescued by the miR-137-3p inhibitor or overexpression of FSTL1. Ultimately, bioinformatics analyses showed that the expression of FSTL1 was highly correlated with immune infiltration.
Collapse
Affiliation(s)
- Ming Yang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Zhixing Lu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Bowen Yu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Jiajia Zhao
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Liang Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Kaiyu Zhu
- The Five-Year Program in Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China;
| | - Min Ma
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Runliu Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Lihua Huang
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China;
| | - Jing Chou
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Ni Gong
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Kaiyan Yang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Yi Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China; (M.Y.); (Z.L.); (B.Y.); (J.Z.); (L.L.); (M.M.); (F.L.); (R.W.); (G.H.); (J.C.); (N.G.); (K.Y.); (X.L.)
| |
Collapse
|
8
|
Sendur SN, Hazirolan T, Aydin B, Lay I, Alikasifoglu M, Erbas T. Specific FSTL1 polymorphism may determine the risk of cardiomyopathy in patients with acromegaly. Acta Cardiol 2022; 77:350-359. [PMID: 34233581 DOI: 10.1080/00015385.2021.1948206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND We have investigated the role of a cardiomyokine, follistatin-like 1 (FSTL1), and its single nucleotide polymorphism on acromegalic cardiomyopathy. METHODS The study was performed as a cross-sectional case research in a Tertiary Referral Centre. Forty-six patients with acromegaly (29 F-17 M, mean age: 50.3 ± 12.1 years) were included. FSTL1 levels were measured and the rs1259293 region of the FSTL1 gene was subjected to polymorphism analysis. 1.5 Tesla MRI was used to obtain cardiac images. RESULTS There were 15 active (6 F-9M) and 31 (22 F-9M) controlled patients. Active patients had a higher left ventricular mass (LVM) and left ventricular mass index (LVMi). GH levels were positively correlated with left ventricular end-diastolic volume index (LVEDVi), stroke volume index (SVi), cardiac index (Ci), LVM and LVMi; r = 0.35, 0.38, 0.34, 0.39 and 0.39, respectively. IGF-1 index was positively correlated with LVEDVi, left ventricular end-systolic volume index (LVESVi), SVi, Ci, LVM and LVMi; r = 0.36, 0.34, 0.32, 0.31, 0.42 and 0.42, respectively. Twenty out of 46 patients with acromegaly (43.5%) had myocardial fibrosis. FSTL1 levels were neither correlated with disease activity nor with any functional and structural cardiac parameter. Multivariate linear regression analysis revealed no association between FSTL1 and any study parameters. The rs1259293 variant genotype CC was significantly associated with low left ventricular mass. CONCLUSIONS Serum FSTL1 levels are not associated with functional and structural measures of myocardium in patients with acromegaly. However, the risk of left ventricular hypertrophy is reduced in CC genotyped individuals of FSTL1.
Collapse
Affiliation(s)
- Suleyman Nahit Sendur
- Department of Endocrinology & Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| | - Tuncay Hazirolan
- Department of Radiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Busra Aydin
- Department of Medical Genetics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Incilay Lay
- Department of Medical Biochemistry, Hacettepe University School of Medicine, Ankara, Turkey
| | - Mehmet Alikasifoglu
- Department of Medical Genetics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Tomris Erbas
- Department of Endocrinology & Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
9
|
Tan X, Zheng S, Liu W, Liu Y, Kang Z, Li Z, Li P, Song J, Hou J, Yang B, Han X, Wang F, Jing C, Cao G. Effect of APOBEC3A functional polymorphism on renal cell carcinoma is influenced by tumor necrosis factor-α and transcriptional repressor ETS1. Am J Cancer Res 2021; 11:4347-4363. [PMID: 34659891 PMCID: PMC8493372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/13/2021] [Indexed: 06/13/2023] Open
Abstract
Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide (APOBEC) 3 cytidine deaminases are the prominent drivers of somatic mutations in cancers. However, the effect of APOBEC3s functional polymorphisms on the development of renal cell carcinoma (RCC) remains unknown. Five genetic polymorphisms affecting the expression of APOBEC3A (A3A), APOBEC3B, and APOBEC4 and uracil DNA glycosylase (UNG) were genotyped in 728 RCC patients and 1500 healthy controls. The effects of tumor necrosis factor-α (TNFα) and interleukin-6 on the activity of the A3A promoter with rs12157810-A or -C in four RCC cell lines (786-O, A498, Caki2, ACHN) and two colorectal cancer cell lines (HCT116, SW620) were evaluated using dual-luciferase assays. Transcriptional repressors to the A3A promoter were identified by chromatin immunoprecipitation-quantitative PCR. The proapoptotic effect of A3A on RCC cells was evaluated using cytometry. The prognostic values of A3A and ETS1 were evaluated by the Cox regression analysis. The expressions of A3A and ETS1 were evaluated in clear cell RCC (ccRCC) specimens with different polymorphic genotypes using quantitative RT-PCR and immunohistochemistry. Of those functional polymorphisms, CC genotype at rs12157810 in the A3A promoter was significantly associated with a decreased risk of ccRCC, compared to the AA genotype (odds ratio adjusted for age and gender, 0.41, 95% confidence interval [CI], 0.28-0.57). Other polymorphic genotypes were not associated with the risk of RCC. The activity of the A3A promoter with rs12157810-C was significantly higher than that with rs12157810-A in the four RCC cell lines and two colorectal cancer cell lines. The activity of the A3A promoter with rs12157810-C was greatly up-regulated by TNFα and predominantly inhibited by a transcriptional repressor ETS1. The binding of ETS1 to the A3A promoter with rs12157810-C was looser than that with rs12157810-A. Ectopic expression of A3A significantly promoted apoptosis in ccRCC cells, rather than in colorectal cancer cells. Higher ETS1 expression predicted a favorable prognosis in ccRCC, with a hazard ratio of 0.58 (95% CI, 0.43-0.78). Rs121567810-C up-regulates the A3A promoter activity, possibly due to higher response to TNFα and looser transcriptional repression by ETS1. Up-regulation of A3A increases apoptosis, thus decreasing ccRCC risk in those carrying rs121567810-C.
Collapse
Affiliation(s)
- Xiaojie Tan
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Shaoling Zheng
- Department of Epidemiology, School of Medicine, Jinan UniversityGuangzhou 510632, China
| | - Wenbin Liu
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Yan Liu
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Zhengchun Kang
- Department of General Surgery, The 1st Affiliated Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Zishuai Li
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Peng Li
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Jiahui Song
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| | - Jianguo Hou
- Department of Urology, The 1st Affiliated Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Bo Yang
- Department of Urology, The 1st Affiliated Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Xue Han
- Department of Chronic Diseases, The Center for Disease Control and Prevention of Yangpu DistrictShanghai 200090, China
| | - Fubo Wang
- Department of Urology, The 1st Affiliated Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan UniversityGuangzhou 510632, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical UniversityShanghai 200433, China
| |
Collapse
|
10
|
Wang W, Hu W, Wang Y, Yang J, Yue Z. MicroRNA-508 is downregulated in clear cell renal cell carcinoma and targets ZEB1 to suppress cell proliferation and invasion. Exp Ther Med 2019; 17:3814-3822. [PMID: 30988768 DOI: 10.3892/etm.2019.7332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 02/14/2019] [Indexed: 12/29/2022] Open
Abstract
Recent studies have identified several microRNAs (miRNAs/miRs) that are dysregulated in clear cell renal cell carcinoma (ccRCC), and their dysregulation may serve important roles in the occurrence and development of ccRCC. Therefore, understanding the expression pattern and functional roles of miRNAs in ccRCC may facilitate the identification of novel therapeutic targets for the treatment of ccRCC. In the current study, reverse transcription-quantitative polymerase chain reaction was used to determine miR-508 expression levels in ccRCC tissue samples and cell lines. The cell counting kit-8 and in vitro Transwell invasion assays were used to examine the effects of miR-508 overexpression on ccRCC cell proliferation and invasion, respectively. In addition, bioinformatics analysis and dual-luciferase reporter gene assays were used to investigate the underlying mechanism of miR-508 in ccRCC cells. Furthermore, the regulatory role of miR-508 on zinc finger E-box-binding homeobox 1 (ZEB1) mRNA and protein expression in ccRCC cells was investigated using RT-qPCR and western blot analysis, respectively. Additionally, the association between miR-508 and ZEB1 expression in ccRCC tissue samples was examined. Rescue experiments were performed to determine whether the tumor suppressive effects of miR-508 may be mediated by ZEB1 in ccRCC cells. The results of the current study demonstrated that miR-508 expression was significantly downregulated in ccRCC tissue samples and cell lines. In addition, miR-508 overexpression significantly decreased the proliferation and invasion of ccRCC cells. ZEB1 was identified as a direct target gene of miR-508 in ccRCC cells and the relative expression level of ZEB1 mRNA was significantly increased in ccRCC tissue samples. Furthermore, a negative correlation between miR-508 and ZEB1 expression was identified in ccRCC tissues. ZEB1 knockdown exhibited a functional role similar to miR-508 overexpression in ccRCC cells, and restoration of ZEB1 expression significantly reversed the inhibitory effects of miR-508 on the malignant phenotype of ccRCC cells. Taken together, the results of the current study demonstrated that miR-508 may serve a tumor suppressive role in ccRCC via direct targeting of ZEB1. MiR-508 may present a novel and efficient therapeutic target for the treatment of patients with ccRCC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Wentao Hu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Ya Wang
- Department of Nephrology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jing Yang
- Clinical Laboratory, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zhongjin Yue
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
11
|
Zhang Y, Xu X, Yang Y, Ma J, Wang L, Meng X, Chen B, Qin L, Lu T, Gao Y. Deficiency of Follistatin-Like Protein 1 Accelerates the Growth of Breast Cancer Cells at Lung Metastatic Sites. J Breast Cancer 2018; 21:267-276. [PMID: 30275855 PMCID: PMC6158165 DOI: 10.4048/jbc.2018.21.e43] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/01/2018] [Indexed: 12/21/2022] Open
Abstract
Purpose Follistatin-like protein 1 (FSTL1) is a secreted glycoprotein that has been shown to play a role in various types of cancer. However, the clinical significance and function of FSTL1 in breast cancer have not been reported. We investigated the role of FSTL1 in breast cancer in this study. Methods Enzyme-linked immunosorbent assays, western blot analysis, and reverse transcription polymerase chain reaction were used to monitor the expression of FSTL1 in breast cancer tissue and in serum samples from breast cancer patients. We employed a 4T1 breast cancer model and Fstl1 +/- mice for in vivo studies. Hematoxylin and eosin staining, western blot analysis, and RNA sequencing were used to analyze the effect of FSTL1 on primary tumor growth and lung metastasis. Results We demonstrated that the expression of FSTL1 is reduced in both the breast cancer tissue and the serum of breast cancer patients. We showed that reduced levels of FSTL1 in serum correlate with elevated expression of Ki-67 and epidermal growth factor receptor (EGFR) in cancer tissues. Moreover, lowered expression of FSTL1 was associated with decreased survival in breast cancer patients. Experiments on the Fstl1 +/- mouse model established that FSTL1 deficiency had no effect on primary tumor growth, but increased the lung metastases of breast cancer cells, resulting in reduced survival of tumor-bearing mice. RNA sequencing found significantly reduced expression of Egln3 and increased expression of EGFR in Fstl1 +/- mice. Thus, our results suggest that FSTL1 may affect the expression of EGFR through Egln3, inhibiting the proliferation of breast cancer cells at lung metastatic sites. Conclusion In conclusion, we suggest a suppressor role of FSTL1 in breast cancer lung metastasis. Furthermore, FSTL1 may represent a potential prognostic biomarker and a candidate therapeutic target in breast cancer patients.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaozhou Xu
- Department of Breast Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jie Ma
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lulu Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China.,Cancer Institute, Capital Medical University, Beijing, China
| | - Xiangzhi Meng
- Department of Breast Surgery, Cancer Hospital of Huanxing Chaoyang District Beijing, Beijing, China
| | - Bing Chen
- Department of Clinical Laboratory, Cancer Hospital of Huanxing Chaoyang District Beijing, Beijing, China
| | - Ling Qin
- Department of Breast Surgery, Cancer Hospital of Huanxing Chaoyang District Beijing, Beijing, China
| | - Tao Lu
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Gao
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, China.,Cancer Institute, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Bevivino G, Sedda S, Franzè E, Stolfi C, Di Grazia A, Dinallo V, Caprioli F, Facciotti F, Colantoni A, Ortenzi A, Rossi P, Monteleone G. Follistatin-like protein 1 sustains colon cancer cell growth and survival. Oncotarget 2018; 9:31278-31290. [PMID: 30131854 PMCID: PMC6101290 DOI: 10.18632/oncotarget.25811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/13/2018] [Indexed: 01/20/2023] Open
Abstract
Follistatin-like protein 1 (FSTL1) is a secreted glycoprotein, which controls several physiological and pathological events. FSTL1 expression is deregulated in many tumors, but its contribution to colon carcinogenesis is not fully understood. Here, we investigated the expression and functional role of FSTL1 in colorectal cancer (CRC). A significant increase of FSTL1 was seen in human CRC as compared to the surrounding non-tumor tissues and this occurred at both RNA and protein level. Knockdown of FSTL1 in CRC cells with a specific antisense oligonucleotide (AS) reduced expression of regulators of the late G1 phase, such as phosphorylated retinoblastoma protein, E2F-1, cyclin E and phospho-cyclin-dependent kinase-2, and promoted accumulation of cells in the G1 phase of the cell cycle thus resulting in diminished cell proliferation. Consistently, recombinant FSTL1 induced proliferation of normal intestinal epithelial cells through an ERK1/2-dependent mechanism. Cell cycle arrest driven by FSTL1 AS in CRC cells was accompanied by activation of caspases and subsequent induction of apoptosis. Moreover, FSTL1 knockdown made CRC cells more susceptible to oxaliplatin and irinotecan-induced death. Data indicate that FSTL1 is over-expressed in human CRC and suggest a role for this protein in favouring intestinal tumorigenesis.
Collapse
Affiliation(s)
- Gerolamo Bevivino
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Silvia Sedda
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Antonio Di Grazia
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Vincenzo Dinallo
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Flavio Caprioli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Piero Rossi
- Department of Surgery, University of Tor Vergata, Rome, Italy
| | | |
Collapse
|
13
|
Lai Y, Quan J, Lin C, Li H, Hu J, Chen P, Xu J, Guan X, Xu W, Lai Y, Ni L. miR-199b-5p serves as a tumor suppressor in renal cell carcinoma. Exp Ther Med 2018; 16:436-444. [PMID: 29896270 PMCID: PMC5995031 DOI: 10.3892/etm.2018.6151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 03/09/2018] [Indexed: 02/05/2023] Open
Abstract
MicroRNA (miR)-199b-5p has been reported to have a critical role in various types of malignancy. However, the exact function miR-199b-5p in renal cancer remains to be fully elucidated. The present study aimed to detect the expression levels of miR-199b-5p in renal cell carcinoma (RCC) tissues and RCC cell lines, and investigated the effect of miR-199b-5p in vitro with Cell Counting Kit-8, MTT, scratch wound, Transwell and flow cytometric assays. The results demonstrated that the expression levels of miR-199b-5p were significantly downregulated in RCC tissues and cell lines compared with those in paired adjacent normal renal tissues and a reference cell line, respectively. Downregulation of miR-199b-5p by transfection with a synthetic inhibitor promoted cellular proliferation and migration, while reducing the apoptotic rate, indicating that miR-199b-5p may serve as a tumor suppressor in RCC. Further study is required to identify target genes of miR-199b-5p to elucidate the mechanisms underlying the role of miR-199b-5p in the occurrence and development of RCC.
Collapse
Affiliation(s)
- Yulin Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Graduate School, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Jing Quan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Graduate School, Anhui Medical University, Anhui, Hefei 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Canbin Lin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Graduate School, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Hang Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Jia Hu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Graduate School, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Peijie Chen
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Graduate School, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Jinling Xu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Xin Guan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Weijie Xu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Liangchao Ni
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
14
|
Mattiotti A, Prakash S, Barnett P, van den Hoff MJB. Follistatin-like 1 in development and human diseases. Cell Mol Life Sci 2018; 75:2339-2354. [PMID: 29594389 PMCID: PMC5986856 DOI: 10.1007/s00018-018-2805-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/27/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Abstract
Follistatin-like 1 (FSTL1) is a secreted glycoprotein displaying expression changes during development and disease, among which cardiovascular disease, cancer, and arthritis. The cardioprotective role of FSTL1 has been intensively studied over the last years, though its mechanism of action remains elusive. FSTL1 is involved in multiple signaling pathways and biological processes, including vascularization and regulation of the immune response, a feature that complicates its study. Binding to the DIP2A, TLR4 and BMP receptors have been shown, but other molecular partners probably exist. During cancer progression and rheumatoid arthritis, controversial data have been reported with respect to the proliferative, apoptotic, migratory, and inflammatory effects of FSTL1. This controversy might reside in the extensive post-transcriptional regulation of FSTL1. The FSTL1 primary transcript also encodes for a microRNA (miR-198) in primates and multiple microRNA-binding sites are present in the 3'UTR. The switch between expression of the FSTL1 protein and miR-198 is an important regulator of tumour metastasis and wound healing. The glycosylation state of FSTL1 is a determinant of biological activity, in cardiomyocytes the glycosylated form promoting proliferation and the non-glycosylated working anti-apoptotic. Moreover, the glycosylation state shows differences between species and tissues which might underlie the differences observed in in vitro studies. Finally, regulation at the level of protein secretion has been described.
Collapse
Affiliation(s)
- Andrea Mattiotti
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Stuti Prakash
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Phil Barnett
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Maurice J B van den Hoff
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Liu Y, Tan X, Liu W, Chen X, Hou X, Shen D, Ding Y, Yin J, Wang L, Zhang H, Yu Y, Hou J, Thompson TC, Cao G. Follistatin-like protein 1 plays a tumor suppressor role in clear-cell renal cell carcinoma. CHINESE JOURNAL OF CANCER 2018; 37:2. [PMID: 29357946 PMCID: PMC5778637 DOI: 10.1186/s40880-018-0267-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND We previously showed that the expression of follistatin-like protein 1 (FSTL1) was significantly down-regulated in metastatic clear-cell renal cell carcinoma (ccRCC). In this study, we aimed to characterize the role of FSTL1 in the development of ccRCC. METHODS The effects of FSTL1 on cell activity and cell cycle were investigated in ccRCC cell lines with altered FSTL1 expression. Gene expression microarray assays were performed to identify the major signaling pathways affected by FSTL1 knockdown. The expression of FSTL1 in ccRCC and its effect on postoperative prognosis were estimated in a cohort with 89 patients. RESULTS FSTL1 knockdown promoted anchorage-independent growth, migration, invasion, and cell cycle of ccRCC cell lines, whereas FSTL1 overexpression attenuated cell migration. FSTL1 knockdown up-regulated nuclear factor-κB (NF-κB) and hypoxia-inducible factor (HIF) signaling pathways, increased epithelial-to-mesenchymal transition, up-regulated interleukin-6 expression, and promoted tumor necrosis factor-α-induced degradation of NF-κB inhibitor (IκBα) in ccRCC cell lines. FSTL1 immunostaining was selectively positive in epithelial cytoplasm in the loop of Henle, and positive rate of FSTL1 was significantly lower in ccRCC tissues than in adjacent renal tissues (P < 0.001). The multivariate Cox regression analysis showed that the intratumoral FSTL1 expression conferred a favorable independent prognosis with a hazard ratio of 0.325 (95% confidence interval 0.118-0.894). HIF-2α expression was negatively correlated with FSTL1 expression in ccRCC specimens (r = - 0.229, P = 0.044). Intratumoral expression of HIF-2α, rather than HIF-1α, significantly predicted an unfavorable prognosis in ccRCC (log-rank, P = 0.038). CONCLUSIONS FSTL1 plays a tumor suppression role possibly via repressing the NF-κB and HIF-2α signaling pathways. To increase FSTL1 expression might be a candidate therapeutic strategy for metastatic ccRCC.
Collapse
Affiliation(s)
- Yan Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Xiaojie Tan
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Xi Chen
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Xiaomei Hou
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Dan Shen
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Yibo Ding
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Ling Wang
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Hongwei Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Yongwei Yu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Jianguo Hou
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Timothy C Thompson
- Genitourinary Medical Oncology-Research, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China.
| |
Collapse
|
16
|
Ni X, Cao X, Wu Y, Wu J. FSTL1 suppresses tumor cell proliferation, invasion and survival in non-small cell lung cancer. Oncol Rep 2017; 39:13-20. [PMID: 29115636 PMCID: PMC5783594 DOI: 10.3892/or.2017.6061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/18/2017] [Indexed: 01/07/2023] Open
Abstract
Follistatin like-1 (FSTL1) is a secreted glycoprotein involved in a series of physiological and pathological processes. However, its contribution to the development of cancer, especially the pathogenesis of NSCLC, remains to be elucidated. We explored the expression, function, and molecular mechanism of FSTL1 in NSCLC. In this study, we detected the expression of FSTL1 in a panel of NSCLC cell lines and lung normal epithelial cell line by qRT-PCR and western blot analysis and found that FSTL1 was downregulated in NSCLC cells compared with normal control. Knockdown of FSTL1 with different shRNA sequences result in increased cell proliferation and cell migration, invasion and reduced cell apoptosis in A549 cell line with high FSTL1 endogenous level. FSTL1 overexpression in H446 cell line with low FSTL1 endogenous level suppressed cell proliferation and migration, invasion and increased cell apoptosis. Knockdown and overexpression of FSTL1 caused altered cell cycle. Reduced cell apoptosis was revealed in FSTL1 knockdown cells accompanied by increased FAS expression and decreased FASL, cleaved caspase‑3 and ‑7 expression. By contrast, overexpression of FSTL1 caused reduced FAS level and increased activated caspase‑3 and ‑7 expression, which may lead to increased cell apoptosis. Moreover, the changed migration and invasion ability in FSTL1 sufficient or deficient cells may be caused by alterations in MMP2, MMP3 and MMP9 expression. Altogether, our results revealed the critical tumor-suppression function of FSTL1 in NSCLC progression, suggesting that FSTL1 might be an important factor in NSCLC progression.
Collapse
Affiliation(s)
- Xiaolei Ni
- Department of Medical Oncology, The First Hospital of Longyan Affiliated to Fujian Medical University, Longyan, Fujian, P.R. China
| | - Xiaoming Cao
- Department of Respiratory Medicine, The First Hospital of Longyan Affiliated to Fujian Medical University, Longyan, Fujian, P.R. China
| | - Yongquan Wu
- Department of Respiratory Medicine, The First Hospital of Longyan Affiliated to Fujian Medical University, Longyan, Fujian, P.R. China
| | - Jian Wu
- Department of Cardiothoracic Surgery, The First Hospital of Longyan Affiliated to Fujian Medical University, Longyan, Fujian, P.R. China
| |
Collapse
|
17
|
Liu X, Liu Y, Li X, Zhao J, Geng Y, Ning W. Follistatin like-1 (Fstl1) is required for the normal formation of lung airway and vascular smooth muscle at birth. PLoS One 2017; 12:e0177899. [PMID: 28574994 PMCID: PMC5456059 DOI: 10.1371/journal.pone.0177899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/04/2017] [Indexed: 12/20/2022] Open
Abstract
Fstl1, a secreted protein of the BMP antagonist class, has been implicated in the regulation of lung development and alveolar maturation. Here we generated a Fstl1-lacZ reporter mouse line as well as a Fstl1 knockout allele. We localized Fstl1 transcript in lung smooth muscle cells and identified Fstl1 as essential regulator of lung smooth muscle formation. Deletion of Fstl1 in mice led to postnatal death as a result of respiratory failure due to multiple defects in lung development. Analysis of the mutant phenotype showed impaired airway smooth muscle (SM) manifested as smaller SM line in trachea and discontinued SM surrounding bronchi, which were associated with decreased transcriptional factors myocardin/serum response factor (SRF) and impaired differentiation of SM cells. Fstl1 knockout mice also displayed abnormal vasculature SM manifested as hyperplasia SM in pulmonary artery. This study indicates a pivotal role for Fstl1 in early stage of lung airway smooth muscle development.
Collapse
Affiliation(s)
- Xue Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yingying Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Zhao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yan Geng
- Model Animal Research Center, Nanjing University, Nanjing, China
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail:
| |
Collapse
|
18
|
Wang H, Wu S, Huang S, Yin S, Zou G, Huang K, Zhang Z, Tang A, Wen W. Follistatin-like protein 1 contributes to dendritic cell and T-lymphocyte activation in nasopharyngeal carcinoma patients by altering nuclear factor κb and Jun N-terminal kinase expression. Cell Biochem Funct 2016; 34:554-562. [PMID: 27859422 PMCID: PMC5215428 DOI: 10.1002/cbf.3227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/01/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023]
Abstract
Follistatin‐like protein 1 (FSTL1) is a newly characterized protein that can regulate the immune response in various ways. Dendritic cells (DCs) are central to immune regulation. In this study, we explored the impact of FSTL1 on DC activity in nasopharyngeal carcinoma (NPC) patients. The surface expression of CD40, CD86, and HLA‐DR on DCs was analyzed and showed significantly elevated expression levels, indicating DC maturity. After FSTL1 was added to DCs collected from NPC patients (n = 50), controls (n = 47), and healthy donors (n = 10), interferon γ secretion and T‐cell receptor expression in cytotoxic T lymphocytes were also investigated. In the experimental groups, the expression of the critical immune protein nuclear factor (NF)‐κb was upregulated, whereas Jun N‐terminal kinase (JNK) was downregulated. Our findings demonstrate that FSTL1 plays a critical role in immune regulation, enhancing the antigen presentation ability of DCs by up‐regulating NF‐κb expression and down‐regulating JNK expression.
Collapse
Affiliation(s)
- Hong Wang
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Senyong Wu
- Department of Otorhinolaryngology Head and Neck Surgery, The People's Hospital, Guigang, Guangxi, China
| | - Shiping Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The People's Hospital, Guigang, Guangxi, China
| | - Shaolin Yin
- Department of Otorhinolaryngology Head and Neck Surgery, The People's Hospital, Guigang, Guangxi, China.,Department of Otolaryngology, The Cooperation of Chinese and Western Medicine Hospital in Guangzhou, Guangzhou, China
| | - Guilong Zou
- Department of Otorhinolaryngology Head and Neck Surgery, The People's Hospital, Guigang, Guangxi, China.,Department of Otolaryngology, The People's Hospital of Hezhou, Guangxi, China
| | - Kuan'en Huang
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Department of Otorhinolaryngology Head and Neck Surgery, The People's Hospital, Guigang, Guangxi, China
| | - Zhe Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Department of Otolaryngology, The Cooperation of Chinese and Western Medicine Hospital in Guangzhou, Guangzhou, China
| | - Anzhou Tang
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wensheng Wen
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|