1
|
Rabbitt D, Villapún VM, Carter LN, Man K, Lowther M, O'Kelly P, Knowles AJ, Mottura A, Tang YT, Luerti L, Reed RC, Cox SC. Rethinking Biomedical Titanium Alloy Design: A Review of Challenges from Biological and Manufacturing Perspectives. Adv Healthc Mater 2024:e2403129. [PMID: 39711273 DOI: 10.1002/adhm.202403129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/14/2024] [Indexed: 12/24/2024]
Abstract
Current biomedical titanium alloys have been repurposed from other industries, which has contributed to several biologically driven implant failure mechanisms. This review highlights the added value that may be gained by building an appreciation of implant biological responses at the onset of alloy design. Specifically, the fundamental mechanisms associated with immune response, angiogenesis, osseointegration and the potential threat of infection are discussed, including how elemental selection can modulate these pivotal systems. With a view to expedite inclusion of these interactions in alloy design criteria, methods to analyze these performance characteristics are also summarized. While machine learning techniques are being increasingly used to unearth complex relationships between alloying elements and material properties, much is still unknown about the correlation between composition and some bio-related properties. To bridge this gap, high-throughput methods are also reviewed to validate biological response along with cutting edge manufacturing approaches that may support rapid discovery. Taken together, this review encourages the alloy development community to rethink their approach to enable a new generation of biomedical implants intrinsically designed for a life in the body, including functionality to tackle biological challenges thereby offering improved patient outcomes.
Collapse
Affiliation(s)
- Daisy Rabbitt
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Victor M Villapún
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Luke N Carter
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kenny Man
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Morgan Lowther
- Paihau-Robinson Research Institute, Victoria University of Wellington, Wellington, 5010, New Zealand
| | - Paraic O'Kelly
- Center for the Accelerated Maturation of Materials, Department of Materials Science and Engineering, The Ohio State University, 1305 Kinnear Road, Columbus, OH, 43212, USA
| | - Alexander J Knowles
- School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alessandro Mottura
- School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, UK
| | - Yuanbo T Tang
- School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lorenzo Luerti
- Alloyed Ltd, Unit 15, Oxford Industrial Park, Yarnton, OX5 1QU, UK
| | - Roger C Reed
- School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Li L, Wu Y, Xu Z, Xu Y, Gao X, Diao Y, Liu Y, Chen L, Sun J. Controlled release of magnesium ions from PLA microsphere-chitosan hydrogel complex for enhancing osteogenic and angiogenic activities in vitro. Int J Biol Macromol 2024; 283:137649. [PMID: 39579813 DOI: 10.1016/j.ijbiomac.2024.137649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Magnesium ions (Mg2+) play an essential role in the metabolism and regeneration of bone tissue. Appropriate amounts of Mg2+ have been shown to promote osteogenic differentiation of bone-derived cells and angiogenesis of endothelial cells. However, the initial burst release of Mg2+ may compromise the osteogenic effect, so the controlled release of Mg2+ is the critical consideration of the magnesium-containing tissue-engineered bone materials. This study proposes a microsphere-hydrogel complex to enhance the sustained-release effect and prolong the release cycle of Mg2+. For the initial release of Mg2+, polylactic acid (PLA) microspheres containing MgO and MgCO3 were fabricated with uniform morphology. Further microspheres were incorporated into the chitosan-based hydrogel to form microsphere- hydrogel complex for extended release. The complex demonstrated effective sustained release of Mg2+ over a period exceeding 28 days. In vitro cell experiments, CS/PLA@MgO-MgCO3 significantly enhanced migration and osteogenic differentiation of MC3T3-E1. Meanwhile, it can facilitate the generation of blood vessels in HUVECs. In conclusion, the magnesium-loaded microsphere-hydrogel complex achieves excellent dual sustained-release properties with an extended-release cycle while enhancing vascularized osteogenic activity in vitro, showing promising prospects for clinical application in bone defect treatment.
Collapse
Affiliation(s)
- Li Li
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Yupeng Wu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Zexian Xu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Yaoxiang Xu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao 266000, China
| | - Xiaohan Gao
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Yaru Diao
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Yanshan Liu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao 266000, China
| | - Liqiang Chen
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao 266000, China; The Climbing Peak Discipline Project of Qingdao, Qingdao, 266003, China.
| | - Jian Sun
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao 266000, China; The Climbing Peak Discipline Project of Qingdao, Qingdao, 266003, China.
| |
Collapse
|
3
|
Rao J, Gao H, Sun J, Yu R, Zhao D, Ding Y. A Critical Review of Biodegradable Zinc Alloys toward Clinical Applications. ACS Biomater Sci Eng 2024; 10:5454-5473. [PMID: 39082869 DOI: 10.1021/acsbiomaterials.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Biodegradable zinc (Zn) alloys stand out as promising contenders for biomedical applications due to their favorable mechanical properties and appropriate degradation rates, offering the potential to mitigate the risks and expenses associated with secondary surgeries. While current research predominantly centers on the in vitro examination of Zn alloys, notable disparities often emerge between in vivo and in vitro findings. Consequently, conducting in vivo investigations on Zn alloys holds paramount significance in advancing their clinical application. Different element compositions and processing methods decide the mechanical properties and biological performance of Zn alloys, thus affecting their suitability for specific medical applications. This paper presents a comprehensive overview of recent strides in the development of biodegradable Zn alloys, with a focus on key aspects such as mechanical properties, toxicity, animal experiments, biological properties, and molecular mechanisms. By summarizing these advancements, the paper aims to broaden the scope of research directions and enhance the understanding of the clinical applications of biodegradable Zn alloys.
Collapse
Affiliation(s)
- Jiahui Rao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hairui Gao
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Danlei Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
4
|
Zhang Z, He D, Wang X, Ma X, Zheng Y, Gu X, Li Y. In vitro and in vivo evaluation of osteogenesis and antibacterial activity of MgGa alloys. Acta Biomater 2024; 185:85-97. [PMID: 39025394 DOI: 10.1016/j.actbio.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
MgGa alloys are considered highly potential biodegradable materials, owing to its good mechanical properties and appropriate corrosion resistance. However, it is still far from application due to the lack of biological evaluation. In the present study, biocompatibility, osteogenesis and antibacterial activity of extruded Mg-xGa (x = 1 and 5 wt%) alloys were investigated by in vitro cell culture experiments and in vivo implantation. The cell adhesion and proliferation of osteoblast precursor cells (MC3T3-E1) showed the excellent cytocompatibility of Mg-1Ga and poor cytocompatibility of Mg-5Ga. The osteogenic activity was evaluated and revealed that Ga3+ in the Mg-1Ga extract had the ability to enhance osteogenic differentiation through the facilitation of its early stages. In vivo studies in a rat femoral condyle model revealed that both Mg-1Ga and Mg-5Ga significantly promoted new bone formation without causing any adverse effects. Mg-5Ga exhibited a much higher corrosion rate in vivo than Mg-1Ga. Its osteogenic activity was better due to the rapid release of Mg2+ and Ga3+, but this caused premature structural integrity loss. Mg-1Ga and Mg-5Ga released Ga3+ to inhibit E. coli and S. aureus, with antibacterial rate increasing with Ga content. Our studies demonstrate that Mg-Ga alloys have the potential to be used as osteogenic and antibacterial implant materials. STATEMENT OF SIGNIFICANCE: This study evaluates the biocompatibility, osteogenesis, and antibacterial activity of Mg-Ga alloys, which are promising biodegradable materials for medical applications. The study finds that Mg-1Ga exhibits excellent cytocompatibility and promotes osteogenic differentiation, facilitating the early stages of osteoblast precursor cell development. In vivo studies in a rat femoral condyle model reveal that Mg-1Ga and Mg-5Ga significantly promote new bone formation without causing any adverse effects. The antibacterial activity of both alloys is evaluated against E. coli and S. aureus, with the inhibition rate increasing with Ga content. These findings suggest that Mg-Ga alloys have the potential to serve as osteogenic and antibacterial implant materials, providing significant insights into the development of novel biomedical implants.
Collapse
Affiliation(s)
- Ziyue Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
| | - Donglei He
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Xueying Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xiaolong Ma
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yang Zheng
- School of Aeronautics and Astronautics, Tiangong University, Tianjin 300387, China.
| | - Xuenan Gu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Yan Li
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
5
|
Huang T, Zeng Y, Li C, Zhou Z, Xu J, Wang L, Yu DG, Wang K. Application and Development of Electrospun Nanofiber Scaffolds for Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:4114-4144. [PMID: 38830819 DOI: 10.1021/acsbiomaterials.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nanofiber scaffolds have gained significant attention in the field of bone tissue engineering. Electrospinning, a straightforward and efficient technique for producing nanofibers, has been extensively researched. When used in bone tissue engineering scaffolds, electrospun nanofibers with suitable surface properties promote new bone tissue growth and enhance cell adhesion. Recent advancements in electrospinning technology have provided innovative approaches for scaffold fabrication in bone tissue engineering. This review comprehensively examines the utilization of electrospun nanofibers in bone tissue engineering scaffolds and evaluates the relevant literature. The review begins by presenting the fundamental principles and methodologies of electrospinning. It then discusses various materials used in the production of electrospun nanofiber scaffolds for bone tissue engineering, including natural and synthetic polymers, as well as certain inorganic materials. The challenges associated with these materials are also described. The review focuses on novel electrospinning techniques for scaffold construction in bone tissue engineering, such as multilayer nanofibers, multifluid electrospinning, and the integration of electrospinning with other methods. Recent advancements in electrospinning technology have enabled the fabrication of precisely aligned nanofiber scaffolds with nanoscale architectures. These innovative methods also facilitate the fabrication of biomimetic structures, wherein bioactive substances can be incorporated and released in a controlled manner for drug delivery purposes. Moreover, they address issues encountered with traditional electrospun nanofibers, such as mechanical characteristics and biocompatibility. Consequently, the development and implementation of novel electrospinning technologies have revolutionized scaffold fabrication for bone tissue engineering.
Collapse
Affiliation(s)
- Tianyue Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - YuE Zeng
- Department of Neurology, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chaofei Li
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengqing Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - Jie Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - Lean Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
6
|
Hassan N, Krieg T, Kopp A, Bach AD, Kröger N. Challenges and Pitfalls of Research Designs Involving Magnesium-Based Biomaterials: An Overview. Int J Mol Sci 2024; 25:6242. [PMID: 38892430 PMCID: PMC11172609 DOI: 10.3390/ijms25116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Magnesium-based biomaterials hold remarkable promise for various clinical applications, offering advantages such as reduced stress-shielding and enhanced bone strengthening and vascular remodeling compared to traditional materials. However, ensuring the quality of preclinical research is crucial for the development of these implants. To achieve implant success, an understanding of the cellular responses post-implantation, proper model selection, and good study design are crucial. There are several challenges to reaching a safe and effective translation of laboratory findings into clinical practice. The utilization of Mg-based biomedical devices eliminates the need for biomaterial removal surgery post-healing and mitigates adverse effects associated with permanent biomaterial implantation. However, the high corrosion rate of Mg-based implants poses challenges such as unexpected degradation, structural failure, hydrogen evolution, alkalization, and cytotoxicity. The biocompatibility and degradability of materials based on magnesium have been studied by many researchers in vitro; however, evaluations addressing the impact of the material in vivo still need to be improved. Several animal models, including rats, rabbits, dogs, and pigs, have been explored to assess the potential of magnesium-based materials. Moreover, strategies such as alloying and coating have been identified to enhance the degradation rate of magnesium-based materials in vivo to transform these challenges into opportunities. This review aims to explore the utilization of Mg implants across various biomedical applications within cellular (in vitro) and animal (in vivo) models.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Thomas Krieg
- Translational Matrix Biology, Medical Faculty, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50937 Cologne, Germany
| | | | - Alexander D. Bach
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| | - Nadja Kröger
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| |
Collapse
|
7
|
Hia EM, Jang SR, Maharjan B, Park J, Park CH, Kim CS. Construction of a PEGDA/chitosan hydrogel incorporating mineralized copper-doped mesoporous silica nanospheres for accelerated bone regeneration. Int J Biol Macromol 2024; 262:130218. [PMID: 38367780 DOI: 10.1016/j.ijbiomac.2024.130218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Hydrogels, integrating diverse biocompatible materials, have emerged as promising candidates for bone repair applications. This study presents a double network hydrogel designed for bone tissue engineering, combining poly(ethylene glycol) diacrylate (PEGDA) and chitosan (CS) crosslinked through UV polymerization and ionic crosslinking. Concurrently, copper-doped mesoporous silica nanospheres (Cu-MSNs) were synthesized using a one-pot method. Cu-MSNs underwent additional modification through in-situ biomineralization, resulting in the formation of an apatite layer. Polydopamine was employed to facilitate the deposition of Calcium (Ca) and Phosphate (P) ions on the surface of Cu-MSNs (Cu-MSNs/PDA@CaP). Composite hydrogels were created by integrating varied concentrations of Cu-MSNs/PDA@CaP (25, 50, 100, 150, 200 μg/mL). Characterization unveiled distinctive interconnected porous structures within the composite hydrogel, showcasing a notable 169.6 % enhancement in compressive stress (elevating from 89.01 to 240.19 kPa) compared to pure PEGDA. In vitro biocompatibility experiments illustrated that the composite hydrogel maintained elevated cell viability (up to 106.6 %) and facilitated rapid cell proliferation over 7 days. The hydrogel demonstrated a substantial 57.58 % rise in ALP expression and a surprising 235.27 % increase in ARS staining. Moreover, it significantly enhanced the expression of crucial osteogenic genes, such as run-related transcription factors 2 (RUNX2), collagen 1a1 (Col1a1), and secreted phosphoprotein 1 (Spp1), establishing it as a promising scaffold for bone regeneration. This study shows how Cu-MSNs/PDA@CaP were successfully integrated into a double network hydrogel, resulting in a composite material with good biological responses. Due to its improved characteristics, this composite hydrogel holds the potential for advancing bone regeneration procedures.
Collapse
Affiliation(s)
- Esensil Man Hia
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Se Rim Jang
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Bikendra Maharjan
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jeesoo Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
8
|
Bozorgi A, Khazaei M, Bozorgi M, Sabouri L, Soleimani M, Jamalpoor Z. Bifunctional tissue-engineered composite construct for bone regeneration: The role of copper and fibrin. J Biomed Mater Res B Appl Biomater 2024; 112:e35362. [PMID: 38247246 DOI: 10.1002/jbm.b.35362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024]
Abstract
Bifunctional tissue engineering constructs promoting osteogenesis and angiogenesis are essential for bone regeneration. Metal ion-incorporated scaffolds and fibrin encapsulation attract much attention due to low cost, nontoxicity, and tunable control over ion and growth factor release. Herein, we investigated the effect of Cu.nHA/Cs/Gel scaffold and fibrin encapsulation on osteogenic and angiogenic differentiation of Wharton's jelly mesenchymal stem cells (WJMSCs) in vitro and in vivo. Cu-laden scaffolds were synthesized using salt leaching/freeze drying and were characterized using standard techniques. WJMSCs were isolated from the human umbilical cord and characterized. WJMSCs with or without encapsulating in fibrin were seeded onto scaffolds, followed by differentiating into the osteogenic lineage for 7 and 21 days. Osteogenic and angiogenic differentiation were evaluated using real-time polymerase chain reaction, western blot, and Alizarin red staining. Then, scaffolds were implanted into critical-sized calvarial bone defects in rats and histological assessments were performed using hematoxylin/eosin, Masson's trichrome, and CD31 immunohistochemical staining at 4 and 12 weeks. The scaffolds had good physicochemical and biological characteristics suitable for cell attachment and growth. Cu and fibrin increased the expression of ALP, RUNX2, OCN, COLI, VEGF, and HIF1α in differentiated WJMSCs. Implanted scaffolds were also biocompatible and were integrated well with the host tissue. Increased collagen condensation, mineralization, and blood vessel formation were observed in Cu-laden scaffolds. The fibrin-encapsulated groups showed the highest collagen and cell densities, immune cell infiltration, and bone trabeculae. CD31-positive cell population increased with fibrin encapsulation and seeding onto Cu-laden scaffolds. Adding Cu to scaffolds and encapsulating cells in fibrin are promising methods that guide osteogenesis and angiogenesis cellular signaling, leading to better bone regeneration.
Collapse
Affiliation(s)
- Azam Bozorgi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Sabouri
- Department of Tissue Engineering and Applied Cell Sciences, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mansooreh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Jamalpoor
- Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Manescu (Paltanea) V, Antoniac I, Antoniac A, Laptoiu D, Paltanea G, Ciocoiu R, Nemoianu IV, Gruionu LG, Dura H. Bone Regeneration Induced by Patient-Adapted Mg Alloy-Based Scaffolds for Bone Defects: Present and Future Perspectives. Biomimetics (Basel) 2023; 8:618. [PMID: 38132557 PMCID: PMC10742271 DOI: 10.3390/biomimetics8080618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Treatment of bone defects resulting after tumor surgeries, accidents, or non-unions is an actual problem linked to morbidity and the necessity of a second surgery and often requires a critical healthcare cost. Although the surgical technique has changed in a modern way, the treatment outcome is still influenced by patient age, localization of the bone defect, associated comorbidities, the surgeon approach, and systemic disorders. Three-dimensional magnesium-based scaffolds are considered an important step because they can have precise bone defect geometry, high porosity grade, anatomical pore shape, and mechanical properties close to the human bone. In addition, magnesium has been proven in in vitro and in vivo studies to influence bone regeneration and new blood vessel formation positively. In this review paper, we describe the magnesium alloy's effect on bone regenerative processes, starting with a short description of magnesium's role in the bone healing process, host immune response modulation, and finishing with the primary biological mechanism of magnesium ions in angiogenesis and osteogenesis by presenting a detailed analysis based on a literature review. A strategy that must be followed when a patient-adapted scaffold dedicated to bone tissue engineering is proposed and the main fabrication technologies are combined, in some cases with artificial intelligence for Mg alloy scaffolds, are presented with examples. We emphasized the microstructure, mechanical properties, corrosion behavior, and biocompatibility of each study and made a basis for the researchers who want to start to apply the regenerative potential of magnesium-based scaffolds in clinical practice. Challenges, future directions, and special potential clinical applications such as osteosarcoma and persistent infection treatment are present at the end of our review paper.
Collapse
Affiliation(s)
- Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.A.); (R.C.)
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (G.P.); (I.V.N.)
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.A.); (R.C.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.A.); (R.C.)
| | - Dan Laptoiu
- Department of Orthopedics and Trauma I, Colentina Clinical Hospital, 19-21 Soseaua Stefan cel Mare, RO-020125 Bucharest, Romania;
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (G.P.); (I.V.N.)
| | - Robert Ciocoiu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.A.); (R.C.)
| | - Iosif Vasile Nemoianu
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (G.P.); (I.V.N.)
| | - Lucian Gheorghe Gruionu
- Faculty of Mechanics, University of Craiova, 13 Alexandru Ioan Cuza, RO-200585 Craiova, Romania;
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, RO-550169 Sibiu, Romania;
| |
Collapse
|
10
|
Antoniac I, Manescu (Paltanea) V, Antoniac A, Paltanea G. Magnesium-based alloys with adapted interfaces for bone implants and tissue engineering. Regen Biomater 2023; 10:rbad095. [PMID: 38020233 PMCID: PMC10664085 DOI: 10.1093/rb/rbad095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/03/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Magnesium and its alloys are one of the most used materials for bone implants and tissue engineering. They are characterized by numerous advantages such as biodegradability, high biocompatibility and mechanical properties with values close to the human bone. Unfortunately, the implant surface must be adequately tuned, or Mg-based alloys must be alloyed with other chemical elements due to their increased corrosion effect in physiological media. This article reviews the clinical challenges related to bone repair and regeneration, classifying bone defects and presenting some of the most used and modern therapies for bone injuries, such as Ilizarov or Masquelet techniques or stem cell treatments. The implant interface challenges are related to new bone formation and fracture healing, implant degradation and hydrogen release. A detailed analysis of mechanical properties during implant degradation is extensively described based on different literature studies that included in vitro and in vivo tests correlated with material properties' characterization. Mg-based trauma implants such as plates and screws, intramedullary nails, Herbert screws, spine cages, rings for joint treatment and regenerative scaffolds are presented, taking into consideration their manufacturing technology, the implant geometrical dimensions and shape, the type of in vivo or in vitro studies and fracture localization. Modern technologies that modify or adapt the Mg-based implant interfaces are described by presenting the main surface microstructural modifications, physical deposition and chemical conversion coatings. The last part of the article provides some recommendations from a translational perspective, identifies the challenges associated with Mg-based implants and presents some future opportunities. This review outlines the available literature on trauma and regenerative bone implants and describes the main techniques used to control the alloy corrosion rate and the cellular environment of the implant.
Collapse
Affiliation(s)
- Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 050094 Bucharest, Romania
| | - Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
- Faculty of Electrical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
11
|
Murugesan R, Venkataramana SH, Marimuthu S, Anand PB, Nagaraja S, Isaac JS, Sudharsan RR, Yunus Khan TM, Almakayeel N, Islam S, Razak A. Influence of Alloying Materials Al, Cu, and Ca on Microstructures, Mechanical Properties, And Corrosion Resistance of Mg Alloys for Industrial Applications: A Review. ACS OMEGA 2023; 8:37641-37653. [PMID: 37867648 PMCID: PMC10586278 DOI: 10.1021/acsomega.3c03417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Magnesium is renowned for its favorable low-density attributes, rendering it a viable choice for commercial engineering applications in which weight has substantial design implications. Magnesium (Mg) stands as a readily obtainable metallic element, exhibiting robustness, efficient heat dissipation, and excellent damping properties. The utilization of pure magnesium remains infrequent due to its susceptibility to instability under high temperatures and pronounced vulnerability to corrosion within humid environments. Hence, the incorporation of magnesium alloys into the design process of aircraft, automotive, and biomedical applications assumes paramount importance. This Review presents a comprehensive review of research endeavors and their resultant achievements concerning the advancement of magnesium alloys. Specifically focusing on aerospace, automotive, and biomedical applications, the Review underscores the pivotal role played by alloying constituents, namely aluminum (Al), copper (Cu), calcium (Ca), and PEO coatings, in influencing the microstructural attributes, mechanical potency, and resistance to corrosion.
Collapse
Affiliation(s)
- Rajadurai Murugesan
- Department
of Aeronautical Engineering, Nitte Meenakshi
Institute of Technology, Bangalore, Karnataka 560064, India
| | | | - Siva Marimuthu
- School
of Digital, Technologies and Arts, Staffordshire
University, Stoke
on Trent ST42DF, United Kingdom
| | - Praveena Bindiganavile Anand
- Department
of Mechanical Engineering, Nitte Meenakshi
Institute of Technology, Bangalore, Karnataka 560064, India
| | - Santhosh Nagaraja
- Department
of Mechanical Engineering, MVJ College of
Engineering, Bangalore, Karnataka 560067, India
| | - J. Samson Isaac
- Department
of Biomedical Engineering, Karunya lnstitute
of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - R. Raja Sudharsan
- Department
of Biomedical Engineering, Sri Shanmugha
College of Engineering and Technology, Morur, Tamil Nadu 637304, India
| | - T. M. Yunus Khan
- Department
of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Naif Almakayeel
- Department
of Industrial Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Saiful Islam
- Civil
Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdul Razak
- Department
of Mechanical Engineering, P. A. College
of Engineering, Mangaluru, Karnataka 574153, India
| |
Collapse
|
12
|
Gu L, Huang R, Ni N, Gu P, Fan X. Advances and Prospects in Materials for Craniofacial Bone Reconstruction. ACS Biomater Sci Eng 2023; 9:4462-4496. [PMID: 37470754 DOI: 10.1021/acsbiomaterials.3c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The craniofacial region is composed of 23 bones, which provide crucial function in keeping the normal position of brain and eyeballs, aesthetics of the craniofacial complex, facial movements, and visual function. Given the complex geometry and architecture, craniofacial bone defects not only affect the normal craniofacial structure but also may result in severe craniofacial dysfunction. Therefore, the exploration of rapid, precise, and effective reconstruction of craniofacial bone defects is urgent. Recently, developments in advanced bone tissue engineering bring new hope for the ideal reconstruction of the craniofacial bone defects. This report, presenting a first-time comprehensive review of recent advances of biomaterials in craniofacial bone tissue engineering, overviews the modification of traditional biomaterials and development of advanced biomaterials applying to craniofacial reconstruction. Challenges and perspectives of biomaterial development in craniofacial fields are discussed in the end.
Collapse
Affiliation(s)
- Li Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Rui Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
13
|
Wang J, Yuan B, Yin R, Zhang H. Inflammation Responses to Bone Scaffolds under Mechanical Stimuli in Bone Regeneration. J Funct Biomater 2023; 14:jfb14030169. [PMID: 36976093 PMCID: PMC10059255 DOI: 10.3390/jfb14030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
Physical stimuli play an important role in one tissue engineering. Mechanical stimuli, such as ultrasound with cyclic loading, are widely used to promote bone osteogenesis; however, the inflammatory response under physical stimuli has not been well studied. In this paper, the signaling pathways related to inflammatory responses in bone tissue engineering are evaluated, and the application of physical stimulation to promote osteogenesis and its related mechanisms are reviewed in detail; in particular, how physical stimulation alleviates inflammatory responses during transplantation when employing a bone scaffolding strategy is discussed. It is concluded that physical stimulation (e.g., ultrasound and cyclic stress) helps to promote osteogenesis while reducing the inflammatory response. In addition, apart from 2D cell culture, more consideration should be given to the mechanical stimuli applied to 3D scaffolds and the effects of different force moduli while evaluating inflammatory responses. This will facilitate the application of physiotherapy in bone tissue engineering.
Collapse
Affiliation(s)
- Junjie Wang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bo Yuan
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Ruixue Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Hou HH, Lee BS, Liu YC, Wang YP, Kuo WT, Chen IH, He AC, Lai CH, Tung KL, Chen YW. Vapor-Induced Pore-Forming Atmospheric-Plasma-Sprayed Zinc-, Strontium-, and Magnesium-Doped Hydroxyapatite Coatings on Titanium Implants Enhance New Bone Formation-An In Vivo and In Vitro Investigation. Int J Mol Sci 2023; 24:ijms24054933. [PMID: 36902368 PMCID: PMC10003357 DOI: 10.3390/ijms24054933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVES Titanium implants are regarded as a promising treatment modality for replacing missing teeth. Osteointegration and antibacterial properties are both desirable characteristics for titanium dental implants. The aim of this study was to create zinc (Zn)-, strontium (Sr)-, and magnesium (Mg)-multidoped hydroxyapatite (HAp) porous coatings, including HAp, Zn-doped HAp, and Zn-Sr-Mg-doped HAp, on titanium discs and implants using the vapor-induced pore-forming atmospheric plasma spraying (VIPF-APS) technique. METHODS The mRNA and protein levels of osteogenesis-associated genes such as collagen type I alpha 1 chain (COL1A1), decorin (DCN), osteoprotegerin (TNFRSF11B), and osteopontin (SPP1) were examined in human embryonic palatal mesenchymal cells. The antibacterial effects against periodontal bacteria, including Porphyromonas gingivalis and Prevotella nigrescens, were investigated. In addition, a rat animal model was used to evaluate new bone formation via histologic examination and micro-computed tomography (CT). RESULTS The ZnSrMg-HAp group was the most effective at inducing mRNA and protein expression of TNFRSF11B and SPP1 after 7 days of incubation, and TNFRSF11B and DCN after 11 days of incubation. In addition, both the ZnSrMg-HAp and Zn-HAp groups were effective against P. gingivalis and P. nigrescens. Furthermore, according to both in vitro studies and histologic findings, the ZnSrMg-HAp group exhibited the most prominent osteogenesis and concentrated bone growth along implant threads. SIGNIFICANCE A porous ZnSrMg-HAp coating using VIPF-APS could serve as a novel technique for coating titanium implant surfaces and preventing further bacterial infection.
Collapse
Affiliation(s)
- Hsin-Han Hou
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei 10048, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 10048, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10048, Taiwan
| | - Bor-Shiunn Lee
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei 10048, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Yu-Cheng Liu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Ping Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Wei-Ting Kuo
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei 10048, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 10048, Taiwan
| | - I-Hui Chen
- Division of Periodontology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Ai-Chia He
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei 10048, Taiwan
| | - Chern-Hsiung Lai
- College of Life Science, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Kuo-Lun Tung
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Wen Chen
- Department of Dentistry, National Taiwan University Hospital, Taipei 10048, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10048, Taiwan
- Correspondence:
| |
Collapse
|
15
|
Moazami S, Kharaziha M, Emadi R, Dinari M. Multifunctional Bioinspired Bredigite-Modified Adhesive for Bone Fracture Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6499-6513. [PMID: 36700731 DOI: 10.1021/acsami.2c20038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Despite recent advances in bone adhesives applied for full median sternotomy, the regeneration of bone defects has remained challenging since the healing process is hampered by poor adhesiveness, limited bioactivity, and lack of antibacterial functions. Bioinspired adhesives by marine organisms provide a novel concept to circumvent these problems. Herein, a dual cross-link strategy is employed in designing a multifaceted bioinspired adhesive consisting of a catechol amine-functionalized hyperbranched polymer (polydopamine-co-acrylate, PDA), bredigite (BR) nanoparticles, and Fe3+ ions. The hybrid adhesives exhibit strong adhesion to various substrates such as poly(methyl methacrylate), glass, bone, and skin tissues through synergy between irreversible covalent and reversible noncovalent cross-linking, depending on the BR content. Noticeably, the adhesion strength of hybrid adhesives containing 2 wt % BR nanoparticles to bone tissues is 2.3 ± 0.8 MPa, which is about 3 times higher than that of pure PDA adhesives. We also demonstrate that these hybrid adhesives not only are bioactive and accelerate in vitro bone-like apatite formation but also exhibit antibacterial properties against Staphylococcus aureus, depending on the BR concentration. Furthermore, the superior cellular responses in contact with hybrid adhesives, including improved human osteosarcoma MG63 cell spreading and osteogenic differentiation, are achieved owing to the appropriate ion release and flexibility of the cross-linked double-network adhesive. In summary, multifunctional hybrid PDA/BR adhesives with appreciable osteoconductive, mechanical, and antibacterial properties represent the potential applications for median sternotomy surgery as a bone tissue adhesive.
Collapse
Affiliation(s)
- Shima Moazami
- Department of Materials Engineering, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Rahmatallah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan84156-83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Iran
| |
Collapse
|
16
|
Bashir MH, Korany NS, Farag DBE, Abbass MMS, Ezzat BA, Hegazy RH, Dörfer CE, Fawzy El-Sayed KM. Polymeric Nanocomposite Hydrogel Scaffolds in Craniofacial Bone Regeneration: A Comprehensive Review. Biomolecules 2023; 13:biom13020205. [PMID: 36830575 PMCID: PMC9953024 DOI: 10.3390/biom13020205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Nanocomposite biomaterials combine a biopolymeric matrix structure with nanoscale fillers. These bioactive and easily resorbable nanocomposites have been broadly divided into three groups, namely natural, synthetic or composite, based on the polymeric origin. Preparing such nanocomposite structures in the form of hydrogels can create a three-dimensional natural hydrophilic atmosphere pivotal for cell survival and new tissue formation. Thus, hydrogel-based cell distribution and drug administration have evolved as possible options for bone tissue engineering and regeneration. In this context, nanogels or nanohydrogels, created by cross-linking three-dimensional polymer networks, either physically or chemically, with high biocompatibility and mechanical properties were introduced as promising drug delivery systems. The present review highlights the potential of hydrogels and nanopolymers in the field of craniofacial tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Maha H. Bashir
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Nahed S. Korany
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Dina B. E. Farag
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Bassant A. Ezzat
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Radwa H. Hegazy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Correspondence: ; Tel.: +49-431-500-26210
| |
Collapse
|
17
|
Carboxymethyl chitosan/sodium alginate hydrogels with polydopamine coatings as promising dressings for eliminating biofilm and multidrug-resistant bacteria induced wound healing. Int J Biol Macromol 2023; 225:923-937. [PMID: 36427613 DOI: 10.1016/j.ijbiomac.2022.11.156] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Microorganisms induced wound infection and the accompanying excessive inflammatory response is the daunting problems in wound treatment. Due to the lack of corresponding biological functions, traditional wound dressings cannot effectively protect the wound and are prone to induce local infection, excessive inflammation, and vascular damage, resulting in prolonged unhealing. Here, a mussel-inspired strategy was adopted to prepare a multifunctional hydrogel created by H2O2/CuSO4-induced rapid polydopamine (PDA) deposition on carboxymethyl chitosan (CMC)/sodium alginate (Alg) based hydrogel, termed as CAC/PDA/Cu(H2O2). The prepared CAC/PDA/Cu(H2O2) hydrogel features excellent biocompatibility, adequate mechanical properties, and good degradability. Moreover, the CAC/PDA/Cu(H2O2) hydrogel can not only realize antibacterial, and anti-inflammatory effects, but also promote angiogenesis to accelerate wound healing in vitro thanks to the composite PDA/Cu(H2O2) coatings. Significantly, CAC/PDA/Cu(H2O2) hydrogel illustrates excellent therapeutic effects in Methicillin-resistant Staphylococcus aureus (MRSA) induced-rat infection models, which can efficiently eliminate MRSA, dramatically reduce inflammatory expression, promote angiogenesis, and ultimately shorten the wound healing time. CAC/PDA/Cu(H2O2) hydrogel exhibited the best wound healing rate on days 7 (80.63 ± 2.44 %), 11 (92.45 ± 2.26 %), and 14 (97.86 ± 0.66 %). Thus, the multifunctional hydrogel provides a facile and efficient approach to wound management and represents promising potential in the therapy for wound healing.
Collapse
|
18
|
Globig P, Madurawala R, Willumeit-Römer R, Martini F, Mazzoni E, Luthringer-Feyerabend BJ. Mg-based materials diminish tumor spreading and cancer metastases. Bioact Mater 2023; 19:594-610. [PMID: 35600975 PMCID: PMC9108521 DOI: 10.1016/j.bioactmat.2022.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
Cancer metastases are the most common causes of cancer-related deaths. The formation of secondary tumors at different sites in the human body can impair multiple organ function and dramatically decrease the survival of the patients. In this stage, it is difficulty to treat tumor growth and spreading due to arising therapy resistances. Therefore, it is important to prevent cancer metastases and to increase subsequent cancer therapy success. Cancer metastases are conventionally treated with radiation or chemotherapy. However, these treatments elicit lots of side effects, wherefore novel local treatment approaches are currently discussed. Recent studies already showed anticancer activity of specially designed degradable magnesium (Mg) alloys by reducing the cancer cell proliferation. In this work, we investigated the impact of these Mg-based materials on different steps of the metastatic cascade including cancer cell migration, invasion, and cancer-induced angiogenesis. Both, Mg and Mg–6Ag reduced cell migration and invasion of osteosarcoma cells in coculture with fibroblasts. Furthermore, the Mg-based materials used in this study diminished the cancer-induced angiogenesis. Endothelial cells incubated with conditioned media obtained from these Mg and Mg–6Ag showed a reduced cell layer permeability, a reduced proliferation and inhibited cell migration. The tube formation as a last step of angiogenesis was stimulated with the presence of Mg under normoxia and diminished under hypoxia. Magnesium (Mg)-based material degradation decrease cell migration and invasion of an osteosarcoma coculture. Mg-based material degradation products reduce cancer-induced angiogenesis at an early stage. These materials may reduce secondary tumor formation and metastases.
Collapse
|
19
|
Bessa-Gonçalves M, Ribeiro-Machado C, Costa M, Ribeiro CC, Barbosa JN, Barbosa MA, Santos SG. Magnesium incorporation in fibrinogen scaffolds promotes macrophage polarization towards M2 phenotype. Acta Biomater 2023; 155:667-683. [PMID: 36328124 DOI: 10.1016/j.actbio.2022.10.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 02/02/2023]
Abstract
The host inflammatory response to biomaterials conditions their capacity to promote tissue repair, and macrophage polarization shift from M1 to M2 is determinant in this process. Previous work showed that extracts of a combination between fibrinogen and metallic magnesium materials acted synergistically to reduce macrophage inflammatory phenotype. The hypothesis underlying the current work was that the ability of magnesium-modified fibrinogen scaffolds to modulate macrophage phenotype depends on the concentration of magnesium. Thus, Fibrinogen (Fg) scaffolds incorporating precise concentrations of magnesium sulfate (Mg: 0, 10, 25, 50 mM) were developed and characterized. Mg incorporation in Fg scaffolds increased surface charge, while porosity decreased with increasing Mg concentrations, but only Fg scaffolds with 10 mM of Mg (FgMg10) had significantly improved mechanical properties. Human macrophages cultured on FgMg10 scaffolds, showed increased M2 and decreased M1 polarization, when compared to those cultured on scaffolds with 0, 25 and 50 mM of Mg. Macrophage polarization results were independent of the anion used (chloride or sulfate). Macrophage modulation by FgMg10 scaffolds involved reduced NF-κB p65 nuclear translocation, and impacted production of pro-inflammatory mediators (e.g. IFNγ, IL-12, TNF-⍺, IP-10). Importantly, FgMg10 scaffolds implanted in vivo increased the expression of M2 marker CD163, in macrophages from inflammatory exudates, compared to Sham and Fg-implanted animals, increasing the M2:M1 ratio. A cytokine/chemokine array showed that, while both Fg and FgMg10 scaffolds decreased inflammatory mediators, only FgMg10 decreased IL-1β, IP-10, MIP-2, MDC and MIP-3⍺, compared to Sham-operated animals. This study demonstrated that incorporation of 10mM of Mg modulated inflammation, promoting M2 macrophage polarization in vitro and in vivo. STATEMENT OF SIGNIFICANCE: Developing biomaterials that can modulate inflammation and promote macrophage phenotype switch from M1 to M2 is crucial to promote a regenerative microenvironment. Our previous work showed that extracts of a combination between fibrinogen (Fg) and metallic magnesium (Mg) materials synergistically reduced macrophage pro-inflammatory phenotype. Herein, we tested the hypothesis that macrophage modulation was dependent on Mg concentration. A new family of Fg porous scaffolds incorporating different amounts of Mg (0, 10, 25 and 50 mM) was produced and characterized. We observed that only the combination of Fg scaffolds with 10 mM of Mg (FgMg10) significantly changed the scaffolds mechanical properties and directed macrophages towards a M2 phenotype, reducing the production of inflammatory mediators, both in vitro and in vivo.
Collapse
Affiliation(s)
- M Bessa-Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - C Ribeiro-Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - M Costa
- Instituto Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - C C Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - J N Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - M A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
20
|
Existing and Novel Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2022; 24:ijms24010529. [PMID: 36613972 PMCID: PMC9820083 DOI: 10.3390/ijms24010529] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The treatment of bone defects remains one of the major challenges in modern clinical practice. Nowadays, with the increased incidence of bone disease in an aging population, the demand for materials to repair bone defects continues to grow. Recent advances in the development of biomaterials offer new possibilities for exploring modern bone tissue engineering strategies. Both natural and synthetic biomaterials have been used for tissue repair. A variety of porous structures that promote cell adhesion, differentiation, and proliferation enable better implant integration with increasingly better physical properties. The selection of a suitable biomaterial on which the patient's new tissue will grow is one of the key issues when designing a modern tissue scaffold and planning the entire treatment process. The purpose of this article is to present a comprehensive literature review of existing and novel biomaterials used in the surgical treatment of bone tissue defects. The materials described are divided into three groups-organic, inorganic, and synthetic polymers-taking into account current trends. This review highlights different types of existing and novel natural and synthetic materials used in bone tissue engineering and their advantages and disadvantages for bone defects regeneration.
Collapse
|
21
|
Zapata-Catzin GA, Zumbardo-Bacelis GA, Vargas-Coronado R, Xool-Tamayo J, Arana-Argáez VE, Cauich-Rodríguez JV. Novel copper complexes-polyurethane composites that mimics anti-inflammatory response. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:1067-1089. [DOI: 10.1080/09205063.2022.2155783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guido Antonio Zapata-Catzin
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, México. Calle 43 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | | | - Rossana Vargas-Coronado
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, México. Calle 43 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | - Jorge Xool-Tamayo
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Victor Ermilo Arana-Argáez
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán México
| | - Juan Valerio Cauich-Rodríguez
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, México. Calle 43 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| |
Collapse
|
22
|
Biodegradable Mg-Sc-Sr Alloy Improves Osteogenesis and Angiogenesis to Accelerate Bone Defect Restoration. J Funct Biomater 2022; 13:jfb13040261. [PMID: 36547521 PMCID: PMC9787880 DOI: 10.3390/jfb13040261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Magnesium (Mg) and its alloys are considered to be biodegradable metallic biomaterials for potential orthopedic implants. While the osteogenic properties of Mg alloys have been widely studied, few reports focused on developing a bifunctional Mg implant with osteogenic and angiogenic properties. Herein, a Mg-Sc-Sr alloy was developed, and this alloy's angiogenesis and osteogenesis effects were evaluated in vitro for the first time. X-ray Fluorescence (XRF), X-ray diffraction (XRD), and metallography images were used to evaluate the microstructure of the developed Mg-Sc-Sr alloy. Human umbilical vein/vascular endothelial cells (HUVECs) were used to evaluate the angiogenic character of the prepared Mg-Sc-Sr alloy. A mix of human bone-marrow-derived mesenchymal stromal cells (hBM-MSCs) and HUVEC cell cultures were used to assess the osteogenesis-stimulating effect of Mg-Sc-Sr alloy through alkaline phosphatase (ALP) and Von Kossa staining. Higher ALP activity and the number of calcified nodules (27% increase) were obtained for the Mg-Sc-Sr-treated groups compared to Mg-treated groups. In addition, higher VEGF expression (45.5% increase), tube length (80.8% increase), and number of meshes (37.9% increase) were observed. The Mg-Sc-Sr alloy showed significantly higher angiogenesis and osteogenic differentiation than pure Mg and the control group, suggesting such a composition as a promising candidate in bone implants.
Collapse
|
23
|
Hassan SF, Islam MT, Saheb N, Baig MMA. Magnesium for Implants: A Review on the Effect of Alloying Elements on Biocompatibility and Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5669. [PMID: 36013806 PMCID: PMC9412399 DOI: 10.3390/ma15165669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/31/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
An attempt is made to cover the whole of the topic of biodegradable magnesium (Mg) alloys with a focus on the biocompatibility of the individual alloying elements, as well as shed light on the degradation characteristics, microstructure, and mechanical properties of most binary alloys. Some of the various work processes carried out by researchers to achieve the alloys and their surface modifications have been highlighted. Additionally, a brief look into the literature on magnesium composites as also been included towards the end, to provide a more complete picture of the topic. In most cases, the chronological order of events has not been particularly followed, and instead, this work is concentrated on compiling and presenting an update of the work carried out on the topic of biodegradable magnesium alloys from the recent literature available to us.
Collapse
Affiliation(s)
- S. Fida Hassan
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - M. T. Islam
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - N. Saheb
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - M. M. A. Baig
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
24
|
Li Y, Lu Y, Qiu B, Ze Y, Li P, Du Y, Gong P, Lin J, Yao Y. Copper-containing titanium alloys promote angiogenesis in irradiated bone through releasing copper ions and regulating immune microenvironment. BIOMATERIALS ADVANCES 2022; 139:213010. [PMID: 35882157 DOI: 10.1016/j.bioadv.2022.213010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Poor vascularization was demonstrated as a factor inhibiting bone regeneration in patients receiving radiotherapy. Various copper-containing materials have been reported to increase angiogenesis, therefore might improve bone formation. In this study, a Ti6Al4V-1.5Cu alloy was prepared using selective laser melting (SLM) technology. The immunomodulatory and pro-angiogenic effects of the Ti6Al4V-1.5Cu alloys were examined. In vitro, Ti6Al4V-1.5Cu stimulated vascular formation by restraining inflammatory factors and provoking angiogenic factors in non-irradiated and irradiated macrophages. In vivo, the angiogenic effects of the Ti6Al4V-1.5Cu alloy were confirmed using an irradiated rat femur defect model. Moreover, we found that the biological effects of the Ti6Al4V-1.5Cu alloy were partially due to the release of copper ions and associated with PI3K-Akt signaling pathway. In conclusion, this study indicated the potential of the Ti6Al4V-1.5Cu alloy to promote angiogenesis by releasing copper ions and inhibiting inflammation in normal and irradiated tissues.
Collapse
Affiliation(s)
- Yanxi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanjin Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Bingrun Qiu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yiting Ze
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jinxin Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China.
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
25
|
Tong X, Zhu L, Wu Y, Song Y, Wang K, Huang S, Li Y, Ma J, Wen C, Lin J. A biodegradable Fe/Zn-3Cu composite with requisite properties for orthopedic applications. Acta Biomater 2022; 146:506-521. [PMID: 35523413 DOI: 10.1016/j.actbio.2022.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/01/2022]
Abstract
Zinc (Zn)-based metals and alloys are emerging as promising biodegradable implant materials due to their inherent biodegradability and good biocompatibility. However, this class of materials exhibits low mechanical strength and a slow degradation rate, which hinders their clinical application. Here we report the development of a new biodegradable Fe/Zn-3Cu composite fabricated by infiltration casting of a Zn-3Cu alloy into an Fe foam followed by hot-rolling. Our results indicate that the hot-rolled (HR) Fe/Zn-3Cu composite exhibited an α-Zn matrix phase, a secondary CuZn5 phase, and an α-Fe phase. The HR Fe/Zn-3Cu composite exhibited an ultimate tensile strength of 269 MPa, a tensile yield strength of 210 MPa, and an elongation of 27%. The HR Fe/Zn-3Cu composite showed a degradation rate of 228 µm/year after immersion in Hanks' solution for 30 d The diluted extract of the HR Fe/Zn-3Cu composite exhibited a higher cell viability than that of the HR Zn-3Cu alloy in relation to MC3T3-E1 and MG-63 cells. Furthermore, the HR Fe/Zn-3Cu composite showed significantly better antibacterial ability than that of the HR Zn-3Cu alloy in relation to S. aureus. Overall, the HR Fe/Zn-3Cu composite can be anticipated to be a promising biodegradable implant material for bone-fixation applications. STATEMENT OF SIGNIFICANCE: This work reports a new biodegradable Fe/Zn-3Cu composite fabricated by infiltration casting and followed by hot-rolling for biodegradable bone-fixation application. Our findings demonstrated that the hot-rolled (HR) Fe/Zn-3Cu composite exhibited an ultimate tensile strength of 269.1 MPa, a tensile yield strength of 210.3 MPa, and an elongation of 26.7%. HR Fe/Zn-3Cu composite showed a degradation rate of 227.6 µm/a, higher than HR Zn-3Cu alloy after immersion in Hanks' solution for 30 d The diluted extracts of the HR Fe/Zn-3Cu composite exhibited a higher cell viability than HR Zn-3Cu alloy toward MC3T3-E1 cells. Furthermore, the HR Fe/Zn-3Cu composite showed significantly better antibacterial ability than the HR Zn-3Cu alloy toward S. aureus.
Collapse
|
26
|
Wang N, Ma Y, Shi H, Song Y, Guo S, Yang S. Mg-, Zn-, and Fe-Based Alloys With Antibacterial Properties as Orthopedic Implant Materials. Front Bioeng Biotechnol 2022; 10:888084. [PMID: 35677296 PMCID: PMC9168471 DOI: 10.3389/fbioe.2022.888084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Implant-associated infection (IAI) is one of the major challenges in orthopedic surgery. The development of implants with inherent antibacterial properties is an effective strategy to resolve this issue. In recent years, biodegradable alloy materials have received considerable attention because of their superior comprehensive performance in the field of orthopedic implants. Studies on biodegradable alloy orthopedic implants with antibacterial properties have gradually increased. This review summarizes the recent advances in biodegradable magnesium- (Mg-), iron- (Fe-), and zinc- (Zn-) based alloys with antibacterial properties as orthopedic implant materials. The antibacterial mechanisms of these alloy materials are also outlined, thus providing more basis and insights on the design and application of biodegradable alloys with antibacterial properties as orthopedic implants.
Collapse
Affiliation(s)
- Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yutong Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology and Department of Oral Pathology, School of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| |
Collapse
|
27
|
Study on Hot Deformation Behavior of an Antibacterial 50Cr15MoVCu Tool Steel. MATERIALS 2022; 15:ma15103460. [PMID: 35629490 PMCID: PMC9147633 DOI: 10.3390/ma15103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
Hot deformation behaviors of an antibacterial 50Cr15MoVCu tool steel were studied. The flow stress curves presented three typical characteristics: (i) a single peak dynamic recrystallization curve, (ii) a monotone incremental work-hardening curve, and (iii) the equilibrium dynamic recovery curve. The flow stress increased with the increase of the deformation rate at each deformation temperature and decreased with the increase of the deformation temperature at the same deformation rate. The thermal activation energy and material constants were Q of 461.6574 kJ/mol, A of 3.42 × 1017, and α of 0.00681 MPa−1, respectively. The high temperature constitutive equation was: Z=ε˙expQ/RT=3.42 × 1017sinh0.0068 × σ5.6807. Based on the processing maps and microstructure evolution, the best hot working process was a deformation temperature of 1050 °C and deformation rate of 0.001 s−1.
Collapse
|
28
|
In Vitro Corrosion Performance of As-Extruded Mg–Gd–Dy–Zr Alloys for Potential Orthopedic Applications. METALS 2022. [DOI: 10.3390/met12040604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, different contents of rare earth elements with high solid solubility (Gd and Dy) were added into Mg and fabricated through homogenization and hot extrusion processes that enable few second phase formation to efficaciously inhibit the galvanic corrosion. The microstructure and phase characterization of the as-extruded Mg–Gd–Dy–Zr alloys were analyzed by scanning electron microscopy, electron backscattered diffraction, and X-ray diffraction. The in vitro biodegradation behavior of the as-extruded Mg–Gd–Dy–Zr alloys was investigated via the electrochemical measurement and immersion test. The results revealed that all the as-extruded alloys with different RE additions exerted fully recrystallized microstructures. The average grain size was appropriately 20 μm to 30 μm for all alloys and gradually increased by adding more RE. Only a few tiny second-phase particles less than 5 μm dispersed for all the samples and the volume fraction of particles increased slightly with the increase in RE content. The as-extruded Mg–Gd–Dy–Zr alloys with low RE content (GD0.6) allowed for a satisfactory corrosion resistance in Hank’s solution with a controlled corrosion rate less than 0.5 mm/year, which is considered as the tolerance limit for the corrosion rate of orthopedic implants. This study provides a cost-effective choice for promoting biodegradable magnesium alloys for potential orthopedic applications with low rare earth content in Mg alloys.
Collapse
|
29
|
Kozakiewicz M, Gabryelczak I. Bone Union Quality after Fracture Fixation of Mandibular Head with Compression Magnesium Screws. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2230. [PMID: 35329682 PMCID: PMC8950275 DOI: 10.3390/ma15062230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/13/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022]
Abstract
For some years now, fixation devices created with resorbable magnesium alloys for the mandibular head have been clinically available and are beginning to be used. It is thus valuable to evaluate the quality of unions in these cases. The aim of this study was radiological comparison of magnesium versus titanium open reduction and rigid fixations in the mandible condylar head. Thirty-one patients were treated for fractures of the mandibular head with magnesium WE43 alloy headless compression screws (diameter 2.3 mm) and, as a reference group, 29 patients were included with similar construction titanium screws (diameter 1.8 mm). The 12-month results of the treatment were evaluated by the texture analysis of CT. Near similar treatment results were found with magnesium screws in traditional titanium fixation. Magnesium screws result in a higher density of the bone structure in the mandibular head. Conclusions: The quantitative evaluation of bone union after surgical treatment of mandibular head fracture with magnesium compression headless screws indicates that stable consolidation was achieved. Undoubtedly, the resorption process of the screws was found to be incomplete after 12 months, evidenced by a marked densification of the bone structure at the fracture site.
Collapse
Affiliation(s)
- Marcin Kozakiewicz
- Department of Maxillofacial Surgery, Medical University of Lodz, 113 Żeromskiego Str., 90-549 Lodz, Poland;
| | | |
Collapse
|
30
|
Nasr Azadani M, Zahedi A, Bowoto OK, Oladapo BI. A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog Biomater 2022; 11:1-26. [PMID: 35239157 DOI: 10.1007/s40204-022-00182-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/29/2022] [Indexed: 02/08/2023] Open
Abstract
Medical application materials must meet multiple requirements, and the designed implant must mimic the bone structure in shape and support the formation of bone tissue (osteogenesis). Magnesium (Mg) alloys, as a "smart" biodegradable material and as "the green engineering material in the twenty-first century", have become an outstanding bone implant material due to their natural degradability, smart biocompatibility, and desirable mechanical properties. Magnesium is recognised as the next generation of orthopaedic appliances and bioresorbable scaffolds. At the same time, improving the mechanical properties and corrosion resistance of magnesium alloys is an urgent challenge to promote the application of magnesium alloys. Nevertheless, the excessively quick deterioration rate generally results in premature mechanical integrity disintegration and local hydrogen build-up, resulting in restricted clinical bone restoration applicability. The condition of Mg bone implants is thoroughly examined in this study. The relevant approaches to boost the corrosion resistance, including purification, alloying treatment, surface coating, and Mg-based metal matrix composite, are comprehensively revealed. These characteristics are reviewed to assess the progress of contemporary Mg-based biocomposites and alloys for biomedical applications. The fabricating techniques for Mg bone implants also are thoroughly investigated. Notably, laser-based additive manufacturing fabricates customised forms and complicated porous structures based on its distinctive additive manufacturing conception. Because of its high laser energy density and strong controllability, it is capable of fast heating and cooling, allowing it to modify the microstructure and performance. This review paper aims to provide more insight on the present challenges and continued research on Mg bone implants, highlighting some of the most important characteristics, challenges, and strategies for improving Mg bone implants.
Collapse
Affiliation(s)
- Meysam Nasr Azadani
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK.
| | - Abolfazl Zahedi
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK
| | - Oluwole Kingsley Bowoto
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK
| | - Bankole Ibrahim Oladapo
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK
| |
Collapse
|
31
|
Guo Y, Chen C, Zhang S, Ren L, Zhao Y, Guo W. Mediation of mechanically adapted TiCu/TiCuN/CFR-PEEK implants in vascular regeneration to promote bone repair in vitro and in vivo. J Orthop Translat 2022; 33:107-119. [PMID: 35330944 PMCID: PMC8907983 DOI: 10.1016/j.jot.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 12/28/2022] Open
Abstract
Background/Objective TiCu/TiCuN is a multilayer composite coating comprising TiN and Cu, which provides excellent wear resistance and antibacterial properties. However, its applicability as a functional coating has not been widely realised, and several aspects pertaining to its properties must still be explored. Methods This study uses arc ion-plating technology to apply a TiCu/TiCuN coating on the surface of carbon fibre-reinforced (CFR) polyetheretherketone (PEEK) material.The safety and osteogenic activity of TiCu/TiCuN-coated CFR-PEEK materials were explored through cell experiments and animal experiments, and the molecules behind them were verified. Results The new material exhibits improved mechanical compatibility (mechanical strength and elastic modulus) and superior light transmittance (elimination of metal artifacts and ray refraction during radiology and radiotherapy). The proposed implant delivers excellent biocompatibility for mesenchymal stem cells and human umbilical vein endothelial cells (HUVECs), and it exhibits excellent osteogenic activity both in vitro and in vivo. Additionally, it was determined that the applied TiCu/TiCuN coating aids in upregulating the expression of angiogenesis-related signals (i.e., cluster-of-differentiation 31, α-smooth muscle actin, vascular endothelial growth factor receptor, and hypoxia-inducible factor-1α) to promote neovascularisation, which is significant for characterising the mechanism of the coating in promoting bone regeneration. Conclusion The current results reveal that the TiCu/TiCuN-coated CFR-PEEK implants may emerge as an advanced generation of orthopaedic implants. Translational potential statement The results of this study indicate that TiCu/TiCuN coating-modified CFR-PEEK materials can promote bone repair through angiogenesis and have broad clinical translation prospects.
Collapse
|
32
|
Xu VW, Nizami MZI, Yin IX, Yu OY, Lung CYK, Chu CH. Application of Copper Nanoparticles in Dentistry. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:805. [PMID: 35269293 PMCID: PMC8912653 DOI: 10.3390/nano12050805] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
Nanoparticles based on metal and metallic oxides have become a novel trend for dental applications. Metal nanoparticles are commonly used in dentistry for their exclusive shape-dependent properties, including their variable nano-sizes and forms, unique distribution, and large surface-area-to-volume ratio. These properties enhance the bio-physio-chemical functionalization, antimicrobial activity, and biocompatibility of the nanoparticles. Copper is an earth-abundant inexpensive metal, and its nanoparticle synthesis is cost effective. Copper nanoparticles readily intermix and bind with other metals, ceramics, and polymers, and they exhibit physiochemical stability in the compounds. Hence, copper nanoparticles are among the commonly used metal nanoparticles in dentistry. Copper nanoparticles have been used to enhance the physical and chemical properties of various dental materials, such as dental amalgam, restorative cements, adhesives, resins, endodontic-irrigation solutions, obturation materials, dental implants, and orthodontic archwires and brackets. The objective of this review is to provide an overview of copper nanoparticles and their applications in dentistry.
Collapse
Affiliation(s)
| | - Mohammed Zahedul Islam Nizami
- Faculty of Dentistry, University of Hong Kong, Hong Kong 999077, China; (V.W.X.); (I.X.Y.); (O.Y.Y.); (C.Y.K.L.); (C.H.C.)
| | | | | | | | | |
Collapse
|
33
|
Zhang X, Liu H, Li L, Huang C, Meng X, Liu J, Bai X, Ren L, Wang X, Yang K, Qin L. Promoting osteointegration effect of Cu alloyed titanium (TiCu) in ovariectomized rats. Regen Biomater 2022; 9:rbac011. [PMID: 35480856 PMCID: PMC9039496 DOI: 10.1093/rb/rbac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
Osteoporosis is a common skeletal disease making patients be prone to the osteoporotic fracture. However, the clinical implants made of titanium and its alloys with a poor osseointegration need a long time for healing and easily to loosening. Thus, a new class of Cu-alloyed titanium (TiCu) alloys with excellent mechanical properties and bio-functionalization has been developed. In this study, the osteoporosis modeled rats were used to study the osteointegration effect and underlying mechanism of TiCu. The results showed that after implantation for 4 weeks, TiCu alloy could promote the reconstruction of vascular network around the implant by up-regulating vascular endothelial growth factor expression. After 8 weeks, it could further promote the proliferation and differentiation of osteoblasts, mineralization and deposition of collagens, and then significantly increasing bone mineral density around the implant. In conclusion, TiCu alloy would enhance the fixation stability, accelerate the osteointegration, and thus reduce the risk of aseptic loosening during the long-term implantation in the osteoporosis environment. This study was the first to report the role and mechanism of a Cu-alloyed metal in promoting osteointegration in osteoporosis environment, which provides a new attractive support for the improvement of future clinical applications of Cu-alloyed antibacterial titanium alloys. ![]()
Collapse
Affiliation(s)
- Xiyue Zhang
- Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, PR China
| | - Hui Liu
- Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, PR China
| | - Ling Li
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Cuishan Huang
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Xiangbo Meng
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Junzuo Liu
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Xueling Bai
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Ling Ren
- Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, PR China
| | - Xinluan Wang
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
- Musculoskeletal Research Laboratory of Department of Orthopaedis & Traumatology, the Chinese University of Hong Kong, HK SAR, PR China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, PR China
| | - Ling Qin
- Translational Medicine Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
- Musculoskeletal Research Laboratory of Department of Orthopaedis & Traumatology, the Chinese University of Hong Kong, HK SAR, PR China
| |
Collapse
|
34
|
Zhang Y, Li Y, Lv Y, Zhang X, Dong Z, Yang L, Zhang E. Ag distribution and corrosion behaviour of the plasma electrolytic oxidized antibacterial Mg-Ag alloy. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
The Effect of Co-Encapsulated GO-Cu Nanofillers on Mechanical Properties, Cell Response, and Antibacterial Activities of Mg-Zn Composite. METALS 2022. [DOI: 10.3390/met12020207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Magnesium-based composites have recently been studied as biodegradable materials for preparing orthopedic implants. In this article, the graphene oxide (GO) and GO-Cu nanosystem has been homogenously dispersed as a reinforcement in the matrix of Mg-Zn (MZ) alloy using the semi powder metallurgy (SPM) method, and subsequently, the composite has been successfully manufactured using the spark plasma sintering (SPS) process. GO and GO-Cu reinforced composite displayed a higher compressive strength (~55%) than the unreinforced Mg-Zn sample. GO and GO-Cu dual nanofillers presented a synergistic effect on enhancing the effectiveness of load transfer and crack deflection in the Mg-based matrix. Besides, the GO-Cu dual nanofillers displayed a synergistic influence on antibacterial activity through combining the capturing influences of GO nanosheets with the killing influences of Cu. However, electrochemical and in-vitro immersion evaluation showed that Cu-GO reinforcement had a slightly negative effect on the corrosion behavior of the Mg-Zn sample, but the incorporation of GO enhanced corrosion resistance of the composite. Moreover, MZ/GO and MZ/GO-Cu nanocomposites showed acceptable cytotoxicity to MG-63 cells and revealed a high potential for use as an orthopedic implant material. Based on the research results, MZ/GO-Cu nanocomposite could be used in bone tissue engineering applications.
Collapse
|
36
|
Luo R, Huang Y, Yuan X, Yuan Z, Zhang L, Han J, Zhao Y, Cai Q. Controlled co-delivery system of magnesium and lanthanum ions for vascularized bone regeneration. Biomed Mater 2021; 16. [PMID: 34544058 DOI: 10.1088/1748-605x/ac2886] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022]
Abstract
For craniofacial bone regeneration, how to promote vascularized bone regeneration is still a significant problem, and the controlled release of trace elements vital to osteogenesis has attracted attention. In this study, an ion co-delivery system was developed to promote angiogenesis and osteogenesis. Magnesium ions (Mg2+) and lanthanum ions (La3+) were selected as biosignal molecules because Mg2+can promote angiogenesis and both of them can enhance bone formation. Microspheres made of poly(lactide-co-glycolide) were applied to load La2(CO3)3, which was embedded into a MgO/MgCO3-loaded cryogel made of photocrosslinkable gelatin methacryloyl to enable co-delivery of Mg2+and La3+. Evaluations of angiogenesis and osteogenesis were conducted via bothin vitrocell culture using human bone marrow mesenchymal stromal cells andin vivoimplantation using a rat model with calvarial defect (5 mm in diameter). Compared to systems releasing only Mg2+or La3+, the combination system demonstrated more significant effects on blood vessels formation, thereby promoting the regeneration of vascularized bone tissue. At 8 weeks post-implantation, the new bone volume/total bone volume ratio reached a value of 40.1 ± 0.9%. In summary, a properly designed scaffold system with the capacity to release ions of different bioactivities in a desired pattern can be a promising strategy to meet vascularized bone regeneration requirements.
Collapse
Affiliation(s)
- Ruochen Luo
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing100081, People's Republic of China
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Xiaojing Yuan
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing100081, People's Republic of China
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing100871, People's Republic of China
| | - Liwen Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Janming Han
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing100081, People's Republic of China
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing100081, People's Republic of China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| |
Collapse
|
37
|
Wang Q, Wang W, Li Y, Li W, Tan L, Yang K. Biofunctional magnesium coating of implant materials by physical vapour deposition. BIOMATERIALS TRANSLATIONAL 2021; 2:248-256. [PMID: 35836651 PMCID: PMC9255807 DOI: 10.12336/biomatertransl.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/31/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
The lack of bioactivity of conventional medical materials leads to low osseointegration ability that may result in the occurrence of aseptic loosening in the clinic. To achieve high osseointegration, surface modifications with multiple biofunctions including degradability, osteogenesis, angiogenesis and antibacterial properties are required. However, the functions of conventional bioactive coatings are limited. Thus novel biofunctional magnesium (Mg) coatings are believed to be promising candidates for surface modification of implant materials for use in bone tissue repair. By physical vapour deposition, many previous researchers have deposited Mg coatings with high purity and granular microstructure on titanium alloys, polyetheretherketone, steels, Mg alloys and silicon. It was found that the Mg coatings with high-purity could considerably control the degradation rate in the initial stage of Mg alloy implantation, which is the most important problem for the application of Mg alloy implants. In addition, Mg coating on titanium (Ti) implant materials has been extensively studied both in vitro and in vivo, and the results indicated that their corrosion behaviour and biocompatibility are promising. Mg coatings continuously release Mg ions during the degradation process, and the alkaline environment caused by Mg degradation has obvious antibacterial effects. Meanwhile, the Mg coating has beneficial effects on osteogenesis and osseointegration, and increases the new bone-regenerating ability. Mg coatings also exhibit favourable osteogenic and angiogenic properties in vitro and increased long-term bone formation and early vascularization in vivo. Inhibitory effects of Mg coatings on osteoclasts have also been proven, which play a great role in osteoporotic patients. In addition, in order to obtain more biofunctions, other alloying elements such as copper have been added to the Mg coatings. Thus, Mg-coated Ti acquired biofunctions including degradability, osteogenesis, angiogenesis and antibacterial properties. These novel multi-functional Mg coatings are expected to significantly enhance the long-term safety of bone implants for the benefit of patients. This paper gives a brief review of studies of the microstructure, degradation behaviours and biofunctions of Mg coatings, and directions for future research are also proposed.
Collapse
Affiliation(s)
- Qingchuan Wang
- Department of Advanced Materials Research, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning Province, China
| | - Weidan Wang
- Department of Advanced Materials Research, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning Province, China,Department of Orthopaedic Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Yanfang Li
- Dongguan Eontec Co. Ltd., Dongguan, Guangdong Province, China
| | - Weirong Li
- Dongguan Eontec Co. Ltd., Dongguan, Guangdong Province, China
| | - Lili Tan
- Department of Advanced Materials Research, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning Province, China,Corresponding authors: Lili Tan, ; Ke Yang,
| | - Ke Yang
- Department of Advanced Materials Research, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning Province, China,Corresponding authors: Lili Tan, ; Ke Yang,
| |
Collapse
|
38
|
Fabrication of Mg Coating on PEEK and Antibacterial Evaluation for Bone Application. COATINGS 2021. [DOI: 10.3390/coatings11081010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyetheretherketone (PEEK) is an alternative biomedical polymer material to traditional metal and ceramic biomaterials. However, as a bioinert material, its wide application in the medical field is seriously restricted due to its lack of bioactivity. In this research, pure Mg was successfully deposited on a PEEK substrate by vapor deposition to improve the antibacterial properties of PEEK implants. The morphology and elemental composition of the coating were characterized by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The higher the deposition temperature, the larger the Mg particle size. The Mg coating possesses a hydrophilic surface and a higher surface free energy that create its good biocompatibility. The Mg coating on a PEEK substrate withstands up to 56 days’ immersion. The antibacterial test showed that the antibacterial rate of coated PEEK is 99%. Mg-coated PEEK demonstrates promising antibacterial properties.
Collapse
|
39
|
Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater 2021; 6:2569-2612. [PMID: 33615045 PMCID: PMC7876544 DOI: 10.1016/j.bioactmat.2021.01.030] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Metals and alloys, including stainless steel, titanium and its alloys, cobalt alloys, and other metals and alloys have been widely used clinically as implant materials, but implant-related infection or inflammation is still one of the main causes of implantation failure. The bacterial infection or inflammation that seriously threatens human health has already become a worldwide complaint. Antibacterial metals and alloys recently have attracted wide attention for their long-term stable antibacterial ability, good mechanical properties and good biocompatibility in vitro and in vivo. In this review, common antibacterial alloying elements, antibacterial standards and testing methods were introduced. Recent developments in the design and manufacturing of antibacterial metal alloys containing various antibacterial agents were described in detail, including antibacterial stainless steel, antibacterial titanium alloy, antibacterial zinc and alloy, antibacterial magnesium and alloy, antibacterial cobalt alloy, and other antibacterial metals and alloys. Researches on the antibacterial properties, mechanical properties, corrosion resistance and biocompatibility of antibacterial metals and alloys have been summarized in detail for the first time. It is hoped that this review could help researchers understand the development of antibacterial alloys in a timely manner, thereby could promote the development of antibacterial metal alloys and the clinical application.
Collapse
Affiliation(s)
- Erlin Zhang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| | - Xiaotong Zhao
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Jiali Hu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Ruoxian Wang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Shan Fu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Gaowu Qin
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
40
|
Copper coating formed by micro-arc oxidation on pure Mg improved antibacterial activity, osteogenesis, and angiogenesis in vivo and in vitro. Biomed Microdevices 2021; 23:39. [PMID: 34302543 DOI: 10.1007/s10544-021-00573-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 01/14/2023]
Abstract
Micro-arc oxidation (MAO) was used to improve the resistance of pure magnesium (Mg). Copper (Cu), a good antibacterial, angiogenic, and osteogenic element, was added by reaction in a Cu-containing electrolyte to improve the osteogenic and pro-angiogenic activities of Mg. The surface microstructures of the resulting MAO were evaluated by a scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) mapping. The release of Cu ions was detected by ICP-OES. The antibacterial activity of films with different concentrations of Cu ions was assessed against Staphylococcus aureus (S. aureus). The osteogenesis of films was confirmed by cell morphology and proliferation, ALP activity, alizarin red staining, and osteogenic-related gene expression in the MC3T3-E1 cell line. The angiogenesis of the films was tested in human umbilical vein endothelial cells (HUVECs) by cell migration, tube formation, and VEGF quantification in vitro, and by a chicken embryo chorioallantoic membrane (CAM) assay in vivo. The results showed that the microporous structure was shaped by MAO, and the Cu group was denser and more uniform. The Cu coating showed effective antibacterial activity against S. aureus while also enhancing osteogenesis and angiogenesis in vitro. According to the CAM assay, the Cu group showed not only biocompatibility but also a significant angiogenic response, which was consistent with in vitro studies. The findings indicate that a Cu coating on Mg-MAO enhances osteogenesis and angiogenesis.
Collapse
|
41
|
Shokrolahi F, Latif F, Shokrollahi P, Farahmandghavi F, Shokrollahi S. Engineering atorvastatin loaded Mg-Mn/LDH nanoparticles and their composite with PLGA for bone tissue applications. Int J Pharm 2021; 606:120901. [PMID: 34293469 DOI: 10.1016/j.ijpharm.2021.120901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
The impact of mixing method in conventional co-precipitation synthesis of layered double hydroxides (LDHs), on particle size, size distribution and drug loading capacity is reported. Synthesis of Mg (II)/Mn (III)-LDH nano-platelets was performed at constant pH using three different mixing systems, magnetic stirrer, mechanical mixer, and homogenizer at ambient temperature and a fixed Mg/Mn ratio of 3/1. The LDH characterization results showed that mechanical mixing and homogenization lead to production of very fine LDH nano-platelets (about 90-140 nm), with narrow particle size distribution. Amount of the intercalated drug was determined as about 60% and showed a significant increase in loading capacity of the LDH through homogenization and mechanical mixing compared to that of the magnetic stirring (about 35%). Our results also showed that in LDH preparation via co-precipitation, the mixing system plays a more influential role in particle size, size distribution, and drug loading control, than the mixing speed of each system. Drug loaded-LDH/PLGA composites were prepared via electrospinning to afford a bioactive/osteoinductive scaffold. A remarkable degree of cell viability on the scaffolds (drug-loaded-LDH/PLGA composite) was confirmed using MTT assay. Osteogenic differentiation of human ADMSCs, as shown by alkaline phosphatase activity and Alizarin Red staining assays, indicated that the scaffold with 5% drug loaded LDH(Mn-Mg-LDH/PLGA/AT5%) induced a remarkably higher level of the markers compared to the PLGA scaffold and therefore, it could be a valuable candidate for bone tissue engineering applications.
Collapse
Affiliation(s)
- Fatemeh Shokrolahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran.
| | - Fahimeh Latif
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Parvin Shokrollahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran.
| | - Farhid Farahmandghavi
- Department of Novel Drug Delivery Systems, Faculty of Science, Iran Polymer and Petrochemical Institute, Iran
| | - Sepideh Shokrollahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
42
|
Jiao J, Zhang S, Qu X, Yue B. Recent Advances in Research on Antibacterial Metals and Alloys as Implant Materials. Front Cell Infect Microbiol 2021; 11:693939. [PMID: 34277473 PMCID: PMC8283567 DOI: 10.3389/fcimb.2021.693939] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Implants are widely used in orthopedic surgery and are gaining attention of late. However, their use is restricted by implant-associated infections (IAI), which represent one of the most serious and dangerous complications of implant surgeries. Various strategies have been developed to prevent and treat IAI, among which the closest to clinical translation is designing metal materials with antibacterial functions by alloying methods based on existing materials, including titanium, cobalt, tantalum, and biodegradable metals. This review first discusses the complex interaction between bacteria, host cells, and materials in IAI and the mechanisms underlying the antibacterial effects of biomedical metals and alloys. Then, their applications for the prevention and treatment of IAI are highlighted. Finally, new insights into their clinical translation are provided. This review also provides suggestions for further development of antibacterial metals and alloys.
Collapse
Affiliation(s)
- Juyang Jiao
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
43
|
Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev 2021; 50:8669-8742. [PMID: 34156040 DOI: 10.1039/d0cs00461h] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inorganic nanomaterials that have inherently exceptional physicochemical properties (e.g., catalytic, optical, thermal, electrical, or magnetic performance) that can provide desirable functionality (e.g., drug delivery, diagnostics, imaging, or therapy) have considerable potential for application in the field of biomedicine. However, toxicity can be caused by the long-term, non-specific accumulation of these inorganic nanomaterials in healthy tissues, preventing their large-scale clinical utilization. Over the past several decades, the emergence of biodegradable and clearable inorganic nanomaterials has offered the potential to prevent such long-term toxicity. In addition, a comprehensive understanding of the design of such nanomaterials and their metabolic pathways within the body is essential for enabling the expansion of theranostic applications for various diseases and advancing clinical trials. Thus, it is of critical importance to develop biodegradable and clearable inorganic nanomaterials for biomedical applications. This review systematically summarizes the recent progress of biodegradable and clearable inorganic nanomaterials, particularly for application in cancer theranostics and other disease therapies. The future prospects and opportunities in this rapidly growing biomedical field are also discussed. We believe that this timely and comprehensive review will stimulate and guide additional in-depth studies in the area of inorganic nanomedicine, as rapid in vivo clearance and degradation is likely to be a prerequisite for the future clinical translation of inorganic nanomaterials with unique properties and functionality.
Collapse
Affiliation(s)
- Xianwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, China.
| | | | | | | | | |
Collapse
|
44
|
Wang Y, Zhang W, Yao Q. Copper-based biomaterials for bone and cartilage tissue engineering. J Orthop Translat 2021; 29:60-71. [PMID: 34094859 PMCID: PMC8164005 DOI: 10.1016/j.jot.2021.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Backgroud Tissue engineering using cells, scaffolds, and bioactive molecules can promote the repair and regeneration of injured tissues. Copper is an essential element for the human body that is involved in many physiological activities and in recent years, copper has been used increasingly in tissue engineering. Methods The current advances of copper-based biomaterial for bone and cartilage tissue engineering were searched on PubMed and Web of Science. Results Various forms of copper-based biomaterials, including pure copper, copper ions, copper nanoparticles, copper oxides, and copper alloy are introduced. The incorporation of copper into base materials provides unique properties, resulting in tuneable porosity, mechanical strength, degradation, and crosslinking of scaffolds. Copper also shows promising biological performance in cell migration, cell adhesion, osteogenesis, chondrogenesis, angiogenesis, and antibacterial activities. In vivo applications of copper for bone and cartilage tissue engineering are discussed. Conclusion This review focuses on copper’s physiochemical and biological effects, and its applications in bone and cartilage tissue engineering. The potential limitations and future perspectives are also discussed. Translational potential of this article This review introduces the recent advances in copper-based biomaterial for bone and cartilage tissue engineering. This revie could guide researchers to apply copper in biomaterials, improving the generation of bone and cartilages, decrease the possibility of infection and shorten the recovery time so as to decrease medical costs.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.,School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China.,China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.,China Orthopedic Regenerative Medicine Group (CORMed), China
| |
Collapse
|
45
|
Wang P, Yuan Y, Xu K, Zhong H, Yang Y, Jin S, Yang K, Qi X. Biological applications of copper-containing materials. Bioact Mater 2021; 6:916-927. [PMID: 33210018 PMCID: PMC7647998 DOI: 10.1016/j.bioactmat.2020.09.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Copper is an indispensable trace metal element in the human body, which is mainly absorbed in the stomach and small intestine and excreted into the bile. Copper is an important component and catalytic agent of many enzymes and proteins in the body, so it can influence human health through multiple mechanisms. Based on the biological functions and benefits of copper, an increasing number of researchers in the field of biomaterials have focused on developing novel copper-containing biomaterials, which exhibit unique properties in protecting the cardiovascular system, promoting bone fracture healing, and exerting antibacterial effects. Copper can also be used in promoting incisional wounds healing, killing cancer cells, Positron Emission Tomography (PET) imaging, radioimmunological tracing and radiotherapy of cancer. In the present review, the biological functions of copper in the human body are presented, along with an overview of recent progress in our understanding of the biological applications and development of copper-containing materials. Furthermore, this review also provides the prospective on the challenges of those novel biomaterials for future clinical applications.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yonghui Yuan
- Clinical Research Center for Malignant Tumor of Liaoning Province, Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
| | - Ke Xu
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Hongshan Zhong
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yinghui Yang
- Suzhou Silvan Medical Co., Ltd, Suzhou 215006, China
| | - Shiyu Jin
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China
| | - Xun Qi
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| |
Collapse
|
46
|
Li Y, Pan Q, Xu J, He X, Li HA, Oldridge DA, Li G, Qin L. Overview of methods for enhancing bone regeneration in distraction osteogenesis: Potential roles of biometals. J Orthop Translat 2021; 27:110-118. [PMID: 33575164 PMCID: PMC7859169 DOI: 10.1016/j.jot.2020.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Distraction osteogenesis (DO) is a functional tissue engineering approach that applies gradual mechanical traction on the bone tissues after osteotomy to stimulate bone regeneration. However, DO still has disadvantages that limit its clinical use, including long treatment duration. METHODS Review the current methods of promoting bone formation and consolidation in DO with particular interest on biometal. RESULTS Numerous approaches, including physical therapy, gene therapy, growth factor-based therapy, stem-cell-based therapy, and improved distraction devices, have been explored to reduce the DO treatment duration with some success. Nevertheless, no approach to date is widely accepted in clinical practice due to various reasons, such as high expense, short biologic half-life, and lack of effective delivery methods. Biometals, including calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), manganese (Mn), and cobalt (Co) have attracted attention in bone regeneration attributed to their biodegradability and bioactive components released during in vivo degradation. CONCLUSION This review summarizes the current therapies accelerating bone formation in DO and the beneficial role of biometals in bone regeneration, particularly focusing on the use of biometal Mg and its alloy in promoting bone formation in DO. Translational potential: The potential clinical applications using Mg-based devices to accelerate DO are promising. Mg stimulates expression of multiple intrinsic biological factors and the development of Mg as an implantable component in DO may be used to argument bone formation and consolidation in DO.
Collapse
Affiliation(s)
- Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong
| | - Qi Pan
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong
| | - Xuan He
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong
| | - Helen A. Li
- School of Medicine, University of East Anglia, Norwich, England, UK
| | - Derek A. Oldridge
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
47
|
Yan F, Lv M, Zhang T, Zhang Q, Chen Y, Liu Z, Wei R, Cai L. Copper-Loaded Biodegradable Bone Wax with Antibacterial and Angiogenic Properties in Early Bone Repair. ACS Biomater Sci Eng 2021; 7:663-671. [PMID: 33502176 DOI: 10.1021/acsbiomaterials.0c01471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Traditional bone wax has lots of shortcomings such as the risk of infection and inflammation and the ability to hinder osteogenesis that limit its clinical applications. In this study, we designed a novel biodegradable bone wax with desirable angiogenic and antibacterial ability and low foreign body reaction by mixing calcium sulfate, poloxamer, and cupric ions. To evaluate its biocompatibility and angiogenetic effect in vitro, we cultured human umbilical vein endothelial cells (HUVECs) with the indicated bone wax to observe cell viability and vessel-like tubular formation. The bone wax was then implanted in a critical-sized bone defect rat model for 4 and 8 weeks to successfully stimulate angiogenesis in vivo. Finally, the bone wax extract was incubated with Gram-positive Staphylococcus aureus to confirm its antibacterial ability. The copper-loaded biodegradable bone wax overcomes the drawbacks of traditional bone wax and provides a new approach for the treatment of bone injuries.
Collapse
Affiliation(s)
- Feifei Yan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, China
| | - Minchao Lv
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, China
| | - Tie Zhang
- Hubei Osteolink Biomaterial Co., Ltd. (Wuhan Hi-tech Research Center of Medical Tissues), No. 379, Gaoxiner Road, Wuhan 430100, China
| | - Qi Zhang
- Hubei Osteolink Biomaterial Co., Ltd. (Wuhan Hi-tech Research Center of Medical Tissues), No. 379, Gaoxiner Road, Wuhan 430100, China
| | - Yan Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, China
| | - Zhibo Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, China
| | - Renxiong Wei
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, China
| |
Collapse
|
48
|
Change in Pull-Out Force during Resorption of Magnesium Compression Screws for Osteosynthesis of Mandibular Condylar Fractures. MATERIALS 2021; 14:ma14020237. [PMID: 33418924 PMCID: PMC7825024 DOI: 10.3390/ma14020237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Magnesium has been used as degradable fixation material for osteosynthesis, but it seems that mechanical strength is still a current issue in these fixations. The aim of this study was to evaluate the axial pull-out force of compression headless screws made of magnesium alloy during their resorption. METHODS The tests included screws made for osteosynthesis of the mandible head: 2.2 mm diameter magnesium alloy MgYREZr (42 screws) and 2.5 mm diameter polylactic-co-glycolic acid (PLGA) (42 pieces, control). The screws were resorbed in Sørensen's buffer for 2, 4, 8, 12, and 16 weeks, and force was measured as the screw was pulled out from the polyurethane block. RESULTS The force needed to pull the screw out was significantly higher for MgYREZr screws than for PLGA ones (p < 0.01). Within eight weeks, the pull-out force for MgYREZr significantly decreased to one third of its initial value (p < 0.01). The dynamics of this decrease were greater than those of the pull-out force for PLGA screws (p < 0.05). After these eight weeks, the values for metal and polymer screws equalized. It seems that the described reduction of force requires taking into account when using magnesium screws. This will provide more stable resorbable metallic osteosynthesis.
Collapse
|
49
|
Multifunctional TaCu-nanotubes coated titanium for enhanced bacteriostatic, angiogenic and osteogenic properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111777. [DOI: 10.1016/j.msec.2020.111777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/16/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
|
50
|
Amirthalingam S, Lee SS, Pandian M, Ramu J, Iyer S, Hwang NS, Jayakumar R. Combinatorial effect of nano whitlockite/nano bioglass with FGF-18 in an injectable hydrogel for craniofacial bone regeneration. Biomater Sci 2021; 9:2439-2453. [DOI: 10.1039/d0bm01496f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparing the bone regeneration potential of nano whitlockite or nano bioglass in combination with FGF-18, loaded in an injectable, shear-thinning chitin/PLGA hydrogel for craniofacial bone regeneration.
Collapse
Affiliation(s)
| | - Seunghun S. Lee
- School of Chemical and Biological Engineering
- the Institute of Chemical Processes
- Seoul National University
- Seoul
- Republic of Korea
| | - Mahalakshmi Pandian
- Centre for Nanosciences and Molecular Medicine
- Amrita Vishwa Vidyapeetham
- Kochi-682041
- India
| | - Janarthanan Ramu
- Department of Plastic and Reconstructive Surgery
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- Kochi 682041
- India
| | - Subramania Iyer
- Department of Plastic and Reconstructive Surgery
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- Kochi 682041
- India
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering
- the Institute of Chemical Processes
- Seoul National University
- Seoul
- Republic of Korea
| | - Rangasamy Jayakumar
- Centre for Nanosciences and Molecular Medicine
- Amrita Vishwa Vidyapeetham
- Kochi-682041
- India
| |
Collapse
|