1
|
Price DRG, Steele P, Frew D, McLean K, Androscuk D, Geldhof P, Borloo J, Albaladejo JP, Nisbet AJ, McNeilly TN. Characterisation of protective vaccine antigens from the thiol-containing components of excretory/secretory material of Ostertagia ostertagi. Vet Parasitol 2024; 328:110154. [PMID: 38490160 DOI: 10.1016/j.vetpar.2024.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
Previous vaccination trials have demonstrated that thiol proteins affinity purified from Ostertagia ostertagi excretory-secretory products (O. ostertagi ES-thiol) are protective against homologous challenge. Here we have shown that protection induced by this vaccine was consistent across four independent vaccine-challenge experiments. Protection is associated with reduced cumulative faecal egg counts across the duration of the trials, relative to control animals. To better understand the diversity of antigens in O. ostertagi ES-thiol we used high-resolution shotgun proteomics to identify 490 unique proteins in the vaccine preparation. The most numerous ES-thiol proteins, with 91 proteins identified, belong to the sperm-coating protein/Tpx/antigen 5/pathogenesis-related protein 1 (SCP/TAPS) family. This family includes previously identified O. ostertagi vaccine antigens O. ostertagi ASP-1 and ASP-2. The ES-thiol fraction also has numerous proteinases, representing three distinct classes, including: metallo-; aspartyl- and cysteine proteinases. In terms of number of family members, the M12 astacin-like metalloproteinases, with 33 proteins, are the most abundant proteinase family in O. ostertagi ES-thiol. The O. ostertagi ES-thiol proteome provides a comprehensive database of proteins present in this vaccine preparation and will guide future vaccine antigen discovery projects.
Collapse
Affiliation(s)
- Daniel R G Price
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK.
| | - Philip Steele
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - David Frew
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Kevin McLean
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Dorota Androscuk
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Peter Geldhof
- Laboratory of Parasitology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Sciences, Ghent University, Belgium
| | - Jimmy Borloo
- Laboratory of Parasitology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Sciences, Ghent University, Belgium
| | - Javier Palarea Albaladejo
- Biomathematics and Statistics Scotland, JCMB, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, Scotland, UK; Department of Computer Science, Applied Mathematics and Statistics, University of Girona, Girona, Spain
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| |
Collapse
|
2
|
Ortega L, Quesada J, Ruiz A, Conde-Felipe MM, Ferrer O, Muñoz MDC, Molina JA, Rodríguez F, Molina JM. Analysis of Protection and Immune Response against Teladorsagia circumcincta in Goats Immunised with Thiol-Binding Proteins from Adult Worms. Vaccines (Basel) 2024; 12:437. [PMID: 38675819 PMCID: PMC11055008 DOI: 10.3390/vaccines12040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
In view of the increasing occurrence of anthelmintic-resistant strains of gastrointestinal nematodes in ruminants, various alternative control strategies have been investigated, such as those based on the induction of protective immune responses by immunisation with parasite antigens. In this study, the protective activity of somatic antigens from adult worms of Teladorsagia circumcincta purified by affinity chromatography on thiol-sepharose was analysed in goats. After challenge, the enriched products induced a slight reduction in the cumulative faecal egg counts (21%) and in the number of worms (23.3%), with a greater effect on female worms, which also showed a reduction in parameters related to their fertility. These parasitological findings were associated with a Th2 immune response, with a prominent local humoral response and an eosinophilic infiltrate in the gastric mucosa (negatively associated with the fertility of female worms and the number of worms, respectively), as well as an infiltration of MCHII+, CD4+, IgG+ and IgA+ cells. However, several analyses showed an increase in CD8+ cells in the mucosa, as well as IL-2 expression in the gastric lymph nodes, which may have been associated with inhibition of protective responses or with the development of mixed Th1/Th2 responses, a finding that should be analysed in future studies.
Collapse
Affiliation(s)
- Leire Ortega
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413 Arucas, Spain; (L.O.); (J.Q.); (O.F.); (M.d.C.M.); (J.A.M.); (J.M.M.)
| | - Jessica Quesada
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413 Arucas, Spain; (L.O.); (J.Q.); (O.F.); (M.d.C.M.); (J.A.M.); (J.M.M.)
| | - Antonio Ruiz
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413 Arucas, Spain; (L.O.); (J.Q.); (O.F.); (M.d.C.M.); (J.A.M.); (J.M.M.)
| | - Magnolia María Conde-Felipe
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413 Arucas, Spain; (L.O.); (J.Q.); (O.F.); (M.d.C.M.); (J.A.M.); (J.M.M.)
| | - Otilia Ferrer
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413 Arucas, Spain; (L.O.); (J.Q.); (O.F.); (M.d.C.M.); (J.A.M.); (J.M.M.)
- Clinical Veterinary Hospital, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413 Arucas, Spain
| | - María del Carmen Muñoz
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413 Arucas, Spain; (L.O.); (J.Q.); (O.F.); (M.d.C.M.); (J.A.M.); (J.M.M.)
- Clinical Veterinary Hospital, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413 Arucas, Spain
| | - José Adrián Molina
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413 Arucas, Spain; (L.O.); (J.Q.); (O.F.); (M.d.C.M.); (J.A.M.); (J.M.M.)
| | - Francisco Rodríguez
- Department of Anatomy and Compared Anatomy Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413 Arucas, Spain;
| | - José Manuel Molina
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35413 Arucas, Spain; (L.O.); (J.Q.); (O.F.); (M.d.C.M.); (J.A.M.); (J.M.M.)
| |
Collapse
|
3
|
Xiong L, Chen Y, Chen L, Hua R, Shen N, Yang G. Enhanced protective immunity against Baylisascaris schroederi infection in mice through a multi-antigen cocktail vaccine approach. Parasitol Res 2023; 123:20. [PMID: 38072876 DOI: 10.1007/s00436-023-08016-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023]
Abstract
Baylisascaris schroederi is among the most severe intestinal nematodes affecting giant pandas. Developing effective and secure vaccines can be used as a novel strategy for controlling repeated roundworm infection and addressing drug resistance. In our previous study, three recombinant antigens (rBsHP2, rBsGAL, and rBsUP) exhibited promising effects against B. schroederi infection in the mice model. This study extends the findings by formulating four-form cocktail vaccines (GAL+UP, HP2+UP, GAL+HP2, and GAL+HP2+UP) using three B. schroederi recombinant antigens to improve protection in mice further. Additionally, the protective differences after immunizing mice with different doses of cocktail antigens (150 μg, 100 μg, and 50 μg) were analyzed. Administration of rBs(GAL+UP), rBs(HP2+UP), rBs(GAL+HP2), and rBs(GAL+HP2+UP) significantly reduced liver and lung lesions, along with a decrease in L3 larvae by 83.7%, 82.1%, 76.4%, and 75.1%, respectively. These vaccines induced a Th1/Th2 mixed immunity, evidenced by elevated serum antibody levels (IgG, IgG1, IgG2a, IgE, and IgA) and splenocyte cytokines [interferon gamma (IFN-γ), interleukin (IL)-5, and IL-10]. Furthermore, varying cocktail vaccine dosages did not significantly affect protection. The results confirm that a 50 μg rBs(GAL+UP) dosage holds promise as a better candidate vaccine combination against B. schroederi infection, providing a basis for developing the B. schroederi vaccine.
Collapse
Affiliation(s)
- Lang Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Yanxin Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Ling Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, China.
| |
Collapse
|
4
|
Zwanenburg L, Borloo J, Decorte B, Bunte MJM, Mokhtari S, Serna S, Reichardt NC, Seys LJM, van Diepen A, Schots A, Wilbers RHP, Hokke CH, Claerebout E, Geldhof P. Plant-based production of a protective vaccine antigen against the bovine parasitic nematode Ostertagia ostertagi. Sci Rep 2023; 13:20488. [PMID: 37993516 PMCID: PMC10665551 DOI: 10.1038/s41598-023-47480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
The development of effective recombinant vaccines against parasitic nematodes has been challenging and so far mostly unsuccessful. This has also been the case for Ostertagia ostertagi, an economically important abomasal nematode in cattle, applying recombinant versions of the protective native activation-associated secreted proteins (ASP). To gain insight in key elements required to trigger a protective immune response, the protein structure and N-glycosylation of the native ASP and a non-protective Pichia pastoris recombinant ASP were compared. Both antigens had a highly comparable protein structure, but different N-glycan composition. After mimicking the native ASP N-glycosylation via the expression in Nicotiana benthamiana plants, immunisation of calves with these plant-produced recombinants resulted in a significant reduction of 39% in parasite egg output, comparable to the protective efficacy of the native antigen. This study provides a valuable workflow for the development of recombinant vaccines against other parasitic nematodes.
Collapse
Affiliation(s)
- Laurens Zwanenburg
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Jimmy Borloo
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Bregt Decorte
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Myrna J M Bunte
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sanaz Mokhtari
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sonia Serna
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia San Sebastián, Spain
- CIBER-BBN, Paseo Miramón 194, 20014, San Sebastian, Spain
| | - Niels-C Reichardt
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia San Sebastián, Spain
- CIBER-BBN, Paseo Miramón 194, 20014, San Sebastian, Spain
| | - Leen J M Seys
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Edwin Claerebout
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Peter Geldhof
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| |
Collapse
|
5
|
Doolan R, Putananickal N, Tritten L, Bouchery T. How to train your myeloid cells: a way forward for helminth vaccines? Front Immunol 2023; 14:1163364. [PMID: 37325618 PMCID: PMC10266106 DOI: 10.3389/fimmu.2023.1163364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Soil-transmitted helminths affect approximately 1.5 billion people worldwide. However, as no vaccine is currently available for humans, the current strategy for elimination as a public health problem relies on preventive chemotherapy. Despite more than 20 years of intense research effort, the development of human helminth vaccines (HHVs) has not yet come to fruition. Current vaccine development focuses on peptide antigens that trigger strong humoral immunity, with the goal of generating neutralizing antibodies against key parasite molecules. Notably, this approach aims to reduce the pathology of infection, not worm burden, with only partial protection observed in laboratory models. In addition to the typical translational hurdles that vaccines struggle to overcome, HHVs face several challenges (1): helminth infections have been associated with poor vaccine responses in endemic countries, probably due to the strong immunomodulation caused by these parasites, and (2) the target population displays pre-existing type 2 immune responses to helminth products, increasing the likelihood of adverse events such as allergy or anaphylaxis. We argue that such traditional vaccines are unlikely to be successful on their own and that, based on laboratory models, mucosal and cellular-based vaccines could be a way to move forward in the fight against helminth infection. Here, we review the evidence for the role of innate immune cells, specifically the myeloid compartment, in controlling helminth infections. We explore how the parasite may reprogram myeloid cells to avoid killing, notably using excretory/secretory (ES) proteins and extracellular vesicles (EVs). Finally, learning from the field of tuberculosis, we will discuss how anti-helminth innate memory could be harnessed in a mucosal-trained immunity-based vaccine.
Collapse
Affiliation(s)
- Rory Doolan
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Namitha Putananickal
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucienne Tritten
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tiffany Bouchery
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Liu W, McNeilly TN, Mitchell M, Burgess STG, Nisbet AJ, Matthews JB, Babayan SA. Vaccine-induced time- and age-dependent mucosal immunity to gastrointestinal parasite infection. NPJ Vaccines 2022; 7:78. [PMID: 35798788 PMCID: PMC9262902 DOI: 10.1038/s41541-022-00501-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Individuals vary broadly in their response to vaccination and subsequent challenge infection, with poor vaccine responders causing persistence of both infection and transmission in populations. Yet despite having substantial economic and societal impact, the immune mechanisms that underlie such variability, especially in infected tissues, remain poorly understood. Here, to characterise how antihelminthic immunity at the mucosal site of infection developed in vaccinated lambs, we inserted gastric cannulae into the abomasa of three-month- and six-month-old lambs and longitudinally analysed their local immune response during subsequent challenge infection. The vaccine induced broad changes in pre-challenge abomasal immune profiles and reduced parasite burden and egg output post-challenge, regardless of age. However, age affected how vaccinated lambs responded to infection across multiple immune pathways: adaptive immune pathways were typically age-dependent. Identification of age-dependent and age-independent protective immune pathways may help refine the formulation of vaccines, and indicate specificities of pathogen-specific immunity more generally.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Tom N McNeilly
- The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK.
| | - Mairi Mitchell
- The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK
| | - Stewart T G Burgess
- The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK
| | - Alasdair J Nisbet
- The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK
| | - Jacqueline B Matthews
- The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK.,Roslin Technologies Limited, Roslin Innovation Centre, University of Edinburgh, Easter Bush, Scotland, EH25 9RG, UK
| | - Simon A Babayan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK. .,The Moredun Research Institute, Pentlands Science Park, Scotland, EH26 0PZ, UK.
| |
Collapse
|
7
|
Bunte MJM, Schots A, Kammenga JE, Wilbers RHP. Helminth Glycans at the Host-Parasite Interface and Their Potential for Developing Novel Therapeutics. Front Mol Biosci 2022; 8:807821. [PMID: 35083280 PMCID: PMC8784694 DOI: 10.3389/fmolb.2021.807821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Helminths are parasitic worms that have successfully co-evolved with their host immune system to sustain long-term infections. Their successful parasitism is mainly facilitated by modulation of the host immune system via the release of excretory-secretory (ES) products covered with glycan motifs such as Lewis X, fucosylated LDN, phosphorylcholine and tyvelose. Evidence is accumulating that these glycans play key roles in different aspects of helminth infection including interactions with immune cells for recognition and evasion of host defences. Moreover, antigenic properties of glycans can be exploited for improving the efficacy of anti-helminthic vaccines. Here, we illustrate that glycans have the potential to open new avenues for the development of novel biopharmaceuticals and effective vaccines based on helminth glycoproteins.
Collapse
|
8
|
A journey through 50 years of research relevant to the control of gastrointestinal nematodes in ruminant livestock and thoughts on future directions. Int J Parasitol 2021; 51:1133-1151. [PMID: 34774857 DOI: 10.1016/j.ijpara.2021.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022]
Abstract
This review article provides an historical perspective on some of the major research advances of relevance to ruminant livestock gastrointestinal nematode control over the last 50 years. Over this period, gastrointestinal nematode control has been dominated by the use of broad-spectrum anthelmintic drugs. Whilst this has provided unprecedented levels of successful control for many years, this approach has been gradually breaking down for more than two decades and is increasingly unsustainable which is due, at least in part, to the emergence of anthelmintic drug resistance and a number of other factors discussed in this article. We first cover the remarkable success story of the discovery and development of broad-spectrum anthelmintic drugs, the changing face of anthelmintic drug discovery research and the emergence of anthelmintic resistance. This is followed by a review of some of the major advances in the increasingly important area of non-pharmaceutical gastrointestinal nematode control including immunology and vaccine development, epidemiological modelling and some of the alternative control strategies such as breeding for host resistance, refugia-based methods and biological control. The last 50 years have witnessed remarkable innovation and success in research aiming to improve ruminant livestock gastrointestinal nematode control, particularly given the relatively small size of the research community and limited funding. In spite of this, the growing global demand for livestock products, together with the need to maximise production efficiencies, reduce environmental impacts and safeguard animal welfare - as well as specific challenges such as anthelmintic drug resistance and climate change- mean that gastrointestinal nematode researchers will need to be as innovative in the next 50 years as in the last.
Collapse
|
9
|
Perera DJ, Ndao M. Promising Technologies in the Field of Helminth Vaccines. Front Immunol 2021; 12:711650. [PMID: 34489961 PMCID: PMC8418310 DOI: 10.3389/fimmu.2021.711650] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022] Open
Abstract
Helminths contribute a larger global burden of disease than both malaria and tuberculosis. These eukaryotes have caused human infections since before our earliest recorded history (i.e.: earlier than 1200 B.C. for Schistosoma spp.). Despite the prevalence and importance of these infections, helminths are considered a neglected tropical disease for which there are no vaccines approved for human use. Similar to other parasites, helminths are complex organisms which employ a plethora of features such as: complex life cycles, chronic infections, and antigenic mimicry to name a few, making them difficult to target by conventional vaccine strategies. With novel vaccine strategies such as viral vectors and genetic elements, numerous constructs are being defined for a wide range of helminth parasites; however, it has yet to be discussed which of these approaches may be the most effective. With human trials being conducted, and a pipeline of potential anti-helminthic antigens, greater understanding of helminth vaccine-induced immunity is necessary for the development of potent vaccine platforms and their optimal design. This review outlines the conventional and the most promising approaches in clinical and preclinical helminth vaccinology.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Program of Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Program of Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- National Reference Centre for Parasitology, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
10
|
Machín C, Corripio-Miyar Y, Hernández JN, Pérez-Hernández T, Hayward AD, Wright HW, Price DRG, Matthews JB, McNeilly TN, Nisbet AJ, González JF. Cellular and humoral immune responses associated with protection in sheep vaccinated against Teladorsagia circumcincta. Vet Res 2021; 52:89. [PMID: 34134748 PMCID: PMC8207578 DOI: 10.1186/s13567-021-00960-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Due to increased anthelmintic resistance, complementary methods to drugs are necessary to control gastrointestinal nematodes (GIN). Vaccines are an environmentally-friendly and promising option. In a previous study, a Teladorsagia circumcincta recombinant sub-unit vaccine was administered to two sheep breeds with different levels of resistance against GIN. In the susceptible Canaria Sheep (CS) breed, vaccinates harboured smaller worms with fewer eggs in utero than the control group. Here, we extend this work, by investigating the cellular and humoral immune responses of these two sheep breeds following vaccination and experimental infection with T. circumcincta. In the vaccinated CS group, negative associations between antigen-specific IgA, IgG2 and Globule Leukocytes (GLs) with several parasitological parameters were established as well as a higher CD4+/CD8+ ratio than in control CS animals, suggesting a key role in the protection induced by the vaccine. In the more resistant Canaria Hair Breed (CHB) sheep the vaccine did not significantly impact on the parasitological parameters studied and none of these humoral associations were observed in vaccinated CHB lambs, although CHB had higher proportions of CD4+ and CD8+ T cells within the abomasal lymph nodes, suggesting higher mucosal T cell activation. Each of the component proteins in the vaccine induced an increase in immunoglobulin levels in vaccinated groups of each breed. However, levels of immunoglobulins to only three of the antigens (Tci-MEP-1, Tci-SAA-1, Tci-ASP-1) were negatively correlated with parasitological parameters in the CS breed and they may be, at least partially, responsible for the protective effect of the vaccine in this breed. These data could be useful for improving the current vaccine prototype.
Collapse
Affiliation(s)
- Cynthia Machín
- Facultad de Veterinaria, Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| | | | - Julia N Hernández
- Facultad de Veterinaria, Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Universidad de Las Palmas de Gran Canaria, Arucas, Spain.
| | - Tara Pérez-Hernández
- Facultad de Veterinaria, Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| | | | | | | | | | | | | | - Jorge F González
- Facultad de Veterinaria, Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| |
Collapse
|
11
|
Naranjo-Lucena A, Correia CN, Molina-Hernández V, Martínez-Moreno Á, Browne JA, Pérez J, MacHugh DE, Mulcahy G. Transcriptomic Analysis of Ovine Hepatic Lymph Node Following Fasciola hepatica Infection - Inhibition of NK Cell and IgE-Mediated Signaling. Front Immunol 2021; 12:687579. [PMID: 34122452 PMCID: PMC8194261 DOI: 10.3389/fimmu.2021.687579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 01/15/2023] Open
Abstract
Fasciola hepatica is a trematode parasite responsible for major economic losses in livestock production, and is also a food-borne zoonotic agent in developing rural regions. For years, the immunoregulatory mechanisms employed by the parasite have hampered efforts to develop a successful vaccine candidate. Given that a comprehensive understanding of the immune response to infection is needed, we investigated the gene expression changes in ovine hepatic lymph nodes after experimental infection with F. hepatica. Lymph nodes from uninfected and infected animals were processed for RNA sequencing (RNA-seq) at 16 weeks post-infection. Comparison of groups revealed 5,132 differentially-expressed genes (DEGs). An inhibition of pro-inflammatory pathways, which has previously been described during fasciolosis, was evident in our data. However, other signals previously identified in ruminant peripheral blood mononuclear cells (PBMC) or liver tissue, such as activation of TGF-β or apoptosis-related pathways were not detected. We found inhibition of some key immunological pathways, including natural killer (NK) cell activity and IgE-mediated signaling. These may point to additional some as yet unrecognized mechanisms employed by the parasite to evade the host immune response. Understanding these, and leveraging information from this and other omics studies, will be important for the development of future vaccine prototypes against this parasite.
Collapse
Affiliation(s)
| | - Carolina N Correia
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, Dublin, Ireland
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Álvaro Martínez-Moreno
- Departamento de Sanidad Animal (Parasitología), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, Dublin, Ireland
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Grace Mulcahy
- UCD School of Veterinary Medicine, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| |
Collapse
|
12
|
The potential for vaccines against scour worms of small ruminants. Int J Parasitol 2020; 50:533-553. [PMID: 32569640 DOI: 10.1016/j.ijpara.2020.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023]
Abstract
This review addresses the research landscape regarding vaccines against scour worms, particularly Trichostrongylus spp. and Teladorsagia circumcincta. The inability of past research to deliver scour-worm vaccines with reliable and reproducible efficacy has been due in part to gaps in knowledge concerning: (i) host-parasite interactions leading to development of type-2 immunity, (ii) definition of an optimal suite of parasite antigens, and (iii) rational formulation and administration to induce protective immunity against gastrointestinal nematodes (GIN) at the site of infestation. Recent 'omics' developments enable more systematic analyses. GIN genomes are reaching completion, facilitating "reverse vaccinology" approaches that have been used successfully for the Rhipicephalus australis vaccine for cattle tick, while methods for gene silencing and editing in GIN enable identification and validation of potential vaccine antigens. We envisage that any efficacious scour worm vaccine(s) would be adopted similarly to "Barbervax™" within integrated parasite management schemes. Vaccines would therefore effectively parallel the use of resistant animals, and reduce the frequency of drenching and pasture contamination. These aspects of integration, efficacy and operation require updated models and validation in the field. The conclusion of this review outlines an approach to facilitate an integrated research program.
Collapse
|
13
|
Wang T, Ma G, Ang CS, Korhonen PK, Koehler AV, Young ND, Nie S, Williamson NA, Gasser RB. High throughput LC-MS/MS-based proteomic analysis of excretory-secretory products from short-term in vitro culture of Haemonchus contortus. J Proteomics 2019; 204:103375. [PMID: 31071474 DOI: 10.1016/j.jprot.2019.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 12/27/2022]
Abstract
Parasitic nematodes of humans, animals and plants have a major, adverse impact on global health and agricultural production worldwide. To cope with their surrounding environment in and the immune attack from the host, excretory-secretory (ES) proteins are released by nematodes to orchestrate or regulate parasite-host interactions. In the present study, we characterised the ES products from short-term (12 h) in vitro culture of different developmental stages/sexes of Haemonchus contortus (one of the most important parasitic nematodes of livestock animals worldwide) using a high throughput tandem mass-spectrometry, underpinned by the most recent genomic dataset. In total, 878 unique proteins from key developmental stages/sexes (third-stage and fourth-stage larvae, and female and male adults) were identified and quantified with high confidence. Bioinformatic analyses showed noteworthy ES protein alterations during the transition from the free-living to the parasitic phase, especially for proteins which are likely involved in nutrient digestion and acquisition as well as parasite-host interactions, such as proteolytic cascade-related peptidases, glycoside hydrolases, C-type lectins and sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7 (= SCP/TAPS) proteins. Our findings provide an avenue to better explore interactive processes between the host and this highly significant parasitic nematode, to underpin the search for novel drug and vaccine targets. SIGNIFICANCE: The present study represents a comprehensive proteomic analysis of the secretome of key developmental stages/sexes of H. contortus maintained in short-term in vitro culture. High throughput LC-MS/MS analysis of ES products allowed the identification of a large repertoire of proteins (secretome) and the establishment of a new proteomic database for H. contortus. The secretome of H. contortus undergoes substantial changes during the nematode's transition from free-living to parasitic stages, suggesting a constant adaptation to different environments outside of and within the host animal. Understanding the host-parasite relationship at the molecular level could assist significantly in the development of intervention strategies (i.e. novel drugs and vaccines) against H. contortus and related nematodes.
Collapse
Affiliation(s)
- Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Shuai Nie
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
14
|
Secreted venom allergen-like proteins of helminths: Conserved modulators of host responses in animals and plants. PLoS Pathog 2018; 14:e1007300. [PMID: 30335852 PMCID: PMC6193718 DOI: 10.1371/journal.ppat.1007300] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite causing considerable damage to host tissue at the onset of parasitism, invasive helminths establish remarkably persistent infections in both animals and plants. Secretions released by these obligate parasites during host invasion are thought to be crucial for their persistence in infection. Helminth secretions are complex mixtures of molecules, most of which have unknown molecular targets and functions in host cells or tissues. Although the habitats of animal- and plant-parasitic helminths are very distinct, their secretions share the presence of a structurally conserved group of proteins called venom allergen-like proteins (VALs). Helminths abundantly secrete VALs during several stages of parasitism while inflicting extensive damage to host tissue. The tight association between the secretion of VALs and the onset of parasitism has triggered a particular interest in this group of proteins, as improved knowledge on their biological functions may assist in designing novel protection strategies against parasites in humans, livestock, and important food crops.
Collapse
|
15
|
Asojo OA, Darwiche R, Gebremedhin S, Smant G, Lozano-Torres JL, Drurey C, Pollet J, Maizels RM, Schneiter R, Wilbers RHP. Heligmosomoides polygyrus Venom Allergen-like Protein-4 (HpVAL-4) is a sterol binding protein. Int J Parasitol 2018; 48:359-369. [PMID: 29505764 PMCID: PMC5893428 DOI: 10.1016/j.ijpara.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Heligmosomoides polygyrus Venom Allergen-like Protein-4 (HpVAL-4) was produced in plants as a glycosylated protein. The crystal structure of HpVAL-4 was solved and reveals three distinct cavities. These cavities are the central cavity; the sterol-binding caveolin-binding motif (CBM); and the palmitate-binding cavity. The central cavity of Hp-VAL-4 lacks the characteristic histidines that coordinate divalent cations. Hp-VAL-4 binds sterol in vivo and in vitro.
Heligmosomoides polygyrus bakeri is a model parasitic hookworm used to study animal and human helminth diseases. During infection, the parasite releases excretory/secretory products that modulate the immune system of the host. The most abundant protein family in excretory/secretory products comprises the venom allergen-like proteins (VALs), which are members of the SCP/TAPS (sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7) superfamily. There are >30 secreted Heligmosomoides polygyrus VAL proteins (HpVALs) and these proteins are characterised by having either one or two 15 kDa CAP (cysteine-rich secretory protein (CRISP)/antigen 5/pathogenesis related-1) domains. The first known HpVAL structure, HpVAL-4, refined to 1.9 Å is reported. HpVAL-4 was produced as a homogeneously glycosylated protein in leaves of Nicotiana benthamiana infiltrated with recombinant plasmids, making this plant expression platform amenable for the production of biological products. The overall topology of HpVAL-4 is a three layered αβα sandwich between a short N-terminal loop and a C-terminal cysteine rich extension. The C-terminal cysteine rich extension has two strands stabilized by two disulfide bonds and superposes well with the previously reported extension from the human hookworm Necator americanus Ancylostoma secreted protein-2 (Na-ASP-2). The N-terminal loop is connected to alpha helix 2 via a disulfide bond previously observed in Na-ASP-2. HpVAL-4 has a central cavity that is more similar to the N-terminal CAP domain of the two CAP Na-ASP-1 from Necator americanus. Unlike Na-ASP-2, mammalian CRISP, and the C-terminal CAP domain of Na-ASP-1, the large central cavity of HpVAL-4 lacks the two histidines required to coordinate divalent cations. HpVAL-4 has both palmitate-binding and sterol-binding cavities and is able to complement the in vivo sterol export phenotype of yeast mutants lacking their endogenous CAP proteins. More studies are required to determine endogenous binding partners of HpVAL-4 and unravel the possible impact of sterol binding on immune-modulatory functions.
Collapse
Affiliation(s)
- Oluwatoyin A Asojo
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Rabih Darwiche
- Division of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH 1700 Fribourg, Switzerland
| | - Selam Gebremedhin
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jose L Lozano-Torres
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Claire Drurey
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Jeroen Pollet
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Roger Schneiter
- Division of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH 1700 Fribourg, Switzerland
| | - Ruud H P Wilbers
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
16
|
González-Hernández A, Borloo J, Peelaers I, Casaert S, Leclercq G, Claerebout E, Geldhof P. Comparative analysis of the immune responses induced by native versus recombinant versions of the ASP-based vaccine against the bovine intestinal parasite Cooperia oncophora. Int J Parasitol 2017; 48:41-49. [PMID: 28859849 DOI: 10.1016/j.ijpara.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 11/25/2022]
Abstract
The protective capacities of a native double-domain activation-associated secreted protein (ndd-ASP)-based vaccine against the cattle intestinal nematode Cooperia oncophora has previously been demonstrated. However, protection analysis upon vaccination with a recombinantly produced antigen has never been performed. Therefore, the aim of the current study was to test the protective potential of a Pichia-produced double-domain ASP (pdd-ASP)-based vaccine against C. oncophora. Additionally, we aimed to compare the cellular and humoral mechanisms underlying the vaccine-induced responses by the native (ndd-ASP) and recombinant vaccines. Immunisation of cattle with the native C. oncophora vaccine conferred significant levels of protection after an experimental challenge infection, whereas the recombinant vaccine did not. Moreover, vaccination with ndd-ASP resulted in a higher proliferation of CD4-T cells both systemically and in the small intestinal mucosa when compared with animals vaccinated with the recombinant antigen. In terms of humoral response, although both native and recombinant vaccines induced similar levels of antibodies, animals vaccinated with the native vaccine were able to raise antibodies with greater specificity towards ndd-ASP in comparison with antibodies raised by vaccination with the recombinant vaccine, suggesting a differential immune recognition towards the ndd-ASP and pdd-ASP. Finally, the observation that animals displaying antibodies with higher percentages of recognition towards ndd-ASP also exhibited the lowest egg counts suggests a potential relationship between antibody specificity and protection.
Collapse
Affiliation(s)
- Ana González-Hernández
- Laboratory of Parasitology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Sciences, Ghent University, Belgium
| | - Jimmy Borloo
- Laboratory of Parasitology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Sciences, Ghent University, Belgium
| | - Iris Peelaers
- Laboratory of Parasitology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Sciences, Ghent University, Belgium
| | - Stijn Casaert
- Laboratory of Parasitology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Sciences, Ghent University, Belgium
| | - Georges Leclercq
- Laboratory of Experimental Immunology, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Edwin Claerebout
- Laboratory of Parasitology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Sciences, Ghent University, Belgium
| | - Peter Geldhof
- Laboratory of Parasitology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Sciences, Ghent University, Belgium.
| |
Collapse
|
17
|
Matthews JB, Geldhof P, Tzelos T, Claerebout E. Progress in the development of subunit vaccines for gastrointestinal nematodes of ruminants. Parasite Immunol 2017; 38:744-753. [PMID: 27726158 DOI: 10.1111/pim.12391] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/05/2016] [Indexed: 11/30/2022]
Abstract
The global increase in anthelmintic resistant nematodes of ruminants, together with consumer concerns about chemicals in food, necessitates the development of alternative methods of control for these pathogens. Subunit recombinant vaccines are ideally placed to fill this gap. Indeed, they are probably the only valid option for the long-term control of ruminant parasitic nematodes given the increasing ubiquity of multidrug resistance in a range of worm species across the world. The development of a subunit multicellular parasite vaccine to the point of practical application would be a groundbreaking step in the control of these important endemic infections of livestock. This review summarizes the current status of subunit vaccine development for a number of important gastrointestinal nematodes of cattle and sheep, with a focus on the limitations and problems encountered thus far, and suggestions as to how these hurdles might be overcome.
Collapse
Affiliation(s)
- J B Matthews
- Vaccines Division, Moredun Research Institute, Pentlands Science Park, Edinburgh, UK
| | - P Geldhof
- Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium
| | - T Tzelos
- Vaccines Division, Moredun Research Institute, Pentlands Science Park, Edinburgh, UK
| | - E Claerebout
- Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium
| |
Collapse
|