1
|
Gkini V, Namba T. Glutaminolysis and the Control of Neural Progenitors in Neocortical Development and Evolution. Neuroscientist 2023; 29:177-189. [PMID: 35057642 PMCID: PMC10018057 DOI: 10.1177/10738584211069060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiple types of neural progenitor cells (NPCs) contribute to the development of the neocortex, a brain region responsible for our higher cognitive abilities. Proliferative capacity of NPCs varies among NPC types, developmental stages, and species. The higher proliferative capacity of NPCs in the developing human neocortex is thought to be a major contributing factor why humans have the most expanded neocortex within primates. Recent studies have shed light on the importance of cell metabolism in the neocortical NPC proliferative capacity. Specifically, glutaminolysis, a metabolic pathway that converts glutamine to glutamate and then to α-ketoglutarate, has been shown to play a critical role in human NPCs, both in apical and basal progenitors. In this review, we summarize our current knowledge of NPC metabolism, focusing especially on glutaminolysis, and discuss the role of NPC metabolism in neocortical development, evolution, and neurodevelopmental disorders, providing a broader perspective on a newly emerging research field.
Collapse
Affiliation(s)
- Vasiliki Gkini
- Neuroscience Center, HiLIFE—Helsinki
Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Takashi Namba
- Neuroscience Center, HiLIFE—Helsinki
Institute of Life Science, University of Helsinki, Helsinki, Finland
- Takashi Namba, Neuroscience Center, HiLIFE
— Helsinki Institute of Life Science, University of Helsinki, PO 63,
Haartmaninkatu 8, Helsinki 00014, Finland.
| |
Collapse
|
2
|
Salidroside Ameliorates Radiation Damage by Reducing Mitochondrial Oxidative Stress in the Submandibular Gland. Antioxidants (Basel) 2022; 11:antiox11071414. [DOI: 10.3390/antiox11071414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/06/2022] Open
Abstract
Radiotherapy for patients with head and neck cancer inevitably causes radiation damage to salivary glands (SGs). Overproduction of reactive oxygen species (ROS) leads to mitochondrial damage and is critical in the pathophysiology of SG radiation damage. However, mitochondrial-targeted treatment is unavailable. Herein, both in vitro and in vivo models of radiation-damaged rat submandibular glands (SMGs) were used to investigate the potential role of salidroside in protecting irradiated SGs. Cell morphology was observed with an inverted phase-contrast microscope. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), mitochondrial ROS, mitochondrial membrane potential (MMP), and ATP were measured using relevant kits. The mitochondrial ultrastructure was observed under transmission electron microscopy. Cell apoptosis was determined by Western blot and TUNEL assays. Saliva was measured from Wharton’s duct. We found that salidroside protected SMG cells and tissues against radiation and improved the secretion function. Moreover, salidroside enhanced the antioxidant defense by decreasing MDA, increasing SOD, CAT, and GSH, and scavenging mitochondrial ROS. Furthermore, salidroside rescued the mitochondrial ultrastructure, preserved MMP and ATP, suppressed cytosolic cytochrome c and cleaved caspase 3 expression, and inhibited cell apoptosis. Together, these findings first identify salidroside as a mitochondrial-targeted antioxidant for preventing SG radiation damage.
Collapse
|
3
|
Carrer A, Laquatra C, Tommasin L, Carraro M. Modulation and Pharmacology of the Mitochondrial Permeability Transition: A Journey from F-ATP Synthase to ANT. Molecules 2021; 26:molecules26216463. [PMID: 34770872 PMCID: PMC8587538 DOI: 10.3390/molecules26216463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022] Open
Abstract
The permeability transition (PT) is an increased permeation of the inner mitochondrial membrane due to the opening of the PT pore (PTP), a Ca2+-activated high conductance channel involved in Ca2+ homeostasis and cell death. Alterations of the PTP have been associated with many pathological conditions and its targeting represents an incessant challenge in the field. Although the modulation of the PTP has been extensively explored, the lack of a clear picture of its molecular nature increases the degree of complexity for any target-based approach. Recent advances suggest the existence of at least two mitochondrial permeability pathways mediated by the F-ATP synthase and the ANT, although the exact molecular mechanism leading to channel formation remains elusive for both. A full comprehension of this to-pore conversion will help to assist in drug design and to develop pharmacological treatments for a fine-tuned PT regulation. Here, we will focus on regulatory mechanisms that impinge on the PTP and discuss the relevant literature of PTP targeting compounds with particular attention to F-ATP synthase and ANT.
Collapse
|
4
|
Lucini CB, Braun RJ. Mitochondrion-Dependent Cell Death in TDP-43 Proteinopathies. Biomedicines 2021; 9:376. [PMID: 33918437 PMCID: PMC8066287 DOI: 10.3390/biomedicines9040376] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
In the last decade, pieces of evidence for TDP-43-mediated mitochondrial dysfunction in neurodegenerative diseases have accumulated. In patient samples, in vitro and in vivo models have shown mitochondrial accumulation of TDP-43, concomitantly with hallmarks of mitochondrial destabilization, such as increased production of reactive oxygen species (ROS), reduced level of oxidative phosphorylation (OXPHOS), and mitochondrial membrane permeabilization. Incidences of TDP-43-dependent cell death, which depends on mitochondrial DNA (mtDNA) content, is increased upon ageing. However, the molecular pathways behind mitochondrion-dependent cell death in TDP-43 proteinopathies remained unclear. In this review, we discuss the role of TDP-43 in mitochondria, as well as in mitochondrion-dependent cell death. This review includes the recent discovery of the TDP-43-dependent activation of the innate immunity cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway. Unravelling cell death mechanisms upon TDP-43 accumulation in mitochondria may open up new opportunities in TDP-43 proteinopathy research.
Collapse
Affiliation(s)
- Chantal B. Lucini
- Research Area Neurodegenerative Diseases, Center for Biosciences, Faculty of Medicine/Dental Medicine, Danube Private University, 3500 Krems an der Donau, Austria
| | - Ralf J. Braun
- Research Area Neurodegenerative Diseases, Center for Biosciences, Faculty of Medicine/Dental Medicine, Danube Private University, 3500 Krems an der Donau, Austria
| |
Collapse
|
5
|
Kent AC, El Baradie KBY, Hamrick MW. Targeting the Mitochondrial Permeability Transition Pore to Prevent Age-Associated Cell Damage and Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6626484. [PMID: 33574977 PMCID: PMC7861926 DOI: 10.1155/2021/6626484] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
The aging process is associated with significant alterations in mitochondrial function. These changes in mitochondrial function are thought to involve increased production of reactive oxygen species (ROS), which over time contribute to cell death, senescence, tissue degeneration, and impaired tissue repair. The mitochondrial permeability transition pore (mPTP) is likely to play a critical role in these processes, as increased ROS activates mPTP opening, which further increases ROS production. Injury and inflammation are also thought to increase mPTP opening, and chronic, low-grade inflammation is a hallmark of aging. Nicotinamide adenine dinucleotide (NAD+) can suppress the frequency and duration of mPTP opening; however, NAD+ levels are known to decline with age, further stimulating mPTP opening and increasing ROS release. Research on neurodegenerative diseases, particularly on Parkinson's disease (PD) and Alzheimer's disease (AD), has uncovered significant findings regarding mPTP openings and aging. Parkinson's disease is associated with a reduction in mitochondrial complex I activity and increased oxidative damage of DNA, both of which are linked to mPTP opening and subsequent ROS release. Similarly, AD is associated with increased mPTP openings, as evidenced by amyloid-beta (Aβ) interaction with the pore regulator cyclophilin D (CypD). Targeted therapies that can reduce the frequency and duration of mPTP opening may therefore have the potential to prevent age-related declines in cell and tissue function in various systems including the central nervous system.
Collapse
Affiliation(s)
- Andrew C. Kent
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- University of Georgia, Athens, GA, USA
| | | | - Mark W. Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Jin H, Sun Z, Sun Y, Gui R. Dual-signal ratiometric platforms: Construction principles and electrochemical biosensing applications at the live cell and small animal levels. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116124] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Namba T, Nardelli J, Gressens P, Huttner WB. Metabolic Regulation of Neocortical Expansion in Development and Evolution. Neuron 2020; 109:408-419. [PMID: 33306962 DOI: 10.1016/j.neuron.2020.11.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
Abstract
The neocortex, the seat of our higher cognitive abilities, has expanded in size during the evolution of certain mammals such as primates, including humans. This expansion occurs during development and is linked to the proliferative capacity of neural stem and progenitor cells (NPCs) in the neocortex. A number of cell-intrinsic and cell-extrinsic factors have been implicated in increasing NPC proliferative capacity. However, NPC metabolism has only recently emerged as major regulator of NPC proliferation. In this Perspective, we summarize recent insights into the role of NPC metabolism in neocortical development and neurodevelopmental disorders and its relevance for neocortex evolution. We discuss certain human-specific genes and microcephaly-implicated genes that operate in, or at, the mitochondria of NPCs and stimulate their proliferation by promoting glutaminolysis. We also discuss other metabolic pathways and develop a perspective on how metabolism mechanistically regulates NPC proliferation in neocortical development and how this contributed to neocortex evolution.
Collapse
Affiliation(s)
- Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | | | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, 75019 Paris, France.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
8
|
A systematic review of post-translational modifications in the mitochondrial permeability transition pore complex associated with cardiac diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165992. [PMID: 33091565 DOI: 10.1016/j.bbadis.2020.165992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022]
Abstract
The mitochondrial permeability transition pore (mPTP) opening is involved in the pathophysiology of multiple cardiac diseases, such as ischemia/reperfusion injury and heart failure. A growing number of evidence provided by proteomic screening techniques has demonstrated the role of post-translational modifications (PTMs) in several key components of the pore in response to changes in the extra/intracellular environment and bioenergetic demand. This could lead to a fine, complex regulatory mechanism that, under pathological conditions, can shift the state of mitochondrial functions and, thus, the cell's fate. Understanding the complex relationship between these PTMs is still under investigation and can provide new, promising therapeutic targets and treatment approaches. This review, using a systematic review of the literature, presents the current knowledge on PTMs of the mPTP and their role in health and cardiac disease.
Collapse
|
9
|
Koushi M, Aoyama Y, Kamei Y, Asakai R. Bisindolylpyrrole triggers transient mitochondrial permeability transitions to cause apoptosis in a VDAC1/2 and cyclophilin D-dependent manner via the ANT-associated pore. Sci Rep 2020; 10:16751. [PMID: 33046783 PMCID: PMC7552391 DOI: 10.1038/s41598-020-73667-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Bisindolylpyrrole at 0.1 μM is cytoprotective in 2% FBS that is counteracted by cyclosporin-A (CsA), an inhibitor of cyclophilin-D (CypD). We hypothesized that the cytoprotective effect might be due to transient mitochondrial permeability transition (tPT). This study tested the hypothesis that bisindolylpyrrole can trigger tPT extensively, thereby leading to cell death under certain conditions. Indeed, CsA-sensitive tPT-mediated apoptosis could be induced by bisindolylpyrrole at > 5 μM in HeLa cells cultured in 0.1% FBS, depending on CypD and VDAC1/2, as shown by siRNA knockdown experiments. Rat liver mitochondria also underwent swelling in response to bisindolylpyrrole, which proceeded at a slower rate than Ca2+-induced swelling, and which was blocked by the VDAC inhibitor tubulin and the ANT inhibitor bongkrekate, indicating the involvement of the ANT-associated, smaller pore. We examined why 0.1% FBS is a prerequisite for apoptosis and found that apoptosis is blocked by PKC activation, which is counteracted by the overexpressed defective PKCε. In mitochondrial suspensions, bisindolylpyrrole triggered CsA-sensitive swelling, which was suppressed selectively by pretreatment with PKCε, but not in the co-presence of tubulin. These data suggest that upon PKC inactivation the cytoprotective compound bisindolylpyrrole can induce prolonged tPT causing apoptosis in a CypD-dependent manner through the VDAC1/2-regulated ANT-associated pore.
Collapse
Affiliation(s)
- Masami Koushi
- Department of Morphophysiology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan
| | - Yasunori Aoyama
- Department of Morphophysiology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan
| | - Yoshiko Kamei
- Department of Morphophysiology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan
| | - Rei Asakai
- Department of Morphophysiology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan.
| |
Collapse
|
10
|
Reply to "Correspondence to Ant1 mutant mice bridge the mitochondrial and serotonergic dysfunctions in bipolar disorder". Mol Psychiatry 2020; 25:2205-2206. [PMID: 30353171 DOI: 10.1038/s41380-018-0279-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 11/08/2022]
|
11
|
Chinopoulos C. Ant1 mutant mice bridge the mitochondrial and serotonergic dysfunctions in bipolar disorder. Mol Psychiatry 2020; 25:2203-2204. [PMID: 30214044 DOI: 10.1038/s41380-018-0251-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/25/2018] [Accepted: 08/15/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, Tuzolto st. 37-47, 1094, Hungary.
| |
Collapse
|
12
|
Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. Int J Mol Sci 2020; 21:ijms21176052. [PMID: 32842667 PMCID: PMC7504413 DOI: 10.3390/ijms21176052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.
Collapse
|
13
|
Spalinger MR, Schwarzfischer M, Scharl M. The Role of Protein Tyrosine Phosphatases in Inflammasome Activation. Int J Mol Sci 2020; 21:E5481. [PMID: 32751912 PMCID: PMC7432435 DOI: 10.3390/ijms21155481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammasomes are multi-protein complexes that mediate the activation and secretion of the inflammatory cytokines IL-1β and IL-18. More than half a decade ago, it has been shown that the inflammasome adaptor molecule, ASC requires tyrosine phosphorylation to allow effective inflammasome assembly and sustained IL-1β/IL-18 release. This finding provided evidence that the tyrosine phosphorylation status of inflammasome components affects inflammasome assembly and that inflammasomes are subjected to regulation via kinases and phosphatases. In the subsequent years, it was reported that activation of the inflammasome receptor molecule, NLRP3, is modulated via tyrosine phosphorylation as well, and that NLRP3 de-phosphorylation at specific tyrosine residues was required for inflammasome assembly and sustained IL-1β/IL-18 release. These findings demonstrated the importance of tyrosine phosphorylation as a key modulator of inflammasome activity. Following these initial reports, additional work elucidated that the activity of several inflammasome components is dictated via their phosphorylation status. Particularly, the action of specific tyrosine kinases and phosphatases are of critical importance for the regulation of inflammasome assembly and activity. By summarizing the currently available literature on the interaction of tyrosine phosphatases with inflammasome components we here provide an overview how tyrosine phosphatases affect the activation status of inflammasomes.
Collapse
Affiliation(s)
- Marianne R. Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.S.); (M.S.)
| | - Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.S.); (M.S.)
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.S.); (M.S.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
14
|
Building a Bridge Between NMDAR-Mediated Excitotoxicity and Mitochondrial Dysfunction in Chronic and Acute Diseases. Cell Mol Neurobiol 2020; 41:1413-1430. [DOI: 10.1007/s10571-020-00924-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
|
15
|
Pellegrino-Coppola D. Regulation of the mitochondrial permeability transition pore and its effects on aging. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:222-233. [PMID: 32904375 PMCID: PMC7453641 DOI: 10.15698/mic2020.09.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/30/2022]
Abstract
Aging is an evolutionarily conserved process and is tightly connected to mitochondria. To uncover the aging molecular mechanisms related to mitochondria, different organisms have been extensively used as model systems. Among these, the budding yeast Saccharomyces cerevisiae has been reported multiple times as a model of choice when studying cellular aging. In particular, yeast provides a quick and trustworthy system to identify shared aging genes and pathway patterns. In this viewpoint on aging and mitochondria, I will focus on the mitochondrial permeability transition pore (mPTP), which has been reported and proposed as a main player in cellular aging. I will make several parallelisms with yeast to highlight how this unicellular organism can be used as a guidance system to understand conserved cellular and molecular events in multicellular organisms such as humans. Overall, a thread connecting the preservation of mitochondrial functionality with the activity of the mPTP emerges in the regulation of cell survival and cell death, which in turn could potentially affect aging and aging-related diseases.
Collapse
|
16
|
Namba T, Dóczi J, Pinson A, Xing L, Kalebic N, Wilsch-Bräuninger M, Long KR, Vaid S, Lauer J, Bogdanova A, Borgonovo B, Shevchenko A, Keller P, Drechsel D, Kurzchalia T, Wimberger P, Chinopoulos C, Huttner WB. Human-Specific ARHGAP11B Acts in Mitochondria to Expand Neocortical Progenitors by Glutaminolysis. Neuron 2020; 105:867-881.e9. [PMID: 31883789 DOI: 10.1016/j.neuron.2019.11.027] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/28/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
The human-specific gene ARHGAP11B is preferentially expressed in neural progenitors of fetal human neocortex and increases abundance and proliferation of basal progenitors (BPs), which have a key role in neocortex expansion. ARHGAP11B has therefore been implicated in the evolutionary expansion of the human neocortex, but its mode of action has been unknown. Here, we show that ARHGAP11B is imported into mitochondria, where it interacts with the adenine nucleotide translocase (ANT) and inhibits the mitochondrial permeability transition pore (mPTP). BP expansion by ARHGAP11B requires its presence in mitochondria, and pharmacological inhibition of ANT function or mPTP opening mimic BP expansion by ARHGAP11B. Searching for the underlying metabolic basis, we find that BP expansion by ARHGAP11B requires glutaminolysis, the conversion of glutamine to glutamate for the tricarboxylic acid (TCA) cycle. Hence, an ARHGAP11B-induced, mitochondria-based effect on BP metabolism that is a hallmark of highly mitotically active cells appears to underlie its role in neocortex expansion.
Collapse
Affiliation(s)
- Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany.
| | - Judit Dóczi
- Department of Medical Biochemistry, Semmelweis University, Budapest, Tuzolto St. 37-47 1094, Hungary
| | - Anneline Pinson
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Michaela Wilsch-Bräuninger
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Katherine R Long
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Samir Vaid
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Janelle Lauer
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Aliona Bogdanova
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Barbara Borgonovo
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Patrick Keller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - David Drechsel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Teymuras Kurzchalia
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Pauline Wimberger
- Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Technische Universität Dresden, Dresden, Germany
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, Tuzolto St. 37-47 1094, Hungary
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany.
| |
Collapse
|
17
|
Šileikytė J, Forte M. The Mitochondrial Permeability Transition in Mitochondrial Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3403075. [PMID: 31191798 PMCID: PMC6525910 DOI: 10.1155/2019/3403075] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial permeability transition pore (PTP), a (patho)physiological phenomenon discovered over 40 years ago, is still not completely understood. PTP activation results in a formation of a nonspecific channel within the inner mitochondrial membrane with an exclusion size of 1.5 kDa. PTP openings can be transient and are thought to serve a physiological role to allow quick Ca2+ release and/or metabolite exchange between mitochondrial matrix and cytosol or long-lasting openings that are associated with pathological conditions. While matrix Ca2+ and oxidative stress are crucial in its activation, the consequence of prolonged PTP opening is dissipation of the inner mitochondrial membrane potential, cessation of ATP synthesis, bioenergetic crisis, and cell death-a primary characteristic of mitochondrial disorders. PTP involvement in mitochondrial and cellular demise in a variety of disease paradigms has been long appreciated, yet the exact molecular entity of the PTP and the development of potent and specific PTP inhibitors remain areas of active investigation. In this review, we will (i) summarize recent advances made in elucidating the molecular nature of the PTP focusing on evidence pointing to mitochondrial FoF1-ATP synthase, (ii) summarize studies aimed at discovering novel PTP inhibitors, and (iii) review data supporting compromised PTP activity in specific mitochondrial diseases.
Collapse
Affiliation(s)
- Justina Šileikytė
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael Forte
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
18
|
Fels JA, Manfredi G. Sex Differences in Ischemia/Reperfusion Injury: The Role of Mitochondrial Permeability Transition. Neurochem Res 2019; 44:2336-2345. [PMID: 30863968 DOI: 10.1007/s11064-019-02769-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/23/2022]
Abstract
Brain and heart ischemia are among the leading causes of death and disability in both men and women, but there are significant sex differences in the incidence and severity of these diseases. Ca2+ dysregulation in response to ischemia/reperfusion injury (I/RI) is a well-recognized pathogenic mechanism leading to the death of affected cells. Excess intracellular Ca2+ causes mitochondrial matrix Ca2+ overload that can result in mitochondrial permeability transition (MPT), which can have severe consequences for mitochondrial function and trigger cell death. Recent findings indicate that estrogens and their related receptors are involved in the regulation of MPT, suggesting that sex differences in I/RI could be linked to estrogen-dependent modulation of mitochondrial Ca2+. Here, we review the evidence supporting sex differences in I/RI and the role of estrogen and estrogen receptors in producing these differences, the involvement of mitochondrial Ca2+ overload in disease pathogenesis, and the estrogen-dependent modulation of MPT that may contribute to sex differences.
Collapse
Affiliation(s)
- Jasmine A Fels
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st St., RR506, New York, NY, 10065, USA.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st St., RR506, New York, NY, 10065, USA.
| |
Collapse
|
19
|
Chinopoulos C, Batzios S, van den Heuvel LP, Rodenburg R, Smeets R, Waterham HR, Turkenburg M, Ruiter JP, Wanders RJA, Doczi J, Horvath G, Dobolyi A, Vargiami E, Wevers RA, Zafeiriou D. Mutated SUCLG1 causes mislocalization of SUCLG2 protein, morphological alterations of mitochondria and an early-onset severe neurometabolic disorder. Mol Genet Metab 2019; 126:43-52. [PMID: 30470562 DOI: 10.1016/j.ymgme.2018.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 11/19/2022]
Abstract
Succinate-CoA ligase (SUCL) is a heterodimer consisting of an alpha subunit encoded by SUCLG1, and a beta subunit encoded by either SUCLA2 or SUCLG2 catalyzing an ATP- or GTP-forming reaction, respectively, in the mitochondrial matrix. The deficiency of this enzyme represents an encephalomyopathic form of mtDNA depletion syndromes. We describe the fatal clinical course of a female patient with a pathogenic mutation in SUCLG1 (c.626C > A, p.Ala209Glu) heterozygous at the genomic DNA level, but homozygous at the transcriptional level. The patient exhibited early-onset neurometabolic abnormality culminating in severe brain atrophy and dystonia leading to death by the age of 3.5 years. Urine and plasma metabolite profiling was consistent with SUCL deficiency which was confirmed by enzyme analysis and lack of mitochondrial substrate-level phosphorylation (mSLP) in skin fibroblasts. Oxygen consumption- but not extracellular acidification rates were altered only when using glutamine as a substrate, and this was associated with mild mtDNA depletion and no changes in ETC activities. Immunoblot analysis revealed no detectable levels of SUCLG1, while SUCLA2 and SUCLG2 protein expressions were largely reduced. Confocal imaging of triple immunocytochemistry of skin fibroblasts showed that SUCLG2 co-localized only partially with the mitochondrial network which otherwise exhibited an increase in fragmentation compared to control cells. Our results outline the catastrophic consequences of the mutated SUCLG1 leading to strongly reduced SUCL activity, mSLP impairment, mislocalization of SUCLG2, morphological alterations in mitochondria and clinically to a severe neurometabolic disease, but in the absence of changes in mtDNA levels or respiratory complex activities.
Collapse
Affiliation(s)
| | - Spyros Batzios
- 1st Department of Pediatrics, "Hippokratio" General Hospital, Aristotle University, Thessaloniki, Greece; Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital, London, UK
| | - Lambertus P van den Heuvel
- Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands; Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Richard Rodenburg
- Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands; Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Roel Smeets
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Marjolein Turkenburg
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Jos P Ruiter
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Judit Doczi
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Gergo Horvath
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Arpad Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences, Eotvos Lorand University, Budapest, Hungary; Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Euthymia Vargiami
- 1st Department of Pediatrics, "Hippokratio" General Hospital, Aristotle University, Thessaloniki, Greece
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Dimitrios Zafeiriou
- 1st Department of Pediatrics, "Hippokratio" General Hospital, Aristotle University, Thessaloniki, Greece.
| |
Collapse
|
20
|
Baines CP, Gutiérrez-Aguilar M. The still uncertain identity of the channel-forming unit(s) of the mitochondrial permeability transition pore. Cell Calcium 2018; 73:121-130. [PMID: 29793100 PMCID: PMC5993635 DOI: 10.1016/j.ceca.2018.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/07/2018] [Accepted: 05/12/2018] [Indexed: 10/16/2022]
Abstract
Mitochondria from different organisms can undergo a sudden process of inner membrane unselective leakiness to molecules known as the mitochondrial permeability transition (MPT). This process has been studied for nearly four decades and several proteins have been claimed to constitute, or at least regulate the usually inactive pore responsible for this transition. However, no protein candidate proposed as the actual pore-forming unit has passed rigorous gain- or loss-of-function genetic tests. Here we review evidence for -and against- putative channel-forming components of the MPT pore. We conclude that the structure of the MPT pore still remains largely undefined and suggest that future studies should follow established technical considerations to unambiguously consolidate the channel forming constituent(s) of the MPT pore.
Collapse
Affiliation(s)
- Christopher P Baines
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA; Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | - Manuel Gutiérrez-Aguilar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico.
| |
Collapse
|
21
|
Channel formation by F-ATP synthase and the permeability transition pore: an update. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Chen E, Kiebish MA, McDaniel J, Niedzwiecka K, Kucharczyk R, Ravasz D, Gao F, Narain NR, Sarangarajan R, Seyfried TN, Adam-Vizi V, Chinopoulos C. Perturbation of the yeast mitochondrial lipidome and associated membrane proteins following heterologous expression of Artemia-ANT. Sci Rep 2018; 8:5915. [PMID: 29651047 PMCID: PMC5897331 DOI: 10.1038/s41598-018-24305-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/29/2018] [Indexed: 12/22/2022] Open
Abstract
Heterologous expression is a landmark technique for studying a protein itself or its effect on the expression host, in which membrane-embedded proteins are a common choice. Yet, the impact of inserting a foreign protein to the lipid environment of host membranes, has never been addressed. Here we demonstrated that heterologous expression of the Artemia franciscana adenine nucleotide translocase (ANT) in yeasts altered lipidomic composition of their inner mitochondrial membranes. Along with this, activities of complex II, IV and ATP synthase, all membrane-embedded components, were significantly decreased while their expression levels remained unaffected. Although the results represent an individual case of expressing a crustacean protein in yeast inner mitochondrial membranes, it cannot be excluded that host lipidome alterations is a more widespread epiphenomenon, potentially biasing heterologous expression experiments. Finally, our results raise the possibility that not only lipids modulate protein function, but also membrane-embedded proteins modulate lipid composition, thus revealing a reciprocal mode of regulation for these two biomolecular entities.
Collapse
Affiliation(s)
| | | | | | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Dora Ravasz
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary.,MTA-SE Lendület Neurobiochemistry Research Group, Budapest, 1094, Hungary
| | - Fei Gao
- BERG LLC, Framingham, MA, 01701, USA
| | | | | | - Thomas N Seyfried
- Biology Department, Boston College, Chestnut Hill, Boston, MA, 02467, USA
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary.,MTA-SE Laboratory for Neurobiochemistry, Budapest, 1094, Hungary
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary. .,MTA-SE Lendület Neurobiochemistry Research Group, Budapest, 1094, Hungary.
| |
Collapse
|
23
|
Varjú I, Farkas VJ, Kőhidai L, Szabó L, Farkas ÁZ, Polgár L, Chinopoulos C, Kolev K. Functional cyclophilin D moderates platelet adhesion, but enhances the lytic resistance of fibrin. Sci Rep 2018; 8:5366. [PMID: 29599453 PMCID: PMC5876378 DOI: 10.1038/s41598-018-23725-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 03/20/2018] [Indexed: 01/11/2023] Open
Abstract
In the course of thrombosis, platelets are exposed to a variety of activating stimuli classified as 'strong' (e.g. thrombin and collagen) or 'mild' (e.g. ADP). In response, activated platelets adhere to injured vasculature, aggregate, and stabilise the three-dimensional fibrin scaffold of the expanding thrombus. Since 'strong' stimuli also induce opening of the mitochondrial permeability transition pore (MPTP) in platelets, the MPTP-enhancer Cyclophilin D (CypD) has been suggested as a critical pharmacological target to influence thrombosis. However, it is poorly understood what role CypD plays in the platelet response to 'mild' stimuli which act independently of MPTP. Furthermore, it is unknown how CypD influences platelet-driven clot stabilisation against enzymatic breakdown (fibrinolysis). Here we show that treatment of human platelets with Cyclosporine A (a cyclophilin-inhibitor) boosts ADP-induced adhesion and aggregation, while genetic ablation of CypD in murine platelets enhances adhesion but not aggregation. We also report that platelets lacking CypD preserve their integrity in a fibrin environment, and lose their ability to render clots resistant against fibrinolysis. Our results indicate that CypD has opposing haemostatic roles depending on the stimulus and stage of platelet activation, warranting a careful design of any antithrombotic strategy targeting CypD.
Collapse
Affiliation(s)
- Imre Varjú
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, 02115, USA
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | | | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, 1089, Hungary
| | - László Szabó
- Department of Functional and Structural Materials, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary
| | - Ádám Zoltán Farkas
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Lívia Polgár
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, 1089, Hungary
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
- MTA-SE Lendület Neurobiochemistry Research Group, Budapest, 1094, Hungary
| | - Krasimir Kolev
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary.
| |
Collapse
|
24
|
Kong JN, Zhu Z, Itokazu Y, Wang G, Dinkins MB, Zhong L, Lin HP, Elsherbini A, Leanhart S, Jiang X, Qin H, Zhi W, Spassieva SD, Bieberich E. Novel function of ceramide for regulation of mitochondrial ATP release in astrocytes. J Lipid Res 2018; 59:488-506. [PMID: 29321137 DOI: 10.1194/jlr.m081877] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/08/2018] [Indexed: 12/14/2022] Open
Abstract
We reported that amyloid β peptide (Aβ42) activated neutral SMase 2 (nSMase2), thereby increasing the concentration of the sphingolipid ceramide in astrocytes. Here, we show that Aβ42 induced mitochondrial fragmentation in wild-type astrocytes, but not in nSMase2-deficient cells or astrocytes treated with fumonisin B1 (FB1), an inhibitor of ceramide synthases. Unexpectedly, ceramide depletion was concurrent with rapid movements of mitochondria, indicating an unknown function of ceramide for mitochondria. Using immunocytochemistry and super-resolution microscopy, we detected ceramide-enriched and mitochondria-associated membranes (CEMAMs) that were codistributed with microtubules. Interaction of ceramide with tubulin was confirmed by cross-linking to N-[9-(3-pent-4-ynyl-3-H-diazirine-3-yl)-nonanoyl]-D-erythro-sphingosine (pacFACer), a bifunctional ceramide analog, and binding of tubulin to ceramide-linked agarose beads. Ceramide-associated tubulin (CAT) translocated from the perinuclear region to peripheral CEMAMs and mitochondria, which was prevented in nSMase2-deficient or FB1-treated astrocytes. Proximity ligation and coimmunoprecipitation assays showed that ceramide depletion reduced association of tubulin with voltage-dependent anion channel 1 (VDAC1), an interaction known to block mitochondrial ADP/ATP transport. Ceramide-depleted astrocytes contained higher levels of ATP, suggesting that ceramide-induced CAT formation leads to VDAC1 closure, thereby reducing mitochondrial ATP release, and potentially motility and resistance to Aβ42 Our data also indicate that inhibiting ceramide generation may protect mitochondria in Alzheimer's disease.
Collapse
Affiliation(s)
- Ji-Na Kong
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Zhihui Zhu
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Physiology, University of Kentucky, Lexington, KY
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA
| | - Guanghu Wang
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Physiology, University of Kentucky, Lexington, KY
| | - Michael B Dinkins
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA
| | - Liansheng Zhong
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Physiology, University of Kentucky, Lexington, KY.,College of Basic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Hsuan-Pei Lin
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Physiology, University of Kentucky, Lexington, KY
| | - Ahmed Elsherbini
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Physiology, University of Kentucky, Lexington, KY
| | - Silvia Leanhart
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA
| | - Xue Jiang
- Department of Physiology, University of Kentucky, Lexington, KY.,Rehabilitation Center, ShengJing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Haiyan Qin
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Wenbo Zhi
- Center of Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | | | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA .,Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
25
|
Rottenberg H, Hoek JB. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell 2017; 16:943-955. [PMID: 28758328 PMCID: PMC5595682 DOI: 10.1111/acel.12650] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 12/23/2022] Open
Abstract
Excessive production of mitochondrial reactive oxygen species (mROS) is strongly associated with mitochondrial and cellular oxidative damage, aging, and degenerative diseases. However, mROS also induces pathways of protection of mitochondria that slow aging, inhibit cell death, and increase lifespan. Recent studies show that the activation of the mitochondrial permeability transition pore (mPTP), which is triggered by mROS and mitochondrial calcium overloading, is enhanced in aged animals and humans and in aging-related degenerative diseases. mPTP opening initiates further production and release of mROS that damage both mitochondrial and nuclear DNA, proteins, and phospholipids, and also releases matrix NAD that is hydrolyzed in the intermembrane space, thus contributing to the depletion of cellular NAD that accelerates aging. Oxidative damage to calcium transporters leads to calcium overload and more frequent opening of mPTP. Because aging enhances the opening of the mPTP and mPTP opening accelerates aging, we suggest that mPTP opening drives the progression of aging. Activation of the mPTP is regulated, directly and indirectly, not only by the mitochondrial protection pathways that are induced by mROS, but also by pro-apoptotic signals that are induced by DNA damage. We suggest that the integration of these contrasting signals by the mPTP largely determines the rate of cell aging and the initiation of cell death, and thus animal lifespan. The suggestion that the control of mPTP activation is critical for the progression of aging can explain the conflicting and confusing evidence regarding the beneficial and deleterious effects of mROS on health and lifespan.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D; 23 W. Bridge Street New Hope PA 18038 USA
| | - Jan B. Hoek
- Department of Anatomy, Pathology and Cell Biology; MitoCare Center; Thomas Jefferson University; Philadelphia PA 19107 USA
| |
Collapse
|
26
|
Abstract
Current models theorizing on what the mitochondrial permeability transition (mPT) pore is made of, implicate the c-subunit rings of ATP synthase complex. However, two very recent studies, one on atomistic simulations and in the other disrupting all genes coding for the c subunit disproved those models. As a consequence of this, the structural elements of the pore remain unknown. The purpose of the present short-review is to (i) briefly review the latest findings, (ii) serve as an index for more comprehensive reviews regarding mPT specifics, (iii) reiterate on the potential pitfalls while investigating mPT in conjunction to bioenergetics, and most importantly (iv) suggest to those in search of mPT pore identity, to also look elsewhere.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Hungary.
| |
Collapse
|
27
|
Giorgio V, Burchell V, Schiavone M, Bassot C, Minervini G, Petronilli V, Argenton F, Forte M, Tosatto S, Lippe G, Bernardi P. Ca 2+ binding to F-ATP synthase β subunit triggers the mitochondrial permeability transition. EMBO Rep 2017; 18:1065-1076. [PMID: 28507163 DOI: 10.15252/embr.201643354] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 01/28/2023] Open
Abstract
F-ATP synthases convert the electrochemical energy of the H+ gradient into the chemical energy of ATP with remarkable efficiency. Mitochondrial F-ATP synthases can also undergo a Ca2+-dependent transformation to form channels with properties matching those of the permeability transition pore (PTP), a key player in cell death. The Ca2+ binding site and the mechanism(s) through which Ca2+ can transform the energy-conserving enzyme into a dissipative structure promoting cell death remain unknown. Through in vitro, in vivo and in silico studies we (i) pinpoint the "Ca2+-trigger site" of the PTP to the catalytic site of the F-ATP synthase β subunit and (ii) define a conformational change that propagates from the catalytic site through OSCP and the lateral stalk to the inner membrane. T163S mutants of the β subunit, which show a selective decrease in Ca2+-ATP hydrolysis, confer resistance to Ca2+-induced, PTP-dependent death in cells and developing zebrafish embryos. These findings are a major advance in the molecular definition of the transition of F-ATP synthase to a channel and of its role in cell death.
Collapse
Affiliation(s)
- Valentina Giorgio
- Department of Biomedical Sciences, University of Padova, Padova, Italy .,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| | - Victoria Burchell
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Schiavone
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Claudio Bassot
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Valeria Petronilli
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| | | | - Michael Forte
- Vollum Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Silvio Tosatto
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| | - Giovanna Lippe
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy .,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| |
Collapse
|
28
|
Micu I, Brideau C, Lu L, Stys PK. Effects of laser polarization on responses of the fluorescent Ca 2+ indicator X-Rhod-1 in neurons and myelin. NEUROPHOTONICS 2017; 4:025002. [PMID: 28612034 PMCID: PMC5459219 DOI: 10.1117/1.nph.4.2.025002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/15/2017] [Indexed: 05/05/2023]
Abstract
Laser-scanning optical microscopes generally do not control the polarization of the exciting laser field. We show that laser polarization and imaging mode (confocal versus two photon) exert a profound influence on the ability to detect [Formula: see text] changes in both cultured neurons and living myelin. With two-photon excitation, increasing ellipticity resulted in a [Formula: see text] reduction in resting X-Rhod-1 fluorescence in homogeneous bulk solution, cell cytoplasm, and myelin. In contrast, varying the angle of a linearly polarized laser field only had appreciable effects on dyes that partitioned into myelin in an ordered manner. During injury-induced [Formula: see text] increases, larger ellipticities resulted in a significantly greater injury-induced signal increase in neurons, and particularly in myelin. Indeed, the traditional method of measuring [Formula: see text] changes using one-photon confocal mode with linearly polarized continuous wave laser illumination produced no appreciable X-Rhod-1 signal increase in ischemic myelin, compared to a robust [Formula: see text] fluorescence increase with two-photon excitation and optimized ellipticity with the identical injury paradigm. This underscores the differences in one- versus two-photon excitation and, in particular, the under-appreciated effects of laser polarization on the behavior of certain [Formula: see text] reporters, which may lead to substantial underestimates of the real [Formula: see text] fluctuations in various cellular compartments.
Collapse
Affiliation(s)
- Ileana Micu
- University of Calgary, Cumming School of Medicine, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Craig Brideau
- University of Calgary, Cumming School of Medicine, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Li Lu
- University of Calgary, Cumming School of Medicine, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Peter K. Stys
- University of Calgary, Cumming School of Medicine, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary, Alberta, Canada
- Address all correspondence to: Peter K. Stys, E-mail:
| |
Collapse
|
29
|
Zhang C, Jiang H, Wang P, Liu H, Sun X. Transcription factor NF-kappa B represses ANT1 transcription and leads to mitochondrial dysfunctions. Sci Rep 2017; 7:44708. [PMID: 28317877 PMCID: PMC5357787 DOI: 10.1038/srep44708] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/13/2017] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are intracellular organelles involved in cell survival and death, and dysfunctions of mitochondria are related to neurodegenerative diseases. As the most abundant protein in the mitochondrial inner membrane, adenine nucleotide translocator 1 (ANT1) plays a critical role in mitochondrial function, including the exchange of adenosine triphosphate/adenosine diphosphate (ATP/ADP) in mitochondria, basal proton leak and mitochondrial permeability transition pore (mPTP). Here, we show that ANT1 transcription is regulated by transcription factor NF-kappa B (NF-κB). NF-κB is bound to two NF-κB responsive elements (NREs) located at +1 to +20 bp and +41 to +61 bp in the ANT1 promoter. An NF-κB signalling stimulator, tumour necrosis factor alpha (TNFα), suppresses ANT1 mRNA and protein expression. Activation of NF-κB by TNFα impairs ATP/ADP exchange and decreases ATP production in mitochondria. Activation of NF-κB by TNFα decreases calcium induced mPTP opening, elevates mitochondrial potential and increases reactive oxygen species (ROS) production in both T98G human glioblastoma cells and rat cortical neurons. These results demonstrate that NF-κB signalling may repress ANT1 gene transcription and impair mitochondrial functions.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Neurology, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Hui Jiang
- Department of Pediatrics, 2nd Hospital of Shandong University, No. 44 West Wenhua Road, Jinan, 250011, Shandong Province, China
| | - Pin Wang
- Otolaryngology Key, Lab of Ministry of Health, No. 44 West Wenhua Road, Jinan, China
| | - Heng Liu
- Otolaryngology Key, Lab of Ministry of Health, No. 44 West Wenhua Road, Jinan, China
| | - Xiulian Sun
- Brain Research Institute, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| |
Collapse
|