1
|
Wu F, Zhang T, Wu Q, Li X, Zhang M, Luo X, Zhang Y, Lu R. Complete genome sequence and comparative analysis of a Vibrio vulnificus strain isolated from a clinical patient. Front Microbiol 2023; 14:1240835. [PMID: 38029170 PMCID: PMC10644004 DOI: 10.3389/fmicb.2023.1240835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Vibrio vulnificus is an opportunistic, global pathogen that naturally inhabits sea water and is responsible for most vibriosis-related deaths. We investigated the genetic characteristics of V. vulnificus isolated from the clinical blood culture specimen of a patient with hepatitis B virus cirrhosis in 2018 (named as V. vulnificus VV2018) by whole genome sequencing (WGS). VV2018 belonged to a novel sequencing type 620 (ST620) and comprised two circular chromosomes, containing 4,389 potential coding sequences (CDSs) and 152 RNA genes. The phylogenetic tree of single nucleotide polymorphisms (SNPs) using 26 representative genomes revealed that VV2108 grouped with two other V. vulnificus strains isolated from humans. The pan-genome of V. vulnificus was constructed using 26 representative genomes to elucidate their genetic diversity, evolutionary characteristics, and virulence and antibiotic resistance profiles. The pan-genome analysis revealed that VV2018 shared a total of 3,016 core genes (≥99% presence), including 115 core virulence factors (VFs) and 5 core antibiotic resistance-related genes, and 309 soft core genes (≥95 and <99% presence) with 25 other V. vulnificus strains. The varG gene might account for the cefazolin resistance, and comparative analysis of the genetic context of varG revealed that two genes upstream and downstream of varG were conserved. The glycosylation (pgl) like genes were found in VV2018 compared with Pgl-related proteins in Neisseria that might affect the adherence of the strain in hosts. The comparative analysis of VV2018 would contribute to a better understanding of the virulence and antibiotic resistance profiles of V. vulnificus. Meanwhile much work remains to be done to better understand the function of pgl-like genes in V. vulnificus.
Collapse
Affiliation(s)
- Fei Wu
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
- School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Qimin Wu
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| |
Collapse
|
2
|
Lu K, Li Y, Chen R, Yang H, Wang Y, Xiong W, Xu F, Yuan Q, Liang H, Xiao X, Huang R, Chen Z, Tian C, Wang S. Pathogenic mechanism of Vibrio vulnificus infection. Future Microbiol 2023; 18:373-383. [PMID: 37158065 DOI: 10.2217/fmb-2022-0243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Vibrio vulnificus is a fatal, opportunistic human pathogen transmitted through the consumption of raw/undercooked seafood or direct contact. V. vulnificus infection progresses rapidly and has severe consequences; some cases may require amputation or result in death. Growing evidence suggests that V. vulnificus virulence factors and regulators play a large role in disease progression, involving host resistance, cellular damage, iron acquisition, virulence regulation and host immune responses. Its disease mechanism remains largely undefined. Further evaluation of pathogenic mechanisms is important for selecting appropriate measures to prevent and treat V. vulnificus infection. In this review, the possible pathogenesis of V. vulnificus infection is described to provide a reference for treatment and prevention.
Collapse
Affiliation(s)
- Kun Lu
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Yang Li
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Rui Chen
- Department of Orthopedics, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Hua Yang
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Yong Wang
- Hemodialysis Center, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Wei Xiong
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Fang Xu
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Qijun Yuan
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Haihui Liang
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Xian Xiao
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Renqiang Huang
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Zhipeng Chen
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Chunou Tian
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Songqing Wang
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| |
Collapse
|
3
|
Characteristic Metabolic Changes in Skeletal Muscle Due to Vibrio vulnificus Infection in a Wound Infection Model. mSystems 2023; 8:e0068222. [PMID: 36939368 PMCID: PMC10153474 DOI: 10.1128/msystems.00682-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Vibrio vulnificus is a bacterium that inhabits warm seawater or brackish water environments and causes foodborne diseases and wound infections. In severe cases, V. vulnificus invades the skeletal muscle tissue, where bacterial proliferation leads to septicemia and necrotizing fasciitis with high mortality. Despite this characteristic, information on metabolic changes in tissue infected with V. vulnificus is not available. Here, we elucidated the metabolic changes in V. vulnificus-infected mouse skeletal muscle using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Metabolome analysis revealed changes in muscle catabolites and energy metabolites during V. vulnificus infection. In particular, succinic acid accumulated but fumaric acid decreased in the infected muscle. However, the virulence factor deletion mutant revealed that changes in metabolites and bacterial proliferation were abolished in skeletal muscle infected with a multifunctional-autoprocessing repeats-in-toxin (MARTX) mutant. On the other hand, mice that were immunosuppressed via cyclophosphamide (CPA) treatment exhibited a similar level of bacterial counts and metabolites between the wild type and MARTX mutant. Therefore, our data indicate that V. vulnificus induces metabolic changes in mouse skeletal muscle and proliferates by using the MARTX toxin to evade the host immune system. This study indicates a new correlation between V. vulnificus infections and metabolic changes that lead to severe reactions or damage to host skeletal muscle. IMPORTANCE V. vulnificus causes necrotizing skin and soft tissue infections (NSSTIs) in severe cases, with high mortality and sign of rapid deterioration. Despite the severity of the infection, the dysfunction of the host metabolism in skeletal muscle triggered by V. vulnificus is poorly understood. In this study, by using a mouse wound infection model, we revealed characteristic changes in muscle catabolism and energy metabolism in skeletal muscle associated with bacterial proliferation in the infected tissues. Understanding such metabolic changes in V. vulnificus-infected tissue may provide crucial information to identify the mechanism via which V. vulnificus induces severe infections. Moreover, our metabolite data may be useful for the recognition, identification, or detection of V. vulnificus infections in clinical studies.
Collapse
|
4
|
Li W, Wang Y. Stress granules: potential therapeutic targets for infectious and inflammatory diseases. Front Immunol 2023; 14:1145346. [PMID: 37205103 PMCID: PMC10185834 DOI: 10.3389/fimmu.2023.1145346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Eukaryotic cells are stimulated by external pressure such as that derived from heat shock, oxidative stress, nutrient deficiencies, or infections, which induce the formation of stress granules (SGs) that facilitates cellular adaptation to environmental pressures. As aggregated products of the translation initiation complex in the cytoplasm, SGs play important roles in cell gene expression and homeostasis. Infection induces SGs formation. Specifically, a pathogen that invades a host cell leverages the host cell translation machinery to complete the pathogen life cycle. In response, the host cell suspends translation, which leads to SGs formation, to resist pathogen invasion. This article reviews the production and function of SGs, the interaction between SGs and pathogens, and the relationship between SGs and pathogen-induced innate immunity to provide directions for further research into anti-infection and anti-inflammatory disease strategies.
Collapse
Affiliation(s)
- Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Yao Wang,
| |
Collapse
|
5
|
Wu Z, Wu Y, Gao H, He X, Yao Q, Yang Z, Zhou J, Ji L, Gao J, Jia X, Dou Y, Wang X, Shao P. Identification and whole-genome sequencing analysis of Vibrio vulnificus strains causing pearl gentian grouper disease in China. BMC Microbiol 2022; 22:200. [PMID: 35974308 PMCID: PMC9380395 DOI: 10.1186/s12866-022-02610-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
Vibrio vulnificus is a pathogenic bacterium that causes disease in marine fish, affecting fish farming and human health worldwide. In May 2021, in the Bohai Bay region, a disease broke out in commercially farmed pearl gentian grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatus), causing huge economic losses. The diseased fish had skin lesions, water accumulation in their abdomens, and showed tissue and organ damage. V. vulnificus biotype 2 has been reported in eels and other marine fish, but it is less reported in pearl gentian grouper. In this study, the pathogenic strain isolated from diseased fish was identified as V. vulnificus EPL 0201 biotype 2 on the basis of physiological and biochemical characteristics and the results of 16S rRNA gene and gyrB sequencing, virulence gene detection, and recursive infection experiments. To gain a comprehensive understanding of the pathogenicity and drug resistance of this strain, whole-genome sequencing was performed. Whole-genome analysis showed that the gene map of this strain was complete. The Virulence Factor Database annotation results showed that this strain had the key virulence factor genes vvhA and rtxA, which cause host disease. In addition, this strain had genes conferring resistance against cephalosporins, aminoglycosides, tetracyclines, and sulfonamides. Antimicrobial susceptibility testing confirmed the presence of these resistance genes identified in the genome. The results of this study show that V. vulnificus EPL 0201 biotype 2 is a multi-drug resistant strain with high pathogenicity.
Collapse
Affiliation(s)
- Zun Wu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Yating Wu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Haofeng Gao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Xuexin He
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Qiang Yao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Zhanglei Yang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Jinyi Zhou
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Linting Ji
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Jinwei Gao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Xuying Jia
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Yong Dou
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Xiaoyu Wang
- Tianjin Fisheries Research Institute, 422 Jiefang Nan Road, He Xi District, Tianjin, 300221, People's Republic of China.
| | - Peng Shao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
6
|
Zou S, Wang Q, Zhang P, Wang B, Liu G, Zhang F, Li J, Wang F, Wang B, Zhang L. Biomimetic Nanosponges Enable the Detoxification of Vibrio vulnificus Hemolysin. Int J Mol Sci 2022; 23:ijms23126821. [PMID: 35743264 PMCID: PMC9224624 DOI: 10.3390/ijms23126821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Vibrio vulnificus (V. vulnificus) infection-associated multiple antibiotic resistance has raised serious public health concerns. Recently, nanosponges (NSs) have been expected to provide innovative platforms for addressing antibacterial and drug-resistant challenges by targeting various pore-forming toxins (PFTs). In the present study, we constructed NSs to explore the effects and possible mechanism of recombinant V. vulnificus hemolysin (rVvhA)-induced injuries. In vitro, NSs significantly reversed rVvhA-induced apoptosis and necrosis, and improved toxin-induced intracellular reactive oxygen species (ROS) production, adenosine triphosphate (ATP) depletion, and apoptosis signaling pathway disruption. To explore the clinical translation potential of NSs, we established VvhA-induced septicemia and wound infection mouse models, respectively, and further found NSs could notably attenuate rVvhA-induced acute toxicity and septicemia-associated inflammation, as well as local tissue damage. In a conclusion, NSs showed excellent protective effects against rVvhA-induced toxicity, thus providing useful insights into addressing the rising threats of severe V. vulnificus infections.
Collapse
Affiliation(s)
- Shuaijun Zou
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Peipei Zhang
- Department of Marine Biological Injury and Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai 200052, China;
| | - Bo Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Guoyan Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Fuhai Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Jie Li
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Fan Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
| | - Beilei Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
- Correspondence: (B.W.); (L.Z.); Tel.: +86-021-81871128 (B.W.); +86-021-81871129 (L.Z.)
| | - Liming Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (S.Z.); (Q.W.); (B.W.); (G.L.); (F.Z.); (J.L.); (F.W.)
- Correspondence: (B.W.); (L.Z.); Tel.: +86-021-81871128 (B.W.); +86-021-81871129 (L.Z.)
| |
Collapse
|
7
|
Li S, Jiang C, Chen H, Zhang L, Ke L, Chen X, Lin C. Pre-injection of Zebrafish ( Danio rerio) tnfb Polyclonal Antibody Decreases the Mortality of Vibrio vulnificus Infected Zebrafish. Front Vet Sci 2021; 8:741242. [PMID: 34869718 PMCID: PMC8637402 DOI: 10.3389/fvets.2021.741242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022] Open
Abstract
Tumor necrosis factor (TNF) plays an important role in an inflammatory cytokine storm. Over-secretion of TNF by the host in response to infection aggravates the disease. TNF expression level is positively correlated with the mortality caused by some bacterial infections. Therefore, using TNF antibody may alleviate the inflammation to resist bacterial infections. The function of fish TNF-b antibody in bacterial infection is still unclear. In this study, infection models of Vibrio vulnificus FJ03-X2 strain with high pathogenicity and strong virulence were established in zebrafish (Danio rerio) fibroblast cell line (ZF4 cells) and zebrafish. Zebrafish tnfb (Zetnf-b) gene was cloned and expressed by Escherichia coli BL21 (DE3), and Zetnf-b polyclonal antibody was prepared. Pre-injection of Zetnf-b polyclonal antibody and AG-126 before infecting with V. vulnificus could increase the survival rate of zebrafish by 36.6 and 46.7%, respectively. Pre-injection of Zetnf-b polyclonal antibody could effectively decrease the mortality of zebrafish infected by V. vulnificus. Thus, TNF polyclonal antibody therapy could be considered as an effective strategy to control V. vulnificus in fish.
Collapse
Affiliation(s)
- Suyi Li
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Cong Jiang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Engineering, Fuzhou University, Fuzhou, China
| | - Hua Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Lijuan Zhang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Ling Ke
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xu Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Chentao Lin
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Fujian Normal University, Fuzhou, China.,Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| |
Collapse
|
8
|
Janecko N, Bloomfield SJ, Palau R, Mather AE. Whole genome sequencing reveals great diversity of Vibrio spp in prawns at retail. Microb Genom 2021; 7. [PMID: 34586050 PMCID: PMC8715430 DOI: 10.1099/mgen.0.000647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Consumption of prawns as a protein source has been on the rise worldwide with seafood identified as the predominant attributable source of human vibriosis. However, surveillance of non-cholera Vibrio is limited both in public health and in food. Using a population- and market share-weighted study design, 211 prawn samples were collected and cultured for Vibrio spp. Contamination was detected in 46 % of samples, and multiple diverse Vibrio isolates were obtained from 34 % of positive samples. Whole genome sequencing (WGS) and phylogenetic analysis illustrated a comprehensive view of Vibrio species diversity in prawns available at retail, with no known pathogenicity markers identified in Vibrio parahaemolyticus and V. cholerae. Antimicrobial resistance genes were found in 77 % of isolates, and 12 % carried genes conferring resistance to three or more drug classes. Resistance genes were found predominantly in V. parahaemolyticus, though multiple resistance genes were also identified in V. cholerae and V. vulnificus. This study highlights the large diversity in Vibrio derived from prawns at retail, even within a single sample. Although there was little evidence in this study that prawns are a major source of vibriosis in the UK, surveillance of non-cholera Vibrio is very limited. This study illustrates the value of expanding WGS surveillance efforts of non-cholera Vibrios in the food chain to identify critical control points for food safety through the production system and to determine the full extent of the public health impact.
Collapse
Affiliation(s)
- Nicol Janecko
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | | | - Raphaëlle Palau
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK.,Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
9
|
Tweedie A, Nissan T. Hiding in Plain Sight: Formation and Function of Stress Granules During Microbial Infection of Mammalian Cells. Front Mol Biosci 2021; 8:647884. [PMID: 33996904 PMCID: PMC8116797 DOI: 10.3389/fmolb.2021.647884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/01/2021] [Indexed: 01/21/2023] Open
Abstract
Stress granule (SG) formation is a host cell response to stress-induced translational repression. SGs assemble with RNA-binding proteins and translationally silent mRNA. SGs have been demonstrated to be both inhibitory to viruses, as well as being subverted for viral roles. In contrast, the function of SGs during non-viral microbial infections remains largely unexplored. A handful of microbial infections have been shown to result in host SG assembly. Nevertheless, a large body of evidence suggests SG formation in hosts is a widespread response to microbial infection. Diverse stresses caused by microbes and their products can activate the integrated stress response in order to inhibit translation initiation through phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α). This translational response in other contexts results in SG assembly, suggesting that SG assembly can be a general phenomenon during microbial infection. This review explores evidence for host SG formation in response to bacterial, fungal, and protozoan infection and potential functions of SGs in the host and for adaptations of the pathogen.
Collapse
Affiliation(s)
- Alistair Tweedie
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Tracy Nissan
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
10
|
Kim S, Chung HY, Kwon JG, Choi SH, Lee JH. Fresh Crab Plays an Important Role as a Nutrient Reservoir for the Rapid Propagation of Vibrio vulnificus. Front Microbiol 2021; 12:645860. [PMID: 33767684 PMCID: PMC7985530 DOI: 10.3389/fmicb.2021.645860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
Vibrio vulnificus is a well-known opportunistic pathogen causing food-borne illnesses by ingestion of contaminated seafood. A new strain of V. vulnificus FORC_016 was isolated from a patient's blood sample in South Korea. The genome consists of two circular DNA chromosomes: chromosome I (3,234,424 bp with a G + C contents of 46.60% containing 2,889 ORFs, 106 tRNA genes, and 31 rRNA genes) and chromosome II (1,837,945 bp with a GC content of 47.00% containing 1,572 ORFs, 13 tRNA genes, and 3 rRNA genes). In addition, chromosome I has a super integron (SI) containing 209 ORFs, which is probably associated with various additional functions including antibiotic resistance and pathogenicity. Pan-genome analysis with other V. vulnificus genomes revealed that core genome regions contain most of the important virulence factors. However, accessory genome regions are located in the SI region and contain unique genes regarding cell wall biosynthesis and generation of host cell protecting capsule, suggesting possible resistance ability against environmental stresses. Comparative RNA-Seq analysis of samples between contact and no contact to the crab conditions showed that expressions of amino acid/peptide and carbohydrate transport and utilization genes were down-regulated, but expressions of cell division and growth-related genes were up-regulated, suggesting that the crab may be a nutrition reservoir for rapid propagation of V. vulnificus. Therefore, consumption of the contaminated fresh crab would provide a large number of V. vulnificus to humans, which may be more dangerous. Consequently, biocontrol of V. vulnificus may be critical to ensure the safety in seafood consumption.
Collapse
Affiliation(s)
- Suyeon Kim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Han Young Chung
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Joon-Gi Kwon
- Food Microbiome Laboratory, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Ju-Hoon Lee
- Food Microbiome Laboratory, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
11
|
Huang XH, Ma Y, Lou H, Chen N, Zhang T, Wu LY, Chen YJ, Zheng MM, Lou YL, Xie DL. The Role of TSC1 in the Macrophages Against Vibrio vulnificus Infection. Front Cell Infect Microbiol 2021; 10:596609. [PMID: 33585271 PMCID: PMC7873526 DOI: 10.3389/fcimb.2020.596609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
Vibrio vulnificus (V. vulnificus) is an estuarine bacterium that is capable of causing rapidly fatal infection in humans. Proper polarization and bactericidal activity of macrophages play essential roles in defending against invading pathogens. How macrophages limit V. vulnificus infection remains not well understood. Here we report that tuberous sclerosis complex 1 (TSC1) is crucial for the regulation of V. vulnificus-induced macrophage polarization, bacterial clearance, and cell death. Mice with myeloid-specific deletion of TSC1 exhibit a significant reduction of survival time after V. vulnificus infection. V. vulnificus infection induces both M1 and M2 polarization. However, TSC1 deficient macrophages show enhanced M1 response to V. vulnificus infection. Interestedly, the absence of TSC1 in myeloid cells results in impaired bacterial clearance both in vivo and in vitro after V. vulnificus infection. Inhibition of the mammalian target of rapamycin (mTOR) activity significantly reverses V. vulnificus-induced hypersensitive M1 response and resistant bactericidal activity both in wild-type and TSC1-deficient macrophages. Moreover, V. vulnificus infection causes cell death of macrophages, possibly contributes to defective of bacterial clearance, which also exhibits in a mTORC1-dependent manner. These findings highlight an essential role for the TSC1-mTOR signaling in the regulation of innate immunity against V. vulnificus infection.
Collapse
Affiliation(s)
- Xian-Hui Huang
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Department of Infection and Immunity, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Yao Ma
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Department of Laboratory Medicine, Dong Yang People's Hospital, Jinhua, China
| | - Han Lou
- Department of Pathology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Na Chen
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Ting Zhang
- Department of Laboratory Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Liu-Ying Wu
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Yi-Ju Chen
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Meng-Meng Zheng
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Yong-Liang Lou
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Department of Infection and Immunity, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Dan-Li Xie
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Department of Infection and Immunity, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| |
Collapse
|
12
|
Yuan Y, Feng Z, Wang J. Vibrio vulnificus Hemolysin: Biological Activity, Regulation of vvhA Expression, and Role in Pathogenesis. Front Immunol 2020; 11:599439. [PMID: 33193453 PMCID: PMC7644469 DOI: 10.3389/fimmu.2020.599439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
The Vibrio vulnificus (V. vulnificus) hemolysin (VVH) is a pore-forming cholesterol-dependent cytolysin (CDC). Although there has been some debate surrounding the in vivo virulence effects of the VVH, it is becoming increasingly clear that it drives different cellular outcomes and is involved in the pathogenesis of V. vulnificus. This minireview outlines recent advances in our understanding of the regulation of vvhA gene expression, the biological activity of the VVH and its role in pathogenesis. An in-depth examination of the role of the VVH in V. vulnificus pathogenesis will help reveal the potential targets for therapeutic and preventive interventions to treat fatal V. vulnificus septicemia in humans. Future directions in VVH research will also be discussed.
Collapse
Affiliation(s)
- Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Zihan Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| |
Collapse
|
13
|
Chen JL, Lu JH, Xie CS, Shen YJ, Wang JW, Ye XY, Zhang MB, Jia GL, Tao YX, Li J, Cao H. Caveolin-1 in spinal cord modulates type-2 diabetic neuropathic pain through the Rac1/NOX2/NR2B signaling pathway. Am J Transl Res 2020; 12:1714-1727. [PMID: 32509171 PMCID: PMC7269978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE The present study determines whether Cav-1 modulates the initiation, development and maintenance of type-2 DNP via the Rac1/NOX2-NR2B signaling pathway. METHODS After regular feeding for three days, these rats were randomly divided into two groups: control group with normal-diet (maintenance feed) (n=8); type-2 DM group (n=8). In the type-2 DM group, the rats were fed with a high-fat and high-sugar diet, and received a single intraperitoneal streptozotocin (STZ) injection (35 mg/kg). At two weeks after STZ injection, these diabetic neuropathic pain (DNP) rats were treated with daidzein (0.4 mg/kg/day) and N-tert-Butyl-α-phenylnitrone (PBN, 100 mg/kg/day) for 14 days. After the type-2 DNP model was successfully established, the rats were assigned into four groups: DNP group, DNP+Da group (DNP rats with Cav-1 specific inhibitor daidzein), DNP+PBN group (DNP rats treated with ROS scavenger PBN), and SC group (solvent control group). Then, the mechanical and thermal hyperalgesia were assayed to evaluate the function of the caveolin 1-Recombinant Human Ras-Related C1/nicotinamide adenosine diphosphate oxidase 2-NR2B gene (Cav-1-Rac1/NOX2-NR2B) signaling pathway. In the mechanism study, the protein expression levels of p-Caveolin-1, Rac1, NOX2, p-NR2B and t-NR2B, the production of ROS, and the distribution of Cav-1 and NOX2 in the spinal cord were observed. RESULTS The present study revealed that p-Cav-1 was persistently upregulated and activated in the spinal cord microglia in type-2 DNP rats. The use of the pharmacological inhibitor of Cav-1 and a ROS scavenger resulted to a significantly relieved mechanical allodynia and thermal hyperalgesia. In addition, it was demonstrated that Cav-1 promoted ROS generation via the activation of Rac1-dependent NADPH oxidase (NOX). CONCLUSION The present data suggests that Cav-1 in the spinal cord modulates type-2 DNP via regulating the Rac1/NOX2-NR2B pathway.
Collapse
Affiliation(s)
- Jia-Li Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical UniversityZhejiang 325035, China
| | - Jia-Hui Lu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical UniversityZhejiang 325035, China
| | - Ci-Shan Xie
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical UniversityZhejiang 325035, China
| | - Yu-Jing Shen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical UniversityZhejiang 325035, China
| | - Jun-Wu Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical UniversityZhejiang 325035, China
| | - Xiu-Ying Ye
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical UniversityZhejiang 325035, China
| | - Mao-Biao Zhang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical UniversityZhejiang 325035, China
| | - Gai-Li Jia
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical UniversityZhejiang 325035, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New JerseyNewark, New Jersey 07103, USA
| | - Jun Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical UniversityZhejiang 325035, China
| | - Hong Cao
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical UniversityZhejiang 325035, China
| |
Collapse
|
14
|
Kim JY, Lee YM, Kim DW, Min T, Lee SJ. Nanosphere Loaded with Curcumin Inhibits the Gastrointestinal Cell Death Signaling Pathway Induced by the Foodborne Pathogen Vibrio vulnificus. Cells 2020; 9:cells9030631. [PMID: 32151068 PMCID: PMC7140471 DOI: 10.3390/cells9030631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 01/28/2023] Open
Abstract
Curcumin, a hydrophobic polyphenol of turmeric, has a variety of biological functions as a herbal supplement, but its poor gastric absorption rate is one of the major factors limiting its oral bioavailability. In the present study, we have investigated the functional role of a nanosphere loaded with curcumin (CN) during host cell death elicited by the Gram-negative bacterium V. vulnificus in human gastrointestinal epithelial HT-29 cells and an ileal-ligated mouse model. The recombinant protein (r) VvhA produced by V. vulnificus significantly reduced the viability of HT-29 cells. The cytotoxic effect of rVvhA was restored upon a treatment with CN (100 ng/mL), which had shown 1000-fold higher anti-apoptotic efficacy than curcumin. CN inhibited the phosphorylation of c-Src and PKC mediated by intracellular ROS responsible for the distinctive activation of the MAPKs in rVvhA-treated HT-29 cells. Interestingly, CN significantly restored the expression of Bax, Bcl-2, and cleaved caspase-3 as regulated by the phosphorylation of NF-κB. In mouse models of V. vulnificus infection, treatment with CN had a blocking effect that elevated the levels of TUNEL-positive DNA fragmentation and apoptosis-related proteins. These results indicate that CN is a functional agent that manipulates the V. vulnificus VvhA signaling pathway responsible for gastrointestinal cell death.
Collapse
Affiliation(s)
- Ji-Yun Kim
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
| | - Young-Min Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
| | - Do-Wan Kim
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
| | - Taesun Min
- Department of Animal Biotechnology, Faculty of Biotechnology, SARI, Jeju National University, Jeju 63243, Korea
- Correspondence: (T.M.); (S.-J.L.); Tel.: +82-54-819-1806 (S.-J.L.)
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
- Correspondence: (T.M.); (S.-J.L.); Tel.: +82-54-819-1806 (S.-J.L.)
| |
Collapse
|
15
|
Li G, Wang MY. The role of Vibrio vulnificus virulence factors and regulators in its infection-induced sepsis. Folia Microbiol (Praha) 2019; 65:265-274. [PMID: 31840198 DOI: 10.1007/s12223-019-00763-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
Due to the development of Marine aquaculture, infections caused by Vibrio vulnificus are common all over the world. Symptoms of V. vulnificus infection vary from gastrointestinal illness to septicemia. After infection with V. vulnificus, some patients showed gastrointestinal symptoms, including vomiting, fever, diarrhea, and so on. Others appeared wound infection at the site of contact with bacteria, and even developed sepsis. Once it develops into sepsis, the prognosis of patients is very poor. However, its underlying pathogenic mechanism remains largely undetermined. Growing evidence shows that it can induce primary septicemia mainly via essential virulence factors and regulators. Therefore, it is important to identify the factors that play roles in sepsis. In this review, we systematically expounded the role of V. vulnificus virulence factors and regulators in its infection-induced sepsis in order to provide useful information for the treatment and prevention of V. vulnificus.
Collapse
Affiliation(s)
- Gang Li
- Weihai Clinical Medical School, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China.,Weihai Municipal Hospital, Weihai, 264200, China
| | - Ming-Yi Wang
- Weihai Clinical Medical School, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China. .,Weihai Municipal Hospital, Weihai, 264200, China.
| |
Collapse
|
16
|
Guerrero A, Licea-Navarro AF, González-Sánchez R, Lizárraga-Partida ML. Whole-genome comparison between reference sequences and oyster Vibrio vulnificus C-genotype strains. PLoS One 2019; 14:e0220385. [PMID: 31361763 PMCID: PMC6667273 DOI: 10.1371/journal.pone.0220385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/15/2019] [Indexed: 01/22/2023] Open
Abstract
Whole-genome sequences of Vibrio vulnificus clinical genotype (C-genotype) from the CICESE Culture Collection, isolated from oysters, were compared with reference sequences of CMCP6 and YJ016 V. vulnificus C-genotype strains of clinical origin. The RAST web server estimated the whole genome to be ~4.8 Mb in CICESE strain 316 and ~4.7 Mb in CICESE strain 325. No plasmids were detected in the CICESE strains. Based on a phylogenetic tree that was constructed with the whole-genome results, we observed high similarity between the reference sequences and oyster C-genotype isolates and a sharp contrast with environmental genotype (E-genotype) reference sequences, indicating that the differences between the C- and E-genotypes do not necessarily correspond to their isolation origin. The CICESE strains share 3488 genes (63.2%) with the YJ016 strain and 3500 genes (63.9%) with the CMCP6 strain. A total of 237 pathogenicity associated genes were selected from reference clinical strains, where—92 genes were from CMCP6, 126 genes from YJ016, and 19 from MO6-24/O; the presence or absence of these genes was recorded for the CICESE strains. Of the 92 genes that were selected for CMCP6, 67 were present in both CICESE strains, as were as 86 of the 126 YJ016 genes and 13 of the 19 MO6-24/O genes. The detection of elements that are related to virulence in CICESE strains—such as the RTX gene cluster, vvhA and vvpE, the type IV pili cluster, the XII genomic island, and the viuB genes, suggests that environmental isolates with the C-genotype, have significant potential for infection.
Collapse
Affiliation(s)
- Abraham Guerrero
- Centro de Investigación Científica y de Educación Superior de Ensenada Baja California, México, CICESE, Ensenada Baja California, México
| | - Alexei Fedorovish Licea-Navarro
- Centro de Investigación Científica y de Educación Superior de Ensenada Baja California, México, CICESE, Ensenada Baja California, México
| | - Ricardo González-Sánchez
- Centro de Investigación Científica y de Educación Superior de Ensenada Baja California, México, CICESE, Ensenada Baja California, México
| | - Marcial Leonardo Lizárraga-Partida
- Centro de Investigación Científica y de Educación Superior de Ensenada Baja California, México, CICESE, Ensenada Baja California, México
- * E-mail:
| |
Collapse
|
17
|
Epidemiology, pathogenetic mechanism, clinical characteristics, and treatment of Vibrio vulnificus infection: a case report and literature review. Eur J Clin Microbiol Infect Dis 2019; 38:1999-2004. [PMID: 31325061 DOI: 10.1007/s10096-019-03629-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Abstract
Vibrio vulnificus is a Gram-negative bacterium that belongs to the Vibrionaceae family. It represents a deadly opportunistic human pathogen which grows in water with the proper temperature and salinity, and is mostly acquired from seafood eating or direct contact. In susceptible individuals, a traumatic infection could be fatal, causing severe wound infection and even septic shock, and may require amputation. Global warming plays an important role in the geographical area expanding of Vibrio disease. The pathogenesis of Vibrio vulnificus-associated sepsis is very complex, including iron intake, cell injury, and adhesion-related protein and virulence regulation. Vibrio vulnificus infection mainly manifests clinical subtypes such as primary sepsis, traumatic infection, and gastroenteritis, with rapid symptom progression and signs of multiple organ dysfunction syndrome (MODS). It is important to assess these pathogenetic mechanisms in order to select more appropriate measures to prevent and treat Vibrio vulnificus infections, including antibiotic usage and surgical intervention. In this work, we report a typical case of successful treatment of necrotizing fasciitis caused by Vibrio vulnificus, and review the epidemiology, pathogenetic mechanism, clinical characteristics, and treatment of Vibrio vulnificus infection.
Collapse
|
18
|
Lopes Pires ME, Antunes Naime AC, Oliveira JGF, Anhe GF, Garraud O, Cognasse F, Antunes E, Marcondes S. Signalling pathways involved in p47 phox -dependent reactive oxygen species in platelets of endotoxemic rats. Basic Clin Pharmacol Toxicol 2018; 124:394-403. [PMID: 30318767 DOI: 10.1111/bcpt.13148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/09/2018] [Indexed: 12/12/2022]
Abstract
Thrombocytopenia during sepsis is associated with a less favourable clinical outcome. Overproduction of reactive oxygen species (ROS) by different cell types contributes to sepsis. Platelets generate ROS, but the upstream pathways of NADPH oxidase activation are not completely understood. Here, we designed experiments in washed platelets from lipopolysaccharide (LPS)-treated rats to investigate the p47phox activation and ROS generation, and its modulation by c-Src family kinase (c-Src), phosphoinositide 3-kinase (PI3K), protein kinase C (PKC) and protein kinase G (PKG). Rats were injected intraperitoneally with LPS (1 mg/kg), and at 48 hours thereafter, arterial blood was collected and washed platelets were obtained. Washed platelets were pre-incubated with different inhibitors and subsequently activated or not with ADP. Flow cytometry, Western blotting and ELISA were performed. We found that LPS significantly increased the p47phox phosphorylation and ROS generation compared with the control group (P < 0.05). The enhanced ROS production in the LPS group was unaffected by the non-selective SFKs inhibitor PP2, the PI3K inhibitor wortmannin or the Akt inhibitor PPI-1. The cyclic GMP levels were 115% higher in activated platelets of LPS compared with the saline group (P < 0.05). Moreover, in the LPS group, the sGC inhibitor ODQ, the PKG inhibitor Rp-8-Br and the PKC inhibitor GF109203X abrogated the increased p47phox phosphorylation and reduced the ROS levels. In conclusion, selective inhibitors of cGMP-PKG and PKC-p47phox pathways that regulate ROS generation by LPS in platelets may help control the redox balance in sepsis improving the survival of patients.
Collapse
Affiliation(s)
- Maria E Lopes Pires
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ana C Antunes Naime
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jessica G F Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Gabriel F Anhe
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Oliver Garraud
- GIMAP-EA3064, Université de Lyon, Saint Etienne, France.,Etablissement Français du Sang (EFS) Rhône-Alpes-Auvergne, Saint-Etienne, France
| | - Fabrice Cognasse
- GIMAP-EA3064, Université de Lyon, Saint Etienne, France.,Institut National de Transfusion Sanguine (INTS), Paris, France
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sisi Marcondes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
19
|
Taurine Attenuates Calpain-2 Induction and a Series of Cell Damage via Suppression of NOX-Derived ROS in ARPE-19 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4596746. [PMID: 30151070 PMCID: PMC6087582 DOI: 10.1155/2018/4596746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/24/2018] [Accepted: 06/07/2018] [Indexed: 12/23/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are key transmembrane proteins leading to reactive oxygen species (ROS) overproduction. However, the detailed roles of NOXs in retinal pigment epithelial (RPE) cell metabolic stress induced by Earle's balanced salt solution (EBSS) through starvation remain unclear. In this study, we investigated what roles NOXs play in regard to calpain activity, endoplasmic stress (ER), autophagy, and apoptosis during metabolic stress in ARPE-19 cells. We first found that EBSS induced an increase in NOX2, NOX4, p22phox, and NOX5 compared to NOX1. Secondly, suppression of NOXs resulted in reduced ER stress and autophagy, decreased ROS generation, and alleviated cell apoptosis. Thirdly, silencing of NOX4, NOX5, and p22phox resulted in reduced levels of cell damage. However, silencing of NOX1 was unaffected. Finally, taurine critically mediated NOXs in response to EBSS stress. In conclusion, this study demonstrated for the first time that NOX oxidases are the upstream regulators of calpain-2, ER stress, autophagy, and apoptosis. Furthermore, the protective effect of taurine is mediated by the reduction of NOX-derived ROS, leading to sequential suppression of calpain induction, ER stress, autophagy, and apoptosis.
Collapse
|
20
|
Imdad S, Batool N, Pradhan S, Chaurasia AK, Kim KK. Identification of 2',4'-Dihydroxychalcone as an Antivirulence Agent Targeting HlyU, a Master Virulence Regulator in Vibrio vulnificus. Molecules 2018; 23:E1492. [PMID: 29925801 PMCID: PMC6099652 DOI: 10.3390/molecules23061492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
The emergence of antimicrobial resistance and rapid acclimation allows Vibrio vulnificus to rapidly propagate in the host. This problematic pathological scenario can be circumvented by employing an antivirulence strategy, treating Vibrio infections without hindering the bacterial growth. We developed a genome-integrated orthogonal inhibitor screening platform in E. coli to identify antivirulence agents targeting a master virulence regulator of V. vulnificus. We identified 2′,4′-dihydroxychalcone (DHC) from the natural compound library and verified that it decreases the expression of the major toxin network which is equivalent to the ∆hlyU deletion mutant. 2′,4′-DHC also reduced the hemolytic activity of V. vulnificus which was tested as an example of virulence phenotype. The electrophoretic mobility shift assay confirmed that 2′,4′-DHC specifically targeted HlyU and inhibited its binding to PrtxA1 promoter. Under in vivo conditions, a single dose of 2′,4′-DHC protected ~50% wax-worm larvae from V. vulnificus infection at a non-toxic concentration to both V. vulnificus and wax-worm larvae. In the current study, we demonstrated that an orthogonal reporter system is suitable for the identification of antivirulence compounds with accuracy, and identified 2′,4′-DHC as a potent antivirulence agent that specifically targets the HlyU virulence transcriptional regulator and significantly reduces the virulence and infection potential of V. vulnificus.
Collapse
Affiliation(s)
- Saba Imdad
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| | - Nayab Batool
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| | - Subhra Pradhan
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| | - Akhilesh Kumar Chaurasia
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
21
|
Imdad S, Chaurasia AK, Kim KK. Identification and Validation of an Antivirulence Agent Targeting HlyU-Regulated Virulence in Vibrio vulnificus. Front Cell Infect Microbiol 2018; 8:152. [PMID: 29868508 PMCID: PMC5958221 DOI: 10.3389/fcimb.2018.00152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) in pathogens is the result of indiscriminate use of antibiotics and consequent metabolic/genetic modulation to evolve survival strategies and clonal-selection in AMR strains. As an alternative to antibiotic treatment, antivirulence strategies are being developed, not only to combat bacterial pathogenesis, but also to avoid emerging antibiotic resistance. Vibrio vulnificus is a foodborne pathogen that causes gastroenteritis, necrotizing wound infections, and sepsis with a high rate of mortality. Here, we developed an inhibitor-screening reporter platform to target HlyU, a master transcriptional regulator of virulence factors in V. vulnificus by assessing rtxA1 transcription under its control. The inhibitor-screening platform includes wild type and ΔhlyU mutant strains of V. vulnificus harboring the reporter construct PrtxA1::luxCDABE for desired luminescence signal detection and control background luminescence, respectively. Using the inhibitor-screening platform, we identified a small molecule, fursultiamine hydrochloride (FTH), that inhibits the transcription of the highly invasive repeat-in-toxin (rtxA1) and hemolysin (vvhA) along with other HlyU regulated virulence genes. FTH has no cytotoxic effects on either host cells or pathogen at the tested concentrations. FTH rescues host cells from the necrotic cell-death induced by RtxA1 and decreases the hemolytic activity under in vitro conditions. The most important point is that FTH treatment does not induce the antivirulence resistance. Current study validated the antivirulence strategy targeting the HlyU virulence transcription factor and toxin-network of V. vulnificus and demonstrated that FTH, exhibits a potential to inhibit the pathogenesis of deadly, opportunistic human pathogen, V. vulnificus without inducing AMR.
Collapse
Affiliation(s)
- Saba Imdad
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Akhilesh Kumar Chaurasia
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| |
Collapse
|
22
|
Lee SJ, Lee HJ, Jung YH, Kim JS, Choi SH, Han HJ. Melatonin inhibits apoptotic cell death induced by Vibrio vulnificus VvhA via melatonin receptor 2 coupling with NCF-1. Cell Death Dis 2018; 9:48. [PMID: 29352110 PMCID: PMC5833450 DOI: 10.1038/s41419-017-0083-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
Melatonin, an endogenous hormone molecule, has a variety of biological functions, but a functional role of melatonin in the infection of Gram-negative bacterium Vibrio vulnificus has yet to be described. In this study, we investigated the molecular mechanism of melatonin in the apoptosis of human intestinal epithelial (HCT116) cells induced by the hemolysin (VvhA) produced by V. vulnificus. Melatonin (1 μM) significantly inhibited apoptosis induced by the recombinant protein (r) VvhA, which had been inhibited by the knockdown of MT2. The rVvhA recruited caveolin-1, NCF-1, and Rac1 into lipid rafts to facilitate the production of ROS responsible for the phosphorylation of PKC and JNK. Interestingly, melatonin recruited NCF-1 into non-lipid rafts to prevent ROS production via MT2 coupling with Gαq. Melatonin inhibited the JNK-mediated phosphorylation of c-Jun responsible for Bax expression, the release of mitochondrial cytochrome c, and caspase-3/-9 activation during its promotion of rVvhA-induced apoptotic cell death. In addition, melatonin inhibited JNK-mediated phosphorylation of Bcl-2 responsible for the release of Beclin-1 and Atg5 expression during its promotion of rVvhA-induced autophagic cell death. These results demonstrate that melatonin signaling via MT2 triggers recruitment of NCF-1 into non-lipid rafts to block ROS production and JNK-mediated apoptotic and autophagic cell deaths induced by rVvhA in intestinal epithelial cells.
Collapse
Affiliation(s)
- Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan, 38610, South Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, South Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, South Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul, 08826, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
23
|
Lee SJ, Jung YH, Kim JS, Lee HJ, Lee SH, Lee KH, Jang KK, Choi SH, Han HJ. A Vibrio vulnificus VvpM Induces IL-1β Production Coupled with Necrotic Macrophage Death via Distinct Spatial Targeting by ANXA2. Front Cell Infect Microbiol 2017; 7:352. [PMID: 28848713 PMCID: PMC5554522 DOI: 10.3389/fcimb.2017.00352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/21/2017] [Indexed: 12/23/2022] Open
Abstract
An inflammatory form of phagocyte death evoked by the Gram-negative bacterium Vibrio (V.) vulnificus (WT) is one of hallmarks to promote their colonization, but the virulence factor and infectious mechanism involved in this process remain largely unknown. Here, we identified extracellular metalloprotease VvpM as a new virulence factor and investigated the molecular mechanism of VvpM which acts during the regulation of the inflammatory form of macrophage death and bacterial colonization. Mutation of the vvpM gene appeared to play major role in the prevention of IL-1β production due to V. vulnificus infection in macrophage. However, the recombinant protein (r) VvpM caused IL-1β production coupled with necrotic cell death, which is highly susceptible to the knockdown of annexin A2 (ANXA2) located in both membrane lipid and non-lipid rafts. In lipid rafts, rVvpM recruited NOX enzymes coupled with ANXA2 to facilitate the production of ROS responsible for the epigenetic and transcriptional regulation of NF-κB in the IL-1β promoter. rVvpM acting on non-lipid rafts increased LC3 puncta formation and autophagic flux, which are required for the mRNA expression of Atg5 involved in the autophagosome formation process. The autophagy activation caused by rVvpM induced NLRP3 inflammasome-dependent caspase-1 activation in the promoting of IL-1β production. In mouse models of V. vulnificus infection, the VvpM mutant failed to elevate the level of pro-inflammatory responses closely related to IL-1β production and prevented bacterial colonization. These findings delineate VvpM efficiently regulates two pathogenic pathways that stimulate NF-κB-dependent IL-1β production and autophagy-mediated NLRP3 inflammasome via distinct spatial targeting by ANXA2.
Collapse
Affiliation(s)
- Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany UniversityGyeongsan, South Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National UniversitySeoul, South Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National UniversitySeoul, South Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National UniversitySeoul, South Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul HospitalSeoul, South Korea
- Departments of Biochemistry, Soonchunhyang University College of MedicineCheonan, South Korea
| | - Kyu-Ho Lee
- Department of Life Science, Sogang UniversitySeoul, South Korea
| | - Kyung Ku Jang
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National UniversitySeoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National UniversitySeoul, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National UniversitySeoul, South Korea
| |
Collapse
|
24
|
Luo X, Dan Wang, Luo X, Zhu X, Wang G, Ning Z, Li Y, Ma X, Yang R, Jin S, Huang Y, Meng Y, Li X. Caveolin 1-related autophagy initiated by aldosterone-induced oxidation promotes liver sinusoidal endothelial cells defenestration. Redox Biol 2017; 13:508-521. [PMID: 28734243 PMCID: PMC5521033 DOI: 10.1016/j.redox.2017.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/12/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022] Open
Abstract
Aldosterone, with pro-oxidation and pro-autophagy capabilities, plays a key role in liver fibrosis. However, the mechanisms underlying aldosterone-promoted liver sinusoidal endothelial cells (LSECs) defenestration remain unknown. Caveolin 1 (Cav1) displays close links with autophagy and fenestration. Hence, we aim to investigate the role of Cav1-related autophagy in LSECs defenestration. We found the increase of aldosterone/MR (mineralocorticoid receptor) level, oxidation, autophagy, and defenestration in LSECs in the human fibrotic liver, BDL or hyperaldosteronism models; while antagonizing aldosterone or inhibiting autophagy relieved LSECs defenestration in BDL-induced fibrosis or hyperaldosteronism models. In vitro, fenestrae of primary LSECs gradually shrank, along with the down-regulation of the NO-dependent pathway and the augment of the AMPK-dependent autophagy; these effects were aggravated by rapamycin (an autophagy activator) or aldosterone treatment. Additionally, aldosterone increased oxidation mediated by Cav1, reduced ATP generation, and subsequently induced the AMPK-dependent autophagy, leading to the down-regulation of the NO-dependent pathway and LSECs defenestration. These effects were reversed by MR antagonist spironolactone, antioxidants or autophagy inhibitors. Besides, aldosterone enhanced the co-immunoprecipitation of Cav1 with p62 and ubiquitin, and induced Cav1 co-immunofluorescence staining with LC3, ubiquitin, and F-actin in the perinuclear area of LSECs. Furthermore, aldosterone treatment increased the membrane protein level of Cav1, whereas decrease the cytoplasmic protein level of Cav1, indicating that aldosterone induced Cav1-related selective autophagy and F-actin remodeling to promote defenestration. Consequently, Cav1-related selective autophagy initiated by aldosterone-induced oxidation promotes LSECs defenestration via activating the AMPK-ULK1 pathway and inhibiting the NO-dependent pathway.
Collapse
Affiliation(s)
- Xiaoying Luo
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Luo
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, No. 52 Zhongshan East Road Nanming District, Guiyang, Guizhou Province, China
| | - Xintao Zhu
- Southern Medical University, Guangzhou, China
| | - Guozhen Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zuowei Ning
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxin Ma
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Renqiang Yang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Siyi Jin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Meng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xu Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Kim DI, Lee KH, Gabr AA, Choi GE, Kim JS, Ko SH, Han HJ. Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2820-2834. [PMID: 27599716 DOI: 10.1016/j.bbamcr.2016.09.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022]
Abstract
Mitochondrial dysfunction is known as one of causative factors in Alzheimer's disease (AD), inducing neuronal cell death. Mitochondria regulate their functions through changing their morphology. The present work was undertaken to investigate whether Amyloid β (Aβ) affects mitochondrial morphology in neuronal cells to induce apoptosis. Aβ treatment induced not only the fragmentation of mitochondria but also neuronal apoptosis in association with an increase in caspase-9 and -3 activity. Calcium influx induced by Aβ up-regulated the activation of Akt through CaMKII resulting in changes to the phosphorylation level of Drp1 in a time-dependent manner. Translocation of Drp1 from the cytosol to mitochondria was blocked by CB-124005 (an Akt inhibitor). Recruitment of Drp1 to mitochondria led to ROS generation and mitochondrial fission, accompanied by dysfunction of mitochondria such as loss of membrane potential and ATP production. ROS generation and mitochondrial dysfunction by Aβ were attenuated when treated with Mdivi-1, a selective Drp1 inhibitor. Furthermore, the sustained Akt activation induced not only the fragmentation of mitochondria but also the activation of mTOR, eventually suppressing autophagy. Inhibition of autophagic clearance of Aβ led to increased ROS levels and aggravating mitochondrial defects, which were blocked by Rapamycin (an mTOR inhibitor). In conclusion, sustained phosphorylation of Akt by Aβ directly activates Drp1 and inhibits autophagy through the mTOR pathway. Together, these changes elicit abundant mitochondrial fragmentation resulting in ROS-mediated neuronal apoptosis.
Collapse
Affiliation(s)
- Dah Ihm Kim
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Ki Hoon Lee
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Amr Ahmed Gabr
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Gee Euhn Choi
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Jun Sung Kim
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - So Hee Ko
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Ho Jae Han
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| |
Collapse
|