1
|
Jung J, Choi H, Lee Y, Kim Y, Taniguchi T, Watanabe K, Choi M, Jang JH, Chung H, Kim D, Kim Y, Cho C. Defect Passivation of 2D Semiconductors by Fixating Chemisorbed Oxygen Molecules via h-BN Encapsulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310197. [PMID: 38493313 PMCID: PMC11165525 DOI: 10.1002/advs.202310197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/25/2024] [Indexed: 03/18/2024]
Abstract
Hexagonal boron nitride (h-BN) is a key ingredient for various 2D van der Waals heterostructure devices, but the exact role of h-BN encapsulation in relation to the internal defects of 2D semiconductors remains unclear. Here, it is reported that h-BN encapsulation greatly removes the defect-related gap states by stabilizing the chemisorbed oxygen molecules onto the defects of monolayer WS2 crystals. Electron energy loss spectroscopy (EELS) combined with theoretical analysis clearly confirms that the oxygen molecules are chemisorbed onto the defects of WS2 crystals and are fixated by h-BN encapsulation, with excluding a possibility of oxygen molecules trapped in bubbles or wrinkles formed at the interface between WS2 and h-BN. Optical spectroscopic studies show that h-BN encapsulation prevents the desorption of oxygen molecules over various excitation and ambient conditions, resulting in a greatly lowered and stabilized free electron density in monolayer WS2 crystals. This suppresses the exciton annihilation processes by two orders of magnitude compared to that of bare WS2. Furthermore, the valley polarization becomes robust against the various excitation and ambient conditions in the h-BN encapsulated WS2 crystals.
Collapse
Affiliation(s)
- Jin‐Woo Jung
- Department of Physics and ChemistryDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988South Korea
| | - Hyeon‐Seo Choi
- Department of Physics and ChemistryDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988South Korea
| | - Young‐Jun Lee
- Department of Physics and ChemistryDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988South Korea
| | - Youngjae Kim
- School of PhysicsKorea Institute for Advanced Study (KIAS)Seoul02455South Korea
| | - Takashi Taniguchi
- International Center for Materials NanoarchitectonicsNational Institute for Materials ScienceTsukuba305‐0044Japan
| | - Kenji Watanabe
- Research Center for Functional MaterialsNational Institute for Materials ScienceTsukuba305‐0044Japan
| | - Min‐Yeong Choi
- Electron Microscopy and Spectroscopy TeamKorea Basic Science InstituteDaejeon34133South Korea
| | - Jae Hyuck Jang
- Electron Microscopy and Spectroscopy TeamKorea Basic Science InstituteDaejeon34133South Korea
- Graduate School of Analytic Science and TechnologyChungnam National UniversityDaejeon34134South Korea
| | - Hee‐Suk Chung
- Electron Microscopy and Spectroscopy TeamKorea Basic Science InstituteDaejeon34133South Korea
| | - Dohun Kim
- Department of Physics and ChemistryDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988South Korea
| | - Youngwook Kim
- Department of Physics and ChemistryDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988South Korea
| | - Chang‐Hee Cho
- Department of Physics and ChemistryDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988South Korea
| |
Collapse
|
2
|
Xu M, Ji H, Zheng L, Li W, Wang J, Wang H, Luo L, Lu Q, Gan X, Liu Z, Wang X, Huang W. Reconfiguring nucleation for CVD growth of twisted bilayer MoS 2 with a wide range of twist angles. Nat Commun 2024; 15:562. [PMID: 38233382 PMCID: PMC10794196 DOI: 10.1038/s41467-023-44598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024] Open
Abstract
Twisted bilayer (TB) transition metal dichalcogenides (TMDCs) beyond TB-graphene are considered an ideal platform for investigating condensed matter physics, due to the moiré superlattices-related peculiar band structures and distinct electronic properties. The growth of large-area and high-quality TB-TMDCs with wide twist angles would be significant for exploring twist angle-dependent physics and applications, but remains challenging to implement. Here, we propose a reconfiguring nucleation chemical vapor deposition (CVD) strategy for directly synthesizing TB-MoS2 with twist angles from 0° to 120°. The twist angles-dependent Moiré periodicity can be clearly observed, and the interlayer coupling shows a strong relationship to the twist angles. Moreover, the yield of TB-MoS2 in bilayer MoS2 and density of TB-MoS2 are significantly improved to 17.2% and 28.9 pieces/mm2 by tailoring gas flow rate and molar ratio of NaCl to MoO3. The proposed reconfiguring nucleation approach opens an avenue for the precise growth of TB-TMDCs for both fundamental research and practical applications.
Collapse
Affiliation(s)
- Manzhang Xu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongjia Ji
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jing Wang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Hanxin Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lei Luo
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qianbo Lu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xuetao Gan
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China.
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China.
| |
Collapse
|
3
|
Lin H, Zhang Z, Zhang H, Lin KT, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu CW, Jia B. Engineering van der Waals Materials for Advanced Metaphotonics. Chem Rev 2022; 122:15204-15355. [PMID: 35749269 DOI: 10.1021/acs.chemrev.2c00048] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.
Collapse
Affiliation(s)
- Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Zhenfang Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Huihui Zhang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Keng-Te Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yao Liang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yang Fu
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Alan Kin Tak Lau
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
4
|
Jeong I, Cho K, Yun S, Shin J, Kim J, Kim GT, Lee T, Chung S. Tailoring the Electrical Characteristics of MoS 2 FETs through Controllable Surface Charge Transfer Doping Using Selective Inkjet Printing. ACS NANO 2022; 16:6215-6223. [PMID: 35377600 DOI: 10.1021/acsnano.2c00021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface charge transfer doping (SCTD) has been regarded as an effective approach to tailor the electrical characteristics of atomically thin transition metal dichalcogenides (TMDs) in a nondestructive manner due to their two-dimensional nature. However, the difficulty of achieving rationally controlled SCTD on TMDs via conventional doping methods, such as solution immersion and dopant vaporization, has impeded the realization of practical optoelectronic and electronic devices. Here, we demonstrate controllable SCTD of molybdenum disulfide (MoS2) field-effect transistors using inkjet-printed benzyl viologen (BV) as an n-type dopant. By adjusting the BV concentration and the areal coverage of inkjet-printed BV dopants, controllable SCTD results in BV-doped MoS2 FETs with elaborately tailored electrical performance. Specifically, the suggested solvent system creates well-defined droplets of BV ink having a volume of ∼2 pL, which allows the high spatial selectivity of SCTD onto the MoS2 channels by depositing the BV dopant on demand. Our inkjet-printed SCTD method provides a feasible solution for achieving controllable doping to modulate the electrical and optical performances of TMD-based devices.
Collapse
Affiliation(s)
- Inho Jeong
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea
- School of Electrical Engineering, Korea University, Seoul 02841, Korea
| | - Kyungjune Cho
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Seobin Yun
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Jiwon Shin
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Jaeyoung Kim
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Gyu Tae Kim
- School of Electrical Engineering, Korea University, Seoul 02841, Korea
| | - Takhee Lee
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Seungjun Chung
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
5
|
Liang X, Qin C, Gao Y, Han S, Zhang G, Chen R, Hu J, Xiao L, Jia S. Reversible engineering of spin-orbit splitting in monolayer MoS 2via laser irradiation under controlled gas atmospheres. NANOSCALE 2021; 13:8966-8975. [PMID: 33970179 DOI: 10.1039/d1nr00019e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monolayer transition metal dichalcogenides, manifesting strong spin-orbit coupling combined with broken inversion symmetry, lead to coupling of spin and valley degrees of freedom. These unique features make them highly interesting for potential spintronic and valleytronic applications. However, engineering spin-orbit coupling at room temperature as demanded after device fabrication is still a great challenge for their practical applications. Here we reversibly engineer the spin-orbit coupling of monolayer MoS2 by laser irradiation under controlled gas environments, where the spin-orbit splitting has been effectively regulated within 140 meV to 200 meV. Furthermore, the photoluminescence intensity of the B exciton can be reversibly manipulated over 2 orders of magnitude. We attribute the engineering of spin-orbit splitting to the reduction of binding energy combined with band renormalization, originating from the enhanced absorption coefficient of monolayer MoS2 under inert gases and subsequently the significantly boosted carrier concentrations. Reflectance contrast spectra during the engineering stages provide unambiguous proof to support our interpretation. Our approach offers a new avenue to actively control the spin-orbit splitting in transition metal dichalcogenide materials at room temperature and paves the way for designing innovative spintronic devices.
Collapse
Affiliation(s)
- Xilong Liang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yan Gao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China and Department of Physics, Shanxi Datong University, Datong, 037009, China
| | - Shuangping Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guofeng Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ruiyun Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianyong Hu
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
6
|
Application-Oriented Growth of a Molybdenum Disulfide (MoS 2) Single Layer by Means of Parametrically Optimized Chemical Vapor Deposition. MATERIALS 2020; 13:ma13122786. [PMID: 32575719 PMCID: PMC7344844 DOI: 10.3390/ma13122786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 11/16/2022]
Abstract
In the 2D material framework, molybdenum disulfide (MoS2) was originally studied as an archetypical transition metal dichalcogenide (TMD) material. The controlled synthesis of large-area and high-crystalline MoS2 remains a challenge for distinct practical applications from electronics to electrocatalysis. Among the proposed methods, chemical vapor deposition (CVD) is a promising way for synthesizing high-quality MoS2 from isolated domains to a continuous film because of its high flexibility. Herein, we report on a systematic study of the effects of growth pressure, temperature, time, and vertical height between the molybdenum trioxide (MoO3) source and the substrate during the CVD process that influence the morphology, domain size, and uniformity of thickness with controlled parameters over a large scale. The substrate was pretreated with perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS) seed molecule that promoted the layer growth of MoS2. Further, we characterized the as-grown MoS2 morphologies, layer quality, and physical properties by employing scanning electron microscopy (SEM), Raman spectroscopy, and photoluminescence (PL). Our experimental findings demonstrate the effectiveness and versatility of the CVD approach to synthesize MoS2 for various target applications.
Collapse
|
7
|
Wu C, Zhang J, Tong X, Yu P, Xu JY, Wu J, Wang ZM, Lou J, Chueh YL. A Critical Review on Enhancement of Photocatalytic Hydrogen Production by Molybdenum Disulfide: From Growth to Interfacial Activities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900578. [PMID: 31165564 DOI: 10.1002/smll.201900578] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/23/2019] [Indexed: 06/09/2023]
Abstract
Ultrathin 2D molybdenum disulfide (MoS2 ), which is the flagship of 2D transition-metal dichalcogenide nanomaterials, has drawn much attention in the last few years. 2D MoS2 has been banked as an alternative to platinum for highly active hydrogen evolution reaction because of its low cost, high surface-to-volume ratio, and abundant active sites. However, when MoS2 is used directly as a photocatalyst, contrary to public expectation, it still performs poorly due to lateral size, high recombination ratio of excitons, and low optical cross section. Besides, simply compositing MoS2 as a cocatalyst with other semiconductors cannot satisfy the practical application, which stimulates the pursual of a comprehensive insight into recent advances in synthesis, properties, and enhanced hydrogen production of MoS2 . Therefore, in this Review, emphasis is given to synthetic methods, phase transitions, tunable optical properties, and interfacial engineering of 2D MoS2 . Abundant ways of band edge tuning, structural modification, and phase transition are addressed, which can generate the neoteric photocatalytic systems. Finally, the main challenges and opportunities with respect to MoS2 being a cocatalyst and coherent light-matter interaction of MoS2 in photocatalytic systems are proposed.
Collapse
Affiliation(s)
- Cuo Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jing Zhang
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Xin Tong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Peng Yu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jing-Yin Xu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jiang Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jun Lou
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, ROC
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
| |
Collapse
|
8
|
Jo S, Jung JW, Baik J, Kang JW, Park IK, Bae TS, Chung HS, Cho CH. Surface-diffusion-limited growth of atomically thin WS 2 crystals from core-shell nuclei. NANOSCALE 2019; 11:8706-8714. [PMID: 31017154 DOI: 10.1039/c9nr01594a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Atomically thin transition metal dichalcogenides (TMDs) have recently attracted great attention since the unique and fascinating physical properties have been found in various TMDs, implying potential applications in next-generation devices. The progress towards developing new functional and high-performance devices based on TMDs, however, is limited by the difficulty in producing large-area monolayer TMDs due to a lack of knowledge of the growth processes of monolayer TMDs. In this work, we have investigated the growth processes of monolayer WS2 crystals using a thermal chemical vapor deposition method, in which the growth conditions were adjusted in a systematic manner. It was found that, after forming WO3-WS2 core-shell nanoparticles as nucleation sites on a substrate, the growth of three-dimensional WS2 islands proceeds by ripening and crystallization processes. Lateral growth of monolayer WS2 crystals subsequently occurs by the surface diffusion process of adatoms toward the step edge of the three-dimensional WS2 islands. Our results provide understanding of the growth processes of monolayer WS2 by using chemical vapor deposition methods.
Collapse
Affiliation(s)
- Sunghwan Jo
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lu D, Zhou Q, Li F, Li X, Lu G. Influence of interlayer interactions on the relaxation dynamics of excitons in ultrathin MoS 2. NANOSCALE ADVANCES 2019; 1:1186-1192. [PMID: 36133182 PMCID: PMC9473163 DOI: 10.1039/c8na00086g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/17/2018] [Indexed: 06/16/2023]
Abstract
Interlayer interactions play a crucial role in modifying the optical and electronic properties of layered materials in a complex way, which is of key importance for the performance of the optoelectronic devices based on these novel materials. In this contribution, we performed an investigation into the underlying influence of interlayer interactions on the relaxation dynamics of excitons in ultrathin MoS2 using the femtosecond transient absorption spectroscopy technique. The experimental results manifest that interlayer interactions in bilayer MoS2 can largely facilitate the exciton-phonon scattering process and inhibit the radiative recombination process, which consequently accelerates the relaxation rate of A excitons and results in the decrease of the relaxation lifetime of A excitons in bilayer MoS2.
Collapse
Affiliation(s)
- Dongxiao Lu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University 2699 Qianjin Street Changchun 130012 China
| | - Qiang Zhou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Fangfei Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Xiaowei Li
- Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education 5268 Renmin Street Changchun 130024 China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University 2699 Qianjin Street Changchun 130012 China
| |
Collapse
|
10
|
Boandoh S, Choi SH, Park JH, Park SY, Bang S, Jeong MS, Lee JS, Kim HJ, Yang W, Choi JY, Kim SM, Kim KK. A Novel and Facile Route to Synthesize Atomic-Layered MoS 2 Film for Large-Area Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701306. [PMID: 28834243 DOI: 10.1002/smll.201701306] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/06/2017] [Indexed: 06/07/2023]
Abstract
High-quality and large-area molybdenum disulfide (MoS2 ) thin film is highly desirable for applications in large-area electronics. However, there remains a challenge in attaining MoS2 film of reasonable crystallinity due to the absence of appropriate choice and control of precursors, as well as choice of suitable growth substrates. Herein, a novel and facile route is reported for synthesizing few-layered MoS2 film with new precursors via chemical vapor deposition. Prior to growth, an aqueous solution of sodium molybdate as the molybdenum precursor is spun onto the growth substrate and dimethyl disulfide as the liquid sulfur precursor is supplied with a bubbling system during growth. To supplement the limiting effect of Mo (sodium molybdate), a supplementary Mo is supplied by dissolving molybdenum hexacarbonyl (Mo(CO)6 ) in the liquid sulfur precursor delivered by the bubbler. By precisely controlling the amounts of precursors and hydrogen flow, full coverage of MoS2 film is readily achievable in 20 min. Large-area MoS2 field effect transistors (FETs) fabricated with a conventional photolithography have a carrier mobility as high as 18.9 cm2 V-1 s-1 , which is the highest reported for bottom-gated MoS2 -FETs fabricated via photolithography with an on/off ratio of ≈105 at room temperature.
Collapse
Affiliation(s)
- Stephen Boandoh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Soo Ho Choi
- Department of Physics, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Ji-Hoon Park
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - So Young Park
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Seungho Bang
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mun Seok Jeong
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Joo Song Lee
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), San101 Eunha-Ri, Bongdong-Eup, Wanju-Gun, Jeollabuk-Do, 565-902, Republic of Korea
| | - Hyeong Jin Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), San101 Eunha-Ri, Bongdong-Eup, Wanju-Gun, Jeollabuk-Do, 565-902, Republic of Korea
| | - Woochul Yang
- Department of Physics, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Jae-Young Choi
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Soo Min Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), San101 Eunha-Ri, Bongdong-Eup, Wanju-Gun, Jeollabuk-Do, 565-902, Republic of Korea
| | - Ki Kang Kim
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| |
Collapse
|
11
|
Liu Y, Bo M, Yang X, Zhang P, Sun CQ, Huang Y. Size modulation electronic and optical properties of phosphorene nanoribbons: DFT–BOLS approximation. Phys Chem Chem Phys 2017; 19:5304-5309. [DOI: 10.1039/c6cp08011a] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DFT and BOLS approximations were carried out to study the electronic and optical properties of different sizes of black phosphorus nanoribbons (PNRs) with either zigzag- or armchair-terminated edges.
Collapse
Affiliation(s)
- Yonghui Liu
- Key Laboratory of Low-Dimensional Materials and Application Technologies
- (Ministry of Education)
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices
- School of Materials Science and Engineering
- Xiangtan University
| | - Maolin Bo
- College of Mechanical and Electrical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Xuexian Yang
- Department of Physics
- Jishou University
- Jishou 416000
- China
| | - PanPan Zhang
- Key Laboratory of Low-Dimensional Materials and Application Technologies
- (Ministry of Education)
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices
- School of Materials Science and Engineering
- Xiangtan University
| | - Chang Q. Sun
- NOVITAS
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yongli Huang
- Key Laboratory of Low-Dimensional Materials and Application Technologies
- (Ministry of Education)
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices
- School of Materials Science and Engineering
- Xiangtan University
| |
Collapse
|