1
|
Xu Q, Cao J, Rai KR, Zhu B, Liu D, Wan C. Codon usage bias of goose circovirus and its adaptation to host. Poult Sci 2024; 103:103775. [PMID: 38713985 PMCID: PMC11091504 DOI: 10.1016/j.psj.2024.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/09/2024] Open
Abstract
Goose circovirus (GoCV), a potential immunosuppressive virus possessing a circular single-stranded DNA genome, is widely distributed in both domesticated and wild geese. This virus infection causes significant economic losses in the waterfowl industry. The codon usage patterns of viruses reflect the evolutionary history and genetic architecture, allowing them to adapt quickly to changes in the external environment, particularly to their hosts. In this study, we retrieved the coding sequences (Rep and Cap) and the genome of GoCV from GenBank, conducting comprehensive research to explore the codon usage patterns in 144 GoCV strains. The overall codon usage of the GoCV strains was relatively similar and exhibited a slight bias. The effective number of codons (ENC) indicated a low overall extent of codon usage bias (CUB) in GoCV. Combined with the base composition and relative synonymous codon usage (RSCU) analysis, the results revealed a bias toward A- and G-ending codons in the overall codon usage. Analysis of the ENC-GC3s plot and neutrality plot suggested that natural selection plays an important role in shaping the codon usage pattern of GoCV, with mutation pressure having a minor influence. Furthermore, the correlations between ENC and relative indices, as well as correspondence analysis (COA), showed that hydrophobicity and geographical distribution also contribute to codon usage variation in GoCV, suggesting the possible involvement of natural selection. In conclusion, GoCV exhibits comparatively slight CUB, with natural selection being the major factor shaping the codon usage pattern of GoCV. Our research contributes to a deeper understanding of GoCV evolution and its host adaptation, providing valuable insights for future basic studies and vaccine design related to GoCV.
Collapse
Affiliation(s)
- Quanming Xu
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou 350007, China
| | - Jie Cao
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou 350007, China
| | - Kul Raj Rai
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binling Zhu
- Department of Forensic Science, Fujian Police College, Fuzhou 350007, China
| | - Dan Liu
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| |
Collapse
|
2
|
Paremskaia AI, Kogan AA, Murashkina A, Naumova DA, Satish A, Abramov IS, Feoktistova SG, Mityaeva ON, Deviatkin AA, Volchkov PY. Codon-optimization in gene therapy: promises, prospects and challenges. Front Bioeng Biotechnol 2024; 12:1371596. [PMID: 38605988 PMCID: PMC11007035 DOI: 10.3389/fbioe.2024.1371596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Codon optimization has evolved to enhance protein expression efficiency by exploiting the genetic code's redundancy, allowing for multiple codon options for a single amino acid. Initially observed in E. coli, optimal codon usage correlates with high gene expression, which has propelled applications expanding from basic research to biopharmaceuticals and vaccine development. The method is especially valuable for adjusting immune responses in gene therapies and has the potenial to create tissue-specific therapies. However, challenges persist, such as the risk of unintended effects on protein function and the complexity of evaluating optimization effectiveness. Despite these issues, codon optimization is crucial in advancing gene therapeutics. This study provides a comprehensive review of the current metrics for codon-optimization, and its practical usage in research and clinical applications, in the context of gene therapy.
Collapse
Affiliation(s)
- Anastasiia Iu Paremskaia
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Anna A. Kogan
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Anastasiia Murashkina
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Daria A. Naumova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Anakha Satish
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Ivan S. Abramov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
- The MCSC named after A. S. Loginov, Moscow, Russia
| | - Sofya G. Feoktistova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Olga N. Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Andrei A. Deviatkin
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Pavel Yu Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
- The MCSC named after A. S. Loginov, Moscow, Russia
| |
Collapse
|
3
|
Kanai Y, Onishi M, Yoshida Y, Kotaki T, Minami S, Nouda R, Yamasaki M, Enoki Y, Kobayashi T. Genetic engineering strategy for generating a stable dsRNA virus vector using a virus-like codon-modified transgene. J Virol 2023; 97:e0049223. [PMID: 37732784 PMCID: PMC10617491 DOI: 10.1128/jvi.00492-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE The stabilities of transgenes in RNA virus vectors differ between the genes of interest, but the molecular mechanisms determining genetic stability remain unknown. This study demonstrated that the stability of a transgene was affected by the nucleotide composition, and altering the codon usage of transgenes to resemble that of the viral genome significantly increased transgene stability in double-stranded RNA virus vectors. The virus-like codon modification strategy enabled generation of stable rotavirus and mammalian orthoreovirus vectors, which could be developed as machinery for gene delivery to the intestines and/or respiratory organs. This technology has further potential to be expanded to other RNA viruses.
Collapse
Affiliation(s)
- Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Misa Onishi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yukino Yoshida
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomohiro Kotaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shohei Minami
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ryotaro Nouda
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Moeko Yamasaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yasutaka Enoki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Gurjar P, Karuvantevida N, Rzhepakovsky IV, Khan AA, Khandia R. A Synthetic Biology Approach for Vaccine Candidate Design against Delta Strain of SARS-CoV-2 Revealed Disruption of Favored Codon Pair as a Better Strategy over Using Rare Codons. Vaccines (Basel) 2023; 11:487. [PMID: 36851364 PMCID: PMC9967482 DOI: 10.3390/vaccines11020487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The SARS-CoV-2 delta variant (B.1.617.2) appeared for the first time in December 2020 and later spread worldwide. Currently available vaccines are not so efficacious in curbing the viral pathogenesis of the delta strain of COVID; therefore, the development of a safe and effective vaccine is required. In the present study, we envisaged molecular patterns in the structural genes' spike, nucleoprotein, membrane, and envelope of the SARS-CoV-2 delta variant. The study was based on determining compositional features, dinucleotide odds ratio, synonymous codon usage, positive and negative codon contexts, rare codons, and insight into relatedness between the human host isoacceptor tRNA and preferred codons from the structural genes. We found specific patterns, including a significant abundance of T nucleotide over all other three nucleotides. The underrepresentation of GpA, GpG, CpC, and CpG dinucleotides and the overrepresentation of TpT, ApA, CpT, and TpG were observed. A preference towards ACT- (Thr), AAT- (Asn), TTT- (Phe), and TTG- (Leu) initiated codons and aversion towards CGG (Arg), CCG (Pro), and CAC (His) was present in the structural genes of the delta strain. The interaction between the host tRNA pool and preferred codons of the envisaged structural genes revealed that the virus preferred the codons for those suboptimal numbers of isoacceptor tRNA were present. We see this as a strategy adapted by the virus to keep the translation rate low to facilitate the correct folding of viral proteins. The information generated in the study helps design the attenuated vaccine candidate against the SARS-CoV-2 delta variant using a synthetic biology approach. Three strategies were tested: changing TpT to TpA, introducing rare codons, and disrupting favored codons. It found that disrupting favored codons is a better approach to reducing virus fitness and attenuating SARS-CoV-2 delta strain using structural genes.
Collapse
Affiliation(s)
- Pankaj Gurjar
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | | | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah Universty, Bhopal 462026, India
| |
Collapse
|
5
|
Núñez-Manchón E, Farrera-Sal M, Otero-Mateo M, Castellano G, Moreno R, Medel D, Alemany R, Villanueva E, Fillat C. Transgene codon usage drives viral fitness and therapeutic efficacy in oncolytic adenoviruses. NAR Cancer 2021; 3:zcab015. [PMID: 34316705 PMCID: PMC8210037 DOI: 10.1093/narcan/zcab015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 11/14/2022] Open
Abstract
Arming oncolytic adenoviruses with therapeutic transgenes is a well-established strategy for multimodal tumour attack. However, this strategy sometimes leads to unexpected attenuated viral replication and a loss of oncolytic effects, preventing these viruses from reaching the clinic. Previous work has shown that altering codon usage in viral genes can hamper viral fitness. Here, we have analysed how transgene codon usage impacts viral replication and oncolytic activity. We observe that, although transgenes with optimized codons show high expression levels at the first round of infection, they impair viral fitness and are therefore not expressed in a sustained manner. Conversely, transgenes encoded by suboptimal codons do not compromise viral replication and are thus stably expressed over time, allowing a greater oncolytic activity both in vitro and in vivo. Altogether, our work shows that fine-tuning codon usage leads to a concerted optimization of transgene expression and viral replication paving the way for the rational design of more efficacious oncolytic therapies.
Collapse
Affiliation(s)
- Estela Núñez-Manchón
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Martí Farrera-Sal
- Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08907-L'Hospitalet de Llobregat, Spain
| | - Marc Otero-Mateo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Giancarlo Castellano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Rafael Moreno
- Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08907-L'Hospitalet de Llobregat, Spain
| | - David Medel
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Ramon Alemany
- Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08907-L'Hospitalet de Llobregat, Spain
| | - Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| |
Collapse
|
6
|
Raimondi G, Gea-Sorlí S, Otero-Mateo M, Fillat C. Inhibition of miR-222 by Oncolytic Adenovirus-Encoded miRNA Sponges Promotes Viral Oncolysis and Elicits Antitumor Effects in Pancreatic Cancer Models. Cancers (Basel) 2021; 13:3233. [PMID: 34203557 PMCID: PMC8267801 DOI: 10.3390/cancers13133233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
Oncolytic adenoviruses (OA) are envisioned as a therapeutic option for patients with cancer, designed to preferentially replicate in cancer cells. However, the high number of genetic alterations in tumors can generate a context in which adenoviruses have difficulties replicating. Abnormal miRNAs expression is a trademark of pancreatic cancer, with several oncogenic miRNAs playing essential roles in cancer-associated pathways. The perturbed miRNome induces reprogramming of gene expression in host cells that can impact the complex interplay between cellular processes and viral replication. We have studied the effects of overexpressed miRNAs on oncolytic adenoviral activity and identified miRNAs modulators of adenoviral oncolysis in pancreatic cancer cells. Inhibition of the highly upregulated miR-222 sensitized cancer cells to oncolysis. To provide a therapeutic application to this insight, we engineered the oncolytic adenovirus AdNuPARmE1A with miR-222 binding sites, working as sponges to withdraw the miRNA from the cellular environment. AdNuPAR-E-miR222-S mediated-decrease of miR-222 expression in pancreatic cancer cells strongly improved the viral yield and enhanced the adenoviral cytotoxic effects. Antitumoral studies confirmed a high activity for AdNuPARmE1A-miR222-S in vivo, controlling tumor progression more effectively than the scrambled control virus in xenografts. We demonstrated that the increased antitumor potency of the novel oncolytic virus resulted from the combinatory effects of miR-222 oncomiR inhibition and the restoration of miR-222 target genes activity enhancing viral fitness.
Collapse
Affiliation(s)
- Giulia Raimondi
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.R.); (S.G.-S.); (M.O.-M.)
| | - Sabrina Gea-Sorlí
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.R.); (S.G.-S.); (M.O.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
| | - Marc Otero-Mateo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.R.); (S.G.-S.); (M.O.-M.)
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.R.); (S.G.-S.); (M.O.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| |
Collapse
|
7
|
Giménez-Roig J, Núñez-Manchón E, Alemany R, Villanueva E, Fillat C. Codon Usage and Adenovirus Fitness: Implications for Vaccine Development. Front Microbiol 2021; 12:633946. [PMID: 33643266 PMCID: PMC7902882 DOI: 10.3389/fmicb.2021.633946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/20/2021] [Indexed: 02/03/2023] Open
Abstract
Vaccination is the most effective method to date to prevent viral diseases. It intends to mimic a naturally occurring infection while avoiding the disease, exposing our bodies to viral antigens to trigger an immune response that will protect us from future infections. Among different strategies for vaccine development, recombinant vaccines are one of the most efficient ones. Recombinant vaccines use safe viral vectors as vehicles and incorporate a transgenic antigen of the pathogen against which we intend to generate an immune response. These vaccines can be based on replication-deficient viruses or replication-competent viruses. While the most effective strategy involves replication-competent viruses, they must be attenuated to prevent any health hazard while guaranteeing a strong humoral and cellular immune response. Several attenuation strategies for adenoviral-based vaccine development have been contemplated over time. In this paper, we will review them and discuss novel approaches based on the principle that protein synthesis from individual genes can be modulated by codon usage bias manipulation. We will summarize vaccine approaches that consider recoding of viral proteins to produce adenoviral attenuation and recoding of the transgene antigens for both viral attenuation and efficient viral epitope expression.
Collapse
Affiliation(s)
- Judit Giménez-Roig
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Estela Núñez-Manchón
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ramon Alemany
- Procure Program, Institut Català d’Oncologia- Oncobell Program, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
8
|
Abstract
The development of safe and effective vaccines against viruses is central to disease control. With advancements in DNA synthesis technology, the production of synthetic viral genomes has fueled many research efforts that aim to generate attenuated viruses by introducing synonymous mutations. Elucidation of the mechanisms underlying virus attenuation through synonymous mutagenesis is revealing interesting new biology that can be exploited for vaccine development. Here, we review recent advancements in this field of synthetic virology and focus on the molecular mechanisms of attenuation by genetic recoding of viruses. We highlight the action of the zinc finger antiviral protein (ZAP) and RNase L, two proteins involved in the inhibition of viruses enriched for CpG and UpA dinucleotides, that are often the products of virus recoding algorithms. Additionally, we discuss current challenges in the field as well as studies that may illuminate how other host functions, such as translation, are potentially involved in the attenuation of recoded viruses.
Collapse
|
9
|
Loew L, Goonawardane N, Ratcliff J, Nguyen D, Simmonds P. Use of a small DNA virus model to investigate mechanisms of CpG dinucleotide-induced attenuation of virus replication. J Gen Virol 2020; 101:1202-1218. [PMID: 32783803 PMCID: PMC7879557 DOI: 10.1099/jgv.0.001477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/10/2020] [Indexed: 01/19/2023] Open
Abstract
Suppression of the CpG dinucleotide is widespread in RNA viruses infecting vertebrates and plants, and in the genomes of retroviruses and small mammalian DNA viruses. The functional basis for CpG suppression in the latter was investigated through the construction of mutants of the parvovirus, minute virus of mice (MVM) with increased CpG or TpA dinucleotides in the VP gene. CpG-high mutants displayed extraordinary attenuation in A9 cells compared to wild-type MVM (>six logs), while TpA elevation showed no replication effect. Attenuation was independent of Toll-like receptor 9 and STING-mediated DNA recognition pathways and unrelated to effects on translation efficiency. While translation from codon-optimized VP RNA was enhanced in a cell-free assay, MVM containing this sequence was highly attenuated. Further mutational analysis indicated that this arose through its increased numbers of CpG dinucleotides (7→70) and separately from its increased G+C content (42.3→57.4 %), which independently attenuated replication. CpG-high viruses showed impaired NS mRNA expression by qPCR and reduced NS and particularly VP protein expression detected by immunofluorescence and replication in A549 cells, effects reversed in zinc antiviral protein (ZAP) knockout cells, even though nuclear relocalization of VP remained defective. The demonstrated functional basis for CpG suppression in MVM and potentially other small DNA viruses and the observed intolerance of CpGs in coding sequences, even after codon optimization, has implications for the use of small DNA virus vectors in gene therapy and immunization.
Collapse
Affiliation(s)
- Lisa Loew
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
- Present address: Clinical Biomanufacturing Facility, University of Oxford, Old Road, Headington, Oxford OX3 7BN, UK
| | - Niluka Goonawardane
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Jeremy Ratcliff
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Dung Nguyen
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| |
Collapse
|
10
|
Van Leuven JT, Ederer MM, Burleigh K, Scott L, Hughes RA, Codrea V, Ellington AD, Wichman HA, Miller CR. ΦX174 Attenuation by Whole-Genome Codon Deoptimization. Genome Biol Evol 2020; 13:5921183. [PMID: 33045052 PMCID: PMC7881332 DOI: 10.1093/gbe/evaa214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Natural selection acting on synonymous mutations in protein-coding genes influences genome composition and evolution. In viruses, introducing synonymous mutations in genes encoding structural proteins can drastically reduce viral growth, providing a means to generate potent, live-attenuated vaccine candidates. However, an improved understanding of what compositional features are under selection and how combinations of synonymous mutations affect viral growth is needed to predictably attenuate viruses and make them resistant to reversion. We systematically recoded all nonoverlapping genes of the bacteriophage ΦX174 with codons rarely used in its Escherichia coli host. The fitness of recombinant viruses decreases as additional deoptimizing mutations are made to the genome, although not always linearly, and not consistently across genes. Combining deoptimizing mutations may reduce viral fitness more or less than expected from the effect size of the constituent mutations and we point out difficulties in untangling correlated compositional features. We test our model by optimizing the same genes and find that the relationship between codon usage and fitness does not hold for optimization, suggesting that wild-type ΦX174 is at a fitness optimum. This work highlights the need to better understand how selection acts on patterns of synonymous codon usage across the genome and provides a convenient system to investigate the genetic determinants of virulence.
Collapse
Affiliation(s)
- James T Van Leuven
- Department of Biological Science, University of Idaho.,Institute for Modeling Collaboration and Innovation, University of Idaho
| | | | - Katelyn Burleigh
- Department of Biological Science, University of Idaho.,Present address: Seattle Children's Research Institute, Seattle, WA
| | - LuAnn Scott
- Department of Biological Science, University of Idaho
| | - Randall A Hughes
- Applied Research Laboratories, University of Texas, Austin.,Present address: Biotechnology Branch, CCDC US Army Research Laboratory, Adelphi, MD
| | - Vlad Codrea
- Institute for Cellular and Molecular Biology, University of Texas, Austin
| | - Andrew D Ellington
- Applied Research Laboratories, University of Texas, Austin.,Institute for Cellular and Molecular Biology, University of Texas, Austin
| | - Holly A Wichman
- Department of Biological Science, University of Idaho.,Institute for Modeling Collaboration and Innovation, University of Idaho
| | - Craig R Miller
- Department of Biological Science, University of Idaho.,Institute for Modeling Collaboration and Innovation, University of Idaho
| |
Collapse
|
11
|
Hoang HD, Neault S, Pelin A, Alain T. Emerging translation strategies during virus-host interaction. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1619. [PMID: 32757266 PMCID: PMC7435527 DOI: 10.1002/wrna.1619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023]
Abstract
Translation control is crucial during virus-host interaction. On one hand, viruses completely rely on the protein synthesis machinery of host cells to propagate and have evolved various mechanisms to redirect the host's ribosomes toward their viral mRNAs. On the other hand, the host rewires its translation program in an attempt to contain and suppress the virus early on during infection; the antiviral program includes specific control on protein synthesis to translate several antiviral mRNAs involved in quenching the infection. As the infection progresses, host translation is in turn inhibited in order to limit viral propagation. We have learnt of very diverse strategies that both parties utilize to gain or retain control over the protein synthesis machinery. Yet novel strategies continue to be discovered, attesting for the importance of mRNA translation in virus-host interaction. This review focuses on recently described translation strategies employed by both hosts and viruses. These discoveries provide additional pieces in the understanding of the complex virus-host translation landscape. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation.
Collapse
Affiliation(s)
- Huy-Dung Hoang
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Centre, Ottawa, Ontario, K1H8L1, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Serge Neault
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Adrian Pelin
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Centre, Ottawa, Ontario, K1H8L1, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Farrera-Sal M, de Sostoa J, Nuñez-Manchón E, Moreno R, Fillat C, Bazan-Peregrino M, Alemany R. Arming Oncolytic Adenoviruses: Effect of Insertion Site and Splice Acceptor on Transgene Expression and Viral Fitness. Int J Mol Sci 2020; 21:E5158. [PMID: 32708234 PMCID: PMC7404292 DOI: 10.3390/ijms21145158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
Abstract
Oncolytic adenoviruses (OAds) present limited efficacy in clinics. The insertion of therapeutic transgenes into OAds genomes, known as "arming OAds", has been the main strategy to improve their therapeutic potential. Different approaches were published in the decade of the 2000s, but with few comparisons. Most armed OAds have complete or partial E3 deletions, leading to a shorter half-life in vivo. We generated E3+ OAds using two insertion sites, After-fiber and After-E4, and two different splice acceptors linked to the major late promoter, either the Ad5 protein IIIa acceptor (IIIaSA) or the Ad40 long fiber acceptor (40SA). The highest transgene levels were obtained with the After-fiber location and 40SA. However, the set of codons of the transgene affected viral fitness, highlighting the relevance of transgene codon usage when arming OAds using the major late promoter.
Collapse
Affiliation(s)
- Martí Farrera-Sal
- ProCure Program, Institut Català d’Oncologia, and Oncobell Program IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (M.F.-S.); (J.d.S.); (R.M.)
- VCN Biosciences S.L., 08174 Sant Cugat, Spain;
| | - Jana de Sostoa
- ProCure Program, Institut Català d’Oncologia, and Oncobell Program IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (M.F.-S.); (J.d.S.); (R.M.)
| | - Estela Nuñez-Manchón
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat de Barcelona, 08036 Barcelona, Spain; (E.N.-M.); (C.F.)
| | - Rafael Moreno
- ProCure Program, Institut Català d’Oncologia, and Oncobell Program IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (M.F.-S.); (J.d.S.); (R.M.)
| | - Cristina Fillat
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat de Barcelona, 08036 Barcelona, Spain; (E.N.-M.); (C.F.)
| | | | - Ramon Alemany
- ProCure Program, Institut Català d’Oncologia, and Oncobell Program IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (M.F.-S.); (J.d.S.); (R.M.)
| |
Collapse
|
13
|
Martínez MA, Jordan-Paiz A, Franco S, Nevot M. Synonymous genome recoding: a tool to explore microbial biology and new therapeutic strategies. Nucleic Acids Res 2020; 47:10506-10519. [PMID: 31584076 PMCID: PMC6846928 DOI: 10.1093/nar/gkz831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022] Open
Abstract
Synthetic genome recoding is a new means of generating designed organisms with altered phenotypes. Synonymous mutations introduced into the protein coding region tolerate modifications in DNA or mRNA without modifying the encoded proteins. Synonymous genome-wide recoding has allowed the synthetic generation of different small-genome viruses with modified phenotypes and biological properties. Recently, a decreased cost of chemically synthesizing DNA and improved methods for assembling DNA fragments (e.g. lambda red recombination and CRISPR-based editing) have enabled the construction of an Escherichia coli variant with a 4-Mb synthetic synonymously recoded genome with a reduced number of sense codons (n = 59) encoding the 20 canonical amino acids. Synonymous genome recoding is increasing our knowledge of microbial interactions with innate immune responses, identifying functional genome structures, and strategically ameliorating cis-inhibitory signaling sequences related to splicing, replication (in eukaryotes), and complex microbe functions, unraveling the relevance of codon usage for the temporal regulation of gene expression and the microbe mutant spectrum and adaptability. New biotechnological and therapeutic applications of this methodology can easily be envisaged. In this review, we discuss how synonymous genome recoding may impact our knowledge of microbial biology and the development of new and better therapeutic methodologies.
Collapse
Affiliation(s)
- Miguel Angel Martínez
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Ana Jordan-Paiz
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Sandra Franco
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Maria Nevot
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| |
Collapse
|
14
|
Farrera-Sal M, Fillat C, Alemany R. Effect of Transgene Location, Transcriptional Control Elements and Transgene Features in Armed Oncolytic Adenoviruses. Cancers (Basel) 2020; 12:E1034. [PMID: 32340119 PMCID: PMC7226017 DOI: 10.3390/cancers12041034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Clinical results with oncolytic adenoviruses (OAds) used as antitumor monotherapies show limited efficacy. To increase OAd potency, transgenes have been inserted into their genome, a strategy known as "arming OAds". Here, we review different parameters that affect the outcome of armed OAds. Recombinant adenovirus used in gene therapy and vaccination have been the basis for the design of armed OAds. Hence, early region 1 (E1) and early region 3 (E3) have been the most commonly used transgene insertion sites, along with partially or complete E3 deletions. Besides transgene location and orientation, transcriptional control elements, transgene function, either virocentric or immunocentric, and even the codons encoding it, greatly impact on transgene levels and virus fitness.
Collapse
Affiliation(s)
- Martí Farrera-Sal
- VCN Biosciences S.L., 08174 Sant Cugat, Spain
- ProCure and Oncobell Programs, Institut Català d’Oncologia/Bellbitge Biomedical Research Institute, 08908 Hospitalet de Llobregat, Spain
| | - Cristina Fillat
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rare Diseases Networking Biomedical Research Center (CIBERER), University of Barcelona, 08036 Barcelona, Spain;
| | - Ramon Alemany
- ProCure and Oncobell Programs, Institut Català d’Oncologia/Bellbitge Biomedical Research Institute, 08908 Hospitalet de Llobregat, Spain
| |
Collapse
|
15
|
Puustusmaa M, Abroi A. cRegions-a tool for detecting conserved cis-elements in multiple sequence alignment of diverged coding sequences. PeerJ 2019; 6:e6176. [PMID: 30647994 PMCID: PMC6330207 DOI: 10.7717/peerj.6176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Identifying cis-acting elements and understanding regulatory mechanisms of a gene is crucial to fully understand the molecular biology of an organism. In general, it is difficult to identify previously uncharacterised cis-acting elements with an unknown consensus sequence. The task is especially problematic with viruses containing regions of limited or no similarity to other previously characterised sequences. Fortunately, the fast increase in the number of sequenced genomes allows us to detect some of these elusive cis-elements. In this work, we introduce a web-based tool called cRegions. It was developed to identify regions within a protein-coding sequence where the conservation in the amino acid sequence is caused by the conservation in the nucleotide sequence. The cRegion can be the first step in discovering novel cis-acting sequences from diverged protein-coding genes. The results can be used as a basis for future experimental analysis. We applied cRegions on the non-structural and structural polyproteins of alphaviruses as an example and successfully detected all known cis-acting elements. In this publication and in previous work, we have shown that cRegions is able to detect a wide variety of functional elements in DNA and RNA viruses. These functional elements include splice sites, stem-loops, overlapping reading frames, internal promoters, ribosome frameshifting signals and other embedded elements with yet unknown function. The cRegions web tool is available at http://bioinfo.ut.ee/cRegions/.
Collapse
Affiliation(s)
- Mikk Puustusmaa
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Aare Abroi
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
16
|
Rovira-Rigau M, Raimondi G, Marín MÁ, Gironella M, Alemany R, Fillat C. Bioselection Reveals miR-99b and miR-485 as Enhancers of Adenoviral Oncolysis in Pancreatic Cancer. Mol Ther 2018; 27:230-243. [PMID: 30341009 DOI: 10.1016/j.ymthe.2018.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Oncolytic viruses are designed for cancer treatment. Cell-virus interactions are key determinants for successful viral replication. Therefore, the extensive reprogramming of gene expression that occurs in tumor cells might create a hurdle for viral propagation. We used a replication-based approach of a microRNA (miRNA) adenoviral library encoding up to 243 human miRNAs as a bioselection strategy to identify miRNAs that facilitate adenoviral oncolytic activity in pancreatic ductal adenocarcinoma. We identify two miRNAs, miR-99b and miR-485, that function as enhancers of adenoviral oncolysis by improving the intra- and extracellular yield of mature virions. An increased adenoviral activity is the consequence of enhanced E1A and late viral protein expression, which is probably mediated by the downregulation of the transcriptional repressors ELF4, MDM2, and KLF8, which we identify as miR-99b or miR-485 target genes. Arming the oncolytic adenovirus ICOVIR15 with miR-99b or miR-485 enhances its fitness and its antitumoral activity. Our results demonstrate the potential of this strategy to improve oncolytic adenovirus potency, and they highlight miR-99b and miR-485 as sensitizers of adenoviral replication.
Collapse
Affiliation(s)
- Maria Rovira-Rigau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
| | - Giulia Raimondi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
| | - Miguel Ángel Marín
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Meritxell Gironella
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 08036 Barcelona, Spain
| | - Ramon Alemany
- Institut Català d'Oncologia-IDIBELL, 08907 L'Hospitalet de Llobregat, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain; Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona (UB), 08036 Barcelona, Spain.
| |
Collapse
|
17
|
Kula A, Saelens J, Cox J, Schubert AM, Travisano M, Putonti C. The Evolution of Molecular Compatibility between Bacteriophage ΦX174 and its Host. Sci Rep 2018; 8:8350. [PMID: 29844443 PMCID: PMC5974221 DOI: 10.1038/s41598-018-25914-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/01/2018] [Indexed: 12/05/2022] Open
Abstract
Viruses rely upon their hosts for biosynthesis of viral RNA, DNA and protein. This dependency frequently engenders strong selection for virus genome compatibility with potential hosts, appropriate gene regulation and expression necessary for a successful infection. While bioinformatic studies have shown strong correlations between codon usage in viral and host genomes, the selective factors by which this compatibility evolves remain a matter of conjecture. Engineered to include codons with a lesser usage and/or tRNA abundance within the host, three different attenuated strains of the bacterial virus ФX174 were created and propagated via serial transfers. Molecular sequence data indicate that biosynthetic compatibility was recovered rapidly. Extensive computational simulations were performed to assess the role of mutational biases as well as selection for translational efficiency in the engineered phage. Using bacteriophage as a model system, we can begin to unravel the evolutionary processes shaping codon compatibility between viruses and their host.
Collapse
Affiliation(s)
- Alexander Kula
- Department of Biology, Loyola University Chicago, Chicago, IL, USA.,Department of Biology, University of Miami, Coral Gables, FL, USA
| | - Joseph Saelens
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Jennifer Cox
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Alyxandria M Schubert
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.,Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA.,BioTechnology Institute, University of Minnesota, Saint Paul, MN, USA
| | - Catherine Putonti
- Department of Biology, Loyola University Chicago, Chicago, IL, USA. .,Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA. .,Department of Computer Science, Loyola University Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Conrad SJ, Silva RF, Hearn CJ, Climans M, Dunn JR. Attenuation of Marek's disease virus by codon pair deoptimization of a core gene. Virology 2018; 516:219-226. [DOI: 10.1016/j.virol.2018.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/05/2018] [Accepted: 01/25/2018] [Indexed: 12/24/2022]
|