1
|
Li D, Sun N, Guo Y, Huang S, Yin C, Xiao Y, Ma W. Investigating the Effects of Perampanel on Autophagy-mediated Regulation of GluA2 and PSD95 in Epilepsy. Mol Neurobiol 2024; 61:9210-9221. [PMID: 38602656 DOI: 10.1007/s12035-024-04136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent seizures. Despite various treatment approaches, a significant number of patients continue to experience uncontrolled seizures, leading to refractory epilepsy. The emergence of novel anti-epileptic drugs, such as perampanel (PER), has provided promising options for effective epilepsy treatment. However, the specific mechanisms underlying the therapeutic effects of PER remain unclear. This study aimed to investigate the intrinsic molecular regulatory mechanisms involved in the downregulation of GluA2, a key subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, following epileptic seizures. Primary mouse hippocampal neurons were cultured and subjected to an epilepsy cell model. The expression levels of GluA2 and autophagy-related proteins were assessed using Western blotting and real-time fluorescent quantitative PCR. Immunofluorescence and immunohistochemistry techniques were employed to investigate the nuclear translocation of CREB-regulated transcriptional coactivator 1 (CRTC1). Additionally, status epilepticus animal models were established to further validate the findings. The epilepsy cell model exhibited a significant decrease in GluA2 expression, accompanied by elevated levels of autophagy-related proteins. Immunofluorescence analysis revealed the nuclear translocation of CRTC1, which correlated with the expression of autophagy-related genes. Treatment with an autophagy inhibitor reversed the decreased expression of GluA2 in the epilepsy cell model. Furthermore, the calcium/calmodulin-dependent protein phosphatase inhibitor FK506 and CaN overexpression affected the dephosphorylation and nuclear translocation of CRTC1, consequently influencing GluA2 expression. Animal model results further supported the involvement of these molecular mechanisms in epilepsy. Our findings suggest that the downregulation of GluA2 following epileptic seizures involves the activation of autophagy and the regulation of CRTC1 nuclear translocation. These intrinsic molecular regulatory mechanisms provide potential targets for developing novel therapeutic strategies to alleviate refractory epilepsy and preserve cognitive functions in patients.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi, China
| | - Na Sun
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi, China
| | - Yingying Guo
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi, China
| | - Shaoping Huang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi, China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi, China.
| | - Weijun Ma
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Salzinger A, Ramesh V, Das Sharma S, Chandran S, Thangaraj Selvaraj B. Neuronal Circuit Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2024; 13:792. [PMID: 38786016 PMCID: PMC11120636 DOI: 10.3390/cells13100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The primary neural circuit affected in Amyotrophic Lateral Sclerosis (ALS) patients is the corticospinal motor circuit, originating in upper motor neurons (UMNs) in the cerebral motor cortex which descend to synapse with the lower motor neurons (LMNs) in the spinal cord to ultimately innervate the skeletal muscle. Perturbation of these neural circuits and consequent loss of both UMNs and LMNs, leading to muscle wastage and impaired movement, is the key pathophysiology observed. Despite decades of research, we are still lacking in ALS disease-modifying treatments. In this review, we document the current research from patient studies, rodent models, and human stem cell models in understanding the mechanisms of corticomotor circuit dysfunction and its implication in ALS. We summarize the current knowledge about cortical UMN dysfunction and degeneration, altered excitability in LMNs, neuromuscular junction degeneration, and the non-cell autonomous role of glial cells in motor circuit dysfunction in relation to ALS. We further highlight the advances in human stem cell technology to model the complex neural circuitry and how these can aid in future studies to better understand the mechanisms of neural circuit dysfunction underpinning ALS.
Collapse
Affiliation(s)
- Andrea Salzinger
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Vidya Ramesh
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Shreya Das Sharma
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Bhuvaneish Thangaraj Selvaraj
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
3
|
Colognesi M, Shkodra A, Gabbia D, Kawamata H, Manfredi PL, Manfredi G, De Martin S. Sex-dependent effects of the uncompetitive N-methyl-D-aspartate receptor antagonist REL-1017 in G93A-SOD1 amyotrophic lateral sclerosis mice. Front Neurol 2024; 15:1384829. [PMID: 38765264 PMCID: PMC11100767 DOI: 10.3389/fneur.2024.1384829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction The pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease caused by the demise of motor neurons has been linked to excitotoxicity caused by excessive calcium influx via N-methyl-D-aspartate receptors (NMDARs), suggesting that uncompetitive NMDAR antagonism could be a strategy to attenuate motor neuron degeneration. REL-1017, the dextro-isomer of racemic methadone, is a low-affinity uncompetitive NMDAR antagonist. Importantly, in humans REL-1017 has shown excellent tolerability in clinical trials for major depression. Methods Here, we tested if REL-1017 improves the disease phenotypes in the G93A SOD1 mouse, a well-established model of familial ALS, by examining survival and motor functions, as well as the expression of genes and proteins involved in neuroplasticity. Results We found a sex-dependent effect of REL-1017 in G93A SOD1 mice. A delay of ALS symptom onset, assessed as 10%-decrease of body weight (p < 0.01 vs. control untreated mice) and an extension of lifespan (p < 0.001 vs. control untreated mice) was observed in male G93A SOD1 mice. Female G93A SOD1 mice treated with REL-1017 showed an improvement of muscle strength (p < 0.01 vs. control untreated mice). Both males and females treated with REL-1017 showed a decrease in hind limb clasping. Sex-dependent effects of REL-1017 were also detected in molecular markers of neuronal plasticity (PSD95 and SYN1) in the spinal cord and in the GluN1 NMDAR subunit in quadricep muscles. Conclusion In conclusion, this study provides preclinical in vivo evidence supporting the clinical evaluation of REL-1017 in ALS.
Collapse
Affiliation(s)
- Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Atea Shkodra
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Hibiki Kawamata
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | | | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Kusama-Eguchi K, Tokui Y, Minoura A, Yanai Y, Hirose D, Furukawa M, Kosuge Y, Miura M, Ohkoshi E, Makino M, Minagawa K, Matsuzaki K, Ogawa Y, Watanabe K, Ohsaki A. 2(3H)-Dihydrofranolactone metabolites from Pleosporales sp. NUH322 as anti-amyotrophic lateral sclerosis drugs. J Nat Med 2024; 78:146-159. [PMID: 37804412 DOI: 10.1007/s11418-023-01751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motor disease with limited treatment options. A domestic fungal extract library was screened using three assays related to the pathophysiology of ALS with the aim of developing a novel ALS drug. 2(3H)-dihydrofuranolactones 1 and 2, and five known compounds 3-7 were isolated from Pleosporales sp. NUH322 culture media, and their protective activity against the excitotoxicity of β-N-oxalyl-L-α,β-diaminopropionic acid (ODAP), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamatergic agonist, was evaluated under low mitochondrial glutathione levels induced by ethacrynic acid (EA) and low sulfur amino acids using our developed ODAP-EA assay. Additional assays evaluated the recovery from cytotoxicity caused by transfected SOD1-G93A, an ALS-causal gene, and the inhibitory effect against reactive oxygen species (ROS) elevation. The structures of 1 and 2 were elucidated using various spectroscopic methods. We synthesized 1 from D-ribose, and confirmed the absolute structure. Isolated and synthesized 1 displayed higher ODAP-EA activities than the extract and represented its activity. Furthermore, 1 exhibited protective activity against SOD1-G93A-induced toxicity. An ALS mouse model, SOD1-G93A, of both sexes, was treated orally with 1 at pre- and post-symptomatic stages. The latter treatment significantly extended their lifespan (p = 0.03) and delayed motor deterioration (p = 0.001-0.01). Our result suggests that 1 is a promising lead compound for the development of ALS drugs with a new spectrum of action targeting both SOD1-G93A proteopathy and excitotoxicity through its action on the AMPA-type glutamatergic receptor.
Collapse
Affiliation(s)
- Kuniko Kusama-Eguchi
- Department of Chemistry, College of Humanities and Science, Ninon University, Setagaya-Ku, Tokyo, 156-8550, Japan.
- Laboratory of Biochemistry, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan.
- Laboratory of Medical Microbiology, School of Pharmacy, Nihon University. Funabashi, Chiba, 274-8555, Japan.
| | - Yuki Tokui
- Department of Chemistry, College of Humanities and Science, Ninon University, Setagaya-Ku, Tokyo, 156-8550, Japan
| | - Ai Minoura
- Laboratory of Biochemistry, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Yuta Yanai
- Department of Chemistry, College of Humanities and Science, Ninon University, Setagaya-Ku, Tokyo, 156-8550, Japan
- Laboratory of Biochemistry, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Dai Hirose
- Laboratory of Medical Microbiology, School of Pharmacy, Nihon University. Funabashi, Chiba, 274-8555, Japan
| | - Megumi Furukawa
- Laboratory of Pharmacognosy, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Motofumi Miura
- Laboratory of Molecular Chemistry, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Emika Ohkoshi
- Department of Natural Products Chemistry, Faculty of Pharmaceutical Sciences, Aomori University, Aomori, Aomori, 030-0943, Japan
| | - Mitsuko Makino
- Laboratory of Pharmacognosy, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Kimino Minagawa
- Laboratory of Biochemistry, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Keiichi Matsuzaki
- Laboratory of Pharmacognosy, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Yoshio Ogawa
- Laboratory of Medical Microbiology, School of Pharmacy, Nihon University. Funabashi, Chiba, 274-8555, Japan
| | - Kazuko Watanabe
- Laboratory of Medical Microbiology, School of Pharmacy, Nihon University. Funabashi, Chiba, 274-8555, Japan
| | - Ayumi Ohsaki
- Department of Chemistry, College of Humanities and Science, Ninon University, Setagaya-Ku, Tokyo, 156-8550, Japan.
| |
Collapse
|
5
|
Yuan Y, Bailey JM, Rivera-Lopez GM, Atchison WD. Preferential potentiation of AMPA-mediated currents in brainstem hypoglossal motoneurons by subchronic exposure of mice expressing the human superoxide dismutase 1 G93A gene mutation to neurotoxicant methylmercury in vivo. Neurotoxicology 2024; 100:72-84. [PMID: 38065418 PMCID: PMC10877233 DOI: 10.1016/j.neuro.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
The exact causes of Amyotrophic lateral sclerosis (ALS), a progressive and fatal neurological disorder due to loss of upper and/or lower motoneurons, remain elusive. Gene-environment interactions are believed to be an important factor in the development of ALS. We previously showed that in vivo exposure of mice overexpressing the human superoxide dismutase 1 (hSOD1) gene mutation (hSOD1G93A; G93A), a mouse model for ALS, to environmental neurotoxicant methylmercury (MeHg) accelerated the onset of ALS-like phenotype. Here we examined the time-course of effects of MeHg on AMPA receptor (AMPAR)-mediated currents in hypoglossal motoneurons in brainstem slices prepared from G93A, hSOD1wild-type (hWT) and non-carrier WT mice following in vivo exposure to MeHg. Mice were exposed daily to 3 ppm (approximately 0.7 mg/kg/day) MeHg via drinking water beginning at postnatal day 28 (P28) and continued until P47, 64 or 84, then acute brainstem slices were prepared, and spontaneous excitatory postsynaptic currents (sEPSCs) or AMPA-evoked currents were examined using whole cell patch-clamp recording technique. Brainstem slices of untreated littermates were prepared at the same time points to serve as control. MeHg exposure had no significant effect on either sEPSCs or AMPA-evoked currents in slices from hWT or WT mice during any of those exposure time periods under our experimental conditions. MeHg also did not cause any significant effect on sEPSCs or AMPA-currents in G93A hypoglossal motoneurons at P47 and P64. However, at P84, MeHg significantly increased amplitudes of both sEPSCs and AMPA-evoked currents in hypoglossal motineurons from G93A mice (p < 0.05), but not the sEPSC frequency, suggesting a postsynaptic action on AMPARs. MeHg exposure did not cause any significant effect on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs). Therefore, MeHg exposure in vivo caused differential effects on AMPARs in hypoglossal motoneurons from mice with different genetic backgrounds. MeHg appears to preferentially stimulate the AMPAR-mediated currents in G93A hypoglossal motoneurons in an exposure time-dependent manner, which may contribute to the AMPAR-mediated motoneuron excitotoxicity, thereby facilitating development of ALS-like phenotype.
Collapse
Affiliation(s)
- Yukun Yuan
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA.
| | - Jordan M Bailey
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| | - Gretchen M Rivera-Lopez
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| | - William D Atchison
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| |
Collapse
|
6
|
Liu W, Wu Y, Zhang T, Sun X, Guo D, Yang Z. The role of dsRNA A-to-I editing catalyzed by ADAR family enzymes in the pathogeneses. RNA Biol 2024; 21:52-69. [PMID: 39449182 PMCID: PMC11520539 DOI: 10.1080/15476286.2024.2414156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
The process of adenosine deaminase (ADAR)-catalyzed double-stranded RNA (dsRNA) Adenosine-to-Inosine (A-to-I) editing is essential for the correction of pathogenic mutagenesis, as well as the regulation of gene expression and protein function in mammals. The significance of dsRNA A-to-I editing in disease development and occurrence is explored using inferential statistics and cluster analyses to investigate the enzymes involved in dsRNA editing that can catalyze editing sites across multiple biomarkers. This editing process, which occurs in coding or non-coding regions, has the potential to activate abnormal signalling pathways that contributes to disease pathogenesis. Notably, the ADAR family enzymes play a crucial role in initiating the editing process. ADAR1 is upregulated in most diseases as an oncogene during tumorigenesis, whereas ADAR2 typically acts as a tumour suppressor. Furthermore, this review also provides an overview of small molecular inhibitors that disrupt the expression of ADAR enzymes. These inhibitors not only counteract tumorigenicity but also alleviate autoimmune disorders, neurological neurodegenerative symptoms, and metabolic diseases associated with aberrant dsRNA A-to-I editing processes. In summary, this comprehensive review offers detailed insights into the involvement of dsRNA A-to-I editing in disease pathogenesis and highlights the potential therapeutic roles for related small molecular inhibitors. These scientific findings will undoubtedly contribute to the advancement of personalized medicine based on dsRNA A-to-I editing.
Collapse
Affiliation(s)
- Wanqing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Institue of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Dean Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, Beijing, China
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institue of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Institue of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Department of General Surgery, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Vukolova MN, Yen LY, Khmyz MI, Sobolevsky AI, Yelshanskaya MV. Parkinson's disease, epilepsy, and amyotrophic lateral sclerosis-emerging role of AMPA and kainate subtypes of ionotropic glutamate receptors. Front Cell Dev Biol 2023; 11:1252953. [PMID: 38033869 PMCID: PMC10683763 DOI: 10.3389/fcell.2023.1252953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory neurotransmission and are implicated in various neurological disorders. In this review, we discuss the role of the two fastest iGluRs subtypes, namely, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors, in the pathogenesis and treatment of Parkinson's disease, epilepsy, and amyotrophic lateral sclerosis. Although both AMPA and kainate receptors represent promising therapeutic targets for the treatment of these diseases, many of their antagonists show adverse side effects. Further studies of factors affecting the selective subunit expression and trafficking of AMPA and kainate receptors, and a reasonable approach to their regulation by the recently identified novel compounds remain promising directions for pharmacological research.
Collapse
Affiliation(s)
- Marina N Vukolova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Laura Y Yen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
- Cellular and Molecular Physiology and Biophysics Graduate Program, Columbia University, New York, NY, United States
| | - Margarita I Khmyz
- N. V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
8
|
Teli P, Kale V, Vaidya A. Beyond animal models: revolutionizing neurodegenerative disease modeling using 3D in vitro organoids, microfluidic chips, and bioprinting. Cell Tissue Res 2023; 394:75-91. [PMID: 37572163 DOI: 10.1007/s00441-023-03821-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by uncontrolled loss of neuronal cells leading to a progressive deterioration of brain functions. The transition rate of numerous neuroprotective drugs against Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, leading to FDA approval, is only 8-14% in the last two decades. Thus, in spite of encouraging preclinical results, these drugs have failed in human clinical trials, demonstrating that traditional cell cultures and animal models cannot accurately replicate human pathophysiology. Hence, in vitro three-dimensional (3D) models have been developed to bridge the gap between human and animal studies. Such technological advancements in 3D culture systems, such as human-induced pluripotent stem cell (iPSC)-derived cells/organoids, organ-on-a-chip technique, and 3D bioprinting, have aided our understanding of the pathophysiology and underlying mechanisms of human NDs. Despite these recent advances, we still lack a 3D model that recapitulates all the key aspects of NDs, thus making it difficult to study the ND's etiology in-depth. Hence in this review, we propose developing a combinatorial approach that allows the integration of patient-derived iPSCs/organoids with 3D bioprinting and organ-on-a-chip technique as it would encompass the neuronal cells along with their niche. Such a 3D combinatorial approach would characterize pathological processes thoroughly, making them better suited for high-throughput drug screening and developing effective novel therapeutics targeting NDs.
Collapse
Affiliation(s)
- Prajakta Teli
- Symbiosis International (Deemed University), Symbiosis School of Biological Sciences, Pune, 412115, India
- Symbiosis International (Deemed University), Symbiosis Center for Stem Cell Research, Pune, 412115, India
| | - Vaijayanti Kale
- Symbiosis International (Deemed University), Symbiosis School of Biological Sciences, Pune, 412115, India
- Symbiosis International (Deemed University), Symbiosis Center for Stem Cell Research, Pune, 412115, India
| | - Anuradha Vaidya
- Symbiosis International (Deemed University), Symbiosis School of Biological Sciences, Pune, 412115, India.
- Symbiosis International (Deemed University), Symbiosis Center for Stem Cell Research, Pune, 412115, India.
| |
Collapse
|
9
|
Nimgampalle M, Chakravarthy H, Sharma S, Shree S, Bhat AR, Pradeepkiran JA, Devanathan V. Neurotransmitter systems in the etiology of major neurological disorders: Emerging insights and therapeutic implications. Ageing Res Rev 2023; 89:101994. [PMID: 37385351 DOI: 10.1016/j.arr.2023.101994] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Neurotransmitters serve as chemical messengers playing a crucial role in information processing throughout the nervous system, and are essential for healthy physiological and behavioural functions in the body. Neurotransmitter systems are classified as cholinergic, glutamatergic, GABAergic, dopaminergic, serotonergic, histaminergic, or aminergic systems, depending on the type of neurotransmitter secreted by the neuron, allowing effector organs to carry out specific functions by sending nerve impulses. Dysregulation of a neurotransmitter system is typically linked to a specific neurological disorder. However, more recent research points to a distinct pathogenic role for each neurotransmitter system in more than one neurological disorder of the central nervous system. In this context, the review provides recently updated information on each neurotransmitter system, including the pathways involved in their biochemical synthesis and regulation, their physiological functions, pathogenic roles in diseases, current diagnostics, new therapeutic targets, and the currently used drugs for associated neurological disorders. Finally, a brief overview of the recent developments in neurotransmitter-based therapeutics for selected neurological disorders is offered, followed by future perspectives in that area of research.
Collapse
Affiliation(s)
- Mallikarjuna Nimgampalle
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Harshini Chakravarthy
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| | - Sapana Sharma
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Shruti Shree
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Anoop Ramachandra Bhat
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | | | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
10
|
Hosaka T, Tsuji H, Kwak S. Roles of Aging, Circular RNAs, and RNA Editing in the Pathogenesis of Amyotrophic Lateral Sclerosis: Potential Biomarkers and Therapeutic Targets. Cells 2023; 12:1443. [PMID: 37408276 DOI: 10.3390/cells12101443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 07/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable motor neuron disease caused by upper and lower motor neuron death. Despite advances in our understanding of ALS pathogenesis, effective treatment for this fatal disease remains elusive. As aging is a major risk factor for ALS, age-related molecular changes may provide clues for the development of new therapeutic strategies. Dysregulation of age-dependent RNA metabolism plays a pivotal role in the pathogenesis of ALS. In addition, failure of RNA editing at the glutamine/arginine (Q/R) site of GluA2 mRNA causes excitotoxicity due to excessive Ca2+ influx through Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors, which is recognized as an underlying mechanism of motor neuron death in ALS. Circular RNAs (circRNAs), a circular form of cognate RNA generated by back-splicing, are abundant in the brain and accumulate with age. Hence, they are assumed to play a role in neurodegeneration. Emerging evidence has demonstrated that age-related dysregulation of RNA editing and changes in circRNA expression are involved in ALS pathogenesis. Herein, we review the potential associations between age-dependent changes in circRNAs and RNA editing, and discuss the possibility of developing new therapies and biomarkers for ALS based on age-related changes in circRNAs and dysregulation of RNA editing.
Collapse
Affiliation(s)
- Takashi Hosaka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- University of Tsukuba Hospital/Jichi Medical University Joint Ibaraki Western Regional Clinical Education Center, Chikusei 308-0813, Japan
- Department of Internal Medicine, Ibaraki Western Medical Center, Chikusei 308-0813, Japan
| | - Hiroshi Tsuji
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Shin Kwak
- Department of Neurology, Tokyo Medical University, Tokyo 160-0023, Japan
| |
Collapse
|
11
|
Kato H, Naito M, Saito T, Hideyama T, Terashi H, Kwak S, Aizawa H. Effect of Serum Perampanel Concentration on Sporadic Amyotrophic Lateral Sclerosis Progression. J Clin Neurol 2023; 19:280-287. [PMID: 36929060 PMCID: PMC10169924 DOI: 10.3988/jcn.2022.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND AND PURPOSE To clarify the effect of perampanel (PER) on sporadic amyotrophic lateral sclerosis (sALS) progression, the relationship between the changes in Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) scores and serum PER concentrations was investigated. METHODS 12 patients with sALS from our hospital who agreed to participate and completed the PER for sALS randomized phase 2 study were included. After completing the study, we retrospectively obtained serum PER concentration data from the patients. Based on their mean PER concentrations, we divided the patients who had been taking PER into two groups: four patients with a mean PER concentration of ≥400 ng/mL were assigned to the H group, and three with a mean PER concentration of <400 ng/mL were assigned to the L group. The control group consisted of five patients who had been taking a placebo. We obtained the ALSFRS-R scores of each patient at 36 and 48 weeks after randomization. The differences in ALSFRS-R scores at baseline (0 weeks) and each subsequent week were used in the analysis. RESULTS At 48 weeks, there were no differences in the degree of deterioration of the bulbar, upper and lower limb, and respiratory ALSFRS-R subscores and total ALSFRS-R score. However, at 36 weeks, the bulbar subscore was significantly lower in the H group than in the control group (p=0.032). CONCLUSIONS Because high PER concentrations may exacerbate bulbar symptoms in patients with sALS, serum PER measurements may be beneficial when patients with sALS are taking PER.
Collapse
Affiliation(s)
- Haruhisa Kato
- Department of Neurology, Tokyo Medical University, Tokyo, Japan.
| | - Makiko Naito
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Tomoko Saito
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Takuto Hideyama
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Hiroo Terashi
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Shin Kwak
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Hitoshi Aizawa
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
12
|
Ishii H, Yamasaki T, Okamura T, Zhang Y, Kurihara Y, Ogawa M, Nengaki N, Zhang MR. Evaluation and improvement of CuI-mediated 11 C-cyanation. J Labelled Comp Radiopharm 2023; 66:95-107. [PMID: 36791689 DOI: 10.1002/jlcr.4016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
CuI-mediated 11 C-cyanation was evaluated by synthesizing [11 C]perampanel ([11 C]5) as a model compound and compared with previous reports. To a DMF solution with 5'-(2-bromophenyl)-1'-phenyl-[2,3'-bipyridin]-6'(1'H)-one (4) and CuI, [11 C]NH4 CN in a stream of ammonia/nitrogen (5:95, v/v) gas was bubbled. Subsequently, the reaction mixture was heated at 180°C for 5 min. After HPLC purification, [11 C]5 was obtained in 7.2 ± 1.0% (n = 4) non-decay corrected radiochemical yield with >99% radiochemical purity and a molar activity of 98 ± 28 GBq/μmol. In vivo evaluations of [11 C]5 were performed using small animals. PET scans to check the kinetics of [11 C]5 in the whole body of mice suggested that [11 C]5 spreads rapidly into the brain, heart, and lungs and then accumulates in the small intestine. To evaluate the performance of CuI-mediated 11 C-cyanation reaction, bromobenzene (6a) was selected as the model compound; however, it failed. Therefore, optimization of the reaction conditions has been performed, and consequently, the addition of K2 CO3 and prolonging the reaction time improved the radiochemical yield about double. With this improved method, CuI-mediated 11 C-cyanation of various (hetero)aromatic bromides was performed to exhibit the tolerance of most functional groups and to provide 11 C-cyanated products in good to moderate radiochemical yields.
Collapse
Affiliation(s)
- Hideki Ishii
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Toshimitsu Okamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yusuke Kurihara
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- SHI Accelerator Service Ltd., Tokyo, Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- SHI Accelerator Service Ltd., Tokyo, Japan
| | - Nobuki Nengaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- SHI Accelerator Service Ltd., Tokyo, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
13
|
Li SH, Abd-Elrahman KS, Ferguson SS. Targeting mGluR2/3 for treatment of neurodegenerative and neuropsychiatric diseases. Pharmacol Ther 2022; 239:108275. [DOI: 10.1016/j.pharmthera.2022.108275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
|
14
|
Hajji K, Sedmík J, Cherian A, Amoruso D, Keegan LP, O'Connell MA. ADAR2 enzymes: efficient site-specific RNA editors with gene therapy aspirations. RNA (NEW YORK, N.Y.) 2022; 28:1281-1297. [PMID: 35863867 PMCID: PMC9479739 DOI: 10.1261/rna.079266.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The adenosine deaminase acting on RNA (ADAR) enzymes are essential for neuronal function and innate immune control. ADAR1 RNA editing prevents aberrant activation of antiviral dsRNA sensors through editing of long, double-stranded RNAs (dsRNAs). In this review, we focus on the ADAR2 proteins involved in the efficient, highly site-specific RNA editing to recode open reading frames first discovered in the GRIA2 transcript encoding the key GLUA2 subunit of AMPA receptors; ADAR1 proteins also edit many of these sites. We summarize the history of ADAR2 protein research and give an up-to-date review of ADAR2 structural studies, human ADARBI (ADAR2) mutants causing severe infant seizures, and mouse disease models. Structural studies on ADARs and their RNA substrates facilitate current efforts to develop ADAR RNA editing gene therapy to edit disease-causing single nucleotide polymorphisms (SNPs). Artificial ADAR guide RNAs are being developed to retarget ADAR RNA editing to new target transcripts in order to correct SNP mutations in them at the RNA level. Site-specific RNA editing has been expanded to recode hundreds of sites in CNS transcripts in Drosophila and cephalopods. In Drosophila and C. elegans, ADAR RNA editing also suppresses responses to self dsRNA.
Collapse
Affiliation(s)
- Khadija Hajji
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | - Jiří Sedmík
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | - Anna Cherian
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | | | - Liam P Keegan
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | | |
Collapse
|
15
|
Sattayakhom A, Kalarat K, Rakmak T, Tapechum S, Monteil A, Punsawad C, Palipoch S, Koomhin P. Effects of Ceftriaxone on Oxidative Stress and Inflammation in a Rat Model of Chronic Cerebral Hypoperfusion. Behav Sci (Basel) 2022; 12:bs12080287. [PMID: 36004858 PMCID: PMC9404883 DOI: 10.3390/bs12080287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Ceftriaxone (CTX) exerts a neuroprotective effect by decreasing glutamate excitotoxicity. We further studied the underlying mechanisms and effects of CTX early post-treatment on behavior in a cerebral hypoperfusion rats. The rats’ common carotid arteries (2VO) were permanently ligated. CTX was treated after ischemia. Biochemical studies were performed to assess antioxidative stress and inflammation. Behavioral and histological studies were then tested on the ninth week after vessel ligation. The 2VO rats showed learning and memory deficits as well as working memory impairments without any motor weakness. The treatment with CTX was found to attenuate white matter damage, MDA production, and interleukin 1 beta and tumor necrosis factor alpha production, mainly in the hippocampal area. Moreover, CTX treatment could increase the expression of glia and the glial glutamate transporters, and the neuronal glutamate transporter. Taken together, our data indicate the neuroprotective mechanisms of CTX involving the upregulation of glutamate transporters’ expression. This increased expression contributes to a reduction in glutamate excitotoxicity and oxidative stress as well as pro-inflammatory cytokine production, thus resulting in the protection of neurons and tissue from further damage. The present study highlights the mechanism of the effect of CTX treatment and of the underlying ischemia-induced neuronal damage.
Collapse
Affiliation(s)
- Apsorn Sattayakhom
- School of Allied Health Sciences, Walailak University, Nakhonsithammarat 80160, Thailand
- Center of Excellence in Innovation on Essential Oil, Walailak University, Nakhonsithammarat 80160, Thailand
| | - Kosin Kalarat
- School of Informatics, Walailak University, Nakhonsithammarat 80160, Thailand
| | - Thatdao Rakmak
- School of Liberal Arts, Walailak University, Nakhonsithammarat 80160, Thailand
| | - Sompol Tapechum
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Arnaud Monteil
- Institutde Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhonsithammarat 80160, Thailand
| | - Sarawoot Palipoch
- School of Medicine, Walailak University, Nakhonsithammarat 80160, Thailand
| | - Phanit Koomhin
- Center of Excellence in Innovation on Essential Oil, Walailak University, Nakhonsithammarat 80160, Thailand
- School of Medicine, Walailak University, Nakhonsithammarat 80160, Thailand
- Correspondence: ; Tel.: +66-(0)-95-295-0550
| |
Collapse
|
16
|
Zhai J, Koh JH, Soong TW. RNA editing of ion channels and receptors in physiology and neurological disorders. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac010. [PMID: 38596706 PMCID: PMC11003377 DOI: 10.1093/oons/kvac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/14/2022] [Accepted: 05/15/2022] [Indexed: 04/11/2024]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a post-transcriptional modification that diversifies protein functions by recoding RNA or alters protein quantity by regulating mRNA level. A-to-I editing is catalyzed by adenosine deaminases that act on RNA. Millions of editing sites have been reported, but they are mostly found in non-coding sequences. However, there are also several recoding editing sites in transcripts coding for ion channels or transporters that have been shown to play important roles in physiology and changes in editing level are associated with neurological diseases. These editing sites are not only found to be evolutionary conserved across species, but they are also dynamically regulated spatially, developmentally and by environmental factors. In this review, we discuss the current knowledge of A-to-I RNA editing of ion channels and receptors in the context of their roles in physiology and pathological disease. We also discuss the regulation of editing events and site-directed RNA editing approaches for functional study that offer a therapeutic pathway for clinical applications.
Collapse
Affiliation(s)
- Jing Zhai
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Joanne Huifen Koh
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore,
Singapore 117456, Singapore
| |
Collapse
|
17
|
Quantum-dot-labeled synuclein seed assay identifies drugs modulating the experimental prion-like transmission. Commun Biol 2022; 5:636. [PMID: 35768587 PMCID: PMC9243017 DOI: 10.1038/s42003-022-03590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/15/2022] [Indexed: 11/08/2022] Open
Abstract
Synucleinopathies are neurodegenerative disorders including Parkinson disease (PD), dementia with Lewy body (DLB), and multiple system atrophy (MSA) that involve deposits of the protein alpha-synuclein (α-syn) in the brain. The inoculation of α-syn aggregates derived from synucleinopathy or preformed fibrils (PFF) formed in vitro induces misfolding and deposition of endogenous α-syn. This is referred to as prion-like transmission, and the mechanism is still unknown. In this study, we label α-syn PFF with quantum dots and visualize their movement directly in acute slices of brain tissue inoculated with α-syn PFF seeds. Using this system, we find that the trafficking of α-syn seeds is dependent on fast axonal transport and the seed spreading is dependent on endocytosis and neuronal activity. We also observe pharmacological effects on α-syn seed spreading; clinically available drugs including riluzole are effective in reducing the spread of α-syn seeds and this effect is also observed in vivo. Our quantum-dot-labeled α-syn seed assay system combined with in vivo transmission experiment reveals an early phase of transmission, in which uptake and spreading of seeds occur depending on neuronal activity, and a later phase, in which seeds induce the propagation of endogenous misfolded α-syn.
Collapse
|
18
|
Altered Calcium Permeability of AMPA Receptor Drives NMDA Receptor Inhibition in the Hippocampus of Murine Obesity Models. Mol Neurobiol 2022; 59:4902-4925. [PMID: 35657456 DOI: 10.1007/s12035-022-02834-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Evidence has accumulated that higher consumption of high-fat diets (HFDs) during the juvenile/adolescent period induces altered hippocampal function and morphology; however, the mechanism behind this phenomenon remains elusive. Using high-resolution structural imaging combined with molecular and functional interrogation, a murine model of obesity treated with HFDs for 12 weeks after weaning mice was shown to change in the glutamate-mediated intracellular calcium signaling and activity, including further selective reduction of gray matter volume in the hippocampus associated with memory recall disturbance. Dysregulation of intracellular calcium concentrations was restored by a non-competitive α-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) antagonist, followed by normalization of hippocampal volume and memory recall ability, indicating that AMPARs may serve as an attractive therapeutic target for obesity-associated cognitive decline.
Collapse
|
19
|
Sever B, Ciftci H, DeMirci H, Sever H, Ocak F, Yulug B, Tateishi H, Tateishi T, Otsuka M, Fujita M, Başak AN. Comprehensive Research on Past and Future Therapeutic Strategies Devoted to Treatment of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:2400. [PMID: 35269543 PMCID: PMC8910198 DOI: 10.3390/ijms23052400] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly debilitating fatal neurodegenerative disorder, causing muscle atrophy and weakness, which leads to paralysis and eventual death. ALS has a multifaceted nature affected by many pathological mechanisms, including oxidative stress (also via protein aggregation), mitochondrial dysfunction, glutamate-induced excitotoxicity, apoptosis, neuroinflammation, axonal degeneration, skeletal muscle deterioration and viruses. This complexity is a major obstacle in defeating ALS. At present, riluzole and edaravone are the only drugs that have passed clinical trials for the treatment of ALS, notwithstanding that they showed modest benefits in a limited population of ALS. A dextromethorphan hydrobromide and quinidine sulfate combination was also approved to treat pseudobulbar affect (PBA) in the course of ALS. Globally, there is a struggle to prevent or alleviate the symptoms of this neurodegenerative disease, including implementation of antisense oligonucleotides (ASOs), induced pluripotent stem cells (iPSCs), CRISPR-9/Cas technique, non-invasive brain stimulation (NIBS) or ALS-on-a-chip technology. Additionally, researchers have synthesized and screened new compounds to be effective in ALS beyond the drug repurposing strategy. Despite all these efforts, ALS treatment is largely limited to palliative care, and there is a strong need for new therapeutics to be developed. This review focuses on and discusses which therapeutic strategies have been followed so far and what can be done in the future for the treatment of ALS.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hilal Sever
- Ministry of Health, Istanbul Training and Research Hospital, Physical Medicine and Rehabilitation Clinic, Istanbul 34098, Turkey;
| | - Firdevs Ocak
- Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey;
| | - Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alaaddin Keykubat University, Alanya 07425, Turkey;
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Takahisa Tateishi
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, Fukuoka 830-0011, Japan;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Ayşe Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (KUTTAM-NDAL), Koc University, Istanbul 34450, Turkey
| |
Collapse
|
20
|
Perampanel for amyotrophic lateral sclerosis: A systematic review and meta-analysis. Neurol Sci 2022; 43:889-897. [DOI: 10.1007/s10072-022-05867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022]
|
21
|
Aizawa H, Kato H, Oba K, Kawahara T, Okubo Y, Saito T, Naito M, Urushitani M, Tamaoka A, Nakamagoe K, Ishii K, Kanda T, Katsuno M, Atsuta N, Maeda Y, Nagai M, Nishiyama K, Ishiura H, Toda T, Kawata A, Abe K, Yabe I, Takahashi-Iwata I, Sasaki H, Warita H, Aoki M, Sobue G, Mizusawa H, Matsuyama Y, Haga T, Kwak S. Randomized phase 2 study of perampanel for sporadic amyotrophic lateral sclerosis. J Neurol 2022; 269:885-896. [PMID: 34191081 PMCID: PMC8782807 DOI: 10.1007/s00415-021-10670-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate the efficacy and safety of perampanel in patients with sporadic amyotrophic lateral sclerosis (SALS). METHODS This randomized, double-blind, placebo-controlled, multicenter, phase 2 clinical study was conducted at 12 sites. Patients with probable or definite ALS as defined by revised El Escorial criteria were enrolled. Sixty-six patients were randomly assigned (1:1:1) to receive placebo, 4 mg perampanel, or 8 mg perampanel daily for 48 weeks. Adverse events (AEs) were recorded throughout the trial period. The primary efficacy outcome was the change in Amyotrophic Lateral Sclerosis Rating Scale-Revised (ALSFRS-R) score after 48 weeks of treatment. RESULTS One patient withdrew before starting the treatment. Of 65 patients included, 18 of 22 patients randomized to placebo (82%), 14 of 22 patients randomized to 4 mg perampanel (64%), and 7 of 21 patients randomized to 8 mg perampanel (33%) completed the trial. There was a significant difference in the change of ALSFRS-R scores [- 8.4 (95% CI - 13.9 to - 2.9); p = 0.015] between the placebo and the perampanel 8 mg group, primarily due to worsening of the bulbar subscore in the perampanel 8 mg group. Serious AEs were more frequent in the perampanel 8 mg group than in the placebo group (p = 0.0483). CONCLUSIONS Perampanel was associated with a significant decline in ALSFRS-R score and was linked to worsening of the bulbar subscore in the 8 mg group.
Collapse
Affiliation(s)
- Hitoshi Aizawa
- Department of Neurology, Tokyo Medical University, Tokyo, Japan.
| | - Haruhisa Kato
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Koji Oba
- Department of Biostatics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuya Kawahara
- Central Coordinating Unit, Clinical Research Support Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshihiko Okubo
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Tomoko Saito
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Makiko Naito
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu, Japan
| | - Akira Tamaoka
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kiyotaka Nakamagoe
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuhiro Ishii
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | - Naoki Atsuta
- Department of Neurology, Nagoya University, Nagoya, Japan
| | - Yasushi Maeda
- Department of Neurology, National Hospital Organization Kumamoto Saishun Medical Center, Kumamoto, Japan
| | - Makiko Nagai
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kazutoshi Nishiyama
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | | | - Tatsushi Toda
- Department of Neurology, University of Tokyo, Tokyo, Japan
| | - Akihiro Kawata
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Koji Abe
- Department of Neurology, University of Okayama, Okayama, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ikuko Takahashi-Iwata
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidenao Sasaki
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Hospital, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Hospital, Sendai, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University, Nagoya, Japan
| | | | - Yutaka Matsuyama
- Department of Biostatics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Haga
- Central Coordinating Unit, Clinical Research Support Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Shin Kwak
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
22
|
Takahashi S, Mashima K. Neuroprotection and Disease Modification by Astrocytes and Microglia in Parkinson Disease. Antioxidants (Basel) 2022; 11:antiox11010170. [PMID: 35052674 PMCID: PMC8773262 DOI: 10.3390/antiox11010170] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress and neuroinflammation are common bases for disease onset and progression in many neurodegenerative diseases. In Parkinson disease, which is characterized by the degeneration of dopaminergic neurons resulting in dopamine depletion, the pathogenesis differs between hereditary and solitary disease forms and is often unclear. In addition to the pathogenicity of alpha-synuclein as a pathological disease marker, the involvement of dopamine itself and its interactions with glial cells (astrocyte or microglia) have attracted attention. Pacemaking activity, which is a hallmark of dopaminergic neurons, is essential for the homeostatic maintenance of adequate dopamine concentrations in the synaptic cleft, but it imposes a burden on mitochondrial oxidative glucose metabolism, leading to reactive oxygen species production. Astrocytes provide endogenous neuroprotection to the brain by producing and releasing antioxidants in response to oxidative stress. Additionally, the protective function of astrocytes can be modified by microglia. Some types of microglia themselves are thought to exacerbate Parkinson disease by releasing pro-inflammatory factors (M1 microglia). Although these inflammatory microglia may further trigger the inflammatory conversion of astrocytes, microglia may induce astrocytic neuroprotective effects (A2 astrocytes) simultaneously. Interestingly, both astrocytes and microglia express dopamine receptors, which are upregulated in the presence of neuroinflammation. The anti-inflammatory effects of dopamine receptor stimulation are also attracting attention because the functions of astrocytes and microglia are greatly affected by both dopamine depletion and therapeutic dopamine replacement in Parkinson disease. In this review article, we will focus on the antioxidative and anti-inflammatory effects of astrocytes and their synergism with microglia and dopamine.
Collapse
Affiliation(s)
- Shinichi Takahashi
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi 350-1298, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Correspondence: ; Tel.: +81-42-984-4111 (ext. 7412); Fax: +81-42-984-0664
| | - Kyoko Mashima
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Department of Neurology, Tokyo Saiseikai Central Hospital, 1-4-17 Mita, Minato-ku, Tokyo 108-0073, Japan
| |
Collapse
|
23
|
Akamatsu M, Yamashita T, Teramoto S, Huang Z, Lynch J, Toda T, Niu L, Kwak S. Testing of the therapeutic efficacy and safety of AMPA receptor RNA aptamers in an ALS mouse model. Life Sci Alliance 2022; 5:5/4/e202101193. [PMID: 35022247 PMCID: PMC8761490 DOI: 10.26508/lsa.202101193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
In motor neurons of sporadic amyotrophic lateral sclerosis (ALS) patients, the RNA editing at the glutamine/arginine site of the GluA2 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors is defective or incomplete. As a result, AMPA receptors containing the abnormally expressed, unedited isoform of GluA2 are highly Ca2+-permeable, and are responsible for mediating abnormal Ca2+ influx, thereby triggering motor neuron degeneration and cell death. Thus, blocking the AMPA receptor-mediated, abnormal Ca2+ influx is a potential therapeutic strategy for treatment of sporadic ALS. Here, we report a study of the efficacy and safety of two RNA aptamers targeting AMPA receptors on the ALS phenotype of AR2 mice. A 12-wk continuous, intracerebroventricular infusion of aptamers to AR2 mice reduced the progression of motor dysfunction, normalized TDP-43 mislocalization, and prevented death of motor neurons. Our results demonstrate that the use of AMPA receptor aptamers as a novel class of AMPA receptor antagonists is a promising strategy for developing an ALS treatment approach.
Collapse
Affiliation(s)
- Megumi Akamatsu
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takenari Yamashita
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sayaka Teramoto
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Zhen Huang
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, USA
| | - Janet Lynch
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, USA
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Li Niu
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, USA
| | - Shin Kwak
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan .,Department of Neurology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
24
|
Hosaka T, Tsuji H, Kwak S. RNA Editing: A New Therapeutic Target in Amyotrophic Lateral Sclerosis and Other Neurological Diseases. Int J Mol Sci 2021; 22:10958. [PMID: 34681616 PMCID: PMC8536083 DOI: 10.3390/ijms222010958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
The conversion of adenosine to inosine in RNA editing (A-to-I RNA editing) is recognized as a critical post-transcriptional modification of RNA by adenosine deaminases acting on RNAs (ADARs). A-to-I RNA editing occurs predominantly in mammalian and human central nervous systems and can alter the function of translated proteins, including neurotransmitter receptors and ion channels; therefore, the role of dysregulated RNA editing in the pathogenesis of neurological diseases has been speculated. Specifically, the failure of A-to-I RNA editing at the glutamine/arginine (Q/R) site of the GluA2 subunit causes excessive permeability of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors to Ca2+, inducing fatal status epilepticus and the neurodegeneration of motor neurons in mice. Therefore, an RNA editing deficiency at the Q/R site in GluA2 due to the downregulation of ADAR2 in the motor neurons of sporadic amyotrophic lateral sclerosis (ALS) patients suggests that Ca2+-permeable AMPA receptors and the dysregulation of RNA editing are suitable therapeutic targets for ALS. Gene therapy has recently emerged as a new therapeutic opportunity for many heretofore incurable diseases, and RNA editing dysregulation can be a target for gene therapy; therefore, we reviewed neurological diseases associated with dysregulated RNA editing and a new therapeutic approach targeting dysregulated RNA editing, especially one that is effective in ALS.
Collapse
Affiliation(s)
- Takashi Hosaka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (T.H.); (H.T.)
- Department of Internal Medicine, Tsukuba University Hospital Kensei Area Medical Education Center, Chikusei 308-0813, Ibaraki, Japan
- Department of Internal Medicine, Ibaraki Western Medical Center, Chikusei 308-0813, Ibaraki, Japan
| | - Hiroshi Tsuji
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (T.H.); (H.T.)
| | - Shin Kwak
- Department of Neurology, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
25
|
Evidence-Based Research Strategy of Traditional Chinese Medicine for Amyotrophic Lateral Sclerosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3402753. [PMID: 34512775 PMCID: PMC8426072 DOI: 10.1155/2021/3402753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022]
Abstract
Among adult-onset motor neuron diseases, amyotrophic lateral sclerosis (ALS) is the most common. ALS involves the increasing loss of lower and upper motor neurons. Within a few years of onset, ALS causes patient death via progressive paralysis of respiratory muscles. However, the current drugs used to treat ALS, riluzole, edaravone, and dextromethorphan/quinidine, can only delay the progression of the disease and alleviate a small number of symptoms in some patients, and no completely effective treatment is available. Traditional Chinese medicine (TCM) has shown significant advantages in the treatment of ALS in China and Asia; however, the mechanism of its efficacy is unclear. This review discusses the pathogenetic hypothesis of ALS in detail from the level of neurons and glial cells and uses two current experimental animal models of ALS to design experimental strategies to study TCM treatment. We aim to provide a scientific explanation of the mechanism of the effect of TCM in the treatment of ALS, which will help clinicians and research scientists to accept the theory of TCM to treat ALS and promote the development of TCM modernization.
Collapse
|
26
|
Hotait M, Ismail HH, Saab GE, Salameh JS. An open label pilot study of the safety and tolerability of perampanel in amyotrophic lateral sclerosis. Muscle Nerve 2021; 64:504-508. [PMID: 34322897 DOI: 10.1002/mus.27385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 11/07/2022]
Abstract
INTRODUCTION/AIMS Perampanel, a selective noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonist, is capable of slowing the progression of the amyotrophic lateral sclerosis (ALS) phenotype and increasing the number of anterior horn cells in transgenic mice. Trials of perampanel in epilepsy showed a favorable tolerability profile. In this study we aimed to determine the tolerability and safety of perampanel in patients with ALS. METHODS Enrolled subjects were started on 2 mg/day of perampanel and the dose was increased by 2 mg/day every week to a maximum dose of 8 mg/day. Our primary outcome measure was tolerability, which was evaluated by monitoring adverse events. The secondary outcome measure was clinical progression, assessed using the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) and spirometry. RESULTS Six participants were enrolled. All had adverse events, mostly behavioral. Two completed the trial and the other four withdrew due to adverse events. All participants reported resolution of these events after discontinuation of the drug. The trial was halted due to the large number of adverse events. DISCUSSION The use of perampanel in this study of ALS was limited by its poor tolerability.
Collapse
Affiliation(s)
- Mostafa Hotait
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Helen H Ismail
- Department of Neurology, American University of Beirut medical Center, Beirut, Lebanon
| | - Georges E Saab
- Department of Neurology, American University of Beirut medical Center, Beirut, Lebanon
| | - Johnny S Salameh
- Department of Neurology, American University of Beirut medical Center, Beirut, Lebanon
| |
Collapse
|
27
|
Huang X, Roet KCD, Zhang L, Brault A, Berg AP, Jefferson AB, Klug-McLeod J, Leach KL, Vincent F, Yang H, Coyle AJ, Jones LH, Frost D, Wiskow O, Chen K, Maeda R, Grantham A, Dornon MK, Klim JR, Siekmann MT, Zhao D, Lee S, Eggan K, Woolf CJ. Human amyotrophic lateral sclerosis excitability phenotype screen: Target discovery and validation. Cell Rep 2021; 35:109224. [PMID: 34107252 PMCID: PMC8209673 DOI: 10.1016/j.celrep.2021.109224] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/14/2020] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Drug development is hampered by poor target selection. Phenotypic screens using neurons differentiated from patient stem cells offer the possibility to validate known and discover novel disease targets in an unbiased fashion. To identify targets for managing hyperexcitability, a pathological feature of amyotrophic lateral sclerosis (ALS), we design a multi-step screening funnel using patient-derived motor neurons. High-content live cell imaging is used to evaluate neuronal excitability, and from a screen against a chemogenomic library of 2,899 target-annotated compounds, 67 reduce the hyperexcitability of ALS motor neurons carrying the SOD1(A4V) mutation, without cytotoxicity. Bioinformatic deconvolution identifies 13 targets that modulate motor neuron excitability, including two known ALS excitability modulators, AMPA receptors and Kv7.2/3 ion channels, constituting target validation. We also identify D2 dopamine receptors as modulators of ALS motor neuron excitability. This screen demonstrates the power of human disease cell-based phenotypic screens for identifying clinically relevant targets for neurological disorders. Motor neuron hyperexcitability is observed in both ALS patients and their iPSC-derived neurons. Combining a high-content live imaging excitability phenotypic assay, high-throughput screening against a cross-annotated chemogenomic library, and bioinformatic enrichment analysis, Huang et al. identify targets modulating the hyperexcitability of ALS patient-derived motor neurons in an unbiased manner.
Collapse
Affiliation(s)
- Xuan Huang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kasper C D Roet
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Liying Zhang
- Medicine Design, Pfizer, Cambridge, MA 02139, USA
| | - Amy Brault
- Medicine Design, Pfizer, Groton, CT 06340, USA
| | - Allison P Berg
- Rare Disease Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Anne B Jefferson
- Pfizer Centers for Therapeutic Innovation (CTI), San Francisco, CA 94080, USA
| | | | - Karen L Leach
- Pfizer Centers for Therapeutic Innovation (CTI), Cambridge, MA 02139, USA
| | | | - Hongying Yang
- Pfizer Centers for Therapeutic Innovation (CTI), Cambridge, MA 02139, USA
| | - Anthony J Coyle
- Pfizer Centers for Therapeutic Innovation (CTI), Cambridge, MA 02139, USA
| | - Lyn H Jones
- Medicine Design, Pfizer, Cambridge, MA 02139, USA
| | - Devlin Frost
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Ole Wiskow
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Kuchuan Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Rie Maeda
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alyssa Grantham
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mary K Dornon
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joseph R Klim
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Marco T Siekmann
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Dongyi Zhao
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Seungkyu Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Oskarsson B, Mauricio EA, Shah JS, Li Z, Rogawski MA. Cortical excitability threshold can be increased by the AMPA blocker Perampanel in amyotrophic lateral sclerosis. Muscle Nerve 2021; 64:215-219. [PMID: 34008857 DOI: 10.1002/mus.27328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/09/2021] [Accepted: 05/16/2021] [Indexed: 11/07/2022]
Abstract
INTRODUCTION/AIMS Cortical hyperexcitability is a feature of amyotrophic lateral sclerosis (ALS) and cortical excitability can be measured using transcranial magnetic stimulation (TMS). Resting motor threshold (MT) is a measure of cortical excitability, largely driven by glutamate. Perampanel, a glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor blocker, is predicted to increase the cortical excitability threshold. This study aimed to evaluate TMS to functionally assess target engagement in a study of perampanel in ALS. METHOD We studied the MT of ALS patients randomized to a single dose of perampanel or placebo 5:1 hourly for 4 h. Twelve patients participated at 4 mg and 7 returned for dosing and retesting at 8 mg. The study was terminated in April 2020 due to coronavirus disease 2019-related restrictions, after 7 out of 12 planned patients had received the 8 mg dose. Serum concentrations were also measured. RESULTS Ten patients received the 4 mg dose (2 received placebo) and 5 received the 8 mg dose (2 received placebo). Motor Threshold increased at 2 h after dosing in the combined treatment group +7% of maximal stimulator output (P < .01). Change could be detected in the larger 4 mg group (P = .02), but not in the smaller 8 mg dose group (P = .1). No side effects were reported after single dose exposure. DISCUSSION This study shows that perampanel effects the physiology of upper motor neurons. Studies aiming at gauging the effect of perampanel on ALS disease progression are already ongoing. Motor threshold may serve as a marker of biological target engagement.
Collapse
Affiliation(s)
- Björn Oskarsson
- Florida Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Jaimin S Shah
- Florida Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Zhuo Li
- Florida Department of Biostatistics, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael A Rogawski
- Departments of Neurology and Pharmacology, University of California, Davis, California, USA
| |
Collapse
|
29
|
Ueda J, Uemura N, Sawamura M, Taguchi T, Ikuno M, Kaji S, Taruno Y, Matsuzawa S, Yamakado H, Takahashi R. Perampanel Inhibits α-Synuclein Transmission in Parkinson's Disease Models. Mov Disord 2021; 36:1554-1564. [PMID: 33813737 DOI: 10.1002/mds.28558] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The intercellular transmission of pathogenic proteins plays a key role in the clinicopathological progression of neurodegenerative diseases. Previous studies have demonstrated that this uptake and release process is regulated by neuronal activity. OBJECTIVE The objective of this study was to examine the effect of perampanel, an antiepileptic drug, on α-synuclein transmission in cultured cells and mouse models of Parkinson's disease. METHODS Mouse primary hippocampal neurons were transduced with α-synuclein preformed fibrils to examine the effect of perampanel on the development of α-synuclein pathology and its mechanisms of action. An α-synuclein preformed fibril-injected mouse model was used to validate the effect of oral administration of perampanel on the α-synuclein pathology in vivo. RESULTS Perampanel inhibited the development of α-synuclein pathology in mouse hippocampal neurons transduced with α-synuclein preformed fibrils. Interestingly, perampanel blocked the neuronal uptake of α-synuclein preformed fibrils by inhibiting macropinocytosis in a neuronal activity-dependent manner. We confirmed that oral administration of perampanel ameliorated the development of α-synuclein pathology in wild-type mice inoculated with α-synuclein preformed fibrils. CONCLUSION Modulation of neuronal activity could be a promising therapeutic target for Parkinson's disease, and perampanel could be a novel disease-modifying drug for Parkinson's disease. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jun Ueda
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norihito Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masanori Sawamura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoyuki Taguchi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masashi Ikuno
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Seiji Kaji
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yosuke Taruno
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuichi Matsuzawa
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hodaka Yamakado
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
30
|
Abstract
The brain is one of the organs that are preferentially targeted by adenosine-to-inosine (A-to-I) RNA editing, a posttranscriptional modification. This chemical modification affects neuronal development and functions at multiple levels, leading to normal brain homeostasis by increasing the complexity of the transcriptome. This includes modulation of the properties of ion channel and neurotransmitter receptors by recoding, redirection of miRNA targets by changing sequence complementarity, and suppression of immune response by altering RNA structure. Therefore, from another perspective, it appears that the brain is highly vulnerable to dysregulation of A-to-I RNA editing. Here, we focus on how aberrant A-to-I RNA editing is involved in neurological and neurodegenerative diseases of humans including epilepsy, amyotrophic lateral sclerosis, psychiatric disorders, developmental disorders, brain tumors, and encephalopathy caused by autoimmunity. In addition, we provide information regarding animal models to better understand the mechanisms behind disease phenotype.
Collapse
Affiliation(s)
- Pedro Henrique Costa Cruz
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
31
|
De Caro C, Cristiano C, Avagliano C, Cuozzo M, La Rana G, Aviello G, De Sarro G, Calignano A, Russo E, Russo R. Analgesic and Anti-Inflammatory Effects of Perampanel in Acute and Chronic Pain Models in Mice: Interaction With the Cannabinergic System. Front Pharmacol 2021; 11:620221. [PMID: 33597883 PMCID: PMC7883473 DOI: 10.3389/fphar.2020.620221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Pain conditions, such as neuropathic pain (NP) and persistent inflammatory pain are therapeutically difficult to manage. Previous studies have shown the involvement of glutamate receptor in pain modulation and in particular same of these showed the key role of the AMPA ionotropic glutamate receptor subtype. Antiseizure medications (ASMs) are often used to treat this symptom, however the effect of perampanel (PER), an ASM acting as selective, non-competitive inhibitor of the AMPA receptor on the management of pain has not well been investigated yet. Here we tested the potential analgesic and anti-inflammatory effects of PER, in acute and chronic pain models. PER was given orally either in acute (5 mg/kg) or repeated administration (3 mg/kg/d for 4 days). Pain response was assessed using models of nociceptive sensitivity, visceral and inflammatory pain, and mechanical allodynia and hyperalgesia induced by chronic constriction injury to the sciatic nerve. PER significantly reduced pain perception in all behavioral tests as well as CCI-induced mechanical allodynia and hyperalgesia in acute regimen (5 mg/kg). This effect was also observed after repeated treatment using the dose of 3 mg/kg/d. The antinociceptive, antiallodynic and antihyperalgesic effects of PER were attenuated when the CB1 antagonist AM251 (1 mg/kg/i.p.) was administered before PER treatment, suggesting the involvement of the cannabinergic system. Moreover, Ex vivo analyses showed that PER significantly increased CB1 receptor expression and reduced inflammatory cytokines (i.e. TNFα, IL-1β, and IL-6) in the spinal cord. In conclusion, these results extend our knowledge on PER antinociceptive and antiallodynic effects and support the involvement of cannabinergic system on its mode of action.
Collapse
Affiliation(s)
- Carmen De Caro
- Department of Health Sciences, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Claudia Cristiano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Giovanna La Rana
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Gabriella Aviello
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giovambattista De Sarro
- Department of Health Sciences, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Emilio Russo
- Department of Health Sciences, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
32
|
Bączyk M, Krutki P, Zytnicki D. Is there hope that transpinal direct current stimulation corrects motoneuron excitability and provides neuroprotection in amyotrophic lateral sclerosis? Physiol Rep 2021; 9:e14706. [PMID: 33463907 PMCID: PMC7814489 DOI: 10.14814/phy2.14706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of largely unknown pathophysiology, characterized by the progressive loss of motoneurons (MNs). We review data showing that in presymptomatic ALS mice, MNs display reduced intrinsic excitability and impaired level of excitatory inputs. The loss of repetitive firing specifically affects the large MNs innervating fast contracting muscle fibers, which are the most vulnerable MNs in ALS. Interventions that aimed at restoring either the intrinsic excitability or the synaptic excitation result in a decrease of disease markers in MNs and delayed neuromuscular junction denervation. We then focus on trans‐spinal direct current stimulation (tsDCS), a noninvasive tool, since it modulates the activity of spinal neurons and networks. Effects of tsDCS depend on the polarity of applied current. Recent work shows that anodal tsDCS induces long‐lasting enhancement of MN excitability and synaptic excitation of spinal MNs. Moreover, we show preliminary results indicating that anodal tsDCS enhances the excitatory synaptic inputs to MNs in ALS mice. In conclusion, we suggest that chronic application of anodal tsDCS might be useful as a complementary method in the management of ALS patients.
Collapse
Affiliation(s)
- Marcin Bączyk
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland
| | - Piotr Krutki
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland
| | - Daniel Zytnicki
- Université de Paris, Centre National de la Recherche Scientifique (CNRS), Saints-Pères Paris Institute for the Neurosciences (SPPIN), Paris, France
| |
Collapse
|
33
|
Biodistribution and radiation dosimetry of the positron emission tomography probe for AMPA receptor, [ 11C]K-2, in healthy human subjects. Sci Rep 2021; 11:1598. [PMID: 33452361 PMCID: PMC7810729 DOI: 10.1038/s41598-021-81002-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/29/2020] [Indexed: 01/05/2023] Open
Abstract
[11C]K-2, a radiotracer exhibiting high affinity and selectivity for α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), is suitable for the quantification of AMPARs in living human brains and potentially useful in the identification of epileptogenic foci in patients. This study aimed to estimate the radiation doses of [11C]K-2 in various organs and calculate the effective dose after injection of [11C]K-2 in healthy human subjects. Twelve healthy male subjects were registered and divided into two groups (370 or 555 MBq of [11C]K-2), followed by 2 h whole-body scans. We estimated the radiation dose of each organ and then calculated the effective dose for each subject. The highest uptake of [11C]K-2 was observed in the liver, while the brain also showed relatively high uptake. The urinary bladder exhibited the highest radiation dose. The kidneys and liver also showed high radiation doses after [11C]K-2 injections. The effective dose of [11C]K-2 ranged from 5.0 to 5.2 μSv/MBq. Our findings suggest that [11C]K-2 is safe in terms of the radiation dose and adverse effects. The injection of 370–555 MBq (10 to 15 mCi) for PET studies using this radiotracer is applicable in healthy human subjects and enables serial PET scans in a single subject.
Collapse
|
34
|
Yang Y, Okada S, Sakurai M. Adenosine-to-inosine RNA editing in neurological development and disease. RNA Biol 2021; 18:999-1013. [PMID: 33393416 DOI: 10.1080/15476286.2020.1867797] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) editing is one of the most prevalent post-transcriptional RNA modifications in metazoan. This reaction is catalysed by enzymes called adenosine deaminases acting on RNA (ADARs). RNA editing is involved in the regulation of protein function and gene expression. The numerous A-to-I editing sites have been identified in both coding and non-coding RNA transcripts. These editing sites are also found in various genes expressed in the central nervous system (CNS) and play an important role in neurological development and brain function. Aberrant regulation of RNA editing has been associated with the pathogenesis of neurological and psychiatric disorders, suggesting the physiological significance of RNA editing in the CNS. In this review, we discuss the current knowledge of editing on neurological disease and development.
Collapse
Affiliation(s)
- Yuxi Yang
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Shunpei Okada
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Masayuki Sakurai
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| |
Collapse
|
35
|
Alqahtani F, Assiri MA, Mohany M, Imran I, Javaid S, Rasool MF, Shakeel W, Sivandzade F, Alanazi AZ, Al-Rejaie SS, Alshammari MA, Alasmari F, Alanazi MM, Alamri FF. Coadministration of Ketamine and Perampanel Improves Behavioral Function and Reduces Inflammation in Acute Traumatic Brain Injury Mouse Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3193725. [PMID: 33381547 PMCID: PMC7749776 DOI: 10.1155/2020/3193725] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is among the most debilitating neurological disorders with inadequate therapeutic options. It affects all age groups globally leading to post-TBI behavioral challenges and life-long disabilities requiring interventions for these health issues. In the current study, C57BL/6J mice were induced with TBI through the weight-drop method, and outcomes of acutely administered ketamine alone and in combination with perampanel were observed. The impact of test drugs was evaluated for post-TBI behavioral changes by employing the open field test (OFT), Y-maze test, and novel object recognition test (NOR). After that, isolated plasma and brain homogenates were analyzed for inflammatory modulators, i.e., NF-κB and iNOS, through ELISA. Moreover, metabolomic studies were carried out to further authenticate the TBI rescuing potential of drugs. The animals treated with ketamine-perampanel combination demonstrated improved exploratory behavior in OFT (P < 0.05), while ketamine alone as well as in combination yielded anxiolytic effect (P < 0.05-0.001) in posttraumatic mice. Similarly, the % spontaneous alternation and % discrimination index were increased after the administration of ketamine alone (P < 0.05) and ketamine-perampanel combination (P < 0.01-0.001) in the Y-maze test and NOR test, respectively. ELISA demonstrated the reduced central and peripheral expression of NF-κB (P < 0.05) and iNOS (P < 0.01-0.0001) after ketamine-perampanel polypharmacy. The TBI-imparted alteration in plasma metabolites was restored by drug combination as evidenced by metabolomic studies. The outcomes were fruitful with ketamine, but the combination therapy proved more significant in improving all studied parameters. The benefits of this new investigated polypharmacy might be due to their antiglutamatergic, antioxidant, and neuroprotective capacity.
Collapse
Affiliation(s)
- Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Waleed Shakeel
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Farzane Sivandzade
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ahmed Z. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Musaad A. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Mufadhe Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faisal F. Alamri
- College of Sciences and Health Profession, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
36
|
Nakagawa Y, Yamada S. A novel hypothesis on metal dyshomeostasis and mitochondrial dysfunction in amyotrophic lateral sclerosis: Potential pathogenetic mechanism and therapeutic implications. Eur J Pharmacol 2020; 892:173737. [PMID: 33220280 DOI: 10.1016/j.ejphar.2020.173737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by motor dysfunctions resulting from the loss of upper (UMNs) and lower (LMNs) motor neurons. While ALS symptoms are coincidental with pathological changes in LMNs and UMNs, the causal relationship between the two is unclear. For example, research on the extra-motor symptoms associated with this condition suggests that an imbalance of metals, including copper, zinc, iron, and manganese, is initially induced in the sensory ganglia due to a malfunction of metal binding proteins and transporters. It is proposed that the resultant metal dyshomeostasis may promote mitochondrial dysfunction in the satellite glial cells of these sensory ganglia, causing sensory neuron disturbances and sensory symptoms. Sensory neuron hyperactivation can result in LMN impairments, while metal dyshomeostasis in spinal cord and brain stem parenchyma induces mitochondrial dysfunction in LMNs and UMNs. These events could prompt intracellular calcium dyshomeostasis, pathological TDP-43 formation, and reactive microglia with neuroinflammation, which in turn activate the apoptosis signaling pathways within the LMNs and UMNs. Our model suggests that the degeneration of LMNs and UMNs is incidental to the metal-induced changes in the spinal cord and brain stem. Over time psychiatric symptoms may appear as the metal dyshomeostasis and mitochondrial dysfunction affect other brain regions, including the reticular formation, hippocampus, and prefrontal cortex. It is proposed that metal dyshomeostasis in combination with mitochondrial dysfunction could be the underlying mechanism responsible for the initiation and progression of the pathological changes associated with both the motor and extra-motor symptoms of ALS.
Collapse
Affiliation(s)
- Yutaka Nakagawa
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
37
|
Kukharsky MS, Skvortsova VI, Bachurin SO, Buchman VL. In a search for efficient treatment for amyotrophic lateral sclerosis: Old drugs for new approaches. Med Res Rev 2020; 41:2804-2822. [DOI: 10.1002/med.21725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Michail S. Kukharsky
- Faculty of Medical Biology Pirogov Russian National Research Medical University Moscow Russian Federation
- Institute of Physiologically Active Compounds Russian Academy of Sciences Moscow Region Russian Federation
| | - Veronika I. Skvortsova
- Faculty of Medical Biology Pirogov Russian National Research Medical University Moscow Russian Federation
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds Russian Academy of Sciences Moscow Region Russian Federation
| | - Vladimir L. Buchman
- Institute of Physiologically Active Compounds Russian Academy of Sciences Moscow Region Russian Federation
- School of Biosciences Cardiff University Cardiff United Kingdom
| |
Collapse
|
38
|
Maroofian R, Sedmík J, Mazaheri N, Scala M, Zaki MS, Keegan LP, Azizimalamiri R, Issa M, Shariati G, Sedaghat A, Beetz C, Bauer P, Galehdari H, O'Connell MA, Houlden H. Biallelic variants in ADARB1, encoding a dsRNA-specific adenosine deaminase, cause a severe developmental and epileptic encephalopathy. J Med Genet 2020; 58:495-504. [PMID: 32719099 PMCID: PMC8327408 DOI: 10.1136/jmedgenet-2020-107048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Adenosine-to-inosine RNA editing is a co-transcriptional/post-transcriptional modification of double-stranded RNA, catalysed by one of two active adenosine deaminases acting on RNA (ADARs), ADAR1 and ADAR2. ADARB1 encodes the enzyme ADAR2 that is highly expressed in the brain and essential to modulate the function of glutamate and serotonin receptors. Impaired ADAR2 editing causes early onset progressive epilepsy and premature death in mice. In humans, ADAR2 dysfunction has been very recently linked to a neurodevelopmental disorder with microcephaly and epilepsy in four unrelated subjects. METHODS We studied three children from two consanguineous families with severe developmental and epileptic encephalopathy (DEE) through detailed physical and instrumental examinations. Exome sequencing (ES) was used to identify ADARB1 mutations as the underlying genetic cause and in vitro assays with transiently transfected cells were performed to ascertain the impact on ADAR2 enzymatic activity and splicing. RESULTS All patients showed global developmental delay, intractable early infantile-onset seizures, microcephaly, severe-to-profound intellectual disability, axial hypotonia and progressive appendicular spasticity. ES revealed the novel missense c.1889G>A, p.(Arg630Gln) and deletion c.1245_1247+1 del, p.(Leu415PhefsTer14) variants in ADARB1 (NM_015833.4). The p.(Leu415PhefsTer14) variant leads to incorrect splicing resulting in frameshift with a premature stop codon and loss of enzyme function. In vitro RNA editing assays showed that the p.(Arg630Gln) variant resulted in a severe impairment of ADAR2 enzymatic activity. CONCLUSION In conclusion, these data support the pathogenic role of biallelic ADARB1 variants as the cause of a distinctive form of DEE, reinforcing the importance of RNA editing in brain function and development.
Collapse
Affiliation(s)
- Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Jiří Sedmík
- CEITEC, Masaryk University, Kamenice 735/5, A35, Brno 62500, Czech Republic
| | - Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Marcello Scala
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Liam P Keegan
- CEITEC, Masaryk University, Kamenice 735/5, A35, Brno 62500, Czech Republic
| | - Reza Azizimalamiri
- Department of Paediatric Neurology, Golestan, Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Behbahan, Iran
| | - Mahmoud Issa
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Gholamreza Shariati
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Behbahan, Iran
| | - Alireza Sedaghat
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of medical Sciences, Ahvaz, Iran
| | | | | | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mary A O'Connell
- CEITEC, Masaryk University, Kamenice 735/5, A35, Brno 62500, Czech Republic
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
39
|
Mignani S, Majoral JP, Desaphy JF, Lentini G. From Riluzole to Dexpramipexole via Substituted-Benzothiazole Derivatives for Amyotrophic Lateral Sclerosis Disease Treatment: Case Studies. Molecules 2020; 25:E3320. [PMID: 32707914 PMCID: PMC7435757 DOI: 10.3390/molecules25153320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
The 1,3-benzothiazole (BTZ) ring may offer a valid option for scaffold-hopping from indole derivatives. Several BTZs have clinically relevant roles, mainly as CNS medicines and diagnostic agents, with riluzole being one of the most famous examples. Riluzole is currently the only approved drug to treat amyotrophic lateral sclerosis (ALS) but its efficacy is marginal. Several clinical studies have demonstrated only limited improvements in survival, without benefits to motor function in patients with ALS. Despite significant clinical trial efforts to understand the genetic, epigenetic, and molecular pathways linked to ALS pathophysiology, therapeutic translation has remained disappointingly slow, probably due to the complexity and the heterogeneity of this disease. Many other drugs to tackle ALS have been tested for 20 years without any success. Dexpramipexole is a BTZ structural analog of riluzole and was a great hope for the treatment of ALS. In this review, as an interesting case study in the development of a new medicine to treat ALS, we present the strategy of the development of dexpramipexole, which was one of the most promising drugs against ALS.
Collapse
Affiliation(s)
- Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, 45, rue des Saints Peres, 75006 Paris, France
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse CEDEX 4, France;
- Université Toulouse, 118 route de Narbonne, 31077 Toulouse CEDEX 4, France
| | - Jean-François Desaphy
- Dipartimento di Scienze Biomediche e Oncologia Umana, Scuola di Medicina, Università degli Studi di Bari Aldo Moro, Piazza Giulio Cesare, 70124 Bari, Italy;
| | - Giovanni Lentini
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
40
|
Wobst HJ, Mack KL, Brown DG, Brandon NJ, Shorter J. The clinical trial landscape in amyotrophic lateral sclerosis-Past, present, and future. Med Res Rev 2020; 40:1352-1384. [PMID: 32043626 PMCID: PMC7417284 DOI: 10.1002/med.21661] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/08/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease marked by progressive loss of muscle function. It is the most common adult-onset form of motor neuron disease, affecting about 16 000 people in the United States alone. The average survival is about 3 years. Only two interventional drugs, the antiglutamatergic small-molecule riluzole and the more recent antioxidant edaravone, have been approved for the treatment of ALS to date. Therapeutic strategies under investigation in clinical trials cover a range of different modalities and targets, and more than 70 different drugs have been tested in the clinic to date. Here, we summarize and classify interventional therapeutic strategies based on their molecular targets and phenotypic effects. We also discuss possible reasons for the failure of clinical trials in ALS and highlight emerging preclinical strategies that could provide a breakthrough in the battle against this relentless disease.
Collapse
Affiliation(s)
- Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Merck & Co, Inc, Kenilworth, New Jersey
| | - Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - Nicholas J Brandon
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Buratti E. Targeting TDP-43 proteinopathy with drugs and drug-like small molecules. Br J Pharmacol 2020; 178:1298-1315. [PMID: 32469420 DOI: 10.1111/bph.15148] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Following the discovery of the involvement of the ribonucleoprotein TDP-43 in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), a major research focus has been to develop treatments that can prevent or alleviate these disease conditions. One pharmacological approach has been to use TDP-43-based disease models to test small molecules and drugs already known to have some therapeutic effect in a variety of neurodegenerative conditions. In parallel, various disease models have been used to perform high-throughput screens of drugs and small compound libraries. The aim of this review will be to provide a general overview of the compounds that have been described to alter pathological characteristics of TDP-43. These include expression levels, cytoplasmic mis-localization, post-translational modifications, cleavage, stress granule recruitment and aggregation. In parallel, this review will also address the use of compounds that modify the autophagic/proteasome systems that are known to target TDP-43 misfolding and aggregation. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
42
|
Barp A, Gerardi F, Lizio A, Sansone VA, Lunetta C. Emerging Drugs for the Treatment of Amyotrophic Lateral Sclerosis: A Focus on Recent Phase 2 Trials. Expert Opin Emerg Drugs 2020; 25:145-164. [PMID: 32456491 DOI: 10.1080/14728214.2020.1769067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease involving both upper and lower motor neurons and resulting in increasing disability and death 3-5 years after onset of symptoms. Over 40 large clinical trials for ALS have been negative, except for Riluzole that offers a modest survival benefit, and Edaravone that modestly reduces disease progression in patients with specific characteristics. Thus, the discovery of efficient disease modifying therapy is an urgent need. AREAS COVERED Although the cause of ALS remains unclear, many studies have demonstrated that neuroinflammation, proteinopathies, glutamate-induced excitotoxicity, microglial activation, oxidative stress, and mitochondrial dysfunction may play a key role in the pathogenesis. This review highlights recent discoveries relating to these diverse mechanisms and their implications for the development of therapy. Ongoing phase 2 clinical trials aimed to interfere with these pathophysiological mechanisms are discussed. EXPERT OPINION This review describes the challenges that the discovery of an efficient drug therapy faces and how these issues may be addressed. With the continuous advances coming from basic research, we provided possible suggestions that may be considered to improve performance of clinical trials and turn ALS research into a 'fertile ground' for drug development for this devastating disease.
Collapse
Affiliation(s)
- Andrea Barp
- NEuroMuscular Omnicentre, Fondazione Serena Onlus , Milan, Italy.,Dept. Biomedical Sciences of Health, University of Milan , Milan, Italy
| | | | - Andrea Lizio
- NEuroMuscular Omnicentre, Fondazione Serena Onlus , Milan, Italy
| | - Valeria Ada Sansone
- NEuroMuscular Omnicentre, Fondazione Serena Onlus , Milan, Italy.,Dept. Biomedical Sciences of Health, University of Milan , Milan, Italy
| | | |
Collapse
|
43
|
Kiyosue K, Miwa Y. Epstein-Barr virus-derived vector suitable for long-term expression in neurons. Heliyon 2020; 6:e03504. [PMID: 32190754 PMCID: PMC7068671 DOI: 10.1016/j.heliyon.2020.e03504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/22/2019] [Accepted: 02/24/2020] [Indexed: 11/04/2022] Open
Abstract
Exogenous gene expression is a fundamental and indispensable technique for testing gene function in neurons. Several ways to express exogenous genes in neurons are available, but each method has pros and cons. The lentivirus vector is useful for high efficiency gene transfer to neurons and stabilizes gene expression via genome integration, but this integration may destroy the host genome. The Epstein-Barr virus (EBV)-derived vector (EB vector) is an accessible and useful vector in human cell lines because the vector is not integrated into the host genome but stays in the nucleus as an episome. However, there has been no report on this process in rodent neurons. We examined the usefulness of the EB vector for testing gene function in neurons. We found that EB vector-derived exogenous proteins such as green fluorescent protein (GFP) and GFP-tagged actin were easily detectable even after three weeks of transfection. Second, a tetracycline-induced gene expression system in the EB vector was active after three weeks of transfection, indicating that plasmids were retained in neurons for up to three weeks. Third, we determined that only Family of repeat element of the plasmid vector is essential for its long-term presence in neurons. These results show that the modified EB vector is a useful tool for examining gene function in neurons.
Collapse
Affiliation(s)
- Kazuyuki Kiyosue
- Functional Biomolecule Research Group and DAILAB, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka 563-8577, Japan
| | - Yoshihiro Miwa
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| |
Collapse
|
44
|
Konen LM, Wright AL, Royle GA, Morris GP, Lau BK, Seow PW, Zinn R, Milham LT, Vaughan CW, Vissel B. A new mouse line with reduced GluA2 Q/R site RNA editing exhibits loss of dendritic spines, hippocampal CA1-neuron loss, learning and memory impairments and NMDA receptor-independent seizure vulnerability. Mol Brain 2020; 13:27. [PMID: 32102661 PMCID: PMC7045468 DOI: 10.1186/s13041-020-0545-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/05/2020] [Indexed: 11/18/2022] Open
Abstract
Calcium (Ca2+)-permeable AMPA receptors may, in certain circumstances, contribute to normal synaptic plasticity or to neurodegeneration. AMPA receptors are Ca2+-permeable if they lack the GluA2 subunit or if GluA2 is unedited at a single nucleic acid, known as the Q/R site. In this study, we examined mice engineered with a point mutation in the intronic editing complementary sequence (ECS) of the GluA2 gene, Gria2. Mice heterozygous for the ECS mutation (named GluA2+/ECS(G)) had a ~ 20% reduction in GluA2 RNA editing at the Q/R site. We conducted an initial phenotypic analysis of these mice, finding altered current-voltage relations (confirming expression of Ca2+-permeable AMPA receptors at the synapse). Anatomically, we observed a loss of hippocampal CA1 neurons, altered dendritic morphology and reductions in CA1 pyramidal cell spine density. Behaviourally, GluA2+/ECS(G) mice exhibited reduced motor coordination, and learning and memory impairments. Notably, the mice also exhibited both NMDA receptor-independent long-term potentiation (LTP) and vulnerability to NMDA receptor-independent seizures. These NMDA receptor-independent seizures were rescued by the Ca2+-permeable AMPA receptor antagonist IEM-1460. In summary, unedited GluA2(Q) may have the potential to drive NMDA receptor-independent processes in brain function and disease. Our study provides an initial characterisation of a new mouse model for studying the role of unedited GluA2(Q) in synaptic and dendritic spine plasticity in disorders where unedited GluA2(Q), synapse loss, neurodegeneration, behavioural impairments and/or seizures are observed, such as ischemia, seizures and epilepsy, Huntington’s disease, amyotrophic lateral sclerosis, astrocytoma, cocaine seeking behaviour and Alzheimer’s disease.
Collapse
Affiliation(s)
- Lyndsey M Konen
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia
| | - Amanda L Wright
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Gordon A Royle
- Middlemore Hospital, Counties Manukau DHB, Otahuhu, Auckland, 1062, New Zealand.,The University of Auckland, Faculty of Medical and Health Sciences, School of Medicine, Grafton, Auckland, 1023, New Zealand
| | - Gary P Morris
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia
| | - Benjamin K Lau
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, 2065, Australia
| | - Patrick W Seow
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, 2065, Australia
| | - Raphael Zinn
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia
| | - Luke T Milham
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia
| | - Christopher W Vaughan
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, 2065, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia. .,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia.
| |
Collapse
|
45
|
The Novel Direct Modulatory Effects of Perampanel, an Antagonist of AMPA Receptors, on Voltage-Gated Sodium and M-type Potassium Currents. Biomolecules 2019; 9:biom9100638. [PMID: 31652643 PMCID: PMC6843791 DOI: 10.3390/biom9100638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/20/2019] [Indexed: 12/17/2022] Open
Abstract
Perampanel (PER) is a selective blocker of AMPA receptors showing efficacy in treating various epileptic disorders including brain tumor-related epilepsy and also potential in treating motor neuron disease. However, besides its inhibition of AMPA-induced currents, whether PER has any other direct ionic effects in different types of neurons remains largely unknown. We investigated the effects of PER and related compounds on ionic currents in different types of cells, including hippocampal mHippoE-14 neurons, motor neuron-like NSC-34 cells and U87 glioma cells. We found that PER differentially and effectively suppressed the amplitude of voltage-gated Na+ currents (INa) in mHippoE-14 cells. The IC50 values required to inhibit peak and late INa were 4.12 and 0.78 μM, respectively. PER attenuated tefluthrin-induced increases in both amplitude and deactivating time constant of INa. Importantly, PER also inhibited the amplitude of M-type K+ currents (IK(M)) with an IC50 value of 0.92 μM. The suppression of IK(M) was attenuated by the addition of flupirtine or ZnCl2 but not by L-quisqualic acid or sorafenib. Meanwhile, in cell-attached configuration, PER (3 μM) decreased the activity of M-type K+ channels with no change in single-channel conductance but shifting the activation curve along the voltage axis in a rightward direction. Supportively, PER suppressed IK(M) in NSC-34 cells and INa in U87 glioma cells. The inhibitory effects of PER on both INa and IK(M), independent of its antagonistic effect on AMPA receptors, may be responsible for its wide-spectrum of effects observed in neurological clinical practice.
Collapse
|
46
|
Moore S, Alsop E, Lorenzini I, Starr A, Rabichow BE, Mendez E, Levy JL, Burciu C, Reiman R, Chew J, Belzil VV, W. Dickson D, Robertson J, Staats KA, Ichida JK, Petrucelli L, Van Keuren-Jensen K, Sattler R. ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72-mediated ALS/FTD. Acta Neuropathol 2019; 138:49-65. [PMID: 30945056 DOI: 10.1007/s00401-019-01999-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022]
Abstract
The hexanucleotide repeat expansion GGGGCC (G4C2)n in the C9orf72 gene is the most common genetic abnormality associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent findings suggest that dysfunction of nuclear-cytoplasmic trafficking could affect the transport of RNA binding proteins in C9orf72 ALS/FTD. Here, we provide evidence that the RNA editing enzyme adenosine deaminase acting on RNA 2 (ADAR2) is mislocalized in C9orf72 repeat expansion mediated ALS/FTD. ADAR2 is responsible for adenosine (A) to inosine (I) editing of double-stranded RNA, and its function has been shown to be essential for survival. Here we show the mislocalization of ADAR2 in human induced pluripotent stem cell-derived motor neurons (hiPSC-MNs) from C9orf72 patients, in mice expressing (G4C2)149, and in C9orf72 ALS/FTD patient postmortem tissue. As a consequence of this mislocalization we observe alterations in RNA editing in our model systems and across multiple brain regions. Analysis of editing at 408,580 known RNA editing sites indicates that there are vast RNA A to I editing aberrations in C9orf72-mediated ALS/FTD. These RNA editing aberrations are found in many cellular pathways, such as the ALS pathway and the crucial EIF2 signaling pathway. Our findings suggest that the mislocalization of ADAR2 in C9orf72 mediated ALS/FTD is responsible for the alteration of RNA processing events that may impact vast cellular functions, including the integrated stress response (ISR) and protein translation.
Collapse
|
47
|
Extracellular RNAs as Biomarkers of Sporadic Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20133148. [PMID: 31252669 PMCID: PMC6651127 DOI: 10.3390/ijms20133148] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
Recent progress in the research for underlying mechanisms in neurodegenerative diseases, including Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) has led to the development of potentially effective treatment, and hence increased the need for useful biomarkers that may enable early diagnosis and therapeutic monitoring. The deposition of abnormal proteins is a pathological hallmark of neurodegenerative diseases, including β-amyloid in AD, α-synuclein in PD, and the transactive response DNA/RNA binding protein of 43kDa (TDP-43) in ALS. Furthermore, progression of the disease process accompanies the spreading of abnormal proteins. Extracellular proteins and RNAs, including mRNA, micro RNA, and circular RNA, which are present as a composite of exosomes or other forms, play a role in cell–cell communication, and the role of extracellular molecules in the cell-to-cell spreading of pathological processes in neurodegenerative diseases is now in the spotlight. Therefore, extracellular proteins and RNAs are considered potential biomarkers of neurodegenerative diseases, in particular ALS, in which RNA dysregulation has been shown to be involved in the pathogenesis. Here, we review extracellular proteins and RNAs that have been scrutinized as potential biomarkers of neurodegenerative diseases, and discuss the possibility of extracellular RNAs as diagnostic and therapeutic monitoring biomarkers of sporadic ALS.
Collapse
|
48
|
|
49
|
Theme 7 Pre-clinical therapeutic strategies. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:217-239. [DOI: 10.1080/21678421.2018.1510574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Hosaka T, Yamashita T, Teramoto S, Hirose N, Tamaoka A, Kwak S. ADAR2-dependent A-to-I RNA editing in the extracellular linear and circular RNAs. Neurosci Res 2018; 147:48-57. [PMID: 30448461 DOI: 10.1016/j.neures.2018.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
Currently, no reliable biomarkers of amyotrophic lateral sclerosis (ALS) exist. In sporadic ALS, RNA editing at the glutamine/arginine site of GluA2 mRNA is specifically reduced in the motor neurons due to the downregulation of adenosine deaminase acting on RNA 2 (ADAR2). Furthermore, TDP-43 pathology, the pathological hallmark of ALS, is observed in the ADAR2-lacking motor neurons in ALS patients and conditional ADAR2 knockout mice, suggesting a pivotal role of ADAR2 downregulation in the ALS pathogenesis. Extracellular RNAs were shown to represent potential disease biomarkers and the editing efficiencies at their ADAR2-dependent sites may reflect cellular ADAR2 activity, suggesting that these RNAs isolated from the body fluids may represent the biomarkers of ALS. We searched for ADAR2-dependent sites in the mouse motor neurons and human-derived cultured cells and found 10 sites in five host RNAs expressed in SH-SY5Y cells and their culture medium. Of these, the arginine/glycine site of SON mRNA was newly identified as an ADAR2-dependent site. Furthermore, we detected a circular RNA with an ADAR2-dependent site in the SH-SY5Y cells and their culture medium. Therefore, the changes in the editing efficiencies at the identified host RNA sites isolated from the body fluids may represent potential biomarkers of ALS.
Collapse
Affiliation(s)
- Takashi Hosaka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan; Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takenari Yamashita
- Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan; Department of Pathophysiology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Sayaka Teramoto
- Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoki Hirose
- Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Tamaoka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shin Kwak
- Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|