1
|
Talapphet N, Kim MM. Imatinib mesylate promotes melanogenesis through the modulation of p38 and MITF in murine cells. Toxicol Res 2025; 41:61-70. [PMID: 39802121 PMCID: PMC11717767 DOI: 10.1007/s43188-024-00267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 01/16/2025] Open
Abstract
Imatinib mesylate is a targeted anti-cancer drug with skin pigmentation as a side effect. The action mechanism of imatinib mesylate on melanogenesis remains unclear. The purpose of this study was to elucidate the mechanism of imatinib mesylate on melanogenesis associated with the microphthalmia-associated transcription factor (MITF) signaling pathway in murine melanoma cells. This study revealed that imatinib mesylate increased tyrosinase activity but decreased hydrogen peroxide generation in B16F1 cells. Additionally, imatinib mesylate at 0.3-5 μM was nontoxic to the cells and promoted melanin production. Moreover, imatinib mesylate at 5 μM increased the expression levels of TRP-2 and p38 related to melanogenesis compared with the blank group in western blot and immunofluorescence staining analyses. The expression level of p-MITF in the nucleus was increased in the presence of imatinib mesylate compared with the blank group. These results suggest that imatinib mesylate could promote melanogenesis through the modulation of p38 and MITF.
Collapse
Affiliation(s)
- Natchanok Talapphet
- Department of Applied Chemistry, Dong-Eui University, Busan, 614-714 Republic of Korea
| | - Moon-Moo Kim
- Department of Applied Chemistry, Dong-Eui University, Busan, 614-714 Republic of Korea
| |
Collapse
|
2
|
Liu C, Wan N, Wei L, Rong W, Zhu W, Xie M, Zhang Y, Liu Z, Jing Q, Lyu A. Therapeutic potential and protective role of GRK6 overexpression in pulmonary arterial hypertension. Vascul Pharmacol 2023; 153:107233. [PMID: 37742818 DOI: 10.1016/j.vph.2023.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Abnormal proliferation of pulmonary arterial smooth muscle cells (PASMCs) is a key mechanism in the development of pulmonary arterial hypertension (PAH). Signal transducer and activator of transcription 3 (STAT3) signalling plays a critical role in modulating PASMC proliferation, and G-protein-coupled receptor kinase 6 (GRK6) regulates the STAT3 pathway. However, the mechanism underlying the relationship between GRK6 and PAH remains unclear. In this study, we aimed to investigate the role of GRK6 in PAH and determine its potential as a therapeutic target. We utilised hypoxia- and SU5416-induced PAH mouse models and a monocrotaline-induced PAH rat model to analyse the involvement of GRK6. We conducted gain- and loss-of-function experiments using mouse PASMCs. Modulation of GRK6 expression was achieved via a lentiviral vector in vitro and an adeno-associated virus serotype 1 encoding GRK6 in vivo. GRK6 was significantly downregulated in the lung tissues of PAH mice and rats, predominantly in PASMCs. Knockout of GRK6 exacerbated PAH, while both therapeutic and prophylactic overexpression of GRK6 alleviated PAH, as evidenced by a reduction in right ventricular systolic pressure, right ventricular wall to left ventricular wall plus ventricular septum ratio, pulmonary vascular media thickness, and pulmonary vascular muscularisation. Mechanistically, GRK6 overexpression attenuated hypoxia-induced PASMC proliferation and STAT3 phosphorylation. Conversely, knockdown of GRK6 promoted hypoxia-induced proliferation, which was mitigated by a STAT3 inhibitor. Our findings highlight the potential protective and beneficial roles of GRK6 in PAH; we propose a lung-targeted GRK6 gene therapy utilizing adeno-associated virus serotype 1 as a potential treatment approach for patients with PAH.
Collapse
Affiliation(s)
- Chenchen Liu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Naifu Wan
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Lijiang Wei
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Wuwei Rong
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Wentong Zhu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Meifeng Xie
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, Innovation Centre for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Yanling Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, Innovation Centre for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Zhihua Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, Innovation Centre for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, Innovation Centre for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China.
| | - Ankang Lyu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China.
| |
Collapse
|
3
|
Malakouti P, Mohammadi M, Boshagh MA, Amini A, Rezaee MA, Rahmani MR. Combined effects of pioglitazone and doxorubicin on migration and invasion of MDA-MB-231 breast cancer cells. J Egypt Natl Canc Inst 2022; 34:13. [PMID: 35342925 DOI: 10.1186/s43046-022-00110-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite antitumor properties, chemotherapy medication can create conditions in tumor cells that work in favor of the tumor. Doxorubicin, commonly prescribed chemotherapy agents, can increase the risk of migration and invasion of tumor cells through overexpression of the CXCR4 gene by affecting downstream signaling pathways. The regulatory role of CXCR7 on CXCR4 function has been demonstrated. Therefore, it is hypothesized that combining doxorubicin with another anticancer drug could be a promising approach. METHODS In this research, we evaluated the anti-invasive property of pioglitazone along with antitumor effects of doxorubicin on MDA-MB-231 breast cancer cell lines. RESULTS There was no significant difference between two treatment groups in neither the expression nor changes in the expression of CXCR7 and CXCR4 genes (P < 0.05). Pioglitazone-doxorubicin combination reduced cell migration in tumor cells to a significantly higher extent compared to doxorubicin alone (P < 0.05). CONCLUSIONS Co-administration of pioglitazone and doxorubicin might reduce cell migration in breast cancer tumor cells, and that cell migration function is independent of some specific proteins.
Collapse
Affiliation(s)
- Parisa Malakouti
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mobin Mohammadi
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Amin Boshagh
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Abbasali Amini
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Ali Rezaee
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Reza Rahmani
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
4
|
El-Fakharany YM, Mohamed EM, Etewa RL, Abdel Hamid OI. Selenium nanoparticles alleviate lead acetate-induced toxicological and morphological changes in rat testes through modulation of calmodulin-related genes expression. J Biochem Mol Toxicol 2022; 36:e23017. [PMID: 35194871 DOI: 10.1002/jbt.23017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 11/18/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023]
Abstract
Lead (Pb) is one of the most common toxic heavy metals. It is a well-known testicular toxicant. Selenium nanoparticles (SeNPs) are a more effective form of elemental selenium that reduces drug-induced toxicities. This study aimed to study the possible ameliorating effect of SeNPs on the toxicological and morphological changes in testes of lead acetate intoxicated rats. The study was conducted on 40 adult male albino rats divided into four groups; control, SeNPs-treated, lead acetate-treated, lead acetate and SeNPS treated groups. The concurrent treatment of lead acetate-exposed rats with SeNPs (0.1 mg/kg/day) for 12 weeks significantly lowered the blood and testicular lead levels, increased serum testosterone, and decreased luteinizing hormone and follicle-stimulating hormone to approach control values. In addition, it improved the histopathological, and ultrastructural alterations of the testes and improved the immunohistochemical expression of the c-kit. This was accompanied by maintenance of the testicular oxidant/antioxidant balance and reversing the lead-induced disrupted calmodulin-related genes expression in testicular tissue in the form of downregulation of CAMMK2 and MAP2K6 and upregulation of CXCR4 genes. There was a strong positive correlation between testicular malondialdehyde and MAP2K6 expression level as well as a strong positive correlation between CXCR4 gene expression and the C-kit area %. In conclusion, SeNPs can be considered as a potential therapy for a lead-induced testicular injury.
Collapse
Affiliation(s)
- Yara M El-Fakharany
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M Mohamed
- Department of Medical Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha L Etewa
- Department of Medical Biochemistry, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Omaima I Abdel Hamid
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Sharma A, Gupta S, Archana S, Verma RS. Emerging Trends in Mesenchymal Stem Cells Applications for Cardiac Regenerative Therapy: Current Status and Advances. Stem Cell Rev Rep 2022; 18:1546-1602. [PMID: 35122226 DOI: 10.1007/s12015-021-10314-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 12/29/2022]
Abstract
Irreversible myocardium infarction is one of the leading causes of cardiovascular disease (CVD) related death and its quantum is expected to grow in coming years. Pharmacological intervention has been at the forefront to ameliorate injury-related morbidity and mortality. However, its outcomes are highly skewed. As an alternative, stem cell-based tissue engineering/regenerative medicine has been explored quite extensively to regenerate the damaged myocardium. The therapeutic modality that has been most widely studied both preclinically and clinically is based on adult multipotent mesenchymal stem cells (MSC) delivered to the injured heart. However, there is debate over the mechanistic therapeutic role of MSC in generating functional beating cardiomyocytes. This review intends to emphasize the role and use of MSC in cardiac regenerative therapy (CRT). We have elucidated in detail, the various aspects related to the history and progress of MSC use in cardiac tissue engineering and its multiple strategies to drive cardiomyogenesis. We have further discussed with a focus on the various therapeutic mechanism uncovered in recent times that has a significant role in ameliorating heart-related problems. We reviewed recent and advanced technologies using MSC to develop/create tissue construct for use in cardiac regenerative therapy. Finally, we have provided the latest update on the usage of MSC in clinical trials and discussed the outcome of such studies in realizing the full potential of MSC use in clinical management of cardiac injury as a cellular therapy module.
Collapse
Affiliation(s)
- Akriti Sharma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - Santosh Gupta
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - S Archana
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
6
|
Aceves JL, López RV, Terán PM, Escobedo CM, Marroquín Muciño MA, Castillo GG, Estrada MM, García FR, Quiroz GD, Montaño Estrada LF. Autologous CXCR4+ Hematopoietic Stem Cells Injected into the Scar Tissue of Chronic Myocardial Infarction Patients Normalizes Tissue Contractility and Perfusion. Arch Med Res 2020; 51:135-144. [PMID: 32113784 DOI: 10.1016/j.arcmed.2019.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Chronic myocardial infarction (CMI), represents a public health and a financial burden. Since stem cell transplant is used to regenerate cardiac tissue after acute myocardial infarction. AIM OF THE STUDY To determine if autologous CXCR4 stem cells could restore damaged myocardial tissue in patients with CMI lesions. METHODS 20 NYHA grade III male patients with CMI defined by clinical, biochemical, ECG and echocardiographic parameters were included. Patients were treated with G-CSF for 6 d before isolating their autologous stem cells from PBMCs. Cell phenotyping was done by cytofluorometry using monoclonal antibodies (anti-CXCR4, -CD34, -48, -117, -133, -Ki67, -SDF1 and CXCR4); CXCR4 cell subpopulations isolated by sorting were adjusted to 1 × 108 cells by subpopulation and injected in a circular pattern into the cicatrix previously defined by echocardiography. RESULTS Patients were followed for 6 and 12 months. Six months after cell implant improvements in left ventricle ejection fraction (from 33-50%), stress rate values (from -3/-9% to -18/-22%), stress tests (from 4-12 METS), and the quantity of left ventricle affected segments (3-9) disappeared according to the G-SPECT images. 12 months evaluations did not show significant differences. Interestingly, 3 months after cell implant the ECG showed normal electrical activity in 9 patients whereas after 6 months it was normal in all the patients. CONCLUSIONS These results ratify that locally injected autologous CXCR4+ bone marrow-derived stem cells have a physiological and a clinical impact in patients with CMI.
Collapse
Affiliation(s)
- José Luis Aceves
- Departamento de Cirugía Cardiotorácica, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico.
| | - Rafael Vilchis López
- Departamento de Cirugía Cardiotorácica, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - Paúl Mondragón Terán
- Laboratorio de Medicina Regenerativa e Ingeniería de Tejidos, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - Carmen Martínez Escobedo
- Departamento de Cardiología Nuclear, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - Mario A Marroquín Muciño
- Laboratorio de Medicina Regenerativa e Ingeniería de Tejidos, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - Guillermo García Castillo
- Laboratorio de Medicina Regenerativa e Ingeniería de Tejidos, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - Miriam Marmolejo Estrada
- Unidad de Aféresis, Banco de Sangre, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - Fernando Rodríguez García
- Unidad de Aféresis, Banco de Sangre, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - Guillermo Díaz Quiroz
- Departamento de Cirugía Cardiotorácica, Centro Médico Nacional 20 de noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - Luis Felipe Montaño Estrada
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
7
|
Felipe-Abrio B, Verdugo-Sivianes EM, Carnero A. c-MYB- and PGC1a-dependent metabolic switch induced by MYBBP1A loss in renal cancer. Mol Oncol 2019; 13:1519-1533. [PMID: 31066170 PMCID: PMC6599841 DOI: 10.1002/1878-0261.12499] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/24/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022] Open
Abstract
The tumor microenvironment may alter the original tumorigenic potential of tumor cells. Under harsh environmental conditions, genetic alterations conferring selective advantages may initiate the growth of tumor subclones, providing new opportunities for these tumors to grow. We performed a genetic loss-of-function screen to identify genetic alterations able to promote tumor cell growth in the absence of glucose. We identified that downregulation of MYBBP1A increases tumorigenic properties under nonpermissive conditions. MYBBP1A downregulation simultaneously activates PGC1α, directly by alleviating direct repression and indirectly by increasing PGC1α mRNA levels through c-MYB, leading to a metabolic switch from glycolysis to OXPHOS and increased tumorigenesis in low-glucose microenvironments. We have also identified reduced MYBBP1A expression in human renal tumor samples, which show high expression levels of genes involved in oxidative metabolism. In summary, our data support the role of MYBBP1A as a tumor suppressor by regulating c-MYB and PGC1α. Therefore, loss of MYBBP1A increases adaptability spanning of tumors through metabolic switch.
Collapse
Affiliation(s)
- Blanca Felipe-Abrio
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Dong Z, Coates D, Liu Q, Sun H, Li C. Quantitative proteomic analysis of deer antler stem cells as a model of mammalian organ regeneration. J Proteomics 2019; 195:98-113. [PMID: 30641233 DOI: 10.1016/j.jprot.2019.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
|
9
|
Involvement of CXCR4 in Normal and Abnormal Development. Cells 2019; 8:cells8020185. [PMID: 30791675 PMCID: PMC6406665 DOI: 10.3390/cells8020185] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
CXC motif chemokine receptor type 4 (CXCR4) is associated with normal and abnormal development, including oncogenesis. The ligand of CXCR4 is stromal cell-derived factor (SDF), also known as CXC motif ligand (CXCL) 12. Through the SDF-1/CXCR4 axis, both homing and migration of hematopoietic (stem) cells are regulated through niches in the bone marrow. Outside of the bone marrow, however, SDF-1 can recruit CXCR4-positive cells from the bone marrow. SDF/CXCR4 has been implicated in the maintenance and/or differentiation of stemness, and tissue-derived stem cells can be associated with SDF-1 and CXCR4 activity. CXCR4 plays a role in multiple pathways involved in carcinogenesis and other pathologies. Here, we summarize reports detailing the functions of CXCR4. We address the molecular signature of CXCR4 and how this molecule and cells expressing it are involved in either normal (maintaining stemness or inducing differentiation) or abnormal (developing cancer and other pathologies) events. As a constituent of stem cells, the SDF-1/CXCR4 axis influences downstream signal transduction and the cell microenvironment.
Collapse
|
10
|
Wang B, Gu TX, Yu FM, Zhang GW, Zhao Y. Overexpression of miR-210 promotes the potential of cardiac stem cells against hypoxia. SCAND CARDIOVASC J 2019; 52:367-371. [PMID: 30668175 DOI: 10.1080/14017431.2019.1567932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To evaluate the effects of miR-210 on cardiac stem cells (CSCs) against hypoxia-induced injury. METHODS CSCs were isolated from rat ventricular wall and cultured until passage 4. After exposure to hypoxia for 6 h, the expression of miR-210 was determined. Thereafter, transfection of miR-210 mimic and inhibitor was carried out. 1 week later, in vitro experiments were performed to measure the expression of caspase-8-associated protein 2 (Casp8ap2), Caspase 8, protein tyrosine phosphatase, non-receptor type 2 (PTPN2) and CXC chemokine receptor 4 (CXCR4), as well as migration and apoptosis of CSCs under hypoxic condition. RESULTS Hypoxia induced a significant up-regulation of miR-210 expression in CSCs. Notably, the expression of Casp8ap2, Caspase8, PTPN2 was dramatically inhibited by overexpression of miR-210 in CSCsmiR-210 Group (P < .05), but no changes in CXCR4 (P > .05), compared with the control. Additionally, a decreased apoptosis of CSCs was detected in CSCsmiR-210 Group (26.22 ± 1.15%, P < .001), compared with Control Group (34.97 ± 0.63%). Moreover, the migration of CSCs was significantly promoted in CSCsmiR-210 Group (45.73 ± 2.4, P < .001), compared with Control Group (19.6 ± 1.11). Meanwhile, down-regulation of miR-210 reversed these results (P < .05). CONCLUSIONS miR-210 was a hypoxia responsive element in CSCs, and its up-regulation inhibited apoptosis of CSCs and promoted their migration under hypoxic condition, through regulating its target genes Casp8ap2/Caspase 8 and PTPN2, which may provide a new strategy for cell therapy of ischemic heart disease.
Collapse
Affiliation(s)
- Bin Wang
- a Department of Cardiac Surgery , The First Hospital of China Medical University , Shenyang , China.,b Department of Cardiac Surgery , Harrison International Pease Hospital , Hengshui , China
| | - Tian-Xiang Gu
- a Department of Cardiac Surgery , The First Hospital of China Medical University , Shenyang , China
| | - Fu-Min Yu
- a Department of Cardiac Surgery , The First Hospital of China Medical University , Shenyang , China
| | - Guang-Wei Zhang
- a Department of Cardiac Surgery , The First Hospital of China Medical University , Shenyang , China
| | - Ye Zhao
- a Department of Cardiac Surgery , The First Hospital of China Medical University , Shenyang , China
| |
Collapse
|
11
|
Wang K, Ding R, Ha Y, Jia Y, Liao X, Wang S, Li R, Shen Z, Xiong H, Guo J, Jie W. Hypoxia-stressed cardiomyocytes promote early cardiac differentiation of cardiac stem cells through HIF-1 α/Jagged1/Notch1 signaling. Acta Pharm Sin B 2018; 8:795-804. [PMID: 30245966 PMCID: PMC6148082 DOI: 10.1016/j.apsb.2018.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/26/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
Abstract
Hypoxia is beneficial for the differentiation of stem cells transplanted for myocardial injury, but mechanisms underlying this benefit remain unsolved. Here, we report the impact of hypoxia-induced Jagged1 expression in cardiomyocytes (CMs) for driving the differentiation of cardiac stem cells (CSCs). Forced hypoxia-inducible factor 1α (HIF-1α) expression and physical hypoxia (5% O2) treatment could induce Jagged1 expression in neonatal rat CMs. Pharmacological inhibition of HIF-1α by YC-1 attenuated hypoxia-promoted Jagged1 expression in CMs. An ERK inhibitor (PD98059), but not inhibitors of JNK (SP600125), Notch (DAPT), NF-κB (PTDC), JAK (AG490), or STAT3 (Stattic) suppressed hypoxia-induced Jagged1 protein expression in CMs. c-Kit+ CSCs isolated from neonatal rat hearts using a magnetic-activated cell sorting method expressed GATA4, SM22α or vWF, but not Nkx2.5 and cTnI. Moreover, 87.3% of freshly isolated CSCs displayed Notch1 receptor expression. Direct co-culture of CMs with BrdU-labeled CSCs enhanced CSCs differentiation, as evidenced by an increased number of BrdU+/Nkx2.5+ cells, while intermittent hypoxia for 21 days promoted co-culture-triggered differentiation of CSCs into CM-like cells. Notably, YC-1 and DAPT attenuated hypoxia-induced differentiation. Our results suggest that hypoxia induces Jagged1 expression in CMs primarily through ERK signaling, and facilitates early cardiac lineage differentiation of CSCs in CM/CSC co-cultures via HIF-1α/Jagged1/Notch signaling.
Collapse
Key Words
- BMSCs, bone marrow stem cells
- BrdU, 5-bromo-2′-deoxyuridine
- CMs, cardiomyocytes
- CSCs, cardiac stem cells
- Cardiac stem cell
- Cardiomyocyte, Co-culture
- Cell differentiation
- DAPI, 4′,6-diamidino-2-phenylindole
- DMSO, dimethyl sulfoxide
- ERK, extracellular signal-regulated kinase
- FBS, fetal bovine serum
- FITC, fluorescein isothiocyanate
- GFP, green fluorescent protein
- HIF-1α, hypoxia-inducible factor 1α
- HRE, hypoxia responsive element
- Hypoxia
- JAK, Janus kinase
- JNK, c-Jun N-terminal kinase
- MACS, magnetic-activated cell sorting
- MI, myocardial infarction
- MOI, multiplicity of infection
- N-ICD, notch intracellular domain
- NF-κB, nuclear factor κB
- Notch1 signaling
- PBS, phosphate buffer saline
- PE, phycoerythrin
- RT-PCR, reverse transcription PCR
- STAT3, signal transducer and activator of transcription 3
- YC-1, 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl-indazole
- qPCR, quantitative PCR
- vWF, von Willebrand factor
Collapse
|
12
|
Fish KM. Mesenchymal Stem Cells Drive Cardiac Stem Cell Chemotaxis, Proliferation, and Phenotype via CXCR4 and cKit Signaling. Circ Res 2018; 119:891-2. [PMID: 27688303 DOI: 10.1161/circresaha.116.309733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kenneth Michael Fish
- From the Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY.
| |
Collapse
|
13
|
Dinkel BA, Kremer KN, Rollins MR, Medlyn MJ, Hedin KE. GRK2 mediates TCR-induced transactivation of CXCR4 and TCR-CXCR4 complex formation that drives PI3Kγ/PREX1 signaling and T cell cytokine secretion. J Biol Chem 2018; 293:14022-14039. [PMID: 30018141 DOI: 10.1074/jbc.ra118.003097] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
The immune system includes abundant examples of biologically-relevant cross-regulation of signaling pathways by the T cell antigen receptor (TCR) and the G protein-coupled chemokine receptor, CXCR4. TCR ligation induces transactivation of CXCR4 and TCR-CXCR4 complex formation, permitting the TCR to signal via CXCR4 to activate a phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 protein (PREX1)-dependent signaling pathway that drives robust cytokine secretion by T cells. To understand this receptor heterodimer and its regulation, we characterized the molecular mechanisms required for TCR-mediated TCR-CXCR4 complex formation. We found that the cytoplasmic C-terminal domain of CXCR4 and specifically phosphorylation of Ser-339 within this region were required for TCR-CXCR4 complex formation. Interestingly, siRNA-mediated depletion of G protein-coupled receptor kinase-2 (GRK2) or inhibition by the GRK2-specific inhibitor, paroxetine, inhibited TCR-induced phosphorylation of CXCR4-Ser-339 and TCR-CXCR4 complex formation. Either GRK2 siRNA or paroxetine treatment of human T cells significantly reduced T cell cytokine production. Upstream, TCR-activated tyrosine kinases caused inducible tyrosine phosphorylation of GRK2 and were required for the GRK2-dependent events of CXCR4-Ser-339 phosphorylation and TCR-CXCR4 complex formation. Downstream of TCR-CXCR4 complex formation, we found that GRK2 and phosphatidylinositol 3-kinase γ (PI3Kγ) were required for TCR-stimulated membrane recruitment of PREX1 and for stabilization of cytokine mRNAs and robust cytokine secretion. Together, our results identify a novel role for GRK2 as a target of TCR signaling that is responsible for TCR-induced transactivation of CXCR4 and TCR-CXCR4 complex formation that signals via PI3Kγ/PREX1 to mediate cytokine production. Therapeutic regulation of GRK2 or PI3Kγ may therefore be useful for limiting cytokines produced by T cell malignancies or autoimmune diseases.
Collapse
Affiliation(s)
- Brittney A Dinkel
- From the Mayo IMM Ph.D. Training Program, Mayo Clinic Graduate School of Biomedical Sciences, and.,Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Kimberly N Kremer
- Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Meagan R Rollins
- Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Michael J Medlyn
- Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Karen E Hedin
- Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
14
|
Zheng GH, Wen X, Wang YJ, Han XR, Shan Q, Li W, Zhao T, Wu DM, Lu J, Zheng YL. MicroRNA-381-induced down-regulation of CXCR4 promotes the proliferation of renal tubular epithelial cells in rat models of renal ischemia reperfusion injury. J Cell Biochem 2018; 119:3149-3161. [PMID: 29073721 DOI: 10.1002/jcb.26466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/24/2017] [Indexed: 11/06/2022]
Abstract
This study aims to explore whether microRNA-381 (miR-381) mediating CXCR4 affects the renal tubular epithelial cells (RTEC) of renal ischemia reperfusion (I/R) injury. Forty-eight rats were assigned into the I/R (n = 24, successfully established as I/R model) and sham (n = 24) groups. After collecting kidney tissues, immunohistochemistry, and microvascular density (MVD) counting were conducted for CXCR4 positive expression and MVD numbers. RTECs were assigned into the sham, blank, negative control (NC), miR-381 mimics, miR-381 inhibitor, si-CXCR4, and miR-381 inhibitor + si-CXCR4 groups. RT-qPCR and Western blotting were performed for relative expressions in tissues and cells. Cell proliferation and apoptosis were measured by MTT assay and flow cytometry. Results showed that compared with the sham group, positive expression of CXCR4 and MVD number were higher in the I/R group, which exhibited decreased miR-381 and increased expression of CXCR4, stromal cell-derived factor-1 (SDF1), vascular endothelial growth factor (VEGF), hypoxia-inducible factor 1 (HIF-1α) and Tie-2. Dual luciferase reporter gene assay verified that CXCR4 is a target gene of miR-381. MiR-381 expression was lower in the miR-381 inhibitor + si-CXCR4 and miR-381 inhibitor groups and higher in the miR-381 mimics group than the blank and NC groups. Compared with the blank and NC groups, the miR-381 mimics and si-CXCR4 groups exhibited higher cell proliferation but lower cell apoptosis and expression of CXCR4, SDF1, VEGF, HIF-1α, and Tie-2, whereas the miR-381 inhibitor group exhibited the opposite trend. In conclusion, miR-381 may promote RTEC proliferation in rats with renal I/R injury by down-regulating CXCR4.
Collapse
Affiliation(s)
- Gui-Hong Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Xin-Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Wang Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Tian Zhao
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| |
Collapse
|
15
|
Wang Y, Xia Y, Kuang D, Duan Y, Wang G. PP2A regulates SCF-induced cardiac stem cell migration through interaction with p38 MAPK. Life Sci 2017; 191:59-67. [DOI: 10.1016/j.lfs.2017.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/22/2017] [Accepted: 10/02/2017] [Indexed: 12/29/2022]
|
16
|
Kremer KN, Dinkel BA, Sterner RM, Osborne DG, Jevremovic D, Hedin KE. TCR-CXCR4 signaling stabilizes cytokine mRNA transcripts via a PREX1-Rac1 pathway: implications for CTCL. Blood 2017; 130:982-994. [PMID: 28694325 PMCID: PMC5570680 DOI: 10.1182/blood-2017-03-770982] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/05/2017] [Indexed: 02/06/2023] Open
Abstract
As with many immunopathologically driven diseases, the malignant T cells of cutaneous T-cell lymphomas (CTCLs), such as Sézary syndrome, display aberrant cytokine secretion patterns that contribute to pathology and disease progression. Targeting this disordered release of cytokines is complicated by the changing cytokine milieu that drives the phenotypic changes of CTCLs. Here, we characterize a novel signaling pathway that can be targeted to inhibit the secretion of cytokines by modulating either CXCR4 or CXCR4-mediated signaling. We demonstrate that upon ligation of the T-cell antigen receptor (TCR), the TCR associates with and transactivates CXCR4 via phosphorylation of S339-CXCR4 in order to activate a PREX1-Rac1-signaling pathway that stabilizes interleukin-2(IL-2), IL-4, and IL-10 messenger RNA (mRNA) transcripts. Pharmacologic inhibition of either TCR-CXCR4 complex formation or PREX1-Rac1 signaling in primary human T cells decreased mRNA stability and inhibited secretion of IL-2, IL-4, and IL-10. Applying this knowledge to Sézary syndrome, we demonstrate that targeting various aspects of this signaling pathway blocks both TCR-dependent and TCR-independent cytokine secretion from a Sézary syndrome-derived cell line and patient isolates. Together, these results identify multiple aspects of a novel TCR-CXCR4-signaling pathway that could be targeted to inhibit the aberrant cytokine secretion that drives the immunopathogenesis of Sézary syndrome and other immunopathological diseases.
Collapse
MESH Headings
- Benzylamines
- Cyclams
- Cytokines/genetics
- Cytokines/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Guanine Nucleotide Exchange Factors/metabolism
- Heterocyclic Compounds/pharmacology
- Humans
- Jurkat Cells
- Lymphocyte Subsets/drug effects
- Lymphocyte Subsets/metabolism
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/pathology
- Models, Biological
- RNA Stability/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, CXCR4/metabolism
- Sezary Syndrome/pathology
- Signal Transduction/drug effects
- Transcriptional Activation/drug effects
- Transcriptional Activation/genetics
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
| | | | - Rosalie M Sterner
- Department of Immunology
- Mayo Clinic Medical Scientist Training Program, and
| | | | - Dragan Jevremovic
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
17
|
Di Meglio F, Nurzynska D, Romano V, Miraglia R, Belviso I, Sacco AM, Barbato V, Di Gennaro M, Granato G, Maiello C, Montagnani S, Castaldo C. Optimization of Human Myocardium Decellularization Method for the Construction of Implantable Patches. Tissue Eng Part C Methods 2017; 23:525-539. [PMID: 28683653 DOI: 10.1089/ten.tec.2017.0267] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cardiac tissue engineering by means of synthetic or natural scaffolds combined with stem/progenitor cells is emerging as the response to the unsatisfactory outcome of approaches based solely on the injection of cells. Parenchymal and supporting cells are surrounded, in vivo, by a specialized and tissue-specific microenvironment, consisting mainly of extracellular matrix (ECM) and soluble factors incorporated in the ECM. Since the naturally occurring ECM is the ideal platform for ensuring cell engraftment, survival, proliferation, and differentiation, the acellular native ECM appears by far the most promising and appealing substrate among all biomaterials tested so far. To obtain intact scaffold of human native cardiac ECM while preserving its composition, we compared the decellularized ECM (d-ECM) produced through five different protocols of decellularization (named Pr1, Pr2, Pr3, Pr4, and Pr5) in terms of efficiency of decellularization, composition, and three-dimensional architecture of d-ECM scaffolds and of their suitability for cell repopulation. The decellularization procedures proved substantially different. Specifically, only three, of the five protocols tested, proved effective in producing thoroughly acellular d-ECM. In addition, the d-ECM delivered differed in architecture and composition and, more importantly, in its ability to support engraftment, survival, and differentiation of cardiac primitive cells in vitro.
Collapse
Affiliation(s)
- Franca Di Meglio
- 1 Department of Public Health, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Daria Nurzynska
- 1 Department of Public Health, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Veronica Romano
- 1 Department of Public Health, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Rita Miraglia
- 1 Department of Public Health, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Immacolata Belviso
- 1 Department of Public Health, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Anna Maria Sacco
- 1 Department of Public Health, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Valeria Barbato
- 1 Department of Public Health, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Mariagrazia Di Gennaro
- 1 Department of Public Health, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Giuseppina Granato
- 1 Department of Public Health, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Ciro Maiello
- 2 Department of Cardiovascular Surgery and Transplants, Azienda Ospedaliera Monaldi , Naples, Italy
| | - Stefania Montagnani
- 1 Department of Public Health, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Clotilde Castaldo
- 1 Department of Public Health, School of Medicine, University of Naples Federico II , Naples, Italy
| |
Collapse
|
18
|
Steury MD, McCabe LR, Parameswaran N. G Protein-Coupled Receptor Kinases in the Inflammatory Response and Signaling. Adv Immunol 2017; 136:227-277. [PMID: 28950947 DOI: 10.1016/bs.ai.2017.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptor kinases (GRKs) are serine/threonine kinases that regulate a large and diverse class of G protein-coupled receptors (GPCRs). Through GRK phosphorylation and β-arrestin recruitment, GPCRs are desensitized and their signal terminated. Recent work on these kinases has expanded their role from canonical GPCR regulation to include noncanonical regulation of non-GPCR and nonreceptor substrates through phosphorylation as well as via scaffolding functions. Owing to these and other regulatory roles, GRKs have been shown to play a critical role in the outcome of a variety of physiological and pathophysiological processes including chemotaxis, signaling, migration, inflammatory gene expression, etc. This diverse set of functions for these proteins makes them popular targets for therapeutics. Role for these kinases in inflammation and inflammatory disease is an evolving area of research currently pursued in many laboratories. In this review, we describe the current state of knowledge on various GRKs pertaining to their role in inflammation and inflammatory diseases.
Collapse
Affiliation(s)
| | - Laura R McCabe
- Michigan State University, East Lansing, MI, United States
| | | |
Collapse
|
19
|
Lonetti A, Cappellini A, Bertaina A, Locatelli F, Pession A, Buontempo F, Evangelisti C, Evangelisti C, Orsini E, Zambonin L, Neri LM, Martelli AM, Chiarini F. Improving nelarabine efficacy in T cell acute lymphoblastic leukemia by targeting aberrant PI3K/AKT/mTOR signaling pathway. J Hematol Oncol 2016; 9:114. [PMID: 27776559 PMCID: PMC5075755 DOI: 10.1186/s13045-016-0344-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/14/2016] [Indexed: 11/21/2022] Open
Abstract
Background Although in recent years, the introduction of novel chemotherapy protocols has improved the outcome of T cell acute lymphoblastic leukemia (T-ALL) patients, refractory and/or relapsing disease remains a foremost concern. In this context, a major contribution was provided by the introduction of the nucleoside analog nelarabine, approved for salvage treatment of T-ALL patients with refractory/relapsed disease. However, nelarabine could induce a life-threatening, dose-dependent neurotoxicity. To improve nelarabine efficacy, we have analyzed its molecular targets, testing selective inhibitors of such targets in combination with nelarabine. Methods The effectiveness of nelarabine as single agent or in combination with PI3K, Bcl2, and MEK inhibitors was evaluated on human T-ALL cell lines and primary T-ALL refractory/relapsed lymphoblasts. The efficacy of signal modulators in terms of cytotoxicity, induction of apoptosis, and changes in gene and protein expression was assessed by flow cytometry, western blotting, and quantitative real-time PCR in T-ALL settings. Results Treatment with nelarabine as a single agent identified two groups of T-ALL cell lines, one sensitive and one resistant to the drug. Whereas sensitive T-ALL cells showed a significant increase of apoptosis and a strong down-modulation of PI3K signaling, resistant T-ALL cells showed a hyperactivation of AKT and MEK/ERK1/2 signaling pathways, not caused by differences in the expression of nelarabine transporters or metabolic activators. We then studied the combination of nelarabine with the PI3K inhibitors (both pan and dual γ/δ inhibitors), with the Bcl2 specific inhibitor ABT199, and with the MEK inhibitor trametinib on both T-ALL cell lines and patient samples at relapse, which displayed constitutive activation of PI3K signaling and resistance to nelarabine alone. The combination with the pan PI3K inhibitor ZSTK-474 was the most effective in inhibiting the growth of T-ALL cells and was synergistic in decreasing cell survival and inducing apoptosis in nelarabine-resistant T-ALL cells. The drug combination caused AKT dephosphorylation and a downregulation of Bcl2, while nelarabine alone induced an increase in p-AKT and Bcl2 signaling in the resistant T-ALL cells and relapsed patient samples. Conclusions These findings indicate that nelarabine in combination with PI3K inhibitors may be a promising therapeutic strategy for the treatment of T-ALL relapsed patients. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0344-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy
| | - Alice Bertaina
- Department of Pediatric Hematology-Oncology, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Pession
- Department of Pediatrics, "Lalla Seràgnoli" Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, Rizzoli Orthopedic Institute, National Research Council, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Laura Zambonin
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Luca Maria Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto Maria Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Francesca Chiarini
- Institute of Molecular Genetics, Rizzoli Orthopedic Institute, National Research Council, Bologna, Italy.
| |
Collapse
|
20
|
Hatzistergos KE, Saur D, Seidler B, Balkan W, Breton M, Valasaki K, Takeuchi LM, Landin AM, Khan A, Hare JM. Stimulatory Effects of Mesenchymal Stem Cells on cKit+ Cardiac Stem Cells Are Mediated by SDF1/CXCR4 and SCF/cKit Signaling Pathways. Circ Res 2016; 119:921-30. [PMID: 27481956 DOI: 10.1161/circresaha.116.309281] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/29/2016] [Indexed: 01/13/2023]
Abstract
RATIONALE Culture-expanded cells originating from cardiac tissue that express the cell surface receptor cKit are undergoing clinical testing as a cell source for heart failure and congenital heart disease. Although accumulating data support that mesenchymal stem cells (MSCs) enhance the efficacy of cardiac cKit(+) cells (CSCs), the underlying mechanism for this synergistic effect remains incompletely understood. OBJECTIVE To test the hypothesis that MSCs stimulate endogenous CSCs to proliferate, migrate, and differentiate via the SDF1/CXCR4 and stem cell factor/cKit pathways. METHODS AND RESULTS Using genetic lineage-tracing approaches, we show that in the postnatal murine heart, cKit(+) cells proliferate, migrate, and form cardiomyocytes, but not endothelial cells. CSCs exhibit marked chemotactic and proliferative responses when cocultured with MSCs but not with cardiac stromal cells. Antagonism of the CXCR4 pathway with AMD3100 (an SDF1/CXCR4 antagonist) inhibited MSC-induced CSC chemotaxis but stimulated CSC cardiomyogenesis (P<0.0001). Furthermore, MSCs enhanced CSC proliferation via the stem cell factor/cKit and SDF1/CXCR4 pathways (P<0.0001). CONCLUSIONS Together these findings show that MSCs exhibit profound, yet differential, effects on CSC migration, proliferation, and differentiation and suggest a mechanism underlying the improved cardiac regeneration associated with combination therapy using CSCs and MSCs. These findings have important therapeutic implications for cell-based therapy strategies that use mixtures of CSCs and MSCs.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Dieter Saur
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Barbara Seidler
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Wayne Balkan
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Matthew Breton
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Krystalenia Valasaki
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Lauro M Takeuchi
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Ana Marie Landin
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Aisha Khan
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.).
| |
Collapse
|