1
|
Wang S, Wang H. Treatment of immune checkpoint inhibitor-related colitis: a narrative review. Transl Cancer Res 2024; 13:7002-7014. [PMID: 39816545 PMCID: PMC11729759 DOI: 10.21037/tcr-24-2150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
Background and Objective Cancer is one of the most difficult diseases facing modern medicine, and increasing amounts of research and clinical treatments are being applied to the treatment of cancer. Immunotherapy, particularly immune checkpoint inhibitor (ICI) therapy, has revolutionized the treatment and overall survival of patients with several different types of cancer. Approximately one-third of patients treated with ICIs may experience immune-related adverse events (irAEs). Immune checkpoint inhibitor-associated colitis (ICIC) is the most common irAE with an incidence of approximately 8-10%, ICIC usually presents as watery or bloody diarrhea, and if the symptoms are severe, ICI treatment must be interrupted or even terminated. This review summarizes the epidemiology, pathogenesis, clinical characteristics, and therapies of ICIC, focusing on the use of biologics, in order to propose treatment options in different situations to control immune checkpoint inhibitor-related colitis as soon as possible. Methods To find relevant articles for this narrative review paper, a combination of keywords such as immune checkpoint inhibitor-related colitis, corticosteroids, biologics were searched for in PubMed databases. Key Content and Findings The pathogenesis of ICIC is complex and primarily involves antitumor effects and indirect damage to colonic tissues, as well as the activation of specific proinflammatory pathways. Corticosteroids (CSs) are the first line of treatment for ICIC, but steroid-refractory or steroid-resistant cases often occur. Patients with irAE colitis respond favorably to biologics, and patients with CS-resistant/refractory enterocolitis can benefit from the early use of biologics. Conclusions Biologics are currently recommended for the treatment of ICIC but are usually used as a supplement after the failure of first-line CS therapy. Patients with irAE colitis respond favorably to biologics, and patients with CS-resistant/refractory enterocolitis can benefit from the early use of biologics. Biologics (alone or in combination with CS) should be considered as an early therapy option for high-risk patients rather than just an escalation after a failure to respond to CS.
Collapse
Affiliation(s)
- Shiyang Wang
- Division of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hanping Wang
- Division of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Zhang Y, Mi X, Zhang Y, Li J, Qin Y, He P, Zhao Y, Su B, He L. Immune checkpoint activity exacerbate renal interstitial fibrosis progression by enhancing PD-L1 expression in renal tubular epithelial cells. Transl Res 2024; 271:52-67. [PMID: 38723861 DOI: 10.1016/j.trsl.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
Renal interstitial fibrosis (RIF) is often associated with inflammatory cell infiltration and no effective therapy. Programmed death cell-1 (PD-1) and its ligand PD-L1 were playing critical roles in T cell coinhibition and exhaustion, but the role in RIF is unclear. Here the data analyses of serum from 122 IgA nephrology (IgAN) patients showed that high level of soluble PD-1(sPD-1) was an independent risk factor for RIF and renal function progression. PD-L1 was also overexpressed in renal interstitial tissues from both IgAN patients with high level of sPD-1 and the unilateral ureteral obstruction (UUO) mouse. PD-L1 was significantly overexpressed in HK-2 cells with upregulated collagen and α-SMA when stimulated by inflammation or hypoxia in vitro. Additionally, matrix metalloproteinases (MMP-2) could increase the level of sPD-1 in culture supernatant when added in co-culture system of HK-2 and jurkat cells, which implied serum sPD-1 of IgAN might be cleaved by MMP-2 from T cells infiltrated into the tubulointerstitial inflammatory microenvironment. Crucially, injection of PD-L1 fusion protein, the blocker of sPD-1, could ameliorate kidney fibrosis in UUO mice by increasing T cell coinhibition and exhaustion, suggesting the therapeutic potential of PD-L1 fusion targeting for renal fibrosis. Take together, it reveals a novel causal role of sPD-1 in serum and PD-L1 of renal interstitial tissues in the development of renal fibrosis of IgAN, and targeting sPD-1 in serum by PD-L1 fusion protein is a potential therapeutic approach to prevent renal fibrosis of IgAN.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xue Mi
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, China; Medical School of Yan'an University, Yan'an, China
| | - Yunchao Zhang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jipeng Li
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Peng He
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Ya Zhao
- Department of Medical Microbiology and Parasitology, Air Force Medical University, Xi'an, China.
| | - Binxiao Su
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China; Department of Intensive Care Unit, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Lijie He
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
3
|
El Saftawy EA, Turkistani SA, Alghabban HM, Albadawi EA, Ibrahim BEA, Morsy S, Farag MF, Al Hariry NS, Shash RY, Elkazaz A, Amin NM. Effects of Lactobacilli acidophilus and/or spiramycin as an adjunct in toxoplasmosis infection challenged with diabetes. Food Waterborne Parasitol 2023; 32:e00201. [PMID: 37719029 PMCID: PMC10504688 DOI: 10.1016/j.fawpar.2023.e00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 09/19/2023] Open
Abstract
The current study assessed the anti-parasitic impact of probiotics on Toxoplasma gondii infection either solely or challenged with diabetes in Swiss albino mice. The study design encompassed group-A (diabetic), group-B (non-diabetic), and healthy controls (C). Each group was divided into infected-untreated (subgroup-1); infected and spiramycin-treated (subgroup-2); infected and probiotic-treated (subgroup-3); infected and spiramycin+ probiotic-treated (subgroup-4). Diabetic-untreated animals exhibited acute toxoplasmosis and higher cerebral parasite load. Overall, various treatments reduced intestinal pathology, improved body weight, and decreased mortalities; nevertheless, probiotic + spiramycin exhibited significant differences. On day 7 post-infection both PD-1 and IL-17A demonstrated higher scores in the intestine of diabetic-untreated mice compared with non-diabetics and healthy control; whereas, claudin-1 revealed worsening expression. Likewise, on day 104 post-infection cerebral PD-1 and IL-17A showed increased expressions in diabetic animals. Overall, treatment modalities revealed lower scores of PD-1 and IL-17A in non-diabetic subgroups compared with diabetics. Intestinal and cerebral expressions of IL-17A and PD-1 demonstrated positive correlations with cerebral parasite load. In conclusion, toxoplasmosis when challenged with diabetes showed massive pathological features and higher parasite load in the cerebral tissues. Probiotics are a promising adjunct to spiramycin by ameliorating IL-17A and PD-1 in the intestinal and cerebral tissues, improving the intestinal expression of claudin-1, and efficiently reducing the cerebral parasite load.
Collapse
Affiliation(s)
- Enas A. El Saftawy
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Medical Parasitology Department, Faculty of Medicine, Armed Forces College of Medicine, Cairo, Egypt
| | | | - Hadel M. Alghabban
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Saudi Arabia
| | - Emad A. Albadawi
- Department of Anatomy, College of Medicine, Taibah University, Saudi Arabia
| | - Basma EA Ibrahim
- Physiological Sciences Department, Fakeeh College for Medical Sciences, Saudi Arabia
- Faculty of Medicine, Cairo University, Egypt
| | - Suzan Morsy
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Saudi Arabia
- Department of Clinical Pharmacology, Alexandria, Egypt
| | - Mohamed F. Farag
- Medical Physiology Department, Armed Forces College of Medicine, Cairo, Egypt
| | | | - Rania Y. Shash
- Medical Microbiology and Immunology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aly Elkazaz
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha M. Amin
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Terrin M, Migliorisi G, Dal Buono A, Gabbiadini R, Mastrorocco E, Quadarella A, Repici A, Santoro A, Armuzzi A. Checkpoint Inhibitor-Induced Colitis: From Pathogenesis to Management. Int J Mol Sci 2023; 24:11504. [PMID: 37511260 PMCID: PMC10380448 DOI: 10.3390/ijms241411504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The advent of immunotherapy, specifically of immune checkpoint inhibitors (ICIs), for the treatment of solid tumors has deeply transformed therapeutic algorithms in medical oncology. Approximately one-third of patients treated with ICIs may de velop immune-related adverse events, and the gastrointestinal tract is often affected by different grades of mucosal inflammation. Checkpoint inhibitors colitis (CIC) presents with watery or bloody diarrhea and, in the case of severe symptoms, requires ICIs discontinuation. The pathogenesis of CIC is multifactorial and still partially unknown: anti-tumor activity that collaterally effects the colonic tissue and the upregulation of specific systemic inflammatory pathways (i.e., CD8+ cytotoxic and CD4+ T lymphocytes) are mainly involved. Many questions remain regarding treatment timing and options, and biological treatment, especially with anti-TNF alpha, can be offered to these patients with the aim of rapidly resuming oncological therapies. CIC shares similar pathogenesis and aspects with inflammatory bowel disease (IBD) and the use of ICI in IBD patients is under evaluation. This review aims to summarize the pathogenetic mechanism underlying CIC and to discuss the current evidenced-based management options, including the role of biological therapy, emphasizing the relevant clinical impact on CIC and the need for prompt recognition and treatment.
Collapse
Affiliation(s)
- Maria Terrin
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.T.); (G.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Giulia Migliorisi
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.T.); (G.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Arianna Dal Buono
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.T.); (G.M.)
| | - Roberto Gabbiadini
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.T.); (G.M.)
| | - Elisabetta Mastrorocco
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.T.); (G.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Alessandro Quadarella
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.T.); (G.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Division of Gastroenterology and Digestive Endoscopy, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Medical Oncology and Haematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.T.); (G.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| |
Collapse
|
5
|
Shirwaikar Thomas A, Hanauer S, Wang Y. Immune Checkpoint Inhibitor Enterocolitis vs Idiopathic Inflammatory Bowel Disease. Clin Gastroenterol Hepatol 2023; 21:878-890. [PMID: 36270617 DOI: 10.1016/j.cgh.2022.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 02/07/2023]
Abstract
Immune checkpoint inhibitors have revolutionized management of advanced malignancies. However, their use is frequently complicated by immune related adverse events (irAEs), immune checkpoint inhibitor enterocolitis (IMEC) being the most common toxicity. IMEC is a distinct form of bowel inflammation that is highly reminiscent of idiopathic inflammatory bowel disorders (Crohn's disease, ulcerative colitis, and microscopic colitis). In this review, we highlight the similarities and differences in the pathophysiology, clinical presentation, evaluation, and management of these overlapping immune inflammatory bowel disorders. IMEC is an inflammatory bowel disease-like irAE that occurs as an outcome of disruption of intestinal immune surveillance and gut dysbiosis. Clinical and endoscopic presentation of both entities is strikingly similar, which often guides management. Though well established in inflammatory bowel disease, little is known about the long term outcomes of IMEC.
Collapse
Affiliation(s)
- Anusha Shirwaikar Thomas
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen Hanauer
- Division of Gastroenterology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
6
|
Saha A, Dreyfuss I, Sarfraz H, Friedman M, Markowitz J. Dietary Considerations for Inflammatory Bowel Disease Are Useful for Treatment of Checkpoint Inhibitor-Induced Colitis. Cancers (Basel) 2022; 15:84. [PMID: 36612082 PMCID: PMC9817715 DOI: 10.3390/cancers15010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Checkpoint molecules are cell surface receptors on immune cells that mitigate excessive immune responses, but they have increased expression levels in cancer to facilitate immune escape. Checkpoint blockade therapies (e.g., anti-PD-1, anti-CTLA-4, and anti-LAG-3 therapy, among others) have been developed for multiple cancers. Colitis associated with checkpoint blockade therapy has pathophysiological similarities to inflammatory bowel disease (IBD), such as Crohn's disease and ulcerative colitis. Current therapeutic guidelines for checkpoint blockade-induced colitis include corticosteroids and, if the patient is refractory to steroids, immunomodulating antibodies, such as anti-TNF and anti-integrin agents. Interestingly, immunomodulatory molecules, such as TNFα, are upregulated in both IBD and checkpoint-mediated colitis. The inflammatory colitis toxicity symptoms from checkpoint blockade are similar to clinical symptoms experienced by patients with IBD. The pathophysiologic, dietary, and genetic factors associated with IBD will be reviewed. We will then explain how the principles developed for the treatment of IBD can be applied to patients experiencing inflammatory bowel toxicity secondary to checkpoint blockade.
Collapse
Affiliation(s)
- Aditi Saha
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Isabella Dreyfuss
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Humaira Sarfraz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Mark Friedman
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Joseph Markowitz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida School of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
7
|
He H, Chen Q, Fan H, Leng XY, Zhu F, Gao F, Zhou Q, Dong Y, Yang J. Extracellular vesicles produced by bone marrow mesenchymal stem cells overexpressing programmed death-ligand 1 ameliorate dextran sodium sulfate-induced ulcerative colitis in rats by regulating Th17/Treg cell balance through PTEN/PI3K/AKT/mTOR axis. J Gastroenterol Hepatol 2022; 37:2243-2254. [PMID: 36044618 PMCID: PMC10087423 DOI: 10.1111/jgh.15987] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Programmed death-ligand 1 (PD-L1) was involved in regulating Th17/Treg cell balance in ulcerative colitis (UC). Extracellular vesicles (EVs) from genetically modified bone marrow mesenchymal stem cells (BMSCs) can serve as a stable delivery system to overexpress PD-L1. The study was designed to evaluate the therapeutic mechanism of BMSC-EVs overexpressing PD-L1 (PD-L1-EVs) on ulcerative colitis. METHODS Experimental model of UC was established in rats by drinking 5% dextran sulfate sodium (DSS). Apoptosis-related proteins, inflammatory response-related factors and oxidative stress related mediators were detected. Westernblot was used to detecte key proteins in the PI3K/AKT signaling pathway and its downstream effectors. The CD4+ Foxp3+ Treg cells and CD4+ IL-17A+ Th17 cells in spleen and mesenteric lymph nodes (MLNs) was detected by flow cytometry. RESULTS PD-L1-EVs significantly alleviated the manifestations and pathological damage of UC rats by inhibiting the expression of IFN-γ, IL-1β, IL-8, IL-6, IL-2, BAX, NF-κB, TNF-α, MPO, and MDA, and up-regulating the expression of IL-4, BCL-2, SOD, and GSH. Furthermore, the proportions of Th17 cells were decreased and that of Treg cells were upregulated by PD-L1-EVs treatment. PTEN inhibitors (bpv) partially abolished the inhibitory effect of PD-L1-EVs on PI3K-AKT signaling and impaired the therapeutic efficacy of PD-L1-EVs. CONCLUSIONS PD-L1-EVs mitigated colonal inflammation, apoptosis and oxidative stress through blocking the activation of PI3K/Akt/mTOR pathway and regulating the balance of Th17/Treg cells.
Collapse
Affiliation(s)
- Hongxia He
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xue Yuan Leng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiaoli Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
8
|
Mommersteeg MC, Yu BT, van den Bosch TPP, von der Thüsen J, Kuipers EJ, Doukas M, Spaander M, Peppelenbosch MP, Fuhler GM. Constitutive programmed death ligand 1 expression protects gastric G-cells from Helicobacter pylori-induced inflammation. Helicobacter 2022; 27:e12917. [PMID: 35899973 PMCID: PMC9542424 DOI: 10.1111/hel.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/20/2022] [Accepted: 06/23/2022] [Indexed: 12/09/2022]
Abstract
INTRODUCTION Gastric intestinal metaplasia (GIM) is a premalignant lesion, highly associated with Helicobacter pylori infection. Previous studies have shown that H. pylori is able to induce the expression of programmed death ligand 1 (PD-L1), an inhibitory immune modulator, in gastric cells. Our aim was to investigate whether tissues from GIM patients may exploit PD-L1 expression upon H. pylori infection to evade immunosurveillance. METHODS Immunohistochemistry was performed for PD-L1 and enteroendocrine markers somatostatin and gastrin on samples derived from a cohort of patients with known GIM, both before and after H. pylori eradication. To determine the identity of any observed PD-L1-positive cells, we performed multiplex immunofluorescent staining and analysis of single-cell sequencing data. RESULTS GIM tissue was rarely positive for PD-L1. In normal glands from GIM patients, PD-L1 was mainly expressed by gastrin-positive G-cells. While the D-cell and G-cell compartments were both diminished 2-fold (p = .015 and p = .01, respectively) during H. pylori infection in the normal antral tissue of GIM patients, they were restored 1 year after eradication. The total number of PD-L1-positive cells was not affected by H. pylori, but the percentage of PD-L1-positive G-cells was 30% higher in infected subjects (p = .011), suggesting that these cells are preferentially rescued from destruction. CONCLUSIONS Antral G-cells frequently express PD-L1 during homeostasis. G-cells seem to be protected from H. pylori-induced immune destruction by PD-L1 expression. GIM itself does not express PD-L1 and is unlikely to escape immunosurveillance via expression of PD-L1.
Collapse
Affiliation(s)
- Michiel C. Mommersteeg
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Bing Ting Yu
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | | | | | - Ernst J. Kuipers
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Michael Doukas
- Department of PathologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Manon C. W. Spaander
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Gwenny M. Fuhler
- Department of Gastroenterology and HepatologyErasmus MC University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
9
|
Beenen AC, Sauerer T, Schaft N, Dörrie J. Beyond Cancer: Regulation and Function of PD-L1 in Health and Immune-Related Diseases. Int J Mol Sci 2022; 23:ijms23158599. [PMID: 35955729 PMCID: PMC9369208 DOI: 10.3390/ijms23158599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/20/2022] Open
Abstract
Programmed Cell Death 1 Ligand 1 (PD-L1, CD274, B7-H1) is a transmembrane protein which is strongly involved in immune modulation, serving as checkpoint regulator. Interaction with its receptor, Programmed Cell Death Protein 1 (PD-1), induces an immune-suppressive signal, which modulates the activity of T cells and other effector cells. This mediates peripheral tolerance and contributes to tumor immune escape. PD-L1 became famous due to its deployment in cancer therapy, where blockage of PD-L1 with the help of therapeutic antagonistic antibodies achieved impressive clinical responses by reactivating effector cell functions against tumor cells. Therefore, in the past, the focus has been placed on PD-L1 expression and its function in various malignant cells, whereas its role in healthy tissue and diseases apart from cancer remained largely neglected. In this review, we summarize the function of PD-L1 in non-cancerous cells, outlining its discovery and origin, as well as its involvement in different cellular and immune-related processes. We provide an overview of transcriptional and translational regulation, and expression patterns of PD-L1 in different cells and organs, and illuminate the involvement of PD-L1 in different autoimmune diseases as well as in the context of transplantation and pregnancy.
Collapse
Affiliation(s)
- Amke C. Beenen
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Tatjana Sauerer
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-31127
| |
Collapse
|
10
|
Abdel Sater AH, Bouferraa Y, Amhaz G, Haibe Y, Lakkiss AE, Shamseddine A. From Tumor Cells to Endothelium and Gut Microbiome: A Complex Interaction Favoring the Metastasis Cascade. Front Oncol 2022; 12:804983. [PMID: 35600385 PMCID: PMC9117727 DOI: 10.3389/fonc.2022.804983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Metastasis is a complicated process through which tumor cells disseminate to distant organs and adapt to novel tumor microenvironments. This multi-step cascade relies on the accumulation of genetic and epigenetic alterations within the tumor cells as well as the surrounding non-tumor stromal cells. Endothelial cells constitute a major player in promoting metastasis formation either by inducing the growth of tumor cells or by directing them towards dissemination in the blood or lymph. In fact, the direct and indirect interactions between tumor and endothelial cells were shown to activate several mechanisms allowing cancer cells’ invasion and extravasation. On the other side, gastrointestinal cancer development was shown to be associated with the disruption of the gut microbiome. While several proposed mechanisms have been investigated in this regard, gut and tumor-associated microbiota were shown to impact the gut endothelial barrier, increasing the dissemination of bacteria through the systemic circulation. This bacterial dislocation allows the formation of an inflammatory premetastatic niche in the distant organs promoting the metastatic cascade of primary tumors. In this review, we discuss the role of the endothelial cells in the metastatic cascade of tumors. We will focus on the role of the gut vascular barrier in the regulation metastasis. We will also discuss the interaction between this vascular barrier and the gut microbiota enhancing the process of metastasis. In addition, we will try to elucidate the different mechanisms through which this bacterial dislocation prepares the favorable metastatic niche at distant organs allowing the dissemination and successful deposition of tumor cells in the new microenvironments. Finally, and given the promising results of the studies combining immune checkpoint inhibitors with either microbiota alterations or anti-angiogenic therapy in many types of cancer, we will elaborate in this review the complex interaction between these 3 factors and their possible therapeutic combination to optimize response to treatment.
Collapse
Affiliation(s)
- Ali H Abdel Sater
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Youssef Bouferraa
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ghid Amhaz
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yolla Haibe
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ahmed El Lakkiss
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
11
|
Yamamoto Y, Carreras J, Shimizu T, Kakizaki M, Kikuti YY, Roncador G, Nakamura N, Kotani A. Anti-HBV drug entecavir ameliorates DSS-induced colitis through PD-L1 induction. Pharmacol Res 2022; 179:105918. [PMID: 35031477 DOI: 10.1016/j.phrs.2021.105918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022]
Abstract
PD-L1-mediated signaling is one of the major processes that regulate local inflammatory responses in the gut. To date, protective effects against colitis through direct Fc-fused PD-L1 administration or indirect PD-L1 induction by probiotics have been reported. We have previously shown that the anti-HBV drug entecavir (ETV) induces PD-L1 expression in human hepatocytes. In the present study, we investigated whether ETV induces PD-L1 expression in intestinal cells and provides a protective effect against DSS-induced colitis. ETV induced PD-L1 expression in epithelial cells, rather than T and B cells, improving the symptoms of colitis. In the mechanistic analysis, Th17 cell differentiation was inhibited and B cell infiltration into the lamina propria was reduced. In addition, PD-L1 expression was positively correlated with Foxp3 or CSF1-R. In conclusion, ETV upregulated PD-L1 expression in epithelial cells and ameliorated inflammation in DSS-induced colitis. These results suggest that ETV may be a potential therapeutic agent as a PD-L1 enhancer for the treatment of human IBD.
Collapse
Affiliation(s)
- Yuichiro Yamamoto
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan. 259-1193; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Joaquim Carreras
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Takanobu Shimizu
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Masatoshi Kakizaki
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan. 259-1193; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Yara Yukie Kikuti
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Giovanna Roncador
- Monoclonal Antibodies Unit. Spanish National Cancer Research Institute (CNIO). Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan. 259-1193
| | - Ai Kotani
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan. 259-1193; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan. 259-1193.
| |
Collapse
|
12
|
Bastos PAD, Wheeler R, Boneca IG. Uptake, recognition and responses to peptidoglycan in the mammalian host. FEMS Microbiol Rev 2021; 45:5902851. [PMID: 32897324 PMCID: PMC7794044 DOI: 10.1093/femsre/fuaa044] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Microbiota, and the plethora of signalling molecules that they generate, are a major driving force that underlies a striking range of inter-individual physioanatomic and behavioural consequences for the host organism. Among the bacterial effectors, one finds peptidoglycan, the major constituent of the bacterial cell surface. In the steady-state, fragments of peptidoglycan are constitutively liberated from bacterial members of the gut microbiota, cross the gut epithelial barrier and enter the host system. The fate of these peptidoglycan fragments, and the outcome for the host, depends on the molecular nature of the peptidoglycan, as well the cellular profile of the recipient tissue, mechanism of cell entry, the expression of specific processing and recognition mechanisms by the cell, and the local immune context. At the target level, physiological processes modulated by peptidoglycan are extremely diverse, ranging from immune activation to small molecule metabolism, autophagy and apoptosis. In this review, we bring together a fragmented body of literature on the kinetics and dynamics of peptidoglycan interactions with the mammalian host, explaining how peptidoglycan functions as a signalling molecule in the host under physiological conditions, how it disseminates within the host, and the cellular responses to peptidoglycan.
Collapse
Affiliation(s)
- Paulo A D Bastos
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France.,Université de Paris, Sorbonne Paris Cité, 12 rue de l'Ecole de Médecine, 75006, Paris, France
| | - Richard Wheeler
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France.,Tumour Immunology and Immunotherapy, Institut Gustave Roussy, 114 rue Edouard-Vaillant, Villejuif 94800, France; INSERM UMR 1015, Villejuif 94800, France
| | - Ivo G Boneca
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France
| |
Collapse
|
13
|
Roosenboom B, Horjus Talabur Horje CS, Smids C, Leeuwis JW, van Koolwijk E, Groenen MJM, Wahab PJ, van Lochem EG. Distribution of mucosal PD-1 expressing T cells in patients with colitis of different etiologies. Scand J Gastroenterol 2021; 56:671-679. [PMID: 33779456 DOI: 10.1080/00365521.2021.1906316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Immunotherapy, targeting programmed death-1 (PD-1) enhances antitumor T-cell activity in patients with malignancies. Blocking PD-1 or its ligand may lead to fulminant colitis as serious adverse event in these patients. Since little is known of the presence and role of PD-1+T cells in colitis of different etiologies, we determined PD-1+T cells in mucosal specimens of patients with inflammatory bowel disease, infectious colitis (InfC), immunotherapy-related colitis (ImC) and healthy controls (HC). METHODS Newly diagnosed patients with ulcerative colitis (UC, n = 73), Crohn's disease (CD, n = 50), InfC (n = 5), ImC (n = 8) and HC (n = 8) were included. Baseline inflamed colonic biopsies were studied with immunohistochemistry and flowcytometry. RESULTS Using immunohistochemistry, PD-1 was not present on lymphocytes in the epithelium of all patients, nor in HC. The percentage PD-1+ of all lymphocytes in the lamina propria was 40% in UC, 5% in InfC, 3% in ImC and 0% in HC. Flowcytometry showed significant higher percentages of PD-1+T cells in inflamed biopsy specimens of UC patients (22%) compared to all other groups: CD patients (13%), InfC (12%), ImC (5%) and HC (6%). CONCLUSION There are relevant differences in distribution and frequencies of mucosal PD-1+ T-cell subsets in patients with UC, CD, InfC and ImC, supporting the hypothesis that these types of colitis are driven by different immunological pathways. The increased numbers of PD-1+ and PD-L1+ lymphocytes in the colonic mucosa of UC patients suggest that the PD-1/PD-L1 pathway might be more activated in UC than in CD.
Collapse
Affiliation(s)
- Britt Roosenboom
- Department of Gastroenterology and Hepatology, Rijnstate Crohn & Colitis Center, Rijnstate Hospital, Arnhem, The Netherlands
| | - Carmen S Horjus Talabur Horje
- Department of Gastroenterology and Hepatology, Rijnstate Crohn & Colitis Center, Rijnstate Hospital, Arnhem, The Netherlands
| | - Carolijn Smids
- Department of Gastroenterology and Hepatology, Rijnstate Crohn & Colitis Center, Rijnstate Hospital, Arnhem, The Netherlands
| | | | - Elly van Koolwijk
- Department of Microbiology and Immunology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Marcel J M Groenen
- Department of Gastroenterology and Hepatology, Rijnstate Crohn & Colitis Center, Rijnstate Hospital, Arnhem, The Netherlands
| | - Peter J Wahab
- Department of Gastroenterology and Hepatology, Rijnstate Crohn & Colitis Center, Rijnstate Hospital, Arnhem, The Netherlands
| | - Ellen G van Lochem
- Department of Microbiology and Immunology, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
14
|
Gelli R, Tonelli M, Ridi F, Bonini M, Kwaambwa HM, Rennie AR, Baglioni P. Modifying the crystallization of amorphous magnesium-calcium phosphate nanoparticles with proteins from Moringa oleifera seeds. J Colloid Interface Sci 2021; 589:367-377. [DOI: 10.1016/j.jcis.2021.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 01/10/2023]
|
15
|
Gelli R, Salvestrini S, Ridi F. Effect of Biologically-Relevant Molecules on the Physico-Chemical Properties of Amorphous Magnesium-Calcium Phosphate Nanoparticles. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2872-2878. [PMID: 33653453 DOI: 10.1166/jnn.2021.19049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The recently-discovered endogenous formation of amorphous magnesium-calcium phosphate nanoparticles (AMCPs) in human distal small intestine occurs in a complex environment, which is rich in biologically-relevant molecules and macromolecules that can shape the properties and the stability of these inorganic particles. In this work, we selected as case studies four diverse molecules, which have different properties and are representative of intestinal luminal components, namely butyric acid, lactose, gluten and peptidoglycan. We prepared AMCPs in the presence of these four additives and we investigated their effect on the features of the particles in terms of morphology, porosity, chemical nature and incorporation/adsorption. The combined use of electron microscopy, infrared spectroscopy and thermal analysis showed that while the morphology and microstructure of the particles do not depend on the type of additive present during the synthesis, AMCPs are able to incorporate a significant amount of peptidoglycan, similarly to the process in which they are involved in vivo.
Collapse
Affiliation(s)
- Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Serena Salvestrini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
16
|
Gelli R, Martini F, Geppi M, Borsacchi S, Ridi F, Baglioni P. Exploring the interplay of mucin with biologically-relevant amorphous magnesium-calcium phosphate nanoparticles. J Colloid Interface Sci 2021; 594:802-811. [PMID: 33794402 DOI: 10.1016/j.jcis.2021.03.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/01/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
HYPOTHESIS It has been recently shown that, in our organism, the secretions of Ca2+, Mg2+ and phosphate ions lead to the precipitation of amorphous magnesium-calcium phosphate nanoparticles (AMCPs) in the small intestine, where the glycoprotein mucin is one of the most abundant proteins, being the main component of the mucus hydrogel layer covering gut epithelium. Since AMCPs precipitate in vivo in a mucin-rich environment, we aim at studying the effect of this glycoprotein on the formation and features of endogenous-like AMCPs. EXPERIMENTS AMCPs were synthesized from aqueous solution in the presence of different concentrations of mucin, and the obtained particles were characterised in terms of crystallinity, composition and morphology. Solid State NMR investigation was also performed in order to assess the interplay between mucin and AMCPs at a sub-nanometric level. FINDING Results show that AMCPs form in the presence of mucin and the glycoprotein is efficiently incorporated in the amorphous particles. NMR indicates the existence of interactions between AMCPs and mucin, revealing how AMCPs in mucin-hybrid nanoparticles affect the features of both proteic and oligosaccharidic portions of the glycoprotein. Considering that the primary function of mucin is the protection of the intestine from pathogens, we speculate that the nature of the interaction between AMCPs and mucin described in the present work might be relevant to the immune system, suggesting a novel type of scenario which could be investigated by combining physico-chemical and biomedical approaches.
Collapse
Affiliation(s)
- Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesca Martini
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, Pisa 56124, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Marco Geppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, Pisa 56124, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Silvia Borsacchi
- Institute for the Chemistry of OrganoMetallic Compounds, Italian National Council for Research, CNR-ICCOM Pisa, via G. Moruzzi 1, Pisa 56124, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy.
| | - Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
17
|
Role of PD-L1 in Gut Mucosa Tolerance and Chronic Inflammation. Int J Mol Sci 2020; 21:ijms21239165. [PMID: 33271941 PMCID: PMC7730745 DOI: 10.3390/ijms21239165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) mucosa is among the most complex systems in the body. It has a diverse commensal microbiome challenged continuously by food and microbial components while delivering essential nutrients and defending against pathogens. For these reasons, regulatory cells and receptors are likely to play a central role in maintaining the gut mucosal homeostasis. Recent lessons from cancer immunotherapy point out the critical role of the B7 negative co-stimulator PD-L1 in mucosal homeostasis. In this review, we summarize the current knowledge supporting the critical role of PD-L1 in gastrointestinal mucosal tolerance and how abnormalities in its expression and signaling contribute to gut inflammation and cancers. Abnormal expression of PD-L1 and/or the PD-1/PD-L1 signaling pathways have been observed in the pathology of the GI tract. We also discuss the current gap in our knowledge with regards to PD-L1 signaling in the GI tract under homeostasis and pathology. Finally, we summarize the current understanding of how this pathway is currently targeted to develop novel therapeutic approaches.
Collapse
|
18
|
Cassol CA, Owen D, Kendra K, Braga JR, Frankel WL, Arnold CA. Programmed cell death-1 (PD-1) and programmed death-ligand 1 (PD-L1) expression in PD-1 inhibitor-associated colitis and its mimics. Histopathology 2020; 77:240-249. [PMID: 32298485 DOI: 10.1111/his.14115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
Abstract
AIMS Immune checkpoint inhibitors (ICIs) have revolutionised the treatment of advanced malignancies by boosting immune-mediated destruction of neoplastic cells, but are associated with side effects stemming from generalised immune system activation against normal tissues. Checkpoint ligand expression in non-tumoral cells of tissues affected by immune-related adverse effects has been described in ICI-associated hypophysitis, myocarditis, and acute interstitial nephritis. We aimed to investigate the tissue expression of the immune checkpoint receptor programmed cell death-1 (PD-1) and its ligand, programmed death-ligand 1 (PD-L1), in PD-1 inhibitor-associated colitis (PD1i colitis). METHODS AND RESULTS PD-1 and PD-L1 immunohistochemical expression levels were analysed in 15 cases of PD1i colitis and potential mimics-infectious colitis and inflammatory bowel disease (IBD). Increased epithelial expression of PD-L1 was observed in PD1i colitis as compared with normal colon and infectious colitis, but the expression level was lower than that in IBD. Conversely, PD-1 expression in inflammatory cells was higher in infectious colitis, intermediate in IBD, and minimal or absent in normal colon and in patients receiving PD-1 inhibitors. CONCLUSIONS Although our results do not justify the use of PD-L1 as a discriminatory marker of PD1i colitis against other entities within the differential diagnosis, they support the concept that PD1i colitis and IBD have similar pathogenetic mechanisms. They also highlight the fact that PD-L1 epithelial overexpression is a commonly used mechanism of the gastrointestinal tract mucosa to protect itself from inflammatory-mediated damage resulting from different aetiologies, which probably underpins the high incidence of gastrointestinal immune-related adverse effects in patients receiving ICI therapies, in whom this mechanism is disrupted.
Collapse
Affiliation(s)
- Clarissa A Cassol
- Department of Pathology, Division of Medical Oncology, Ohio State University, Columbus, OH, USA
| | - Dwight Owen
- Department of Internal Medicine, Division of Medical Oncology, Ohio State University, Columbus, OH, USA
| | - Kari Kendra
- Department of Internal Medicine, Division of Medical Oncology, Ohio State University, Columbus, OH, USA
| | - Juarez R Braga
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Wendy L Frankel
- Department of Pathology, Division of Medical Oncology, Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
19
|
Dai Z, Zhang J, Wu Q, Fang H, Shi C, Li Z, Lin C, Tang D, Wang D. Intestinal microbiota: a new force in cancer immunotherapy. Cell Commun Signal 2020; 18:90. [PMID: 32522267 PMCID: PMC7288675 DOI: 10.1186/s12964-020-00599-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer displays high levels of heterogeneity and mutation potential, and curing cancer remains a challenge that clinicians and researchers are eager to overcome. In recent years, the emergence of cancer immunotherapy has brought hope to many patients with cancer. Cancer immunotherapy reactivates the immune function of immune cells by blocking immune checkpoints, thereby restoring the anti-tumor activity of immune cells. However, immune-related adverse events are a common complication of checkpoint blockade, which might be caused by the physiological role of checkpoint pathways in regulating adaptive immunity and preventing autoimmunity. In this context, the intestinal microbiota has shown great potential in the immunotherapy of cancer. The intestinal microbiota not only regulates the immune function of the body, but also optimizes the therapeutic effect of immune checkpoint inhibitors, thus reducing the occurrence of complications. Therefore, manipulating the intestinal microbiota is expected to enhance the effectiveness of immune checkpoint inhibitors and reduce adverse reactions, which will lead to new breakthroughs in immunotherapy and cancer management. Video abstract.
Collapse
Affiliation(s)
- Zhujiang Dai
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Jingqiu Zhang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, 225001 P. R. China
| | - Qi Wu
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Huiwen Fang
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Chunfeng Shi
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Zhen Li
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Chaobiao Lin
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, 225001 P. R. China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, 225001 P. R. China
| |
Collapse
|
20
|
Aguirre JE, Beswick EJ, Grim C, Uribe G, Tafoya M, Chacon Palma G, Samedi V, McKee R, Villeger R, Fofanov Y, Cong Y, Yochum G, Koltun W, Powell D, Pinchuk IV. Matrix metalloproteinases cleave membrane-bound PD-L1 on CD90+ (myo-)fibroblasts in Crohn's disease and regulate Th1/Th17 cell responses. Int Immunol 2020; 32:57-68. [PMID: 31633754 DOI: 10.1093/intimm/dxz060] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 09/30/2019] [Indexed: 01/01/2023] Open
Abstract
Increased T helper (Th)1/Th17 immune responses are a hallmark of Crohn's disease (CD) immunopathogenesis. CD90+ (myo-)fibroblasts (MFs) are abundant cells in the normal (N) intestinal mucosa contributing to mucosal tolerance via suppression of Th1 cell activity through cell surface membrane-bound PD-L1 (mPD-L1). CD-MFs have a decreased level of mPD-L1. Consequently, mPD-L1-mediated suppression of Th1 cells by CD-MFs is decreased, yet the mechanism responsible for the reduction in mPDL-1 is unknown. Increased expression of matrix metalloproteinases (MMPs) has been reported in CD. Herein we observed that when compared to N- and ulcerative colitis (UC)-MFs, CD-MFs increase in LPS-inducible levels of MMP-7 and -9 with a significant increase in both basal and inducible MMP-10. A similar pattern of MMP expression was observed in the CD-inflamed mucosa. Treatment of N-MFs with a combination of recombinant human MMP-7, -9 and -10 significantly decreased mPD-L1. In contrast, inhibition of MMP activity with MMP inhibitors or anti-MMP-10 neutralizing antibodies restores mPD-L1 on CD-MFs. CD-MFs demonstrated reduced capacity to suppress Th1 and Th17 responses from activated CD4+ T cells. By contrast, supplementation of the CD-MF:T-cell co-cultures with MMP inhibitors or anti-MMP neutralizing antibodies restored the CD-MF-mediated suppression. Our data suggest that (i) increased MMP-10 expression by CD-MFs and concomitant cleavage of PD-L1 from the surface of CD-MFs are likely to be one of the factors contributing to the decrease of mPD-L1-mediated suppression of Th1/Th17 cells in CD; and (ii) MMPs are likely to have a significant role in the intestinal mucosal immune responses.
Collapse
Affiliation(s)
- Jose E Aguirre
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA.,Institute of Translational Science, University of Texas Medical Branch, Galveston, TX, USA
| | - Ellen J Beswick
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Carl Grim
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Gabriela Uribe
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA.,Department of Medicine at PennState Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Marissa Tafoya
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | | | - Von Samedi
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Rohini McKee
- Department of Surgery at the University of New Mexico, Albuquerque, NM, USA
| | - Romain Villeger
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuriy Fofanov
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingzi Cong
- Microbiology and Immunology at the University of Texas Medical Branch, Galveston, TX, USA
| | - Gregory Yochum
- Department of Biochemistry and Molecular Biology, PennState Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Walter Koltun
- Department of Colorectal Surgery at PennState Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Don Powell
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA.,Institute of Translational Science, University of Texas Medical Branch, Galveston, TX, USA
| | - Irina V Pinchuk
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA.,Institute of Translational Science, University of Texas Medical Branch, Galveston, TX, USA.,Department of Medicine at PennState Health Milton S. Hershey Medical Center, Hershey, PA, USA.,Microbiology and Immunology at the University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
21
|
Garo LP, Ajay AK, Fujiwara M, Beynon V, Kuhn C, Gabriely G, Sadhukan S, Raheja R, Rubino S, Weiner HL, Murugaiyan G. Smad7 Controls Immunoregulatory PDL2/1-PD1 Signaling in Intestinal Inflammation and Autoimmunity. Cell Rep 2019; 28:3353-3366.e5. [PMID: 31553906 PMCID: PMC6925592 DOI: 10.1016/j.celrep.2019.07.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 06/09/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023] Open
Abstract
Smad7, a negative regulator of TGF-β signaling, has been implicated in the pathogenesis and treatment of inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC). Here, we found that Smad7 mediates intestinal inflammation by limiting the PDL2/1-PD1 axis in dendritic cells (DCs) and CD4+T cells. Smad7 deficiency in DCs promotes TGF-β responsiveness and the co-inhibitory molecules PDL2/1 on DCs, and it further imprints T cell-PD1 signaling to promote Treg differentiation. DC-specific Smad7 deletion mitigates DSS-induced colitis by inducing CD103+PDL2/1+DCs and Tregs. In addition, Smad7 deficiency in CD4+T cells promotes PD1 and PD1-induced Tregs in vitro. The transfer of Smad7-deficient CD4+T cells enhances Tregs in vivo and protects against T cell-mediated colitis. Furthermore, Smad7 antisense ameliorates DSS-induced UC, increasing TGF-β and PDL2/1-PD1 signaling. Enhancing PD1 signaling directly via Fc-fused PDL2/1 is also beneficial. Our results identify how Smad7 mediates intestinal inflammation and leverages these pathways therapeutically, providing additional strategies for IBD intervention.
Collapse
Affiliation(s)
- Lucien P Garo
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amrendra K Ajay
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mai Fujiwara
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Vanessa Beynon
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Chantal Kuhn
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Galina Gabriely
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Supriya Sadhukan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Radhika Raheja
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen Rubino
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Gelli R, Ridi F, Baglioni P. The importance of being amorphous: calcium and magnesium phosphates in the human body. Adv Colloid Interface Sci 2019; 269:219-235. [PMID: 31096075 DOI: 10.1016/j.cis.2019.04.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/25/2022]
Abstract
This article focuses on the relevance of amorphous calcium (and magnesium) phosphates in living organisms. Although crystalline calcium phosphate (CaP)-based materials are known to constitute the major inorganic constituents of human hard tissues, amorphous CaP-based structures, often in combination with magnesium, are frequently employed by Nature to build up components of our body and guarantee their proper functioning. After a brief description of amorphous calcium phosphate (ACP) formation mechanism and structure, this paper is focused on the stabilization strategies that can be used to enhance the lifetime of the poorly stable amorphous phase. The various locations of our body in which ACP (pure or in combination with Mg2+) can be found (i.e. bone, enamel, small intestine, calciprotein particles and casein micelles) are highlighted, showing how the amorphous nature of ACP is often of paramount importance for the achievement of a specific physiological function. The last section is devoted to ACP-based biomaterials, focusing on how these materials differ from their crystalline counterparts in terms of biological response.
Collapse
|
23
|
Gelli R, Scudero M, Gigli L, Severi M, Bonini M, Ridi F, Baglioni P. Effect of pH and Mg2+ on Amorphous Magnesium-Calcium Phosphate (AMCP) stability. J Colloid Interface Sci 2018; 531:681-692. [DOI: 10.1016/j.jcis.2018.07.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 01/01/2023]
|
24
|
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitors are monoclonal antibodies against the inhibitory, co-stimulatory molecules CTLA-4 and PD-1/PD-L1. Their use in oncology has been associated with frequent and diverse immune-related adverse events. In the digestive tract, such toxicity presents primarily as colonic inflammation, resembling inflammatory bowel disease (IBD). This review presents recent developments regarding the characteristics of checkpoint inhibitor colitis (CIC) and its relation to IBD. RECENT FINDINGS Several reports from patient cohorts with CIC have outlined its similarities and differences with IBD. Clinically and endoscopically, there is high overlap, including the negative prognostic significance of deep ulceration. Histologically, CIC may present as either acute colitis or demonstrate features of chronic damage, including IBD-like and lymphocytic colitis-like phenotypes. CIC immunopathogenesis appears to be associated with a predominance of mucosal Th1/Th17 effector responses, and may also be influenced by input from the gut microflora. Finally, current treatment of CIC is based on steroids and infliximab, although other biologics such as vedolizumab may also be effective. SUMMARY CIC represents a distinct form of colitis with characteristics reminiscent of IBD flares. Clarification of the mechanisms involved in its pathogenesis will greatly enhance our understanding and therapeutic management of immune-mediated colitides, including IBD.
Collapse
|
25
|
Hildebrand D, Eberle ME, Wölfle SM, Egler F, Sahin D, Sähr A, Bode KA, Heeg K. Hsa-miR-99b/let-7e/miR-125a Cluster Regulates Pathogen Recognition Receptor-Stimulated Suppressive Antigen-Presenting Cells. Front Immunol 2018; 9:1224. [PMID: 29967604 PMCID: PMC6015902 DOI: 10.3389/fimmu.2018.01224] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/15/2018] [Indexed: 01/14/2023] Open
Abstract
Antigen-presenting cells (APCs) regulate the balance of our immune response toward microbes. Whereas immunogenic APCs boost inflammation and activate lymphocytes, the highly plastic cells can switch into a tolerogenic/suppressive phenotype that dampens and resolves the response. Thereby the initially mediated inflammation seems to prime the switch of APCs while the strength of activation determines the grade of the suppressive phenotype. Recently, we showed that pathogen recognition receptor-mediated pro-inflammatory cytokines reprogram differentiating human blood monocytes in vitro toward an immunosuppressive phenotype through prolonged activation of signal transducer and activator of transcription (STAT) 3. The TLR7/8 ligand R848 (Resiquimod) triggers the high release of cytokines from GM-CSF/IL-4-treated monocytes. These cytokines subsequently upregulate T cell suppressive factors, such as programmed death-ligand 1 (PD-L1) and indolamin-2,3-dioxygenase (IDO) through cytokine receptor-mediated STAT3 activation. Here, we reveal an essential role for the microRNA (miR, miRNA) hsa-miR-99b/let-7e/miR-125a cluster in stabilizing the suppressive phenotype of R848-stimulated APCs on different levels. On the one hand, the miR cluster boosts R848-stimulated cytokine production through regulation of MAPkinase inhibitor Tribbles pseudokinase 2, thereby enhancing cytokine-stimulated activation of STAT3. One the other hand, the STAT3 inhibitor suppressor of cytokine signaling-1 is targeted by the miR cluster, stabilizing the STAT3-induced expression of immunosuppressive factors PD-L1 and IDO. Finally, hsa-miR-99b/let-7e/miR-125a cluster regulates generation of the suppressive tryptophan (Trp) metabolite kynurenine by targeting the tryptophanyl-tRNA synthetase WARS, the direct competitor of IDO in terms of availability of Trp. In summary, our results reveal the hsa-miR-99b/let-7e/miR-125a cluster as an important player in the concerted combination of mechanisms that stabilizes STAT3 activity and thus regulate R848-stimulated suppressive APCs.
Collapse
Affiliation(s)
- Dagmar Hildebrand
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Mariel-Esther Eberle
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Marie Wölfle
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Franziska Egler
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Delal Sahin
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Aline Sähr
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Konrad A Bode
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus Heeg
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Infection Research (DZIF), Brunswick, Germany
| |
Collapse
|
26
|
Beswick EJ, Grim C, Singh A, Aguirre JE, Tafoya M, Qiu S, Rogler G, McKee R, Samedi V, Ma TY, Reyes VE, Powell DW, Pinchuk IV. Expression of Programmed Death-Ligand 1 by Human Colonic CD90 + Stromal Cells Differs Between Ulcerative Colitis and Crohn's Disease and Determines Their Capacity to Suppress Th1 Cells. Front Immunol 2018; 9:1125. [PMID: 29910803 PMCID: PMC5992387 DOI: 10.3389/fimmu.2018.01125] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/03/2018] [Indexed: 12/14/2022] Open
Abstract
Background and Aims The role of programmed cell death protein 1 (PD-1) and its ligands in the dysregulation of T helper immune responses observed in the inflammatory bowel disease (IBD) is unclear. Recently, a novel concept emerged that CD90+ colonic (myo)fibroblasts (CMFs), also known as stromal cells, act as immunosuppressors, and are among the key regulators of acute and chronic inflammation. The objective of this study was to determine if the level of the PD-1 ligands is changed in the IBD inflamed colonic mucosa and to test the hypothesis that changes in IBD-CMF-mediated PD-1 ligand-linked immunosuppression is a mechanism promoting the dysregulation of Th1 cell responses. Methods Tissues and cells derived from Crohn's disease (CD), ulcerative colitis (UC), and healthy individuals (N) were studied in situ, ex vivo, and in culture. Results A significant increase in programmed death-ligand 1 (PD-L1) was observed in the inflamed UC colonic mucosa when compared to the non-inflamed matched tissue samples, CD, and healthy controls. UC-CMFs were among the major populations in the colonic mucosa contributing to the enhanced PD-L1 expression. In contrast, PD-L1 expression was decreased in CD-CMFs. When compared to CD-CMFs and N-CMFs, UC-CMFs demonstrated stronger suppression of IL-2, Th1 transcriptional factor Tbet, and IFN-γ expression by CD3/CD28-activated CD4+ T cells, and this process was PD-L1 dependent. Similar observations were made when differentiated Th1 cells were cocultured with UC-CMFs. In contrast, CD-CMFs showed reduced capacity to suppress Th1 cell activity and addition of recombinant PD-L1 Fc to CD-CMF:T cell cocultures partially restored the suppression of the Th1 type responses. Conclusion We present evidence showing that increased PD-L1 expression suppresses Th1 cell activity in UC. In contrast, loss of PD-L1 expression observed in CD contributes to the persistence of the Th1 inflammatory milieu in CD. Our data suggest that dysregulation of the Th1 responses in the inflamed colonic mucosa of IBD patients is promoted by the alterations in PD-L1 expression in the mucosal mesenchymal stromal cell compartment.
Collapse
Affiliation(s)
- Ellen J Beswick
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, United States
| | - Carl Grim
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Abinav Singh
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Jose E Aguirre
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Marissa Tafoya
- Department of Pathology, University of New Mexico, Albuquerque, NM, United States
| | - Suimin Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital of Zürich, Zürich, Switzerland
| | - Rohini McKee
- Department of Surgery, University of New Mexico, Albuquerque, NM, United States
| | - Von Samedi
- Department of Pathology, University of New Mexico, Albuquerque, NM, United States
| | - Thomas Y Ma
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, United States
| | - Victor E Reyes
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Don W Powell
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Irina V Pinchuk
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
27
|
Abstract
Aim: Expression of PD-1 on T/B cells regulates peripheral tolerance and autoimmunity. Binding of PD-1 to its ligand, PD-L1, leads to protection against self-reactivity. In contrary, tumor cells have evolved immune escape mechanisms whereby overexpression of PD-L1 induces anergy and/or apoptosis of PD-1 positive T cells by interfering with T cell receptor signal transduction. PD-L1 and PD-1 blockade using antibodies are in human clinical trials as an alternative cancer treatment modality. Areas covered: We describe the role of PD-1/PD-L1 in disease in the context of autoimmunity, neurological disorders, stroke and cancer. Conclusion: For immunotherapy/vaccines to be successful, the expression of PD-L1/PD-1 on immune cells should be considered, and the combination of checkpoint inhibitors and vaccines may pave the way for successful outcomes to disease.
Collapse
Affiliation(s)
- Nyanbol Kuol
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, P.O. Box 14426, Melbourne VIC 8001, Australia
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, P.O. Box 14426, Melbourne VIC 8001, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, P.O. Box 14426, Melbourne VIC 8001, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, P.O. Box 14426, Melbourne VIC 8001, Australia
| |
Collapse
|
28
|
Hewitt RE, Robertson J, Haas CT, Pele LC, Powell JJ. Reduction of T-Helper Cell Responses to Recall Antigen Mediated by Codelivery with Peptidoglycan via the Intestinal Nanomineral-Antigen Pathway. Front Immunol 2017; 8:284. [PMID: 28367148 PMCID: PMC5355426 DOI: 10.3389/fimmu.2017.00284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/28/2017] [Indexed: 12/22/2022] Open
Abstract
Naturally occurring intestinal nanomineral particles constituently form in the mammalian gut and trap luminal protein and microbial components. These cargo loaded nanominerals are actively scavenged by M cells of intestinal immune follicles, such as Peyer’s patches and are passed to antigen-presenting cells. Using peripheral blood mononuclear cell populations as an in vitro model of nanomineral uptake and antigen presentation, we show that monocytes avidly phagocytose nanomineral particles bearing antigen and peptidoglycan (PGN), and that the presence of PGN within particles downregulates their cell surface MHC class II and upregulates programmed death receptor ligand 1. Nanomineral delivery of antigen suppresses antigen-specific CD4+ T cell responses, an effect that is enhanced in the presence of PGN. Blocking the interleukin-10 receptor restores CD4+ T cell responses to antigen codelivered with PGN in nanomineral form. Using human intestinal specimens, we have shown that the in vivo nanomineral pathway operates in an interleukin-10 rich environment. Consequently, the delivery of a dual antigen–PGN cargo by endogenous nanomineral in vivo is likely to be important in the establishment of intestinal tolerance, while their synthetic mimetics present a potential delivery system for therapeutic applications targeting the modulation of Peyer’s patch T cell responses.
Collapse
Affiliation(s)
- Rachel E Hewitt
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK; Medical Research Council, Department of Mineral Science and Technology, Elsie Widdowson Laboratory, Cambridge, UK
| | - Jack Robertson
- Medical Research Council, Department of Mineral Science and Technology, Elsie Widdowson Laboratory , Cambridge , UK
| | - Carolin T Haas
- Medical Research Council, Department of Mineral Science and Technology, Elsie Widdowson Laboratory , Cambridge , UK
| | - Laetitia C Pele
- Medical Research Council, Department of Mineral Science and Technology, Elsie Widdowson Laboratory , Cambridge , UK
| | - Jonathan J Powell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK; Medical Research Council, Department of Mineral Science and Technology, Elsie Widdowson Laboratory, Cambridge, UK
| |
Collapse
|
29
|
Pele LC, Haas CT, Hewitt RE, Robertson J, Skepper J, Brown A, Hernandez-Garrido JC, Midgley PA, Faria N, Chappell H, Powell JJ. Synthetic mimetics of the endogenous gastrointestinal nanomineral: Silent constructs that trap macromolecules for intracellular delivery. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:619-630. [PMID: 27478107 PMCID: PMC5339085 DOI: 10.1016/j.nano.2016.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/14/2016] [Accepted: 07/18/2016] [Indexed: 02/02/2023]
Abstract
Amorphous magnesium-substituted calcium phosphate (AMCP) nanoparticles (75-150nm) form constitutively in large numbers in the mammalian gut. Collective evidence indicates that they trap and deliver luminal macromolecules to mucosal antigen presenting cells (APCs) and facilitate gut immune homeostasis. Here, we report on a synthetic mimetic of the endogenous AMCP and show that it has marked capacity to trap macromolecules during formation. Macromolecular capture into AMCP involved incorporation as shown by STEM tomography of the synthetic AMCP particle with 5nm ultra-fine iron (III) oxohydroxide. In vitro, organic cargo-loaded synthetic AMCP was taken up by APCs and tracked to lysosomal compartments. The AMCP itself did not regulate any gene, or modify any gene regulation by its cargo, based upon whole genome transcriptomic analyses. We conclude that synthetic AMCP can efficiently trap macromolecules and deliver them to APCs in a silent fashion, and may thus represent a new platform for antigen delivery.
Collapse
Affiliation(s)
- Laetitia C. Pele
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Carolin T. Haas
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Rachel E. Hewitt
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Jack Robertson
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Jeremy Skepper
- Cambridge advanced Imaging Centre, Physiology development and Neuroscience, Anatomy building, University of Cambridge, Cambridge
| | - Andy Brown
- Institute for Materials Research, SCAPE, University of Leeds, Leeds
| | - Juan Carlos Hernandez-Garrido
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Rio San Pedro, Puerto Real, Spain
| | - Paul A. Midgley
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge
| | - Nuno Faria
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Helen Chappell
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Jonathan J. Powell
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK,Corresponding author.
| |
Collapse
|