1
|
Paliwal D, Rabiey M, Mauchline TH, Hassani-Pak K, Nauen R, Wagstaff C, Andrews S, Bass C, Jackson RW. Multiple toxins and a protease contribute to the aphid-killing ability of Pseudomonas fluorescens PpR24. Environ Microbiol 2024; 26:e16604. [PMID: 38561900 DOI: 10.1111/1462-2920.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Aphids are globally important pests causing damage to a broad range of crops. Due to insecticide resistance, there is an urgent need to develop alternative control strategies. In our previous work, we found Pseudomonas fluorescens PpR24 can orally infect and kill the insecticide-resistant green-peach aphid (Myzus persicae). However, the genetic basis of the insecticidal capability of PpR24 remains unclear. Genome sequencing of PpR24 confirmed the presence of various insecticidal toxins such as Tc (toxin complexes), Rhs (rearrangement hotspot) elements, and other insect-killing proteases. Upon aphids infection with PpR24, RNA-Seq analysis revealed 193 aphid genes were differentially expressed with down-regulation of 16 detoxification genes. In addition, 1325 PpR24 genes (542 were upregulated and 783 downregulated) were subject to differential expression, including genes responsible for secondary metabolite biosynthesis, the iron-restriction response, oxidative stress resistance, and virulence factors. Single and double deletion of candidate virulence genes encoding a secreted protease (AprX) and four toxin components (two TcA-like; one TcB-like; one TcC-like insecticidal toxins) showed that all five genes contribute significantly to aphid killing, particularly AprX. This comprehensive host-pathogen transcriptomic analysis provides novel insight into the molecular basis of bacteria-mediated aphid mortality and the potential of PpR24 as an effective biocontrol agent.
Collapse
Affiliation(s)
- Deepa Paliwal
- School of Biological Sciences, University of Reading, Reading, UK
| | - Mojgan Rabiey
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Tim H Mauchline
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | | | | | - Carol Wagstaff
- School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - Simon Andrews
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, UK
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Legionella pneumophila and Free-Living Nematodes: Environmental Co-Occurrence and Trophic Link. Microorganisms 2023; 11:microorganisms11030738. [PMID: 36985310 PMCID: PMC10056204 DOI: 10.3390/microorganisms11030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Free-living nematodes harbor and disseminate various soil-borne bacterial pathogens. Whether they function as vectors or environmental reservoirs for the aquatic L. pneumophila, the causative agent of Legionnaires’ disease, is unknown. A survey screening of biofilms of natural (swimming lakes) and technical (cooling towers) water habitats in Germany revealed that nematodes can act as potential reservoirs, vectors or grazers of L. pneumophila in cooling towers. Consequently, the nematode species Plectus similis and L. pneumophila were isolated from the same cooling tower biofilm and taken into a monoxenic culture. Using pharyngeal pumping assays, potential feeding relationships between P. similis and different L. pneumophila strains and mutants were examined and compared with Plectus sp., a species isolated from a L. pneumophila-positive thermal source biofilm. The assays showed that bacterial suspensions and supernatants of the L. pneumophila cooling tower isolate KV02 decreased pumping rate and feeding activity in nematodes. However, assays investigating the hypothesized negative impact of Legionella’s major secretory protein ProA on pumping rate revealed opposite effects on nematodes, which points to a species-specific response to ProA. To extend the food chain by a further trophic level, Acanthamoebae castellanii infected with L. pneumphila KV02 were offered to nematodes. The pumping rates of P. similis increased when fed with L. pneumophila-infected A. castellanii, while Plectus sp. pumping rates were similar when fed either infected or non-infected A. castellanii. This study revealed that cooling towers are the main water bodies where L. pneumophila and free-living nematodes coexist and is the first step in elucidating the trophic links between coexisting taxa from that habitat. Investigating the Legionella–nematode–amoebae interactions underlined the importance of amoebae as reservoirs and transmission vehicles of the pathogen for nematode predators.
Collapse
|
3
|
Borrajo MP, Mondino EA, Maroniche GA, Fernández M, Creus CM. Potential of rhizobacteria native to Argentina for the control of Meloidogyne javanica. Rev Argent Microbiol 2022; 54:224-232. [PMID: 33947589 DOI: 10.1016/j.ram.2021.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/24/2020] [Accepted: 02/16/2021] [Indexed: 11/24/2022] Open
Abstract
Biocontrol of the nematode Meloidogyne javanica was studied using the Argentinean strains Pseudomonas fluorescens MME3, TAE4, TAR5 and ZME4 and Bacillus sp. B7S, B9T and B19S. Pseudomonas protegens CHA0 was used as a positive control. Egg hatching and juvenile mortality were evaluated in vitro by exposure of nematodes to bacterial suspensions or their cell-free supernatants (CFS). The effect of bacteria on nematode infestation of lettuce was also studied. results showed that most of the tested strains and CFS reduced egg hatching and juvenile survival in vitro. The bacterial suspension of Bacillus sp. B9T produced the lowest hatching of eggs. Juvenile mortality was higher when M. javanica was exposed to Bacillus sp. than to Pseudomonas spp. suspensions. Except for CFS of B9T, all filtrates inhibited hatching at levels similar to or higher than the biocontrol strain P. protegens CHA0. The CFS of CHA0 showed the highest level of juvenile mortality followed by Bacillus sp. strains and P. fluorescens TAE4. None of the inoculated rhizobacteria reverted the negative effect of infestation on the aerial dry weight of lettuce plants. However, inoculation impacted on reproduction of M. javanica by reducing the development of galls and egg masses on roots and diminishing the number of individuals both on roots and in the substrate, as well as the reproduction factor. These results show that most of the analyzed native strains can control the nematode M. javanica. Among them, P. fluorescens TAE4 and Bacillus sp. B9T showed the most promising performances for the biocontrol of this pathogen and have a potential use in the formulation of commercial products.
Collapse
Affiliation(s)
- María P Borrajo
- Laboratorio de Bioquímica Vegetal y Microbiana, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Eduardo A Mondino
- Laboratorio de Nematología, Estación Experimental Agropecuaria INTA Balcarce, Argentina
| | - Guillermo A Maroniche
- Laboratorio de Bioquímica Vegetal y Microbiana, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Macarena Fernández
- Laboratorio de Bioquímica Vegetal y Microbiana, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Cecilia M Creus
- Laboratorio de Bioquímica Vegetal y Microbiana, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina.
| |
Collapse
|
4
|
Characterization of Nematicidal Activity and Nematode-Toxic Metabolites of a Soilborne Brevundimonas bullata Isolate. Pathogens 2022; 11:pathogens11060708. [PMID: 35745562 PMCID: PMC9229253 DOI: 10.3390/pathogens11060708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
The increasing prevalence of crop-threatening root-knot nematodes (RKNs) has stimulated extensive research to discover effective nematicides. A highly focused strategy for accomplishing this is the development of biocontrol agents by a variety of soilborne microorganisms, as different bacterial metabolites have demonstrated promising nematicidal activities. In this study, we characterized the nematicidal and suppressive activity of a bacterial isolate against the agriculturally important RKN Meloidogyne incognita and the model nematode Caenorhabditis elegans, and the main M. incognita-toxic metabolite of the strain. After a preliminary screening of 22 bacterial isolates with a corrected mortality (CM) of whole-cell culture greater than 50% against C. elegans from different RKN-incident soils in China, a total of 14 isolates with CM of the supernatant of culture suspension (SCS) higher than 50% against both M. incognita and C. elegans were rescreened. An isolate with the highest CM of 86.1% and 95.0% for M. incognita and C. elegans, respectively, was further identified as the species Brevundimonas bullata via morphological examination, physiological and biochemical assays and alignment analysis of 16S rRNA gene sequences. The SCS of this strain, namely, B. bullata MB756, exhibited synchronous M. incognita killing activity along with significant detrimental effects on the growth, brood size, and locomotion of C. elegans. The effects of heat treatment, pH, inoculations, and protease K proteolysis on the CM of MB756 SCS were evaluated. A major M. incognita-toxic substance in the MB756 SCS was assayed and identified using thin-layer chromatography, column chromatography and high-performance liquid chromatography with a mass spectrometer, and it was preliminarily identified as 2-ethylhexan-1-ol, with a molecular formula of C8H18O and a molecular weight of 130.3 Da.
Collapse
|
5
|
Zhai Y, Shao Z, Cai M, Zheng L, Li G, Yu Z, Zhang J. Cyclo(l-Pro⁻l-Leu) of Pseudomonas putida MCCC 1A00316 Isolated from Antarctic Soil: Identification and Characterization of Activity against Meloidogyne incognita. Molecules 2019; 24:molecules24040768. [PMID: 30791605 PMCID: PMC6412658 DOI: 10.3390/molecules24040768] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas putida MCCC 1A00316 was originally isolated from an Antarctic soil and has demonstrated potential nematicidal activity. Thus, it has promising applications for the biological control of Meloidogyne incognita. The larval mortality and egg-hatching inhibition rates of M. incognita will increase with the rising concentration of culture filtrates of P. putida MCCC 1A00316 and the duration of exposure. Thus, this study aimed to separate, purify, and identify nematicidal compounds from P. putida MCCC 1A00316 and to validate their anti-M. incognita activities. Compounds were purified through silica gel column chromatography and thin-layer chromatography combined with high-performance liquid chromatography (HPLC). Structural identification was conducted through liquid chromatography time-of-flight mass spectrometry, 1H nuclear magnetic resonance (NMR) spectroscopy, 13C-NMR, and Marfey’s method. The isolated compounds were identified as cyclo(l-Pro–l-Leu) on the basis of the results of the above analyses and previously reported data. The effects of various concentrations of cyclo(l-Pro–l-Leu) on the mortality rates of second-stage juveniles (J2) of M. incognita were investigated. Results showed that HPLC-purified cyclo(l-Pro–l-Leu) displayed nematicidal activities. The mortality rate of M. incognita J2 reached 84.3% after 72 h of exposure to 67.5 mg/L cyclo(l-Pro–l-Leu). The lowest egg-hatching rate (9.74%) was observed after 8 days of incubation with 2000 mg/L cyclo(l-Pro–l-Leu). An egg-hatching rate of 53.11% was obtained under the control treatment (sterile distilled water). However, cyclo(l-Pro–l-Leu) did not elicit chemotaxis activity to M. incognita. This is the first work to investigate the anti-M. incognita characteristics of cyclo(l-Pro–l-Leu).
Collapse
Affiliation(s)
- Yile Zhai
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guangyu Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Lee SA, Jang SH, Kim BH, Shibata T, Yoo J, Jung Y, Kawabata SI, Lee BL. Insecticidal activity of the metalloprotease AprA occurs through suppression of host cellular and humoral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:116-126. [PMID: 29174605 DOI: 10.1016/j.dci.2017.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
The biochemical characterization of virulence factors from entomopathogenic bacteria is important to understand entomopathogen-insect molecular interactions. Pseudomonas entomophila is a typical entomopathogenic bacterium that harbors virulence factors against several insects. However, the molecular actions of these factors against host innate immune responses are not clearly elucidated. In this study, we observed that bean bugs (Riptortus pedestris) that were injected with P. entomophila were highly susceptible to this bacterium. To determine how P. entomophila counteracts the host innate immunity to survive within the insect, we purified a highly enriched protein with potential host insect-killing activity from the culture supernatant of P. entomophila. Then, a 45-kDa protein was purified to homogeneity and identified as AprA which is an alkaline zinc metalloprotease of the genus Pseudomonas by liquid chromatography mass spectrometry (LC-MS). Purified AprA showed a pronounced killing effect against host insects and suppressed both host cellular and humoral innate immunity. Furthermore, to show that AprA is an important insecticidal protein of P. entomophila, we used an aprA-deficient P. entomophila mutant strain (ΔaprA). When ΔaprA mutant cells were injected to host insects, this mutant exhibited extremely attenuated virulence. In addition, the cytotoxicity against host hemocytes and the antimicrobial peptide-degrading ability of the ΔaprA mutant were greatly decreased. These findings suggest that AprA functions as an important insecticidal protein of P. entomophila via suppression of host cellular and humoral innate immune responses.
Collapse
Affiliation(s)
- Seung Ah Lee
- Global Research Laboratory of Insect Symbiosis, Pusan National University, Busan 46241, South Korea
| | - Seong Han Jang
- Global Research Laboratory of Insect Symbiosis, Pusan National University, Busan 46241, South Korea
| | - Byung Hyun Kim
- Global Research Laboratory of Insect Symbiosis, Pusan National University, Busan 46241, South Korea
| | - Toshio Shibata
- Institute for Advanced Study, Kyushu University, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Jinwook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Shun-Ichiro Kawabata
- Institute for Advanced Study, Kyushu University, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Bok Luel Lee
- Global Research Laboratory of Insect Symbiosis, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
7
|
Zhai Y, Shao Z, Cai M, Zheng L, Li G, Huang D, Cheng W, Thomashow LS, Weller DM, Yu Z, Zhang J. Multiple Modes of Nematode Control by Volatiles of Pseudomonas putida 1A00316 from Antarctic Soil against Meloidogyne incognita. Front Microbiol 2018; 9:253. [PMID: 29599753 PMCID: PMC5863520 DOI: 10.3389/fmicb.2018.00253] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/31/2018] [Indexed: 11/26/2022] Open
Abstract
Pseudomonas putida 1A00316 isolated from Antarctic soil showed nematicidal potential for biological control of Meloidogyne incognita; however, little was known about whether strain 1A00316 could produce volatile organic compounds (VOCs), and if they had potential for use in biological control against M. incognita. In this study, VOCs produced by a culture filtrate of P. putida 1A00316 were evaluated by in vitro experiments in three-compartment Petri dishes and 96-well culture plates. Our results showed that M. incognita juveniles gradually reduced their movement within 24-48 h of incubation with mortality ranging from 6.49 to 86.19%, and mostly stopped action after 72 h. Moreover, egg hatching in culture filtrates of strain 1A00316 was much reduced compared to that in sterile distilled water or culture medium. Volatiles from P. putida 1A00316 analysis carried out by solid-phase micro-extraction gas chromatography-mass spectrometry (SPME-GC/MS) included dimethyl-disulfide, 1-undecene, 2-nonanone, 2-octanone, (Z)-hexen-1-ol acetate, 2-undecanone, and 1-(ethenyloxy)-octadecane. Of these, dimethyl-disulfide, 2-nonanone, 2-octanone, (Z)-hexen-1-ol acetate, and 2-undecanone had strong nematicidal activity against M. incognita J2 larvae by direct-contact in 96-well culture plates, and only 2-undecanone acted as a fumigant. In addition, the seven VOCs inhibited egg hatching of M. incognita both by direct-contact and by fumigation. All of the seven VOCs repelled M. incognita J2 juveniles in 2% water agar Petri plates. These results show that VOCs from strain 1A00316 act on different stages in the development of M. incognita via nematicidal, fumigant, and repellent activities and have potential for development as agents with multiple modes of control of root-knot nematodes.
Collapse
Affiliation(s)
- Yile Zhai
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guangyu Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Dian Huang
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wanli Cheng
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Linda S. Thomashow
- Wheat Health, Genetics and Quality Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States
| | - David M. Weller
- Wheat Health, Genetics and Quality Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Chapelais-Baron M, Goubet I, Péteri R, Pereira MDF, Mignot T, Jabveneau A, Rosenfeld E. Colony analysis and deep learning uncover 5-hydroxyindole as an inhibitor of gliding motility and iridescence in Cellulophaga lytica. MICROBIOLOGY-SGM 2018; 164:308-321. [PMID: 29458680 DOI: 10.1099/mic.0.000617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Iridescence is an original type of colouration that is relatively widespread in nature but has been either incompletely described or entirely neglected in prokaryotes. Recently, we reported a brilliant 'pointillistic' iridescence in agar-grown colony biofilms of Cellulophaga lytica and some other marine Flavobacteria that exhibit gliding motility. Bacterial iridescence is created by a unique self-organization of sub-communities of cells, but the mechanisms underlying such living photonic crystals are unknown. In this study, we used Petri dish assays to screen a large panel of potential activators or inhibitors of C. lytica's iridescence. Derivatives potentially interfering with quorum-sensing and other communication or biofilm formation processes were tested, as well as metabolic poisons or algal exoproducts. We identified an indole derivative, 5-hydroxyindole (5HI, 250 µM) which inhibited both gliding and iridescence at the colonial level. 5HI did not affect growth or cell respiration. At the microscopic level, phase-contrast imaging confirmed that 5HI inhibits the gliding motility of cells. Moreover, the lack of iridescence correlated with a perturbation of self-organization of the cell sub-communities in both the WT and a gliding-negative mutant. This effect was proved using recent advances in machine learning (deep neuronal networks). In addition to its effect on colony biofilms, 5HI was found to stimulate biofilm formation in microplates. Our data are compatible with possible roles of 5HI or marine analogues in the eco-biology of iridescent bacteria.
Collapse
Affiliation(s)
- Maylis Chapelais-Baron
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Isabelle Goubet
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Renaud Péteri
- Laboratoire Mathématiques, Image et Applications EA 3165, Université de La Rochelle, La Rochelle, France
| | - Maria de Fatima Pereira
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France.,Université de Caen Normandie, UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE Boulevard Becquerel, F-14032 Caen, France
| | - Tâm Mignot
- UMR 7283 CNRS Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, University of Aix-Marseille, Marseille, France
| | - Apolline Jabveneau
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Eric Rosenfeld
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| |
Collapse
|
9
|
Cheng W, Yang J, Nie Q, Huang D, Yu C, Zheng L, Cai M, Thomashow LS, Weller DM, Yu Z, Zhang J. Volatile organic compounds from Paenibacillus polymyxa KM2501-1 control Meloidogyne incognita by multiple strategies. Sci Rep 2017; 7:16213. [PMID: 29176679 PMCID: PMC5701253 DOI: 10.1038/s41598-017-16631-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/15/2017] [Indexed: 11/09/2022] Open
Abstract
Plant-parasitic nematodes (PPNs) cause serious crop losses worldwide. In this study, we investigated the nematicidal factors and the modes and mechanisms of action involved in nematode control by Paenibacillus polymyxa KM2501-1. Treatment of the second-stage juveniles (J2) juveniles of PPN Meloidogyne incognita with the biological control agent KM2501-1 resulted in a mortality of 87.66% in vitro and reduced symptoms on tomato by up to 82.61% under greenhouse conditions. We isolated 11 volatile organic compounds (VOCs) from strain KM2501-1, of which 8 had contact nematicidal activity, 6 had fumigant activity, and 5 acted as stable chemotactic agents to M. incognita. The VOCs provided a comprehensive strategy against PPNs that included "honey-trap", fumigant, attractant and repellent modes. Furfural acetone and 2-decanol functioned as "honey-traps" attracting M. incognita and then killing it by contact or fumigation. Two other VOCs, 2-nonanone and 2-decanone, as well as strain KM2501-1 itself, destroyed the integrity of the intestine and pharynx. Collectively our results indicate that VOCs produced by P. polymyxa KM2501-1 act through diverse mechanisms to control M. incognita. Moreover, the novel "honey-trap" mode of VOC-nematode interaction revealed in this study extends our understanding of the strategies exploited by nematicidal biocontrol agents.
Collapse
Affiliation(s)
- Wanli Cheng
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jingyan Yang
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiyu Nie
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dian Huang
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chen Yu
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Linda S Thomashow
- United States Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, 99164-6430, USA
| | - David M Weller
- United States Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, 99164-6430, USA
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
10
|
An Enterotoxin-Like Binary Protein from Pseudomonas protegens with Potent Nematicidal Activity. Appl Environ Microbiol 2017; 83:AEM.00942-17. [PMID: 28733289 PMCID: PMC5601331 DOI: 10.1128/aem.00942-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/05/2017] [Indexed: 11/20/2022] Open
Abstract
Soil microbes are a major food source for free-living soil nematodes. It is known that certain soil bacteria have evolved systems to combat predation. We identified the nematode-antagonistic Pseudomonas protegens strain 15G2 from screening of microbes. Through protein purification we identified a binary protein, designated Pp-ANP, which is responsible for the nematicidal activity. This binary protein inhibits Caenorhabditis elegans growth and development by arresting larvae at the L1 stage and killing older-staged worms. The two subunits, Pp-ANP1a and Pp-ANP2a, are active when reconstituted from separate expression in Escherichia coli. The binary toxin also shows strong nematicidal activity against three other free-living nematodes (Pristionchus pacificus, Panagrellus redivivus, and Acrobeloides sp.), but we did not find any activity against insects and fungi under test conditions, indicating specificity for nematodes. Pp-ANP1a has no significant identity to any known proteins, while Pp-ANP2a shows ∼30% identity to E. coli heat-labile enterotoxin (LT) subunit A and cholera toxin (CT) subunit A. Protein modeling indicates that Pp-ANP2a is structurally similar to CT/LT and likely acts as an ADP-ribosyltransferase. Despite the similarity, Pp-ANP shows several characteristics distinct from CT/LT toxins. Our results indicate that Pp-ANP is a new enterotoxin-like binary toxin with potent and specific activity to nematodes. The potency and specificity of Pp-ANP suggest applications in controlling parasitic nematodes and open an avenue for further research on its mechanism of action and role in bacterium-nematode interaction. IMPORTANCE This study reports the discovery of a new enterotoxin-like binary protein, Pp-ANP, from a Pseudomonas protegens strain. Pp-ANP shows strong nematicidal activity against Caenorhabditis elegans larvae and older-staged worms. It also shows strong activity on other free-living nematodes (Pristionchus pacificus, Panagrellus redivivus, and Acrobeloides sp.). The two subunits, Pp-ANP1a and Pp-ANP2a, can be expressed separately and reconstituted to form the active complex. Pp-ANP shows some distinct characteristics compared with other toxins, including Escherichia coli enterotoxin and cholera toxin. The present study indicates that Pp-ANP is a novel binary toxin and that it has potential applications in controlling parasitic nematodes and in studying toxin-host interaction.
Collapse
|
11
|
Genome Sequence of Delftia acidovorans HK171, a Nematicidal Bacterium Isolated from Tomato Roots. GENOME ANNOUNCEMENTS 2017; 5:5/9/e01746-16. [PMID: 28254991 PMCID: PMC5334598 DOI: 10.1128/genomea.01746-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Delftia acidovorans strain HK171, isolated from tomato roots, exhibited nematicidal activity against Meloidogyne incognita. Here, we present the genome sequence of D. acidovorans strain HK171, which consists of one circular chromosome of 6,430,384 bp, with 66.9% G+C content.
Collapse
|