1
|
Bohutskyi P, Pomraning KR, Jenkins JP, Kim YM, Poirier BC, Betenbaugh MJ, Magnuson JK. Mixed and membrane-separated culturing of synthetic cyanobacteria-yeast consortia reveals metabolic cross-talk mimicking natural cyanolichens. Sci Rep 2024; 14:25303. [PMID: 39455633 PMCID: PMC11511929 DOI: 10.1038/s41598-024-74743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolite exchange mediates crucial interactions in microbial communities, significantly impacting global carbon and nitrogen cycling. Understanding these chemically-mediated interactions is essential for elucidating natural community functions and developing engineered synthetic communities. This study investigated membrane-separated bioreactors (mBRs) as a novel tool to identify transient metabolites and their producers/consumers in mixed microbial communities. We compared three co-culture methods (direct mixed, 2-chamber mBR, and 3-chamber mBR) to grow a synthetic binary community of the cyanobacterium Synechococcus elongatus PCC 7942 and the fungus Rhodotorula toruloides NBRC 0880, as well as axenic S. elongatus. Despite not being natural lichen constituents, these organisms exhibited interactions resembling those in cyanolichens. S. elongatus fixed CO2 into sugars as the primary shared metabolite, while R. toruloides secreted various biochemicals, predominantly sugar alcohols, mirroring the metabolite exchange observed in natural lichens. The mBR systems successfully captured metabolite gradients and revealed rapidly consumed compounds, including TCA cycle intermediates and amino acids. Our approach demonstrated that the 2-chamber mBR optimally balanced metabolite exchange and growth dynamics. This study provides insights into cross-species metabolic interactions and presents a valuable tool for investigating and engineering synthetic microbial communities with potential applications in biotechnology and environmental science.
Collapse
Affiliation(s)
- Pavlo Bohutskyi
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, USA.
| | - Kyle R Pomraning
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jackson P Jenkins
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Brenton C Poirier
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jon K Magnuson
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
2
|
|
3
|
Gao J, Yuan W, Li Y, Bai F, Jiang Y. Synergistic effect of thioredoxin and its reductase from Kluyveromyces marxianus on enhanced tolerance to multiple lignocellulose-derived inhibitors. Microb Cell Fact 2017; 16:181. [PMID: 29084541 PMCID: PMC5663110 DOI: 10.1186/s12934-017-0795-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/24/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Multiple lignocellulose-derived inhibitors represent great challenges for bioethanol production from lignocellulosic materials. These inhibitors that are related to the levels of intracellular reactive oxidative species (ROS) make oxidoreductases a potential target for an enhanced tolerance in yeasts. RESULTS In this study, the thioredoxin and its reductase from Kluyveromyces marxianus Y179 was identified, which was subsequently achieved over-expression in Saccharomyces cerevisiae 280. In spite of the negative effects by expression of thioredoxin gene (KmTRX), the thioredoxin reductase (KmTrxR) helped to enhance tolerance to multiple lignocellulose-derived inhibitors, such as formic acid and acetic acid. In particular, compared with each gene expression, the double over-expression of KmTRX2 and KmTrxR achieved a better ethanol fermentative profiles under a mixture of formic acid, acetic acid, and furfural (FAF) with a shorter lag period. At last, the mechanism that improves the tolerance depended on a normal level of intracellular ROS for cell survival under stress. CONCLUSIONS The synergistic effect of KmTrxR and KmTRX2 provided the potential possibility for ethanol production from lignocellulosic materials, and give a general insight into the possible toxicity mechanisms for further theoretical research.
Collapse
Affiliation(s)
- Jiaoqi Gao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Wenjie Yuan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.
| | - Yimin Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
4
|
Zhang T, Liu M, Wang YY, Wang ZJ, Wei XL, Wei JC. Two new species of Endocarpon (Verrucariaceae, Ascomycota) from China. Sci Rep 2017; 7:7193. [PMID: 28775314 PMCID: PMC5543127 DOI: 10.1038/s41598-017-07778-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/03/2017] [Indexed: 11/30/2022] Open
Abstract
Endocarpon species are key components of biological soil crusts. Phenotypic and systematic molecular analyses were carried out to identify samples of Endocarpon collected from the southeast edge of the Tengger Desert in China. These morphological and molecular analyses revealed two previously undescribed species that form highly supported independent monophyletic clades within Endocarpon. The new taxa were named Endocarpon deserticola sp. nov. and E. unifoliatum sp. nov. Furthermore, our results indicated that the newly developed protein coding markers adenylate kinase (ADK) and ubiquitin-conjugating enzyme h (UCEH) are useful for assessing species boundaries in phylogenic analyses.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Meng Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yan-Yan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Zhi-Jun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.,The College of Life Science, Southwest Forestry University, Kunming, 650224, PR China
| | - Xin-Li Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| | - Jiang-Chun Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China. .,University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
5
|
Gao J, Feng H, Yuan W, Li Y, Hou S, Zhong S, Bai F. Enhanced fermentative performance under stresses of multiple lignocellulose-derived inhibitors by overexpression of a typical 2-Cys peroxiredoxin from Kluyveromyces marxianus. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:79. [PMID: 28360937 PMCID: PMC5370469 DOI: 10.1186/s13068-017-0766-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 03/21/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bioethanol from lignocellulosic materials is of great significance to the production of renewable fuels due to its wide sources. However, multiple inhibitors generated from pretreatments represent great challenges for its industrial-scale fermentation. Despite the complex toxicity mechanisms, lignocellulose-derived inhibitors have been reported to be related to the levels of intracellular reactive oxygen species (ROS), which makes oxidoreductase a potential target for the enhancement of the tolerance of yeasts to these inhibitors. RESULTS A typical 2-Cys peroxiredoxin from Kluyveromyces marxianus Y179 (KmTPX1) was identified, and its overexpression was achieved in Saccharomyces cerevisiae 280. Strain TPX1 with overexpressed KmTPX1 gene showed an enhanced tolerance to oxidative stresses. Serial dilution assay indicated that KmTPX1 gene contributed to a better cellular growth behavior, when the cells were exposed to multiple lignocellulose-derived inhibitors, such as formic acid, acetic acid, furfural, ethanol, and salt. In particular, KmTPX1 expression also possessed enhanced tolerance to a mixture of formic acid, acetic acid, and furfural (FAF) with a shorter lag period. The maximum glucose consumption rate and ethanol generation rate in KmTPX1-expressing strain were significantly improved, compared with the control. The mechanism of improved tolerance to FAF depends on the lower level of intracellular ROS for cell survival under stress. CONCLUSION A new functional gene KmTPX1 from K. marxianus is firstly associated with the enhanced tolerance to multiple lignocellulose-derived inhibitors in S. cerevisiae. We provided a possible detoxification mechanism of the KmTPX1 for further theoretical research; meanwhile, we provided a powerful potential for application of the KmTPX1 overexpressing strain in ethanol production from lignocellulosic materials.
Collapse
Affiliation(s)
- Jiaoqi Gao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Hualiang Feng
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Wenjie Yuan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Yimin Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Shengbo Hou
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Shijun Zhong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Fengwu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiaotong University, Shanghai, 200240 China
| |
Collapse
|
6
|
Ksouri N, Jiménez S, Wells CE, Contreras-Moreira B, Gogorcena Y. Transcriptional Responses in Root and Leaf of Prunus persica under Drought Stress Using RNA Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:1715. [PMID: 27933070 PMCID: PMC5120087 DOI: 10.3389/fpls.2016.01715] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/31/2016] [Indexed: 05/02/2023]
Abstract
Prunus persica L. Batsch, or peach, is one of the most important crops and it is widely established in irrigated arid and semi-arid regions. However, due to variations in the climate and the increased aridity, drought has become a major constraint, causing crop losses worldwide. The use of drought-tolerant rootstocks in modern fruit production appears to be a useful method of alleviating water deficit problems. However, the transcriptomic variation and the major molecular mechanisms that underlie the adaptation of drought-tolerant rootstocks to water shortage remain unclear. Hence, in this study, high-throughput sequencing (RNA-seq) was performed to assess the transcriptomic changes and the key genes involved in the response to drought in root tissues (GF677 rootstock) and leaf tissues (graft, var. Catherina) subjected to 16 days of drought stress. In total, 12 RNA libraries were constructed and sequenced. This generated a total of 315 M raw reads from both tissues, which allowed the assembly of 22,079 and 17,854 genes associated with the root and leaf tissues, respectively. Subsets of 500 differentially expressed genes (DEGs) in roots and 236 in leaves were identified and functionally annotated with 56 gene ontology (GO) terms and 99 metabolic pathways, which were mostly associated with aminobenzoate degradation and phenylpropanoid biosynthesis. The GO analysis highlighted the biological functions that were exclusive to the root tissue, such as "locomotion," "hormone metabolic process," and "detection of stimulus," indicating the stress-buffering role of the GF677 rootstock. Furthermore, the complex regulatory network involved in the drought response was revealed, involving proteins that are associated with signaling transduction, transcription and hormone regulation, redox homeostasis, and frontline barriers. We identified two poorly characterized genes in P. persica: growth-regulating factor 5 (GRF5), which may be involved in cellular expansion, and AtHB12, which may be involved in root elongation. The reliability of the RNA-seq experiment was validated by analyzing the expression patterns of 34 DEGs potentially involved in drought tolerance using quantitative reverse transcription polymerase chain reaction. The transcriptomic resources generated in this study provide a broad characterization of the acclimation of P. persica to drought, shedding light on the major molecular responses to the most important environmental stressor.
Collapse
Affiliation(s)
- Najla Ksouri
- Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Sergio Jiménez
- Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | | | - Bruno Contreras-Moreira
- Laboratory of Computational and Structural Biology, Department of Genetics and Plant Production, Estación Experimental de Aula Dei – Consejo Superior de Investigaciones CientíficasZaragoza, Spain
- Fundación ARAIDZaragoza, Spain
- *Correspondence: Yolanda Gogorcena, Bruno Contreras-Moreira,
| | - Yolanda Gogorcena
- Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones CientíficasZaragoza, Spain
- *Correspondence: Yolanda Gogorcena, Bruno Contreras-Moreira,
| |
Collapse
|