1
|
Chrószcz-Porębska M, Gadomska-Gajadhur A. Cysteine Conjugation: An Approach to Obtain Polymers with Enhanced Muco- and Tissue Adhesion. Int J Mol Sci 2024; 25:12177. [PMID: 39596243 PMCID: PMC11594736 DOI: 10.3390/ijms252212177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The modification of polymers towards increasing their biocompatibility gathers the attention of scientists worldwide. Several strategies are used in this field, among which chemical post-polymerization modification has recently been the most explored. Particular attention revolves around polymer-L-cysteine (Cys) conjugates. Cys, a natural amino acid, contains reactive thiol, amine, and carboxyl moieties, allowing hydrogen bond formation and improved tissue adhesion when conjugated to polymers. Conjugation of Cys and its derivatives to polymers has been examined mostly for hyaluronic acid, chitosan, alginate, polyesters, polyurethanes, poly(ethylene glycol), poly(acrylic acid), polycarbophil, and carboxymethyl cellulose. It was shown that the conjugation of Cys and its derivatives to polymers significantly increased their tissue adhesion, particularly mucoadhesion, stability at physiological pH, drug encapsulation efficiency, drug release, and drug permeation. Conjugates were also non-toxic toward various cell lines. These properties make Cys conjugation a promising strategy for advancing polymer applications in drug delivery systems and tissue engineering. This review aims to provide an overview of these features and to present the conjugation of Cys and its derivatives as a modern and promising approach for enhancing polymer tissue adhesion and its application in the medical field.
Collapse
|
2
|
Dmour I. Absorption enhancement strategies in chitosan-based nanosystems and hydrogels intended for ocular delivery: Latest advances for optimization of drug permeation. Carbohydr Polym 2024; 343:122486. [PMID: 39174104 DOI: 10.1016/j.carbpol.2024.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Ophthalmic diseases can be presented as acute diseases like allergies, ocular infections, etc., or chronic ones that can be manifested as a result of systemic disorders, like diabetes mellitus, thyroid, rheumatic disorders, and others. Chitosan (CS) and its derivatives have been widely investigated as nanocarriers in the delivery of drugs, genes, and many biological products. The biocompatibility and biodegradability of CS made it a good candidate for ocular delivery of many ingredients, including immunomodulating agents, antibiotics, ocular hypertension medications, etc. CS-based nanosystems have been successfully reported to modulate ocular diseases by penetrating biological ocular barriers and targeting and controlling drug release. This review provides guidance to drug delivery formulators on the most recently published strategies that can enhance drug permeation to the ocular tissues in CS-based nanosystems, thus improving therapeutic effects through enhancing drug bioavailability. This review will highlight the main ocular barriers to drug delivery observed in the nano-delivery system. In addition, the CS physicochemical properties that contribute to formulation aspects are discussed. It also categorized the permeation enhancement strategies that can be optimized in CS-based nanosystems into four aspects: CS-related physicochemical properties, formulation components, fabrication conditions, and adopting a novel delivery system like implants, inserts, etc. as described in the published literature within the last ten years. Finally, challenges encountered in CS-based nanosystems and future perspectives are mentioned.
Collapse
Affiliation(s)
- Isra Dmour
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
3
|
Patel D, Solanki J, Kher MM, Azagury A. A Review: Surface Engineering of Lipid-Based Drug Delivery Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401990. [PMID: 39004869 DOI: 10.1002/smll.202401990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/19/2024] [Indexed: 07/16/2024]
Abstract
This review explores the evolution of lipid-based nanoparticles (LBNPs) for drug delivery (DD). Herein, LBNPs are classified into liposomes and cell membrane-based nanoparticles (CMNPs), each with unique advantages and challenges. Conventional LBNPs possess drawbacks such as poor targeting, quick clearance, and limited biocompatibility. One of the possible alternatives to overcome these challenges is surface modification of nanoparticles (NPs) with materials such as polyethylene glycol (PEG), aptamers, antibody fragments, peptides, CD44, hyaluronic acid, folic acid, palmitic acid, and lactoferrin. Thus, the main focus of this review will be on the different surface modifications that enable LBNPs to have beneficial properties for DD, such as enhancing mass transport properties, immune evasion, improved stability, and targeting. Moreover, various CMNPs are explored used for DD derived from cells such as red blood cells (RBCs), platelets, leukocytes, cancer cells, and stem cells, highlighting their unique natural properties (e.g., biocompatibility and ability to evade the immune system). This discussion extends to the biomimicking of hybrid NPs accomplished through the surface coating of synthetic (mainly polymeric) NPs with different cell membranes. This review aims to provide a comprehensive resource for researchers on recent advances in the field of surface modification of LBNPs and CMNPs. Overall, this review provides valuable insights into the dynamic field of lipid-based DD systems.
Collapse
Affiliation(s)
- Dhaval Patel
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Jyoti Solanki
- Post Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388120, India
| | - Mafatlal M Kher
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Aharon Azagury
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| |
Collapse
|
4
|
Alam MI, Paget T, Moosa NY, Alghurairy H, Elkordy AA. Liposomal Drug Delivery against Helicobacter pylori Using Furazolidone and N-Acetyl Cysteine in Augmented Therapy. Pharmaceutics 2024; 16:1123. [PMID: 39339161 PMCID: PMC11435436 DOI: 10.3390/pharmaceutics16091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Helicobacter pylori (H. pylori) infection is a significant global health concern, affecting approximately 50% of the world's population and leading to gastric ulcers, gastritis, and gastric cancer. The increase in antibiotic resistance has compromised the efficacy of existing therapeutic regimens, necessitating novel approaches for effective eradication. This study aimed to develop a targeted liposomal drug delivery system incorporating furazolidone and N-acetylcysteine (NAC) to enhance mucopenetration and improve Helicobacter pylori eradication. Liposomes were formulated with furazolidone, NAC, and Pluronic F-127 using a modified reverse-phase evaporation technique. The formulations were categorized based on charge as neutral, negative, and positive and tested for mucopenetration using a modified silicon tube method with coumarin-6 as a fluorescent marker. The encapsulation efficiency and particle size were analyzed using HPLC and an Izon q-nano particle size analyzer. The results indicated that charged liposomes showed a higher encapsulation efficiency than neutral liposomes with Pluronic F-127. Notably, combining furazolidone with 1% NAC achieved complete eradication of H. pylori in 2.5 h, compared to six hours without NAC. The findings of this study suggest that incorporating NAC and Pluronic F-127 into liposomal formulations significantly enhances mucopenetration and antimicrobial efficacy.
Collapse
Affiliation(s)
- Muhammad Irfan Alam
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK
| | - Timothy Paget
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK
| | - Najla Yussuf Moosa
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK
| | | | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK
| |
Collapse
|
5
|
Zhang FZ, Tan M, Zeng J, Qi XW, Zhang YT, Che YT, Zhang S, Li BJ. A Supramolecular Assembly of EGCG for Long-Term Treatment of Allergic Rhinitis. ACS Biomater Sci Eng 2024; 10:2282-2298. [PMID: 38526450 DOI: 10.1021/acsbiomaterials.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Allergic rhinitis (AR) is a type-I hypersensitivity disease mediated by immunoglobulin E (IgE). Although antihistamines, glucocorticoids, leukotriene receptor antagonists, and other drugs are widely used to treat AR, the various adverse side effects of long-term use of these drugs should not be ignored. Therefore, more effective and safe natural alternative strategies are urgently needed. To this end, this study designed a nanosupramolecular delivery system composed of β-cyclodextrin supramolecular polymer (PCD), thiolated chitosan (TCS), and natural polyphenol epigallocatechin gallate (EGCG) for intranasal topical continuous treatment of AR. The TCS/PCD@EGCG nanocarriers exhibited an excellent performance in terms of retention and permeability in the nasal mucosa and released the vast majority of EGCG responsively in the nasal microenvironment, thus resulting in the significantly high antibacterial and antioxidant capacities. According to the in vitro model, compared with free EGCG, TCS/PCD@EGCG inhibited mast cell activity and abnormal histamine secretion in a more long-term and sustained manner. According to the in vivo model, whether in the presence of continuous or intermittent administration, TCS/PCD@EGCG substantially inhibited the secretion of allergenic factors and inflammatory factors, mitigated the pathological changes of nasal mucosa, alleviated the symptoms of rhinitis in mice, and produced a satisfactory therapeutic effect on AR. In particular, the therapeutic effect of TCS/PCD@EGCG systems were even superior to that of budesonide during intermittent treatment. Therefore, the TCS/PCD@EGCG nanocarrier is a potential long-lasting antiallergic medicine for the treatment of AR.
Collapse
Affiliation(s)
- Fu Zhong Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Tan
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zeng
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Wei Qi
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye-Tao Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Ting Che
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Bang-Jing Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Xu H, Mao B, Ni S, Xie X, Tang S, Wang Y, Zan X, Zheng Q, Huang W. Engineering Matrix-Free Drug Protein Nanoparticles with Promising Penetration through Biobarriers for Treating Corneal Neovascularization. ACS NANO 2024; 18:8209-8228. [PMID: 38452114 DOI: 10.1021/acsnano.3c12203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Protein drugs have been widely used in treating various clinical diseases because of their high specificity, fewer side effects, and favorable therapeutic effect, but they greatly suffer from their weak permeability through tissue barriers, high sensitivity to microenvironments, degradation by proteases, and rapid clearance by the immune system. Herein, we disrupted the standard protocol where protein drugs must be delivered as the cargo via a delivery system and innovatively developed a free entrapping matrix strategy by simply mixing bevacizumab (Beva) with zinc ions to generate Beva-NPs (Beva-Zn2+), where Beva is coordinatively cross-linked by zinc ions with a loading efficiency as high as 99.2% ± 0.41%. This strategy was universal to generating various protein NPs, with different metal ions (Cu2+, Fe3+, Mg2+, Sr2+). The synthetic conditions of Beva-NPs were optimized, and the generated mechanism was investigated in detail. The entrapment, releasing profile, and the bioactivities of released Beva were thoroughly studied. By using in situ doping of the fourth-generation polyamindoamine dendrimer (G4), the Beva-G4-NPs exhibited extended ocular retention and penetration through biobarriers in the anterior segment through transcellular and paracellular pathways, effectively inhibiting corneal neovascularization (CNV) from 91.6 ± 2.03% to 13.5 ± 1.87% in a rat model of CNV. This study contributes to engineering of protein NPs by using a facile strategy for overcoming the weaknesses of protein drugs and protein NPs, such as weak tissue barrier permeability, low encapsulation efficiency, poor loading capacity, and susceptibility to inactivation.
Collapse
Affiliation(s)
- Hongyan Xu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Bangxun Mao
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, People's Republic of China
| | - Shulan Ni
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Xiaoling Xie
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
| | - Sicheng Tang
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Yang Wang
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Xingjie Zan
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Qinxiang Zheng
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo 315000, People's Republic of China
| | - Wenjuan Huang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
| |
Collapse
|
7
|
Feng J, Zhang Y. The potential benefits of polyphenols for corneal diseases. Biomed Pharmacother 2023; 169:115862. [PMID: 37979379 DOI: 10.1016/j.biopha.2023.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023] Open
Abstract
The cornea functions as the primary barrier of the ocular surface, regulating temperature and humidity while providing protection against oxidative stress, harmful stimuli and pathogenic microorganisms. Corneal diseases can affect the biomechanical and optical properties of the eye, resulting in visual impairment or even blindness. Due to their diverse origins and potent biological activities, plant secondary metabolites known as polyphenols offer potential advantages for treating corneal diseases owing to their anti-inflammatory, antioxidant, and antibacterial properties. Various polyphenols and their derivatives have demonstrated diverse mechanisms of action in vitro and in vivo, exhibiting efficacy against a range of corneal diseases including repair of tissue damage, treatment of keratitis, inhibition of neovascularization, alleviation of dry eye syndrome, among others. Therefore, this article presents a concise overview of corneal and related diseases, along with an update on the research progress of natural polyphenols in safeguarding corneal health. A more comprehensive understanding of natural polyphenols provides a novel perspective for secure treatment of corneal diseases.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
8
|
Grierosu C, Calin G, Damir D, Marcu C, Cernei R, Zegan G, Anistoroaei D, Moscu M, Carausu EM, Duceac LD, Dabija MG, Mitrea G, Gutu C, Bogdan Goroftei ER, Eva L. Development and Functionalization of a Novel Chitosan-Based Nanosystem for Enhanced Drug Delivery. J Funct Biomater 2023; 14:538. [PMID: 37998107 PMCID: PMC10672450 DOI: 10.3390/jfb14110538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023] Open
Abstract
Nowadays, infection diseases are one of the most significant threats to humans all around the world. An encouraging strategy for solving this issue and fighting resistant microorganisms is to develop drug carriers for a prolonged release of the antibiotic to the target site. The purpose of this work was to obtain metronidazole-encapsulated chitosan nanoparticles using an ion gelation route and to evaluate their properties. Due to the advantages of the ionic gelation method, the synthesized polymeric nanoparticles can be applied in various fields, especially pharmaceutical and medical. Loading capacity and encapsulation efficiency varFied depending on the amount of antibiotic in each formulation. Physicochemical characterization using scanning electron microscopy revealed a narrow particle size distribution where 90% of chitosan particles were 163.7 nm in size and chitosan-loaded metronidazole nanoparticles were 201.3 nm in size, with a zeta potential value of 36.5 mV. IR spectra revealed characteristic peaks of the drug and polymer nanoparticles. Cell viability assessment revealed that samples have no significant impact on tested cells. Release analysis showed that metronidazole was released from the chitosan matrix for 24 h in a prolonged course, implying that antibiotic-encapsulated polymer nanostructures are a promising drug delivery system to prevent or to treat various diseases. It is desirable to obtain new formulations based on drugs encapsulated in nanoparticles through different preparation methods, with reduced cytotoxic potential, in order to improve the therapeutic effect through sustained and prolonged release mechanisms of the drug correlated with the reduction of adverse effects.
Collapse
Affiliation(s)
- Carmen Grierosu
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11 Pacurari Str., 700511 Iasi, Romania; (C.G.); (L.D.D.); (L.E.)
- Orthopaedic Trauma Surgery Clinic, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Str., 700661 Iasi, Romania
| | - Gabriela Calin
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11 Pacurari Str., 700511 Iasi, Romania; (C.G.); (L.D.D.); (L.E.)
| | - Daniela Damir
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Str., 700115 Iasi, Romania
| | - Constantin Marcu
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Str., 800008 Galati, Romania; (C.M.); (G.M.); (C.G.); (E.R.B.G.)
- Saarbrucken-Caritas Klinkum St. Theresia University Hospital, 66113 Saarbrücken, Germany
| | - Radu Cernei
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Str., 700115 Iasi, Romania; (G.Z.); (D.A.); (M.M.); (E.M.C.); (M.G.D.)
| | - Georgeta Zegan
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Str., 700115 Iasi, Romania; (G.Z.); (D.A.); (M.M.); (E.M.C.); (M.G.D.)
| | - Daniela Anistoroaei
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Str., 700115 Iasi, Romania; (G.Z.); (D.A.); (M.M.); (E.M.C.); (M.G.D.)
| | - Mihaela Moscu
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Str., 700115 Iasi, Romania; (G.Z.); (D.A.); (M.M.); (E.M.C.); (M.G.D.)
| | - Elena Mihaela Carausu
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Str., 700115 Iasi, Romania; (G.Z.); (D.A.); (M.M.); (E.M.C.); (M.G.D.)
| | - Letitia Doina Duceac
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11 Pacurari Str., 700511 Iasi, Romania; (C.G.); (L.D.D.); (L.E.)
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Str., 800008 Galati, Romania; (C.M.); (G.M.); (C.G.); (E.R.B.G.)
- “Prof. Dr. Nicolae Oblu” Neurosurgery Hospital Iasi, 2 Ateneului Str., 700309 Iasi, Romania
| | - Marius Gabriel Dabija
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Str., 700115 Iasi, Romania; (G.Z.); (D.A.); (M.M.); (E.M.C.); (M.G.D.)
- “Prof. Dr. Nicolae Oblu” Neurosurgery Hospital Iasi, 2 Ateneului Str., 700309 Iasi, Romania
| | - Geta Mitrea
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Str., 800008 Galati, Romania; (C.M.); (G.M.); (C.G.); (E.R.B.G.)
- “St. Ap. Andrei” Emergency Clinical Hospital, 177 Brailei Str., 800578 Galati, Romania
| | - Cristian Gutu
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Str., 800008 Galati, Romania; (C.M.); (G.M.); (C.G.); (E.R.B.G.)
- “Dr. Aristide Serfioti” Emergency Military Hospital, 199 Traian Str., 800150 Galati, Romania
| | - Elena Roxana Bogdan Goroftei
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Str., 800008 Galati, Romania; (C.M.); (G.M.); (C.G.); (E.R.B.G.)
- “Sf Ioan” Emergency Clinical Hospital, 2 Gheorghe Asachi Str., 800494 Galati, Romania
| | - Lucian Eva
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11 Pacurari Str., 700511 Iasi, Romania; (C.G.); (L.D.D.); (L.E.)
- “Prof. Dr. Nicolae Oblu” Neurosurgery Hospital Iasi, 2 Ateneului Str., 700309 Iasi, Romania
| |
Collapse
|
9
|
Yuan M, Niu J, Li F, Ya H, Liu X, Li K, Fan Y, Zhang Q. Dipeptide-1 modified nanostructured lipid carrier-based hydrogel with enhanced skin retention and topical efficacy of curcumin. RSC Adv 2023; 13:29152-29162. [PMID: 37800130 PMCID: PMC10549242 DOI: 10.1039/d3ra04739c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
Topical administration of curcumin (CUR), a natural polyphenol with potent anti-inflammation and analgesic activities, provides a potential approach for local skin diseases. However, the drug delivery efficiency is highly limited by skin barriers and poor bioavailability of CUR. Herein, we propose hydrogel containing CUR-encapsulated dipeptide-1-modified nanostructured lipid carriers (CUR-DP-NLCs gel) to enhance topical drug delivery, and improve the topical therapeutic effect. The prepared CUR-DP-NLCs were characterized and were suitably dispersed into the Pluronic F127 hydrogel for topical application. The optimized CUR-DP-NLCs had a particle size of 152.6 ± 3.47 nm, a zeta potential of -33.1 ± 1.46 mV, an entrapment efficiency of 99.83 ± 0.14%, and a spherical morphology. X-ray diffraction (XRD) studies confirmed that CUR was successfully entrapped by the NLCs in an amorphous form. CUR-DP-NLCs gel exhibited sustained release over 48 h and significantly increased the skin retention of CUR. In vitro skin retention of CUR with CUR-DP-NLCs gel was 2.14 and 2.85 times higher than that of unmodified NLCs gel and free CUR, respectively. Fluorescence microscopy imaging revealed the formed nanoparticles accumulated in the hair follicles with prolonged retention time to form a drug reservoir. The hematoxylin-eosin staining showed that CUR-DP-NLCs gel could change the microstructure of skin layers and disturb the skin barriers. After topical administration to mice, CUR-DP-NLCs gel showed better analgesic and anti-inflammatory activities with no potentially hazardous skin irritation. These results concluded that CUR-DP-NLCs gel is a promising strategy to increase topical drug delivery of CUR in the treatment of local skin diseases.
Collapse
Affiliation(s)
- Ming Yuan
- College of Food and Drug, Luoyang Normal University Luoyang Henan 471934 People's Republic of China
| | - Jiangxiu Niu
- College of Food and Drug, Luoyang Normal University Luoyang Henan 471934 People's Republic of China
| | - Fei Li
- College of Food and Drug, Luoyang Normal University Luoyang Henan 471934 People's Republic of China
| | - Huiyuan Ya
- College of Food and Drug, Luoyang Normal University Luoyang Henan 471934 People's Republic of China
| | - Xianghui Liu
- College of Food and Drug, Luoyang Normal University Luoyang Henan 471934 People's Republic of China
| | - Keying Li
- College of Food and Drug, Luoyang Normal University Luoyang Henan 471934 People's Republic of China
| | - Yanli Fan
- College of Food and Drug, Luoyang Normal University Luoyang Henan 471934 People's Republic of China
| | - Qiuyan Zhang
- College of Food and Drug, Luoyang Normal University Luoyang Henan 471934 People's Republic of China
| |
Collapse
|
10
|
Xie Y, Jin Z, Ma D, Yin TH, Zhao K. Palmitic acid- and cysteine-functionalized nanoparticles overcome mucus and epithelial barrier for oral delivery of drug. Bioeng Transl Med 2023; 8:e10510. [PMID: 37206211 PMCID: PMC10189451 DOI: 10.1002/btm2.10510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 05/21/2023] Open
Abstract
Nanoparticles (NPs) used for oral administration have greatly improved drug bioavailability and therapeutic efficacy. Nevertheless, NPs are limited by biological barriers, such as gastrointestinal degradation, mucus barrier, and epithelial barrier. To solve these problems, we developed the PA-N-2-HACC-Cys NPs loaded with anti-inflammatory hydrophobic drug curcumin (CUR) (CUR@PA-N-2-HACC-Cys NPs) by self-assembled amphiphilic polymer, composed of the N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC), hydrophobic palmitic acid (PA), and cysteine (Cys). After oral administration, the CUR@PA-N-2-HACC-Cys NPs had good stability and sustained release under gastrointestinal conditions, followed by adhering to the intestine to achieve drug mucosal delivery. Additionally, the NPs could penetrate mucus and epithelial barriers to promote cellular uptake. The CUR@PA-N-2-HACC-Cys NPs could open tight junctions between cells for transepithelial transport while striking a balance between mucus interaction and diffusion through mucus. Notably, the CUR@PA-N-2-HACC-Cys NPs improved the oral bioavailability of CUR, which remarkably relieved colitis symptoms and promoted mucosal epithelial repair. Our findings proved that the CUR@PA-N-2-HACC-Cys NPs had excellent biocompatibility, could overcome mucus and epithelial barriers, and had significant application prospects for oral delivery of the hydrophobic drugs.
Collapse
Affiliation(s)
- Yinzhuo Xie
- Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou UniversityTaizhou318000China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang UniversityHarbin150080China
| | - Zheng Jin
- Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou UniversityTaizhou318000China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang UniversityHarbin150080China
| | - Da Ma
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou UniversityTaizhou318000China
| | - Tan Hui Yin
- Tunku Abdul Rahman University of Management and TechnologyJalan Genting KelangKuala Lumpur53300Malaysia
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou UniversityTaizhou318000China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang UniversityHarbin150080China
| |
Collapse
|
11
|
Nirbhavane P, Moksha L, Sharma G, Velpandian T, Singh B, Katare OP. Cationic Nano-Lipidic Carrier Mediated Ocular Delivery of Triamcinolone Acetonide: A Preclinical Investigation in the Management of Uveitis. Life (Basel) 2023; 13:life13041057. [PMID: 37109586 PMCID: PMC10143093 DOI: 10.3390/life13041057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The current study was undertaken to evaluate the efficacy of a novel nano-lipoidal eye drop formulation of triamcinolone acetonide (TA) for the topical treatment of uveitis. The triamcinolone acetonide-loaded nanostructured lipid carriers (cTA-NLC) were developed by employing 'hot microemulsion method' using biocompatible lipids, which exhibited a sustained release nature and enhanced efficacy when evaluated in vitro. The in vivo efficacy of this developed formulation was tested on Wistar rats, and a single-dose pharmacokinetic study was conducted in rabbits. The eyes of animals were examined for any signs of inflammation using the 'Slit-lamp microscopic' method. The aqueous humor collected from the sacrificed rats was tested for total protein count and cell count. The total protein count was determined using BSA assay method, while the total cell count was determined by Neubaur's hemocytometer method. The results showed that the cTA-NLC formulation had negligible signs of inflammation, with a clinical score of uveitis 0.82 ± 0.166, which is much less than control/untreated (3.80 ± 0.3) and free drug suspension (2.66 ± 0.405). The total cell count was also found to be significantly low for cTA-NLC (8.73 ± 1.79 × 105) as compared to control (52.4 ± 7.71 × 105) and free drug suspension (30.13 ± 3.021 × 105). Conclusively, the animal studies conducted showed that our developed formulation holds the potential for effective management of uveitis.
Collapse
Affiliation(s)
- Pradip Nirbhavane
- UGC-Centre of Advanced Study, Division of Pharmaceutics, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Laxmi Moksha
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, Ocular Pharmacology and Pharmacy Division, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gajanand Sharma
- UGC-Centre of Advanced Study, Division of Pharmaceutics, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Thirumurthy Velpandian
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, Ocular Pharmacology and Pharmacy Division, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bhupinder Singh
- UGC-Centre of Advanced Study, Division of Pharmaceutics, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - O P Katare
- UGC-Centre of Advanced Study, Division of Pharmaceutics, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| |
Collapse
|
12
|
Sheng Y, Sun X, Han J, Hong W, Feng J, Xie S, Li Y, Yan F, Li K, Tian B. N-acetylcysteine functionalized chitosan oligosaccharide-palmitic acid conjugate enhances ophthalmic delivery of flurbiprofen and its mechanisms. Carbohydr Polym 2022; 291:119552. [DOI: 10.1016/j.carbpol.2022.119552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
|
13
|
Roque-Borda C, Antunes BF, Toledo Borgues AB, Costa de Pontes JT, Meneguin A, Chorilli M, Trovatti E, Teixeira SR, Pavan FR, Vicente EF. Conjugation of Ctx(Ile 21)-Ha Antimicrobial Peptides to Chitosan Ultrathin Films by N-Acetylcysteine Improves Peptide Physicochemical Properties and Enhances Biological Activity. ACS OMEGA 2022; 7:28238-28247. [PMID: 35990469 PMCID: PMC9386805 DOI: 10.1021/acsomega.2c02570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/20/2022] [Indexed: 05/08/2023]
Abstract
The importance of obtaining new compounds with improved antimicrobial activity is a current trend and challenge. Some polymers such as chitosan have shown promising bactericidal properties when they are structurally modified, which is due to the binding versatility provided by their free amines. Likewise, antimicrobial peptides (AMPs) have received attention in recent years because of their bactericidal activity that is similar to or even better than that of conventional drugs, and they exhibit a low induction rate of antimicrobial resistance. Herein, the modified AMP Ctx(Ile21)-Ha-Ahx-Cys was conjugated to chitosan using N-acetylcysteine as an intermediate by the carbodiimide method. Films were prepared using protonated chitosan in 1% acetic acid and Ctx(Ile21)-Ha-Ahx-Cys AMP dissolved in N-acetylcysteine-chitosan; 1.6 mmol of ethylcarbodiimide hydrochloride, 1.2 mmol of N-hydroxysulfosucchimide, and 0.1 mol L -1of N-morpholino)ethanesulfonic acid buffer at pH 6.5 by continuous stirring at 100 × g for 10 min at 37 °C. Physicochemical properties were evaluated by Fourier-transform infrared spectroscopy, differential scanning calorimetry/thermogravimetric analysis, and X-ray diffraction to determine the mechanical properties, solubility, morphology, and thickness. Furthermore, the antimicrobial activities of chitosan-based conjugated films were evaluated againstStaphylococcus aureus,Pseudomonas aeruginosa,SalmonellaTyphimurium, andEscherichia coli. The results showed that the conjugation of a potent AMP could further increase its antibacterial activity and maintain its stable physicochemical properties. Therefore, the developed peptide-chitosan conjugate could be applied as an additive in surgical procedures to prevent and combat bacterial infection.
Collapse
Affiliation(s)
- Cesar
Augusto Roque-Borda
- School
of Pharmaceutical Sciences, São Paulo
State University (Unesp), Araraquara 14801-902, São Paulo, Brazil
- Vicerrectorado
de Investigación, Universidad Católica
de Santa María (UCSM), Arequipa 04013, Peru
| | - Bruna Fernandes Antunes
- School
of Biotechnology in Regenerative Medicine and Medicinal Chemistry, University of Araraquara (UNIARA), Araraquara 14801-320, São Paulo, Brazil
| | - Anna Beatriz Toledo Borgues
- School
of Pharmaceutical Sciences, São Paulo
State University (Unesp), Araraquara 14801-902, São Paulo, Brazil
| | | | - Andréia
Bagliotti Meneguin
- School
of Pharmaceutical Sciences, São Paulo
State University (Unesp), Araraquara 14801-902, São Paulo, Brazil
| | - Marlus Chorilli
- School
of Pharmaceutical Sciences, São Paulo
State University (Unesp), Araraquara 14801-902, São Paulo, Brazil
| | - Eliane Trovatti
- School
of Biotechnology in Regenerative Medicine and Medicinal Chemistry, University of Araraquara (UNIARA), Araraquara 14801-320, São Paulo, Brazil
| | - Silvio Rainho Teixeira
- School
of Technology and Sciences, São Paulo
State University (Unesp), Presidente
Prudente 19034-589, São
Paulo, Brazil
| | - Fernando Rogério Pavan
- School
of Pharmaceutical Sciences, São Paulo
State University (Unesp), Araraquara 14801-902, São Paulo, Brazil
| | - Eduardo Festozo Vicente
- School
of Sciences and Engineering, São
Paulo State University (Unesp), Tupã 17602-496, São Paulo, Brazil
- . Phone: +551434044262
| |
Collapse
|
14
|
Jin Z, Hu G, Zhao K. Mannose-anchored quaternized chitosan/thiolated carboxymethyl chitosan composite NPs as mucoadhesive carrier for drug delivery. Carbohydr Polym 2022; 283:119174. [DOI: 10.1016/j.carbpol.2022.119174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
|
15
|
Preparation of NLCs-Based Topical Erythromycin Gel: In Vitro Characterization and Antibacterial Assessment. Gels 2022; 8:gels8020116. [PMID: 35200497 PMCID: PMC8871625 DOI: 10.3390/gels8020116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022] Open
Abstract
In the present study, erythromycin (EM)-loaded nanostructured lipid carriers (NLCs) were prepared by the emulsification and ultra-sonication method. EM-NLCs were optimized by central composite design using the lipid (A), pluronic F127 (B) and sonication time (C) as independent variables. Their effects were evaluated on particle size (Y1) and entrapment efficiency (Y2). The optimized formulation (EM-NLCs-opt) showed a particle size of 169.6 ± 4.8 nm and entrapment efficiency of 81.7 ± 1.4%. EM-NLCs-opt further transformed into an in-situ gel system by using the carbopol 940 and chitosan blend as a gelling agent. The optimized EM-NLCs in situ gel (EM-NLCs-opt-IG4) showed quick gelation and were found to be stable for more than 24 h. EM-NLCs-opt-IG4 showed prolonged drug release compared to EM in situ gel. It also revealed significant high permeation (56.72%) and flux (1.51-fold) than EM in situ gel. The irritation and hydration study results depicted no damage to the goat cornea. HET-CAM results also confirmed its non-irritant potential (zero score). EM-NLCs-opt-IG4 was found to be isotonic and also showed significantly (p < 0.05) higher antimicrobial activity than EM in situ gel. The findings of the study concluded that NLCs laden in situ gel is an alternative delivery of erythromycin for the treatment of bacterial conjunctivitis.
Collapse
|
16
|
Hock N, Racaniello GF, Aspinall S, Denora N, Khutoryanskiy VV, Bernkop‐Schnürch A. Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of Our Body. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102451. [PMID: 34773391 PMCID: PMC8728822 DOI: 10.1002/advs.202102451] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Indexed: 05/03/2023]
Abstract
Advances in nanotechnology have generated a broad range of nanoparticles (NPs) for numerous biomedical applications. Among the various properties of NPs are functionalities being related to thiol substructures. Numerous biological processes that are mediated by cysteine or cystine subunits of proteins representing the workhorses of the bodies can be transferred to NPs. This review focuses on the interface between thiol chemistry and NPs. Pros and cons of different techniques for thiolation of NPs are discussed. Furthermore, the various functionalities gained by thiolation are highlighted. These include overall bio- and mucoadhesive, cellular uptake enhancing, and permeation enhancing properties. Drugs being either covalently attached to thiolated NPs via disulfide bonds or being entrapped in thiolated polymeric NPs that are stabilized via inter- and intrachain crosslinking can be released at the diseased tissue or in target cells under reducing conditions. Moreover, drugs, targeting ligands, biological analytes, and enzymes bearing thiol substructures can be immobilized on noble metal NPs and quantum dots for therapeutic, theranostic, diagnostic, biosensing, and analytical reasons. Within this review a concise summary and analysis of the current knowledge, future directions, and potential clinical use of thiolated NPs are provided.
Collapse
Affiliation(s)
- Nathalie Hock
- Thiomatrix Forschungs und Beratungs GmbHTrientlgasse 65Innsbruck6020Austria
| | | | - Sam Aspinall
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Nunzio Denora
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari “Aldo Moro”Bari70125Italy
| | - Vitaliy V. Khutoryanskiy
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology, Institute of PharmacyUniversity of InnsbruckInnrain 80/82Innsbruck6020Austria
| |
Collapse
|
17
|
Dalvin LA. Thiolated Chitosan-carboxymethyl Dextran Nanoparticles: Improving Intravitreal Drug Bioavailability for Retinoblastoma. J Ophthalmic Vis Res 2022; 17:1-3. [PMID: 35194489 PMCID: PMC8850858 DOI: 10.18502/jovr.v17i1.10163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Lauren A Dalvin
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Silva LB, Castro KADF, Botteon CEA, Oliveira CLP, da Silva RS, Marcato PD. Hybrid Nanoparticles as an Efficient Porphyrin Delivery System for Cancer Cells to Enhance Photodynamic Therapy. Front Bioeng Biotechnol 2021; 9:679128. [PMID: 34604182 PMCID: PMC8484888 DOI: 10.3389/fbioe.2021.679128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is a potential non-invasive approach for application in oncological diseases, based on the activation of a photosensitizer (PS) by light at a specific wavelength in the presence of molecular oxygen to produce reactive oxygen species (ROS) that trigger the death tumor cells. In this context, porphyrins are interesting PS because they are robust, have high chemical, photo, thermal, and oxidative stability, and can generate singlet oxygen (1O2). However, porphyrins exhibit low solubility and a strong tendency to aggregate in a biological environment which limits their clinical application. To overcome these challenges, we developed hybrid nanostructures to immobilize 5,10,15,20-tetrakis[(4-carboxyphenyl) thio-2,3,5,6-tetrafluorophenyl] (P), a new third-generation PS. The biological effect of this system was evaluated against bladder cancer (BC) cells with or without light exposition. The nanostructure composed of lipid carriers coated by porphyrin-chitosan (P-HNP), presented a size of ca. 130 nm and low polydispersity (ca. 0.25). The presence of the porphyrin-chitosan (P-chitosan) on lipid nanoparticle surfaces increased the nanoparticle size, changed the zeta potential to positive, decreased the recrystallization index, and increased the thermal stability of nanoparticles. Furthermore, P-chitosan incorporation on nanoparticles increased the stability and enhanced the self-organization of the system and the formation of spherical structures, as observed by small-angle X-ray scattering (SAXS) analysis. Furthermore, the immobilization process maintained the P photoactivity and improved the photophysical properties of PS, minimizing its aggregation in the cell culture medium. In the photoinduction assays, the P-HNP displayed high phototoxicity with IC50 3.2-folds lower than free porphyrin. This higher cytotoxic effect can be correlated to the high cellular uptake of porphyrin immobilized, as observed by confocal images. Moreover, the coated nanoparticles showed mucoadhesive properties interesting to its application in vivo. Therefore, the physical and chemical properties of nanoparticles may be relevant to improve the porphyrin photodynamic activity in BC cells.
Collapse
Affiliation(s)
- Letícia B. Silva
- Department of Pharmaceutical Science, GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelly A. D. F. Castro
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Caroline E. A. Botteon
- Department of Pharmaceutical Science, GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Roberto S. da Silva
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Priscyla D. Marcato
- Department of Pharmaceutical Science, GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
19
|
Wibel R, Braun DE, Hämmerle L, Jörgensen AM, Knoll P, Salvenmoser W, Steinbring C, Bernkop-Schnürch A. In Vitro Investigation of Thiolated Chitosan Derivatives as Mucoadhesive Coating Materials for Solid Lipid Nanoparticles. Biomacromolecules 2021; 22:3980-3991. [PMID: 34459197 PMCID: PMC8441978 DOI: 10.1021/acs.biomac.1c00776] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, chitosan (CS) was thiolated by introducing l-cysteine via amide bond formation. Free thiol groups were protected with highly reactive 6-mercaptonicotinic acid (6-MNA) and less-reactive l-cysteine, respectively, via thiol/disulfide-exchange reactions. Unmodified CS, l-cysteine-modified thiolated CS (CS-Cys), 6-MNA-S-protected thiolated CS (CS-Cys-MNA), and l-cysteine-S-protected thiolated CS (CS-Cys-Cys) were applied as coating materials to solid lipid nanoparticles (SLN). The strength of mucus interaction followed the rank order plain < CS < CS-Cys-Cys < CS-Cys < CS-Cys-MNA, whereas mucus diffusion followed the rank order CS-Cys < CS-Cys-Cys < CS < CS-Cys-MNA < plain. In accordance with lower reactivity, CS-Cys-Cys-coated SLN were immobilized to a lower extent than CS-Cys-coated SLN, while CS-Cys-MNA-coated SLN dissociated from their coating material resulting in a similar diffusion behavior as plain SLN. Consequently, CS-Cys-Cys-coated SLN and CS-Cys-MNA-coated SLN showed the highest retention on porcine intestinal mucosa by enabling a synergism of efficient mucus diffusion and strong mucoadhesion.
Collapse
Affiliation(s)
- Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Doris E Braun
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Laurenz Hämmerle
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Arne M Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Patrick Knoll
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Willi Salvenmoser
- Department of Zoology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Christian Steinbring
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| |
Collapse
|
20
|
Jounaki K, Makhmalzadeh BS, Feghhi M, Heidarian A. Topical ocular delivery of vancomycin loaded cationic lipid nanocarriers as a promising and non-invasive alternative approach to intravitreal injection for enhanced bacterial endophthalmitis management. Eur J Pharm Sci 2021; 167:105991. [PMID: 34517103 DOI: 10.1016/j.ejps.2021.105991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Vancomycin (VCM) is a drug of choice for treating infections caused by Staphylococcus species, reported being the most causative agent of bacterial endophthalmitis. However, the ocular bioavailability of topically applied VCM is low due to its high molecular weight and hydrophilicity. The current study sought to explore whether the nanostructured lipid carriers (NLCs) fabricated via cold homogenization technique could improve ocular penetration and prolong the ophthalmic residence of VCM. A 23 full factorial design was adopted to evaluate the influence of different process and formulation variables on VCM-loaded NLC formulae. The optimized formula with the particle size of 96.4 ± 0.71 nm and narrow size distribution showed spherical morphology obtained by AFM and represented sustained drug release up to 67% in 48 h fitted to the Korsmeyer-Peppas model with probably non-Fickian diffusion kinetic. FTIR studies visualized the drug-carrier interactions in great detail. High encapsulation of VCM (74.8 ± 4.3% w/w) in NLC has been established in DSC and PXRD analysis. The optimal positively charged (+ 29.7 ± 0.47 mV) colloidal dispersion was also stable for 12 weeks at both 4 °C and 25 °C. According to in vivo studies, incorporation of VCM in NLC resulted in a nearly 3-fold increase in the intravitreal concentration of VCM after eye-drop instillation over control groups. Besides, microbiological evaluation admitted its therapeutic effect within five days is comparable to intravitreal injection of VCM. Further, the optimized formula was found to be nonirritant and safe for ophthalmic administration in RBC hemolytic assay. Also, fluorescent tracking of NLCs on rabbit's cornea showed an increase in corneal penetration of nanoparticles. Thus, it is possible to infer that the evolved NLCs are promising drug delivery systems with superior attainments for enhanced Vancomycin ophthalmic delivery to the eye's posterior segment and improved bacterial endophthalmitis management.
Collapse
Affiliation(s)
- Kamyar Jounaki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Sharif Makhmalzadeh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mostafa Feghhi
- Department of Ophthalmology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asghar Heidarian
- Department of Ophthalmology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
21
|
Grosso R, de-Paz MV. Thiolated-Polymer-Based Nanoparticles as an Avant-Garde Approach for Anticancer Therapies-Reviewing Thiomers from Chitosan and Hyaluronic Acid. Pharmaceutics 2021; 13:854. [PMID: 34201403 PMCID: PMC8227107 DOI: 10.3390/pharmaceutics13060854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Thiomers (or thiolated polymers) have broken through as avant-garde approaches in anticancer therapy. Their distinguished reactivity and properties, closely linked to their final applications, justify the extensive research conducted on their preparation and use as smart drug-delivery systems (DDSs). Multiple studies have demonstrated that thiomer-rich nanoformulations can overcome major drawbacks found when administering diverse active pharmaceutical ingredients (APIs), especially in cancer therapy. This work focuses on providing a complete and concise review of the synthetic tools available to thiolate cationic and anionic polymers, in particular chitosan (CTS) and hyaluronic acid (HA), respectively, drawing attention to the most successful procedures. Their chemical reactivity and most relevant properties regarding their use in anticancer formulations are also discussed. In addition, a variety of NP formation procedures are outlined, as well as their use in cancer therapy, particularly for taxanes and siRNA. It is expected that the current work could clarify the main synthetic strategies available, with their scope and drawbacks, as well as provide some insight into thiomer chemistry. Therefore, this review can inspire new research strategies in the development of efficient formulations for the treatment of cancer.
Collapse
Affiliation(s)
| | - M.-Violante de-Paz
- Departamento Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| |
Collapse
|
22
|
Sivanesan I, Muthu M, Gopal J, Hasan N, Kashif Ali S, Shin J, Oh JW. Nanochitosan: Commemorating the Metamorphosis of an ExoSkeletal Waste to a Versatile Nutraceutical. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:821. [PMID: 33806968 PMCID: PMC8005131 DOI: 10.3390/nano11030821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022]
Abstract
Chitin (poly-N-acetyl-D-glucosamine) is the second (after cellulose) most abundant organic polymer. In its deacetylated form-chitosan-becomes a very interesting material for medical use. The chitosan nano-structures whose preparation is described in this article shows unique biomedical value. The preparation of nanochitosan, as well as the most vital biomedical applications (antitumor, drug delivery and other medical uses), have been discussed in this review. The challenges confronting the progress of nanochitosan from benchtop to bedside clinical settings have been evaluated. The need for inclusion of nano aspects into chitosan research, with improvisation from nanotechnological inputs has been prescribed for breaking down the limitations. Future perspectives of nanochitosan and the challenges facing nanochitosan applications and the areas needing research focus have been highlighted.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea;
| | - Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India; (M.M.); (J.G.)
| | - Judy Gopal
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India; (M.M.); (J.G.)
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P.O. Box 114, Saudi Arabia; (N.H.); (S.K.A.)
| | - Syed Kashif Ali
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P.O. Box 114, Saudi Arabia; (N.H.); (S.K.A.)
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
23
|
Vieira AC, Chaves LL, Pinheiro M, Lima SC, Neto PJR, Ferreira D, Sarmento B, Reis S. Lipid nanoparticles coated with chitosan using a one-step association method to target rifampicin to alveolar macrophages. Carbohydr Polym 2021; 252:116978. [PMID: 33183580 DOI: 10.1016/j.carbpol.2020.116978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
|
24
|
Kiss EL, Berkó S, Gácsi A, Kovács A, Katona G, Soós J, Csányi E, Gróf I, Harazin A, Deli MA, Balogh GT, Budai-Szűcs M. Development and Characterization of Potential Ocular Mucoadhesive Nano Lipid Carriers Using Full Factorial Design. Pharmaceutics 2020; 12:pharmaceutics12070682. [PMID: 32698334 PMCID: PMC7408368 DOI: 10.3390/pharmaceutics12070682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/17/2022] Open
Abstract
Generally, topically applied eye drops have low bioavailability due to short residence time and low penetration of the drug. The aim of the present study was to incorporate dexamethasone (DXM) into nano lipid carriers (NLC), which contain mucoadhesive polymer, in order to increase the bioavailability of the drug. A 23 factorial experimental design was applied, in which the three factors were the polymer, the DXM, and the emulsifier concentrations. The samples were analyzed for particle size, zeta potential, polydispersity index, and Span value. The significant factors were identified. The biocompatibility of the formulations was evaluated with human corneal toxicity tests and immunoassay analysis. The possible increase in bioavailability was analyzed by means of mucoadhesivity, in vitro drug diffusion, and different penetration tests, such as in vitro cornea PAMPA model, human corneal cell penetration, and ex vivo porcine corneal penetration using Raman mapping. The results indicated that DXM can be incorporated in stable mucoadhesive NLC systems, which are non-toxic and do not have any harmful effect on cell junctions. Mucoadhesive NLCs can create a depot on the surface of the cornea, which can predict improved bioavailability.
Collapse
Affiliation(s)
- Eszter L. Kiss
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Attila Gácsi
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Judit Soós
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Korányi Fasor 10-11, H-6720 Szeged, Hungary;
| | - Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Ilona Gróf
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary; (I.G.); (A.H.); (M.A.D.)
- Doctoral School of Biology, University of Szeged, Dugonics tér 13, H-6720 Szeged, Hungary
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary; (I.G.); (A.H.); (M.A.D.)
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary; (I.G.); (A.H.); (M.A.D.)
| | - György T. Balogh
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rakpart 3, 1111 Budapest, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
- Correspondence:
| |
Collapse
|
25
|
Federer C, Kurpiers M, Bernkop-Schnürch A. Thiolated Chitosans: A Multi-talented Class of Polymers for Various Applications. Biomacromolecules 2020; 22:24-56. [PMID: 32567846 PMCID: PMC7805012 DOI: 10.1021/acs.biomac.0c00663] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Various properties of chitosan can be customized by thiolation for very specific needs in a wide range of application areas. Since the discovery of thiolated chitosans, many studies have proven their advantageous characteristics, such as adhesion to biological surfaces, adjustable cross-linking and swelling behavior, controllable drug release, permeation as well as cellular uptake enhancement, inhibition of efflux pumps and enzymes, complexation of metal ions, antioxidative properties, and radical scavenging activity. Simultaneously, these polymers remain biodegradable without increased toxicity. Within this Review, an overview about the different possibilities to covalently attach sulfhydryl ligands to the polymeric backbone of chitosan is given, and the resulting versatile physiochemical properties are discussed in detail. Furthermore, the broad spectrum of applications for thiolated chitosans in science and industry, ranging from their most advanced use in pharmaceutical and medical science over wastewater treatment to the impregnation of textiles, is addressed.
Collapse
Affiliation(s)
- Christoph Federer
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Markus Kurpiers
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
26
|
Zamboulis A, Nanaki S, Michailidou G, Koumentakou I, Lazaridou M, Ainali NM, Xanthopoulou E, Bikiaris DN. Chitosan and its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments. Polymers (Basel) 2020; 12:E1519. [PMID: 32650536 PMCID: PMC7407599 DOI: 10.3390/polym12071519] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Chitosan (CS) is a hemi-synthetic cationic linear polysaccharide produced by the deacetylation of chitin. CS is non-toxic, highly biocompatible, and biodegradable, and it has a low immunogenicity. Additionally, CS has inherent antibacterial properties and a mucoadhesive character and can disrupt epithelial tight junctions, thus acting as a permeability enhancer. As such, CS and its derivatives are well-suited for the challenging field of ocular drug delivery. In the present review article, we will discuss the properties of CS that contribute to its successful application in ocular delivery before reviewing the latest advances in the use of CS for the development of novel ophthalmic delivery systems. Colloidal nanocarriers (nanoparticles, micelles, liposomes) will be presented, followed by CS gels and lenses and ocular inserts. Finally, instances of CS coatings, aiming at conferring mucoadhesiveness to other matrixes, will be presented.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| | | | | | | | | | | | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| |
Collapse
|
27
|
Liu D, Qiao S, Cheng B, Li D, Chen J, Wu Q, Pan H, Pan W. Enhanced Oral Delivery of Curcumin via Vitamin E TPGS Modified Nanodiamonds: a Comparative Study on the Efficacy of Non-covalent and Covalent Conjugated Strategies. AAPS PharmSciTech 2020; 21:187. [PMID: 32642862 DOI: 10.1208/s12249-020-01721-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Despite that either non-covalent or covalent attachment of hydrophilic polymers or surfactants onto nanodiamonds (NDs) could overcome the shortcomings of being a drug delivery system, it is hard to draw a definite conclusion which strategy is more effective. Hence, with the purpose of comparing the influence of different coating approach of NDs on the oral delivery efficiency of water-insoluble model drug curcumin (CUR), NDs were firstly modified with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) via non-covalent or covalent conjugation method, and then loaded with CUR (CUR@NDs-COOH/TPGS or CUR@NDs-TPGS). In comparison with the core-shell-structured CUR@NDs-COOH/TPGS, CUR@NDs-TPGS were irregular in shape with dense TPGS film, and exhibited smaller size, more negatively potential, and higher drug loading efficiency. The covalent connection group also showed higher anti-cancer activity, cellular uptake, and permeability through the Caco-2 cell monolayers, as well as favorable distribution, penetration, and retention in rat intestines. The oral bioavailability study in rats demonstrated that CUR@NDs-TPGS showed significantly greater Cmax and AUC0-t in contrast with CUR suspension and the TPGS-coated ones, respectively. The findings illustrated that covalent grafting TPGS onto the surface of NDs possesses better efficacy and biocompatibility on oral delivery of poorly soluble drug CUR than pristine and non-covalent coated nanoparticles.
Collapse
|
28
|
Zhang C, Dai Y, Wu Y, Lu G, Cao Z, Cheng J, Wang K, Yang H, Xia Y, Wen X, Ma W, Liu C, Wang Z. Facile preparation of polyacrylamide/chitosan/Fe3O4 composite hydrogels for effective removal of methylene blue from aqueous solution. Carbohydr Polym 2020; 234:115882. [DOI: 10.1016/j.carbpol.2020.115882] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/03/2020] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
|
29
|
Enhanced In Vitro Antimicrobial Activity of Polymyxin B–Coated Nanostructured Lipid Carrier Containing Dexamethasone Acetate. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09427-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Sai N, Dong X, Huang P, You L, Yang C, Liu Y, Wang W, Wu H, Yu Y, Du Y, Leng X, Yin X, Qu C, Ni J. A Novel Gel-Forming Solution Based on PEG-DSPE/Solutol HS 15 Mixed Micelles and Gellan Gum for Ophthalmic Delivery of Curcumin. Molecules 2019; 25:molecules25010081. [PMID: 31878332 PMCID: PMC6983186 DOI: 10.3390/molecules25010081] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 01/05/2023] Open
Abstract
Curcumin (Cur) is a naturally hydrophobic polyphenol with potential pharmacological properties. However, the poor aqueous solubility and low bioavailability of curcumin limits its ocular administration. Thus, the aim of this study was to prepare a mixed micelle in situ gelling system of curcumin (Cur-MM-ISG) for ophthalmic drug delivery. The curcumin mixed micelles (Cur-MMs) were prepared via the solvent evaporation method, after which they were incorporated into gellan gum gels. Characterization tests showed that Cur-MMs were small in size and spherical in shape, with a low critical micelle concentration. Compared with free curcumin, Cur-MMs improved the solubility and stability of curcumin significantly. The ex vivo penetration study revealed that Cur-MMs could penetrate the rabbit cornea more efficiently than the free curcumin. After dispersing the micelles in the gellan gum solution at a ratio of 1:1 (v/v), a transparent Cur-MM-ISG with the characteristics of a pseudoplastic fluid was formed. No obvious irritations were observed in the rabbit eyes after ocular instillation of Cur-MM-ISG. Moreover, Cur-MM-ISG showed a longer retention time on the corneal surface when compared to Cur-MMs using the fluorescein sodium labeling method. These findings indicate that biocompatible Cur-MM-ISG has great potential in ophthalmic drug therapy.
Collapse
Affiliation(s)
- Na Sai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (N.S.); (X.D.); (P.H.); (L.Y.); (C.Y.); (Y.L.); (W.W.); (H.W.); (Y.Y.); (Y.D.); (X.L.); (X.Y.)
- School of pharmacy, Inner Mongolia Medical University, Hohhot 010110, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (N.S.); (X.D.); (P.H.); (L.Y.); (C.Y.); (Y.L.); (W.W.); (H.W.); (Y.Y.); (Y.D.); (X.L.); (X.Y.)
| | - Pingqing Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (N.S.); (X.D.); (P.H.); (L.Y.); (C.Y.); (Y.L.); (W.W.); (H.W.); (Y.Y.); (Y.D.); (X.L.); (X.Y.)
| | - Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (N.S.); (X.D.); (P.H.); (L.Y.); (C.Y.); (Y.L.); (W.W.); (H.W.); (Y.Y.); (Y.D.); (X.L.); (X.Y.)
| | - Chunjing Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (N.S.); (X.D.); (P.H.); (L.Y.); (C.Y.); (Y.L.); (W.W.); (H.W.); (Y.Y.); (Y.D.); (X.L.); (X.Y.)
| | - Yi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (N.S.); (X.D.); (P.H.); (L.Y.); (C.Y.); (Y.L.); (W.W.); (H.W.); (Y.Y.); (Y.D.); (X.L.); (X.Y.)
| | - Wenping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (N.S.); (X.D.); (P.H.); (L.Y.); (C.Y.); (Y.L.); (W.W.); (H.W.); (Y.Y.); (Y.D.); (X.L.); (X.Y.)
| | - Huimin Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (N.S.); (X.D.); (P.H.); (L.Y.); (C.Y.); (Y.L.); (W.W.); (H.W.); (Y.Y.); (Y.D.); (X.L.); (X.Y.)
| | - Yingchao Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (N.S.); (X.D.); (P.H.); (L.Y.); (C.Y.); (Y.L.); (W.W.); (H.W.); (Y.Y.); (Y.D.); (X.L.); (X.Y.)
| | - Yuanyuan Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (N.S.); (X.D.); (P.H.); (L.Y.); (C.Y.); (Y.L.); (W.W.); (H.W.); (Y.Y.); (Y.D.); (X.L.); (X.Y.)
| | - Xin Leng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (N.S.); (X.D.); (P.H.); (L.Y.); (C.Y.); (Y.L.); (W.W.); (H.W.); (Y.Y.); (Y.D.); (X.L.); (X.Y.)
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (N.S.); (X.D.); (P.H.); (L.Y.); (C.Y.); (Y.L.); (W.W.); (H.W.); (Y.Y.); (Y.D.); (X.L.); (X.Y.)
| | - Changhai Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (N.S.); (X.D.); (P.H.); (L.Y.); (C.Y.); (Y.L.); (W.W.); (H.W.); (Y.Y.); (Y.D.); (X.L.); (X.Y.)
- Correspondence: (C.Q.); (J.N.); Tel.: +86-010-6428-6407 (J.N.)
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (N.S.); (X.D.); (P.H.); (L.Y.); (C.Y.); (Y.L.); (W.W.); (H.W.); (Y.Y.); (Y.D.); (X.L.); (X.Y.)
- Correspondence: (C.Q.); (J.N.); Tel.: +86-010-6428-6407 (J.N.)
| |
Collapse
|
31
|
Affiliation(s)
- Yabin Meng
- Department of Biomedical Engineering, School of EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| | - Shuyan Han
- Department of Biomedical Engineering, School of EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| | - Zhipeng Gu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 P. R. China
| | - Jun Wu
- Department of Biomedical Engineering, School of EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| |
Collapse
|
32
|
Phenylboronic acid-tethered chondroitin sulfate-based mucoadhesive nanostructured lipid carriers for the treatment of dry eye syndrome. Acta Biomater 2019; 99:350-362. [PMID: 31449929 DOI: 10.1016/j.actbio.2019.08.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/27/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
Abstract
Dry eye syndrome is a common eye disease that affects many people worldwide. It is usually treated with eye drops, which has low bioavailability owing to rapid clearance from the ocular surface and leads to poor patient compliance and side effects. For the purpose of improving the therapeutic efficacy, nanostructured lipid carrier (NLC)-loaded dexamethasone (DEX) was prepared and functionalized with (3-aminomethylphenyl)boronic acid-conjugated chondroitin sulfate (APBA-ChS). As APBA has a boronic acid group, it can form a high-affinity complex with sialic acids present in the ocular mucin, which contributes to extension of corneal retention time and improvement of drug delivery. Compared with eye drops, Rhodamine B (RhB)-labeled APBA-ChS-NLC could significantly prolong the residence time on the corneal surface. Moreover, the DEX-APBA-ChS-NLC showed no irritation to the rabbit eye as indicated in irritation studies and histological images. The pharmacodynamics study indicated that DEX-APBA-ChS-NLC could relieve symptoms of dry eye disease in rabbits. These results demonstrated that the developed mucoadhesive drug carrier could improve the delivery of drugs and have promising potential to treat anterior eye diseases. STATEMENT OF SIGNIFICANCE: In this research, (3-aminomethylphenyl)boronic acid-conjugated chondroitin sulfate (APBA-ChS)-based nanostructured lipid carriers (NLCs) including dexamethasone (DEX) were designed and constructed. APBA-ChS, which is present on the surface of DEX-NLC and contains the boronic acid group, can form complex with sialic acids in the ocular mucin, hence leading to prolonged precorneal retention. This affinity between boronic acid and sialic acids was used to develop a mucoadhesive drug delivery system. The developed mucoadhesive drug carrier demonstrated prolonged retention time and alleviation of dry eye syndrome. APBA-ChS-based NLC may be considered a promising ocular drug delivery system for treating anterior eye diseases.
Collapse
|
33
|
Improved chemotherapeutic efficacy against resistant human breast cancer cells with co-delivery of Docetaxel and Thymoquinone by Chitosan grafted lipid nanocapsules: Formulation optimization, in vitro and in vivo studies. Colloids Surf B Biointerfaces 2019; 186:110603. [PMID: 31846892 DOI: 10.1016/j.colsurfb.2019.110603] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
In recent years, multi-targeted chemotherapeutic combinations have received considerable attention in solid tumor chemotherapy. Here, we optimized low-molecular-weight chitosan (CS)-grafted lipid nanocapsules (LNCs, referred to as CLNCs) for the co-delivery of docetaxel (DTX) and thymoquinone (THQ) to treat drug-resistant breast cancer. We first screened size reduction techniques (homogenization vs ultrasonication), and then the 33-Box-Behnken design was employed to determine optimal conditions of the final LNCs with the desired quality attributes. Uncoated LNCs had a particle size of 141.7 ± 2.8 nm (Polydispersity index, PdI: 0.17 ± 0.02) with entrapment efficiency (%EE) of 66.1 ± 3.5 % and 85.3 ± 3.1 % for DTX and THQ, respectively. The CS functionalization of LNCs improved the uptake and endosomal escape effect, and led to a significantly higher cytotoxicity against MCF-7 and triple-negative (MDA-MB-231) breast cancer cells. Furthermore, an enhanced antiangiogenic effect was observed with DTX- and THQ-carrying CLNCs in the Chick embryo chorioallantoic membrane (CAM) assay.
Collapse
|
34
|
Zhang S, Asghar S, Yu F, Chen Z, Hu Z, Ping Q, Shao F, Xiao Y. BSA Nanoparticles Modified with N-Acetylcysteine for Improving the Stability and Mucoadhesion of Curcumin in the Gastrointestinal Tract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9371-9381. [PMID: 31379162 DOI: 10.1021/acs.jafc.9b02272] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A major obstacle to the clinical use of curcumin (CUR) is its reduced bioavailability because of the drug's hydrophobic nature, low intestinal absorption, and rapid metabolism. In this study, a novel oral drug delivery system was constructed for improving the stability and enhancing mucoadhesion of CUR in the gastrointestinal (GI) tract. First, CUR was encapsulated in the bovine serum albumin nanoparticles (CUR-BSA-NPs). Then, N-acetyl cysteine (NAC)-modified CUR-BSA-NPs (CUR-NBSA-NPs) were obtained. The average particle size and zeta potential of CUR-NBSA-NPs were 251.6 nm and -30.66 mV, respectively; encapsulation efficiency and drug loading were 85.79 and 10.9%, respectively. CUR-NBSA-NPs exhibited a sustained release property and prominently enhanced stability in simulated GI conditions. Additionally, enhanced mucoadhesion of CUR-NBSA-NPs was also observed. An MTT study showed that the CUR-NBSA-NPs were safe for oral administration. Overall, NAC-modified BSA-NPs may potentially serve as an oral vehicle for improving CUR stability in the GI tract and enhancing mucoadhesion.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , PR China
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences , Government College University Faisalabad , Faisalabad 38040 , Pakistan
| | - Feng Yu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , PR China
| | - Zhipeng Chen
- Department of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Ziyi Hu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , PR China
| | - Qineng Ping
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , PR China
| | - Feng Shao
- Phase I Clinical Trial Unit , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
| | - Yanyu Xiao
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , PR China
| |
Collapse
|
35
|
Young M, Ozcan A, Lee B, Maxwell T, Andl T, Rajasekaran P, Beazley MJ, Tetard L, Santra S. N-acetyl Cysteine Coated Gallium Particles Demonstrate High Potency against Pseudomonas aeruginosa PAO1. Pathogens 2019; 8:pathogens8030120. [PMID: 31374947 PMCID: PMC6789799 DOI: 10.3390/pathogens8030120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Nosocomial infections pose serious health concerns with over 2 million reported annually in the United States. Many of these infections are associated with bacterial resistance to antibiotics and hence, alternative treatments are critically needed. The objective of this study was to assess the antimicrobial efficacy of a gallium (Ga)-based particle coated with N-Acetyl Cysteine (Ga-NAC) against Pseudomonas aeruginosa PAO1. Our studies showed the Minimum Inhibitory Concentration (MIC) of PAO1 treated with Ga-NAC was 1 µg/mL. Cytotoxicity of Ga-NAC against multiple cell lines was determined with no cytotoxicity observed up to concentrations of 2000 µg/mL (metal concentration), indicating a high therapeutic window. To elucidate potential antibacterial modes of action, Inductively Coupled Plasma—Mass Spectrometry (ICP-MS), infrared spectroscopy, and atomic force microscopy (AFM) were used. The results suggest improved Ga3+ interaction with PAO1 through Ga-NAC particles. No significant change in cell membrane chemistry or roughening was detected. As cell membrane integrity remained intact, the antimicrobial mode of action was linked to cellular internalization of Ga and subsequent iron metabolic disruption. Furthermore, Ga-NAC inhibited and disrupted biofilms seen with crystal violet assay and microscopy. Our findings suggest the Ga-NAC particle can potentially be used as an alternative to antibiotics for treatment of Pseudomonas aeruginosa infections.
Collapse
Affiliation(s)
- Mikaeel Young
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32816, USA
| | - Ali Ozcan
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32816, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Briana Lee
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32816, USA
| | - Tyler Maxwell
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32816, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Parthiban Rajasekaran
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32816, USA
| | - Melanie J Beazley
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Laurene Tetard
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32816, USA.
- Department of Physics, University of Central Florida, Orlando, FL 32816, USA.
| | - Swadeshmukul Santra
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA.
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32816, USA.
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
36
|
Petrin THC, Fadel V, Martins DB, Dias SA, Cruz A, Sergio LM, Arcisio-Miranda M, Castanho MARB, Dos Santos Cabrera MP. Synthesis and Characterization of Peptide-Chitosan Conjugates (PepChis) with Lipid Bilayer Affinity and Antibacterial Activity. Biomacromolecules 2019; 20:2743-2753. [PMID: 31184862 DOI: 10.1021/acs.biomac.9b00501] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Antimicrobial peptides appear among innovative biopolymers with potential therapeutic interest. Nevertheless, issues concerning efficiency, production costs, and toxicity persist. Herein, we show that conjugation of peptides with chitosans can represent an alternative in the search for these needs. To increase solubility, deacetylated and degraded chitosans were prepared. Then, they were functionalized via N-succinimidyl- S-acetylthiopropionate or via glutathione (GSH), an endogenous peptide linker. To the best of our knowledge, it is the first time that GSH is used as a thiolating agent for the conjugation of peptides. Next, thiolated chitosans were conjugated through a disulfide bond with designed short-chain peptides, one of them derived from the antimicrobial peptide Jelleine-I. Conjugates and respective reaction intermediates were characterized by absorciometry, attenuated total reflectance-Fourier transform infrared, and 1H NMR. Zeta potential measurements showed the cationic nature of these biomacromolecules and their preferential partitioning to Gram-positive bacterial-like model membranes. In vitro investigation using representative Gram-positive and -negative bacteria ( Staphylococcus aureus and Escherichia coli, respectively) showed that the conjugation strategies lead to enhanced activity in relation to the unconjugated peptide and to the unconjugated chitosan. The obtained products showed selectivity toward S. aureus at low cytotoxicity as determined in NIH/3T3 cells. Overall, our study demonstrates that an appropriate choice of antimicrobial peptide and chitosan characteristics leads to increased antimicrobial activity of the conjugated product and represents a strategy to modulate the activity and selectivity of antimicrobials resorting to low-cost chemicals. The present proposal starts from less expensive raw materials (chitosan and short-chain peptide), is based on aqueous solvents, and minimizes the use of reactants with a higher environmental impact. The final biopolymer contains the backbone of chitosan, just 3-6% peptide derived from royal jelly and GSH, all of them considered safe for human use or as a physiological molecule.
Collapse
Affiliation(s)
| | | | | | - Susana A Dias
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , Lisboa 1649-028 , Portugal
| | - Ana Cruz
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , Lisboa 1649-028 , Portugal
| | - Luciana Marciano Sergio
- Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica , Universidade Federal de São Paulo , São Paulo 04023-062 , Brazil
| | - Manoel Arcisio-Miranda
- Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica , Universidade Federal de São Paulo , São Paulo 04023-062 , Brazil
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , Lisboa 1649-028 , Portugal
| | | |
Collapse
|
37
|
Desbrieres J, Peptu C, Ochiuz L, Savin C, Popa M, Vasiliu S. Application of Chitosan-Based Formulations in Controlled Drug Delivery. SUSTAINABLE AGRICULTURE REVIEWS 36 2019. [DOI: 10.1007/978-3-030-16581-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Jin X, Asghar S, Zhang M, Chen Z, Huang L, Ping Q, Xiao Y. N-acetylcysteine modified hyaluronic acid-paclitaxel conjugate for efficient oral chemotherapy through mucosal bioadhesion ability. Colloids Surf B Biointerfaces 2018; 172:655-664. [DOI: 10.1016/j.colsurfb.2018.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022]
|
39
|
Irimia T, Ghica MV, Popa L, Anuţa V, Arsene AL, Dinu-Pîrvu CE. Strategies for Improving Ocular Drug Bioavailability and Corneal Wound Healing with Chitosan-Based Delivery Systems. Polymers (Basel) 2018; 10:E1221. [PMID: 30961146 PMCID: PMC6290606 DOI: 10.3390/polym10111221] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/30/2023] Open
Abstract
The main inconvenience of conventional eye drops is the rapid washout of the drugs due to nasolacrimal drainage or ophthalmic barriers. The ocular drug bioavailability can be improved by either prolonging retention time in the cul-de-sac or by increasing the ocular permeability. The focus of this review is to highlight some chitosan-based drug delivery approaches that proved to have good clinical efficacy and high potential for use in ophthalmology. They are exemplified by recent studies exploring in-depth the techniques and mechanisms in order to improve ocular bioavailability of the active substances. Used alone or in combination with other compounds with synergistic action, chitosan enables ocular retention time and corneal permeability. Associated with other stimuli-responsive polymers, it enhances the mechanical strength of the gels. Chitosan and its derivatives increase drug permeability through the cornea by temporarily opening tight junctions between epithelial cells. Different types of chitosan-based colloidal systems have the potential to overcome the ocular barriers without disturbing the vision process. Chitosan also plays a key role in improving corneal wound healing by stimulating the migration of keratinocytes when it is used alone or in combination with other compounds with synergistic action.
Collapse
Affiliation(s)
- Teodora Irimia
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Valentina Anuţa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Andreea-Letiţia Arsene
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| |
Collapse
|
40
|
Li J, Cai C, Li J, Li J, Li J, Sun T, Wang L, Wu H, Yu G. Chitosan-Based Nanomaterials for Drug Delivery. Molecules 2018; 23:E2661. [PMID: 30332830 PMCID: PMC6222903 DOI: 10.3390/molecules23102661] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022] Open
Abstract
This review discusses different forms of nanomaterials generated from chitosan and its derivatives for controlled drug delivery. Nanomaterials are drug carriers with multiple features, including target delivery triggered by environmental, pH, thermal responses, enhanced biocompatibility, and the ability to cross the blood-brain barrier. Chitosan (CS), a natural polysaccharide largely obtained from marine crustaceans, is a promising drug delivery vector for therapeutics and diagnostics, owing to its biocompatibility, biodegradability, low toxicity, and structural variability. This review describes various approaches to obtain novel CS derivatives, including their distinct advantages, as well as different forms of nanomaterials recently developed from CS. The advanced applications of CS-based nanomaterials are presented here in terms of their specific functions. Recent studies have proven that nanotechnology combined with CS and its derivatives could potentially circumvent obstacles in the transport of drugs thereby improving the drug efficacy. CS-based nanomaterials have been shown to be highly effective in targeted drug therapy.
Collapse
Affiliation(s)
- Jianghua Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jiarui Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Jun Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Jia Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Tiantian Sun
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Lihao Wang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Haotian Wu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
41
|
Schuerer N, Stein E, Inic-Kanada A, Ghasemian E, Stojanovic M, Montanaro J, Bintner N, Hohenadl C, Sachsenhofer R, Barisani-Asenbauer T. Effects of chitosan and chitosan N-acetylcysteine solutions on conjunctival epithelial cells. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.xjec.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
42
|
Noi I, Schlachet I, Kumarasamy M, Sosnik A. Permeability of Novel Chitosan-g-Poly(Methyl Methacrylate) Amphiphilic Nanoparticles in a Model of Small Intestine In Vitro. Polymers (Basel) 2018; 10:E478. [PMID: 30966512 PMCID: PMC6415358 DOI: 10.3390/polym10050478] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 01/23/2023] Open
Abstract
Engineering of drug nanocarriers combining fine-tuned mucoadhesive/mucopenetrating properties is currently being investigated to ensure more efficient mucosal drug delivery. Aiming to improve the transmucosal delivery of hydrophobic drugs, we designed a novel nanogel produced by the self-assembly of amphiphilic chitosan graft copolymers ionotropically crosslinked with sodium tripolyphosphate. In this work, we synthesized, for the first time, chitosan-g-poly(methyl methacrylate) nanoparticles thiolated by the conjugation of N-acetyl cysteine. First, we confirmed that both non-crosslinked and crosslinked nanoparticles in the 0.05⁻0.1% w/v concentration range display very good cell compatibility in two cell lines that are relevant to oral delivery, Caco-2 cells that mimic the intestinal epithelium and HT29-MTX cells that are a model of mucin-producing goblet cells. Then, we evaluated the effect of crosslinking, nanoparticle concentration, and thiolation on the permeability in vitro utilizing monolayers of (i) Caco-2 and (ii) Caco-2:HT29-MTX cells (9:1 cell number ratio). Results confirmed that the ability of the nanoparticles to cross Caco-2 monolayer was affected by the crosslinking. In addition, thiolated nanoparticles interact more strongly with mucin, resulting in a decrease of the apparent permeability coefficient (Papp) compared to the pristine nanoparticles. Moreover, for all the nanoparticles, higher concentration resulted in lower Papp, suggesting that the transport pathways can undergo saturation.
Collapse
Affiliation(s)
- Imrit Noi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel.
| | - Inbar Schlachet
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel.
| | - Murali Kumarasamy
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel.
| |
Collapse
|
43
|
Cheng B, Pan H, Liu D, Li D, Li J, Yu S, Tan G, Pan W. Functionalization of nanodiamond with vitamin E TPGS to facilitate oral absorption of curcumin. Int J Pharm 2018; 540:162-170. [DOI: 10.1016/j.ijpharm.2018.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/04/2018] [Accepted: 02/12/2018] [Indexed: 01/17/2023]
|
44
|
Xu T, Xu X, Gu Y, Fang L, Cao F. Functional intercalated nanocomposites with chitosan-glutathione-glycylsarcosine and layered double hydroxides for topical ocular drug delivery. Int J Nanomedicine 2018; 13:917-937. [PMID: 29491707 PMCID: PMC5815481 DOI: 10.2147/ijn.s148104] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background To enhance ocular bioavailability, the traditional strategies have focused on prolonging precorneal retention and improving corneal permeability by nano-carriers with positive charge, thiolated polymer, absorption enhancer and so on. Glycylsarcosine (GS) as an active target ligand of the peptide tranpsporter-1 (PepT-1), could specific interact with the PepT-1 on the cornea and guide the nanoparticles to the treating site. Purpose The objective of the study was to explore the active targeting intercalated nanocomposites based on chitosan-glutathione-glycylsarcosine (CG-GS) and layered double hydroxides (LDH) as novel carriers for the treatment of mid-posterior diseases. Materials and methods CG-GS-LDH intercalated nanocomposites were prepared by the coprecipitation hydrothermal method. In vivo precorneal retention study, ex vivo fluorescence images, in vivo experiment for distribution and irritation were studied in rabbits. The cytotoxicity and cellular uptake were studied in human corneal epithelial primary cells (HCEpiC). Results CG-GS-LDH nanocomposites were prepared successfully and characterized by FTIR and XRD. Experiments with rabbits showed longer precorneal retention and higher distribution of fluorescence probe/model drug. In vitro cytological study, CG-GS-LDH nanocomposites exhibited enhanced cellular uptake compared to pure drug solution. Furthermore, the investigation of cellular uptake mechanisms demonstrated that both the active transport by PepT-1 and clathrin-mediated endocytosis were involved in the internalization of CG-GS-LDH intercalated nanocomposites. An ocular irritation study and a cytotoxicity test indicated that these nanocomposites produced no significant irritant effects. Conclusions The active targeting intercalated nanocomposites could have great potential for topical ocular drug delivery due to the capacity for prolonging the retention on the ocular surface, enhancing the drug permeability through the cornea, and efficiently delivering the drug to the targeted site.
Collapse
Affiliation(s)
- Tingting Xu
- School of Pharmacy, China Pharmaceutical University.,Nanjing Chia Tai Tian Qing Pharmaceutical Co., Ltd
| | - Xiaoyue Xu
- School of Pharmacy, China Pharmaceutical University
| | - Yan Gu
- School of Pharmacy, China Pharmaceutical University
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Feng Cao
- School of Pharmacy, China Pharmaceutical University
| |
Collapse
|
45
|
Vieira AC, Chaves LL, Pinheiro S, Pinto S, Pinheiro M, Lima SC, Ferreira D, Sarmento B, Reis S. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Int J Pharm 2018; 536:478-485. [PMID: 29203137 DOI: 10.1016/j.ijpharm.2017.11.071] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022]
|
46
|
Costa F, Sousa DM, Parreira P, Lamghari M, Gomes P, Martins MCL. N-acetylcysteine-functionalized coating avoids bacterial adhesion and biofilm formation. Sci Rep 2017; 7:17374. [PMID: 29234086 PMCID: PMC5727138 DOI: 10.1038/s41598-017-17310-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/17/2017] [Indexed: 01/07/2023] Open
Abstract
N-acetyl cysteine (NAC) is an FDA-approved drug clinically applied on a broad range of pathologies. Further research has been conducted with this drug to benefit from its antimicrobial activity potential. However, NAC has a very short half-life and therefore strategies that accomplish high local concentrations would be beneficial. In this study, covalent immobilization of NAC was performed, in order to obtain long-lasting high local concentration of the drug onto a chitosan(Ch)-derived implant-related coating. For the development of NAC-functionalized Ch films, water-based carbodiimide chemistry was applied to avoid the use of toxic organic solvents. Here we report the optimization steps performed to immobilize NAC onto the surface of pre-prepared Ch coatings, to ensure full exposure of NAC. Surface characterization using ellipsometry, water contact angle measurements and X-ray photoelectron spectroscopy (XPS), demonstrated the success of NAC immobilization at 4 mg/mL. Quartz crystal microbalance with dissipation (QCM-D) demonstrated that surface immobilized NAC decreases protein adsorption to Ch coatings. Biological studies confirmed that immobilized NAC4 avoids methicillin-resistant Staphylococcus aureus adhesion to Ch coating, impairing biofilm formation, without inducing cytotoxic effects. This is particularly interesting towards further developments as a prevention coating.
Collapse
Affiliation(s)
- Fabíola Costa
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Daniela M Sousa
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Paula Parreira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Meriem Lamghari
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Paula Gomes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M Cristina L Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
- Universidade do Porto, Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal.
| |
Collapse
|
47
|
Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev 2017; 122:31-64. [PMID: 28392306 PMCID: PMC6057481 DOI: 10.1016/j.addr.2017.04.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023]
Abstract
Commercially available ocular drug delivery systems are effective but less efficacious to manage diseases/disorders of the anterior segment of the eye. Recent advances in nanotechnology and molecular biology offer a great opportunity for efficacious ocular drug delivery for the treatments of anterior segment diseases/disorders. Nanoparticles have been designed for preparing eye drops or injectable solutions to surmount ocular obstacles faced after administration. Better drug pharmacokinetics, pharmacodynamics, non-specific toxicity, immunogenicity, and biorecognition can be achieved to improve drug efficacy when drugs are loaded in the nanoparticles. Despite the fact that a number of review articles have been published at various points in the past regarding nanoparticles for drug delivery, there is not a review yet focusing on the development of nanoparticles for ocular drug delivery to the anterior segment of the eye. This review fills in the gap and summarizes the development of nanoparticles as drug carriers for improving the penetration and bioavailability of drugs to the anterior segment of the eye.
Collapse
Affiliation(s)
- Dileep R Janagam
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Linfeng Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
48
|
Liu D, Li J, Cheng B, Wu Q, Pan H. Ex Vivo and in Vivo Evaluation of the Effect of Coating a Coumarin-6-Labeled Nanostructured Lipid Carrier with Chitosan-N-acetylcysteine on Rabbit Ocular Distribution. Mol Pharm 2017; 14:2639-2648. [DOI: 10.1021/acs.molpharmaceut.7b00069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dandan Liu
- School of Biomedical & Chemical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, P. R. China
| | - Jinyu Li
- School
of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Bingchao Cheng
- School
of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Qingyin Wu
- School of Biomedical & Chemical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, P. R. China
| | - Hao Pan
- College
of Pharmacy, Liaoning University, Shenyang 110036, P. R. China
| |
Collapse
|
49
|
Tan G, Yu S, Li J, Pan W. Development and characterization of nanostructured lipid carriers based chitosan thermosensitive hydrogel for delivery of dexamethasone. Int J Biol Macromol 2017; 103:941-947. [PMID: 28545971 DOI: 10.1016/j.ijbiomac.2017.05.132] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/28/2017] [Accepted: 05/22/2017] [Indexed: 01/11/2023]
Abstract
This study aims to explore a novel composite thermosensitive in situ gelling formulation which the nanostructured lipid carriers (NLC) was incorporated into hydroxypropyltrimethyl ammonium chloride chitosan (HACC)-based hydrogels, and the resulting formulation investigated for its potential to act as a potential sustained ocular delivery system. NLC formulation loaded with dexamethasone (DXM) were prepared using the melt-emulsification method. The particle size, zeta potential, encapsulation efficiency, and morphological properties of the NLC were characterized. The HACC was synthesized and structure was analyzed by FT-IR and 1H NMR. A thermosensitive hydrogel was designed and prepared by simply mixing HACC and β-glycerophosphate (β-GP). The obtained formulation showed a rapid solution-to-gel transition at 35°C. The NLC were then incorporated in HACC/β-GP hydrogel to form a NLC-loaded hydrogel carrier. In vitro release studies, 88.65% of total DXM was released from the NLC-HACC/GP gel within 3days, indicating DXM-based NLC-gel could release drug sustainably. Taken together, DXM-based NLC-HACC/GP gel is a promising drug delivery system.
Collapse
Affiliation(s)
- Guoxin Tan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shihui Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jinyu Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
50
|
Granata G, Paterniti I, Geraci C, Cunsolo F, Esposito E, Cordaro M, Blanco AR, Cuzzocrea S, Consoli GML. Potential Eye Drop Based on a Calix[4]arene Nanoassembly for Curcumin Delivery: Enhanced Drug Solubility, Stability, and Anti-Inflammatory Effect. Mol Pharm 2017; 14:1610-1622. [PMID: 28394618 DOI: 10.1021/acs.molpharmaceut.6b01066] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Curcumin is an Indian spice with a wide spectrum of biological and pharmacological activities but poor aqueous solubility, rapid degradation, and low bioavailability that affect medical benefits. To overcome these limits in ophthalmic application, curcumin was entrapped in a polycationic calix[4]arene-based nanoaggregate by a simple and reproducible method. The calix[4]arene-curcumin supramolecular assembly (Calix-Cur) appeared as a clear colloidal solution consisting in micellar nanoaggregates with size, polydispersity index, surface potential, and drug loading percentage meeting the requirements for an ocular drug delivery system. The encapsulation in the calix[4]arene nanoassembly markedly enhanced the solubility, reduced the degradation, and improved the anti-inflammatory effects of curcumin compared to free curcumin in both in vitro and in vivo experiments. Calix-Cur did not compromise the viability of J774A.1 macrophages and suppressed pro-inflammatory marker expression in J774A.1 macrophages subjected to LPS-induced oxidative stress. Histological and immunohistochemical analyses showed that Calix-Cur reduced signs of inflammation in a rat model of LPS-induced uveitis when topically administrated in the eyes. Overall, the results supported the calix[4]arene nanoassembly as a promising nanocarrier for delivering curcumin to anterior ocular tissues.
Collapse
Affiliation(s)
- Giuseppe Granata
- Institute of Biomolecular Chemistry, National Research Council (C.N.R.) , 95126 Catania, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina , 98166 Messina, Italy
| | - Corrada Geraci
- Institute of Biomolecular Chemistry, National Research Council (C.N.R.) , 95126 Catania, Italy
| | - Francesca Cunsolo
- Institute of Biomolecular Chemistry, National Research Council (C.N.R.) , 95126 Catania, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina , 98166 Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina , 98166 Messina, Italy
| | | | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina , 98166 Messina, Italy
| | - Grazia M L Consoli
- Institute of Biomolecular Chemistry, National Research Council (C.N.R.) , 95126 Catania, Italy
| |
Collapse
|