1
|
Ahuja G, Arauz YLA, van Heuvelen MJG, Kortholt A, Oroszi T, van der Zee EA. The effects of whole-body vibration therapy on immune and brain functioning: current insights in the underlying cellular and molecular mechanisms. Front Neurol 2024; 15:1422152. [PMID: 39144715 PMCID: PMC11323691 DOI: 10.3389/fneur.2024.1422152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Whole-body vibration (WBV) therapy is a way of passive exercise in which subjects are exposed to mild and well-controlled mechanical vibrations through a vibrating platform. For a long time, studies have focused on the effects and applications of WBV to enhance musculoskeletal performance in athletes and patients suffering from musculoskeletal disorders. Recent evidence points toward the positive effect of WBV on the brain and its therapeutic potential in brain disorders. Research being done in the field gradually reveals cellular and molecular mechanisms underlying WBV affecting the body and brain. Particularly, the influence of WBV on immune and brain function is a growing field that warrants an up-to-date and integrated review. Immune function is closely intertwined with brain functioning and plays a significant role in various brain disorders. Dysregulation of the immune response is linked to conditions such as neuroinflammation, neurodegenerative diseases, and mood disorders, highlighting the crucial connection between the immune system and the brain. This review aims to explore the impact of WBV on the cellular and molecular pathways involved in immune and brain functions. Understanding the effects of WBV at a cellular and molecular level will aid in optimizing WBV protocols to improve its therapeutic potential for brain disorders.
Collapse
Affiliation(s)
- Gargi Ahuja
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Y. Laurisa Arenales Arauz
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussel, Belgium
| | - Marieke J. G. van Heuvelen
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Tamás Oroszi
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Eddy A. van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Sun L, Li Y, Wang D, Hong X. SESN2 attenuates sevoflurane-induced cognitive impairment and neuroinflammation in rats. Exp Brain Res 2024; 242:375-384. [PMID: 38129329 DOI: 10.1007/s00221-023-06757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Long-term use of sevoflurane, an inhalation anesthetic, could negatively impact cognitive function. Current studies have suggested that cognitive impairment induced by sevoflurane may be associated with neuroinflammation. Sestrin2 (SESN2), which belongs to a family of stress-inducible genes, has been reported to exert neuroprotective effects against brain injury. However, its role and underlying mechanisms in sevoflurane-induced cognitive dysfunction in aged rats remain unknown. A sevoflurane-induced aging rat injury model with or without SESN2 overexpression was constructed. The learning and memory abilities of rats were evaluated by the MWM test. ELISA assay and qRT-PCR were conducted to analyze the level of pro-inflammatory factors in the hippocampus. Levels of oxidative stress markers were measured by DHE staining or kit methods. Neuronal apoptosis in the hippocampus was detected using TUNEL assay. Expression of proteins were analyzed by western blot. Sevoflurane exposure caused elevated protein level of SESN2 in hippocampus and cognitive impairment of aged rats. Importantly, overexpression of SESN2 alleviated sevoflurane-induced cognitive dysfunction and inhibited the production of pro-inflammatory factors, oxidative stress, and neuronal apoptosis in the hippocampus. Furthermore, SESN2 overexpression suppressed NLRP3 inflammasome activation induced by sevoflurane. These findings suggested that SESN2 could exert neuroprotective against sevoflurane-induced nerve injury of aged rats through anti-oxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Li Sun
- Department of Anesthesiology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 1, Huanghe West Road, Huaiyin District, Huai'an, 223000, Jiangsu, China
| | - Yangyang Li
- Department of Anesthesiology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 1, Huanghe West Road, Huaiyin District, Huai'an, 223000, Jiangsu, China
| | - Daliang Wang
- Department of Anesthesiology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 1, Huanghe West Road, Huaiyin District, Huai'an, 223000, Jiangsu, China
| | - Xiaoya Hong
- Department of Anesthesiology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 1, Huanghe West Road, Huaiyin District, Huai'an, 223000, Jiangsu, China.
| |
Collapse
|
3
|
Ma Y, Chen X, Xu R, Niu H, Huang Q, Zhou Y. Lactiplantibacillus plantarum fermentation enhanced the protective effect of kiwifruit on intestinal injury in rats: Based on mitochondrial morphology and function. Food Chem X 2023; 20:101025. [PMID: 38144866 PMCID: PMC10739764 DOI: 10.1016/j.fochx.2023.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Fermented foods have protective effects on body health. In our previously study, we found Lactiplantibacillus plantarum fermentation enhanced antioxidant activity of kiwifruit in vitro digestion. Then, in this work we explored the protective effect of fermented kiwi on intestinal injury induced by acute lipopolysaccharide (LPS) stress. Compared to non-fermented kiwi pulp (KP), Lactiplantibacillus plantarum fermented kiwi pulp (FKP-LP) contained more peptides, hormones and vitamins contents, lesser nucleic acid and carbohydrate contents. FKP-LP could relieve the intestinal injury by improving morphological of tight junction and upregulating tight junction proteins mRNA expression. Fermented kiwi maintained the mitochondrial morphology, mitochondrial respiratory function, and mitochondrial homeostasis, and relieved the LPS induced injury by regulating the contents of energy substances, and the respiratory chain complex enzyme activity through the pathway of AMPK and its downstream factors including PGC-1α, NRF1, NRF2, TFAM, and ULK2.
Collapse
Affiliation(s)
- Yun Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Xiao Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Ruiyu Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Hongyan Niu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Qun Huang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Yan Zhou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
4
|
Feng L, Li B, Cai M, Zhang Z, Zhao Y, Yong SS, Tian Z. Resistance exercise alleviates the prefrontal lobe injury and dysfunction by activating SESN2/AMPK/PGC-1α signaling pathway and inhibiting oxidative stress and inflammation in mice with myocardial infarction. Exp Neurol 2023; 370:114559. [PMID: 37788754 DOI: 10.1016/j.expneurol.2023.114559] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVES Myocardial infarction (MI) induces inflammatory response and oxidative stress in the brain, which would be one of the causes of cardiac dysfunction. Exercise training is viewed as a feasible strategy to improve cardiac function of the infarcted heart. The aim of this study was to investigate whether exercise training could alleviate MI-induced prefrontal lobe injury via activating Sestrin2 (SESN2) signaling and inhibiting oxidative stress and inflammation. METHODS Male C57BL/6 mice were divided into five groups: control group (CON), aerobic exercise group (AE), resistance exercise group (RE), whole-body vibration group (WBV) and electrical stimulation group (ES); and three groups: sham-operated group (S), sedentary MI group (MI) and MI with resistance exercise group (MRE). After four weeks of training, sensorimotor function, spatial learning, long-term and spatial memory, and cardiac function were detected. Then, mice were euthanized, and the prefrontal areas were separated for HE, Nissl, SESN2, microtubule-associated protein 2 (MAP2), neuron-specific nucleoprotein (NeuN), and TUNEL staining. Activation of SESN2/adenosine monophosphate-activated protein kinase (AMPK)/peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α) signaling pathway and expression of proteins related to oxidative stress, inflammation and apoptosis in the prefrontal lobe were detected by western blotting. RESULTS Different types of exercise training all activated the SESN2/AMPK/PGC-1α signaling pathway, and the effect of RE is the best. RE improved sensorimotor, learning, and memory impairments, increased the expressions of antioxidant, anti-inflammatory and anti-apoptotic proteins, reduced oxidative stress, inflammation and apoptosis, ultimately alleviated the prefrontal lobe injury and dysfunction in mice with MI. CONCLUSION RE alleviates MI-indued prefrontal lobe injury and dysfunction by inhibiting the levels of oxidative stress, inflammation and apoptosis, partially via activating SESN2/AMPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Lili Feng
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310058, China; Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China.
| | - Bowen Li
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310058, China.
| | - Mengxin Cai
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Zezhou Zhang
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Yifang Zhao
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Su Sean Yong
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310058, China
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
5
|
Zhang X, Luo Z, Li J, Lin Y, Li Y, Li W. Sestrin2 in diabetes and diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1274686. [PMID: 37920252 PMCID: PMC10619741 DOI: 10.3389/fendo.2023.1274686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes is a global health problem which is accompanied with multi-systemic complications. It is of great significance to elucidate the pathogenesis and to identify novel therapies of diabetes and diabetic complications. Sestrin2, a stress-inducible protein, is primarily involved in cellular responses to various stresses. It plays critical roles in regulating a series of cellular events, such as oxidative stress, mitochondrial function and endoplasmic reticulum stress. Researches investigating the correlations between Sestrin2, diabetes and diabetic complications are increasing in recent years. This review incorporates recent findings, demonstrates the diverse functions and regulating mechanisms of Sestrin2, and discusses the potential roles of Sestrin2 in the pathogenesis of diabetes and diabetic complications, hoping to highlight a promising therapeutic direction.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zirui Luo
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Jiahong Li
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yaxuan Lin
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yu Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Han W, Zhang E, Tian Y, Wang S, Chen Y. Adenosine receptor A1 enhanced mitochondrial biogenesis and exerted neuroprotection after cerebral ischemia through PGC-1α. Exp Brain Res 2023; 241:1471-1488. [PMID: 37081178 DOI: 10.1007/s00221-023-06613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
Ischemic stroke is a common cause of morbidity and mortality worldwide. The current treatment fails to achieve satisfactory results, because interventional therapy as first-line treatment management has a strict time window. In recent years, a large number of studies have confirmed that adenosine, as an inhibitory neurotransmitter, has a protective effect on cerebral ischemic injury. Nevertheless, direct administration of adenosine has many side effects. Previous studies showed that adenosine exerted neuroprotective effects mainly through adenosine receptor A1 (A1 receptor). Therefore, further study on the mechanism of A 1 receptor induced neuroprotection may find new targets for stroke treament. Mitochondrial biogenesis (MB) is a therapeutic target for ischemic stroke, and the nuclear-encoded peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) is a major regulator of MB. However, the influence of A1 receptor on MB and PGC-1α is unclear. In this study, using the middle cerebral artery occlusion (MCAO) model of mice, we evaluated the temporal and spatial effects of A1 receptor after ischemic stroke and verified the neuroprotection of A1 receptor. Neurological scores were used to assess functional changes in mice. At the same time, we observed the effect of activating A1 receptor on MB and PGC-1α, and the effect of knockdown PGC-1α on A1 receptor induced MB in vitro. WB and immunofluorescence were used to detect relevant indicators of MB. In addition, we downregulated PGC-1α in vivo to observe the effects on A1 receptor induced MB and neuroprotection. The findings indicated that A1 receptor was increased and mainly expressed on neurons in the penumbra, further activated A1 receptor after stroke had neuroprotection. In vitro, activation of A1 promotes MB and increases the expression level of PGC-1α, while downregulation of PGC-1α partially reverses the effect of A1 receptor after OGD/R. Down regulation of PGC-1α in the penumbra neurons can reverse the effects of activation of A1 receptor on MB and neuroprotection. Taken together, these findings indicated that A1receptor promotes MB and improves neurological function after ischemic stroke via PGC-1α.
Collapse
Affiliation(s)
- Wei Han
- Department of CT Diagnosis, The Affiliated Hospital of Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Erfei Zhang
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Hospital of Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yiyuan Tian
- Department of Physiology Teaching and Research Office, The Medical School of Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Yahui Chen
- Department of Physiology Teaching and Research Office, The Medical School of Yan'an University, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
7
|
Schulz R, Schlüter KD. Importance of Mitochondria in Cardiac Pathologies: Focus on Uncoupling Proteins and Monoamine Oxidases. Int J Mol Sci 2023; 24:ijms24076459. [PMID: 37047436 PMCID: PMC10095304 DOI: 10.3390/ijms24076459] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
On the one hand, reactive oxygen species (ROS) are involved in the onset and progression of a wide array of diseases. On the other hand, these are a part of signaling pathways related to cell metabolism, growth and survival. While ROS are produced at various cellular sites, in cardiomyocytes the largest amount of ROS is generated by mitochondria. Apart from the electron transport chain and various other proteins, uncoupling protein (UCP) and monoamine oxidases (MAO) have been proposed to modify mitochondrial ROS formation. Here, we review the recent information on UCP and MAO in cardiac injuries induced by ischemia-reperfusion (I/R) as well as protection from I/R and heart failure secondary to I/R injury or pressure overload. The current data in the literature suggest that I/R will preferentially upregulate UCP2 in cardiac tissue but not UCP3. Studies addressing the consequences of such induction are currently inconclusive because the precise function of UCP2 in cardiac tissue is not well understood, and tissue- and species-specific aspects complicate the situation. In general, UCP2 may reduce oxidative stress by mild uncoupling and both UCP2 and UCP3 affect substrate utilization in cardiac tissue, thereby modifying post-ischemic remodeling. MAOs are important for the physiological regulation of substrate concentrations. Upon increased expression and or activity of MAOs, however, the increased production of ROS and reactive aldehydes contribute to cardiac alterations such as hypertrophy, inflammation, irreversible cardiomyocyte injury, and failure.
Collapse
|
8
|
Sestrin2 as a Protective Shield against Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24054880. [PMID: 36902310 PMCID: PMC10003517 DOI: 10.3390/ijms24054880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 03/06/2023] Open
Abstract
A timely and adequate response to stress is inherently present in each cell and is important for maintaining the proper functioning of the cell in changing intracellular and extracellular environments. Disruptions in the functioning or coordination of defense mechanisms against cellular stress can reduce the tolerance of cells to stress and lead to the development of various pathologies. Aging also reduces the effectiveness of these defense mechanisms and results in the accumulation of cellular lesions leading to senescence or death of the cells. Endothelial cells and cardiomyocytes are particularly exposed to changing environments. Pathologies related to metabolism and dynamics of caloric intake, hemodynamics, and oxygenation, such as diabetes, hypertension, and atherosclerosis, can overwhelm endothelial cells and cardiomyocytes with cellular stress to produce cardiovascular disease. The ability to cope with stress depends on the expression of endogenous stress-inducible molecules. Sestrin2 (SESN2) is an evolutionary conserved stress-inducible cytoprotective protein whose expression is increased in response to and defend against different types of cellular stress. SESN2 fights back the stress by increasing the supply of antioxidants, temporarily holding the stressful anabolic reactions, and increasing autophagy while maintaining the growth factor and insulin signaling. If the stress and the damage are beyond repair, SESN2 can serve as a safety valve to signal apoptosis. The expression of SESN2 decreases with age and its levels are associated with cardiovascular disease and many age-related pathologies. Maintaining sufficient levels or activity of SESN2 can in principle prevent the cardiovascular system from aging and disease.
Collapse
|
9
|
Yang J, Guo Q, Wang L, Yu S. POU Domain Class 2 Transcription Factor 2 Inhibits Ferroptosis in Cerebral Ischemia Reperfusion Injury by Activating Sestrin2. Neurochem Res 2023; 48:658-670. [PMID: 36306010 DOI: 10.1007/s11064-022-03791-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 10/12/2022] [Indexed: 02/07/2023]
Abstract
Cerebral ischemia reperfusion injury (CIRI) is the commonest cause of brain dysfunction. Up-regulation of POU domain class 2 transcription factor 2 (POU2F2) has been reported in patients with cerebral ischemia, while the role of POU2F2 in CIRI remains elusive. Middle cerebral artery occlusion/reperfusion (MCAO/R) in mice and oxygen and glucose deprivation/reperfusion (OGD/R) in mouse primary cortical neurons were used as models of CIRI injury in vivo and in vitro. Lentivirus-mediated POU2F2 knockdown further impaired CIRI induced by MCAO/R in mice, which was accompanied by increased-neurological deficits, cerebral infarct volume and neuronal loss. Our evidence suggested that POU2F2 deficiency deteriorated oxidative stress and ferroptosis according to the phenomenon such as the abatement of SOD, GSH, glutathione peroxidase 4 (GPX4) activity and accumulation of ROS, lipid ROS, 4-hydroxynonenal (4-HNE) and MDA. In vivo, primary cortical neurons with POU2F2 knockdown also showed worse neuronal damage, oxidative stress and ferroptosis. Sestrin2 (Sesn2) was reported as a neuroprotection gene and involved in ferroptosis mechanism. Up-regulation of Sesn2 was observed in the ischemic penumbra and OGD/R-induced neuronal cells. Further, we proved that POU2F2, as a transcription factor, could bind to Sesn2 promoter and positively regulate its expression. Sesn2 overexpression relieved oxidative stress and ferroptosis induced by POU2F2 knockdown in OGD/R-treated neurons. This research demonstrated that CIRI induced a compensatory increase of POU2F2 and Sesn2. Down-regulated POU2F2 exacerbated CIRI through the acceleration of oxidative stress and ferroptosis possibly by decreasing Sesn2 expression, which offers new sights into therapeutic mechanisms for CIRI.
Collapse
Affiliation(s)
- Jinghui Yang
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qian Guo
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin Province, China
| | - Lu Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin Province, China
| | - Shan Yu
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin Province, China.
| |
Collapse
|
10
|
Ala M. Sestrin2 Signaling Pathway Regulates Podocyte Biology and Protects against Diabetic Nephropathy. J Diabetes Res 2023; 2023:8776878. [PMID: 36818747 PMCID: PMC9937769 DOI: 10.1155/2023/8776878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Sestrin2 regulates cell homeostasis and is an upstream signaling molecule for several signaling pathways. Sestrin2 leads to AMP-activated protein kinase- (AMPK-) and GTPase-activating protein activity toward Rags (GATOR) 1-mediated inhibition of mammalian target of rapamycin complex 1 (mTORC1), thereby enhancing autophagy. Sestrin2 also improves mitochondrial biogenesis via AMPK/Sirt1/peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) signaling pathway. Blockade of ribosomal protein synthesis and augmentation of autophagy by Sestrin2 can prevent misfolded protein accumulation and attenuate endoplasmic reticulum (ER) stress. In addition, Sestrin2 enhances P62-mediated autophagic degradation of Keap1 to release nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 release by Sestrin2 vigorously potentiates antioxidant defense in diabetic nephropathy. Impaired autophagy and mitochondrial biogenesis, severe oxidative stress, and ER stress are all deeply involved in the development and progression of diabetic nephropathy. It has been shown that Sestrin2 expression is lower in the kidney of animals and patients with diabetic nephropathy. Sestrin2 knockdown aggravated diabetic nephropathy in animal models. In contrast, upregulation of Sestrin2 enhanced autophagy, mitophagy, and mitochondrial biogenesis and suppressed oxidative stress, ER stress, and apoptosis in diabetic nephropathy. Consistently, overexpression of Sestrin2 ameliorated podocyte injury, mesangial proliferation, proteinuria, and renal fibrosis in animal models of diabetic nephropathy. By suppressing transforming growth factor beta (TGF-β)/Smad and Yes-associated protein (YAP)/transcription enhancer factor 1 (TEF1) signaling pathways in experimental models, Sestrin2 hindered epithelial-mesenchymal transition and extracellular matrix accumulation in diabetic kidneys. Moreover, modulation of the downstream molecules of Sestrin2, for instance, augmentation of AMPK or Nrf2 signaling and inhibition of mTORC1, has been protective in diabetic nephropathy. Regarding the beneficial effects of Sestrin2 on diabetic nephropathy and its interaction with several signaling molecules, it is worth targeting Sestrin2 in diabetic nephropathy.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
11
|
Gao Y, Xiao X, Luo J, Wang J, Peng Q, Zhao J, Jiang N, Zhao Y. E3 Ubiquitin Ligase FBXO3 Drives Neuroinflammation to Aggravate Cerebral Ischemia/Reperfusion Injury. Int J Mol Sci 2022; 23:13648. [PMID: 36362432 PMCID: PMC9658360 DOI: 10.3390/ijms232113648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 08/04/2023] Open
Abstract
Ischemic stroke, one of the most universal causes of human mortality and morbidity, is pathologically characterized by inflammatory cascade, especially during the progression of ischemia/reperfusion (I/R) injury. F-Box Protein 3 (FBXO3), a substrate-recognition subunit of SKP1-cullin 1-F-box protein (SCF) E3 ligase complexes, has recently been proven to be severed as an underlying pro-inflammatory factor in pathological processes of diverse diseases. Given these considerations, the current study aims at investigating whether FBXO3 exerts impacts on inflammation in cerebral I/R injury. In this study, first, it was verified that FBXO3 protein expression increased after a middle cerebral artery occlusion/reperfusion (MCAO/R) model in Sprague-Dawley (SD) rats and was specifically expressed in neurons other than microglia or astrocytes. Meanwhile, in mouse hippocampal neuronal cell line HT22 cells, the elevation of FBXO3 protein was observed after oxygen and glucose deprivation/reoxygenation (OGD/R) treatment. It was also found that interference of FBXO3 with siRNA significantly alleviated neuronal damage via inhibiting the inflammatory response in I/R injury both in vivo and in vitro. The FBXO3 inhibitor BC-1215 was used to confirm the pro-inflammatory effect of FBXO3 in the OGD/R model as well. Furthermore, by administration of FBXO3 siRNA and BC-1215, FBXO3 was verified to reduce the protein level of Homeodomain-Interacting Protein Kinase 2 (HIPK2), likely through the ubiquitin-proteasome system (UPS), to aggravate cerebral I/R injury. Collectively, our results underline the detrimental effect FBXO3 has on cerebral I/R injury by accelerating inflammatory response, possibly through ubiquitylating and degrading HIPK2. Despite the specific interaction between FBXO3 and HIPK2 requiring further study, we believe that our data suggest the therapeutic relevance of FBXO3 to ischemic stroke and provide a new perspective on the mechanism of I/R injury.
Collapse
Affiliation(s)
- Yu Gao
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
| | - Xinyu Xiao
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Jing Luo
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
| | - Jianwei Wang
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhao
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
12
|
Zhang Q, Zhan H, Liu C, Zhang C, Wei H, Li B, Zhou D, Lu Y, Huang S, Cheng J, Li S, Wang C, Hu C, Liao X. Neuroprotective Effect of miR-483-5p Against Cardiac Arrest-Induced Mitochondrial Dysfunction Mediated Through the TNFSF8/AMPK/JNK Signaling Pathway. Cell Mol Neurobiol 2022:10.1007/s10571-022-01296-3. [PMID: 36266523 DOI: 10.1007/s10571-022-01296-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/02/2022] [Indexed: 11/26/2022]
Abstract
Substantial morbidity and mortality are associated with postcardiac arrest brain injury (PCABI). MicroRNAs(miRNAs) are essential regulators of neuronal metabolism processes and have been shown to contribute to alleviated neurological injury after cardiac arrest. In this study, we identified miRNAs related to the prognosis of patients with neurological dysfunction after cardiopulmonary resuscitation based on data obtained from the Gene Expression Omnibus (GEO) database. Then, we explored the effects of miR-483-5p on mitochondrial biogenesis, mitochondrial-dependent apoptosis, and oxidative stress levels after ischemia‒reperfusion injury in vitro and in vivo. MiR-483-5p was downregulated in PC12 cells and hippocampal samples compared with that in normal group cells and hippocampi. Overexpression of miR-483-5p increased the viability of PC12 cells after ischemia‒reperfusion injury and reduced the proportion of dead cells. A western blot analysis showed that miR-483-5p increased the protein expression of PCG-1, NRF1, and TFAM and reduced the protein expression of Bax and cleaved caspase 3, inhibiting the release of cytochrome c from mitochondria and alleviating oxidative stress injury by inhibiting the production of ROS and reducing MDA activity. We confirmed that miR-483-5p targeted TNFSF8 to regulate the AMPK/JNK pathway, thereby playing a neuroprotective role after cardiopulmonary resuscitation. Hence, this study provides further insights into strategies for inhibiting neurological impairment after cardiopulmonary resuscitation and suggests a potential therapeutic target for PCABI.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- National Health Council (NHC) Key Laboratory of Assisted Circulation, Guangzhou, 510080, China
| | - Haohong Zhan
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National Health Council (NHC) Key Laboratory of Assisted Circulation, Guangzhou, 510080, China
| | - Cong Liu
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- National Health Council (NHC) Key Laboratory of Assisted Circulation, Guangzhou, 510080, China
| | - Chenyu Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National Health Council (NHC) Key Laboratory of Assisted Circulation, Guangzhou, 510080, China
| | - Hongyan Wei
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo Li
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dawang Zhou
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuanzheng Lu
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Shaomin Huang
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Jingge Cheng
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Shuhao Li
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chuyue Wang
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Chunlin Hu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiaoxing Liao
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
13
|
Cai J, Chen X, Liu X, Li Z, Shi A, Tang X, Xia P, Zhang J, Yu P. AMPK: The key to ischemia-reperfusion injury. J Cell Physiol 2022; 237:4079-4096. [PMID: 36134582 DOI: 10.1002/jcp.30875] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Ischemia-reperfusion injury (IRI) refers to a syndrome in which tissue damage is further aggravated and organ function further deteriorates when blood flow is restored after a period of tissue ischemia. Acute myocardial infarction, stress ulcer, pancreatitis, intestinal ischemia, intermittent claudication, acute tubular necrosis, postshock liver failure, and multisystem organ failure are all related to reperfusion injury. AMP-activated protein kinase (AMPK) has been identified in multiple catabolic and anabolic signaling pathways. The functions of AMPK during health and diseases are intriguing but still need further research. Except for its conventional roles as an intracellular energy switch, emerging evidence reveals the critical role of AMPK in IRI as an energy-sensing signal molecule by regulating metabolism, autophagy, oxidative stress, inflammation, and other progressions. At the same time, drugs based on AMPK for the treatment of IRI are constantly being researched and applied in clinics. In this review, we summarize the mechanisms underlying the effects of AMPK in IRI and describe the AMPK-targeting drugs in treatment, hoping to increase the understanding of AMPK in IRI and provide new insights into future clinical treatment.
Collapse
Affiliation(s)
- Jie Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinyue Chen
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingyu Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ao Shi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry and Molecular Biology, Mayo Graduate School of Biomedical Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| |
Collapse
|
14
|
Huang Y, Wu H, Hu Y, Zhou C, Wu J, Wu Y, Wang H, Lenahan C, Huang L, Nie S, Gao X, Sun J. Puerarin Attenuates Oxidative Stress and Ferroptosis via AMPK/PGC1α/Nrf2 Pathway after Subarachnoid Hemorrhage in Rats. Antioxidants (Basel) 2022; 11:antiox11071259. [PMID: 35883750 PMCID: PMC9312059 DOI: 10.3390/antiox11071259] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/20/2022] Open
Abstract
Puerarin was shown to exert anti-oxidative and anti-ferroptosis effects in multiple diseases. The goal of this study was to explore the neuroprotective effect of puerarin on early brain injury (EBI) after subarachnoid hemorrhage (SAH) in rats. A total of 177 adult male Sprague Dawley rats were used. SAH was included via endovascular perforation. Intranasal puerarin or intracerebroventricular dorsomorphin (AMPK inhibitor) and SR18292 (PGC1α inhibitor) were administered. The protein levels of pAMPK, PGC1α, Nrf2, 4HNE, HO1, MDA, ACSL4, GSSG, and iron concentration in the ipsilateral hemisphere were significantly increased, whereas SOD, GPX4, and GSH were decreased at 24 h after SAH. Moreover, puerarin treatment significantly increased the protein levels of pAMPK, PGC1α, Nrf2, HO1, SOD, GPX4, and GSH, but decreased the levels of 4HNE, MDA, ACSL4, GSSG, and iron concentration in the ipsilateral hemisphere at 24 h after SAH. Dorsomorphin or SR18292 partially abolished the beneficial effects of puerarin exerted on neurological dysfunction, oxidative stress injury, and ferroptosis. In conclusion, puerarin improved neurobehavioral impairments and attenuated oxidative-stress-induced brain ferroptosis after SAH in rats. The neuroprotection acted through the activation of the AMPK/PGC1α/Nrf2-signaling pathway. Thus, puerarin may serve as new therapeutics against EBI in SAH patients.
Collapse
Affiliation(s)
- Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| | - Honggang Wu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
- Department of Neurosurgery, People’s Hospital of Leshan, Leshan 614099, China
| | - Yongmei Hu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
- Department of Nursing, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Chenhui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| | - Jiawei Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Yiwen Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Haifeng Wang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM 88001, USA;
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
| | - Sheng Nie
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Correspondence: (X.G.); (J.S.)
| | - Jie Sun
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Correspondence: (X.G.); (J.S.)
| |
Collapse
|
15
|
Duan M, Gao P, Chen SX, Novák P, Yin K, Zhu X. Sphingosine-1-phosphate in mitochondrial function and metabolic diseases. Obes Rev 2022; 23:e13426. [PMID: 35122459 DOI: 10.1111/obr.13426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/02/2022] [Accepted: 01/02/2022] [Indexed: 01/23/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite. The past decade has witnessed exponential growth in the field of S1P research, partly attributed to drugs targeting its receptors or kinases. Accumulating evidence indicates that changes in the S1P axis (i.e., S1P production, transport, and receptors) may modify metabolism and eventually mediate metabolic diseases. Dysfunction of the mitochondria on a master monitor of cellular metabolism is considered the leading cause of metabolic diseases, with aberrations typically induced by abnormal biogenesis, respiratory chain complex disorders, reactive oxygen species overproduction, calcium deposition, and mitophagy impairment. Accordingly, we discuss decades of investigation into changes in the S1P axis and how it controls mitochondrial function. Furthermore, we summarize recent scientific advances in disorders associated with the S1P axis and their involvement in the pathogenesis of metabolic diseases in humans, including type 2 diabetes mellitus and cardiovascular disease, from the perspective of mitochondrial function. Finally, we review potential challenges and prospects for S1P axis application to the regulation of mitochondrial function and metabolic diseases; these data may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Meng Duan
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Pan Gao
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Sheng-Xi Chen
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China.,Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
16
|
Luo Y, Chen Q, Zou J, Fan J, Li Y, Luo Z. Chronic Intermittent Hypoxia Exposure Alternative to Exercise Alleviates High-Fat-Diet-Induced Obesity and Fatty Liver. Int J Mol Sci 2022; 23:ijms23095209. [PMID: 35563600 PMCID: PMC9104027 DOI: 10.3390/ijms23095209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity often concurs with nonalcoholic fatty liver disease (NAFLD), both of which are detrimental to human health. Thus far, exercise appears to be an effective treatment approach. However, its effects cannot last long and, moreover, it is difficult to achieve for many obese people. Thus, it is necessary to look into alternative remedies. The present study explored a noninvasive, easy, tolerable physical alternative. In our experiment, C57BL/6 mice were fed with a high-fat diet (HFD) to induce overweight/obesity and were exposed to 10% oxygen for one hour every day. We found that hypoxia exerted protective effects. First, it offset HFD-induced bodyweight gain and insulin resistance. Secondly, hypoxia reversed the HFD-induced enlargement of white and brown adipocytes and fatty liver, and protected liver function. Thirdly, HFD downregulated the expression of genes required for lipolysis and thermogenesis, such as UCP1, ADR3(beta3-adrenergic receptor), CPT1A, ATGL, PPARα, and PGC1α, M2 macrophage markers arginase and CD206 in the liver, and UCP1 and PPARγ in brown fat, while these molecules were upregulated by hypoxia. Furthermore, hypoxia induced the activation of AMPK, an energy sensing enzyme. Fourthly, our results showed that hypoxia increased serum levels of epinephrine. Indeed, the effects of hypoxia on bodyweight, fatty liver, and associated changes in gene expression ever tested were reproduced by injection of epinephrine and prevented by propranolol at varying degrees. Altogether, our data suggest that hypoxia triggers stress responses where epinephrine plays important roles. Therefore, our study sheds light on the hope to use hypoxia to treat the daunting disorders, obesity and NAFLD.
Collapse
Affiliation(s)
- Yunfei Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Qiongfeng Chen
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Junrong Zou
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Jingjing Fan
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Yuanjun Li
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang University, Nanchang 330031, China; (Y.L.); (Q.C.); (J.Z.); (J.F.); (Y.L.)
- Queen Mary School, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-158-7917-7010
| |
Collapse
|
17
|
Sestrin2 overexpression attenuates osteoarthritis pain via induction of AMPK/PGC-1α-mediated mitochondrial biogenesis and suppression of neuroinflammation. Brain Behav Immun 2022; 102:53-70. [PMID: 35151829 DOI: 10.1016/j.bbi.2022.02.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Our previous study indicated that reactive oxygen species (ROS) are critically involved in chronic pain. Sestrin2 (Sesn2), a novel stress-inducible protein, is evidenced to reduce the generation of ROS. The study examined the role of Sesn2 in osteoarthritis (OA) pain and delineated the underlying molecular mechanisms. METHODS In the present study, we investigated the impact of Sesn2 on mitochondrial biogenesis in a rat model of OA pain. After adeno-associated viral (AAV)-Sesn2EGFP was injected for 14 days, OA was induced by intra-articular injection of monosodium iodoacetate (MIA). We assessed pain behaviors (weight-bearing asymmetry and paw withdrawal threshold) and explored possible mechanisms in the L4-6 spinal cord. RESULTS Our results showed that overexpression of Sesn2 in the spinal cord alleviated pain behaviors in OA rats. Moreover, overexpression of Sesn2 increased the activity of AMP-activated protein kinase (AMPK) signaling and significantly restored mitochondrial biogenesis. Besides, Sesn2 overexpression inhibited the activation of astrocytes and microglia, and decreased the production of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the spinal cord of the OA pain rats. These effects were significantly reversed by an AMPK inhibitor. CONCLUSIONS Collectively, these results suggest that Sesn2 overexpression ameliorates mechanical allodynia and weight-bearing asymmetry in OA rats via activation of AMPK/PGC-1α-mediated mitochondrial biogenesis in the spinal cord. Moreover, Sesn2 overexpression attenuates OA-induced neuroinflammation at least partly by activating AMPK signaling. Sesn2 may become an encouraging therapeutic strategy for OA pain relief and other disorders.
Collapse
|
18
|
Jiao Y, Wang J, Jia Y, Xue M. Remote ischemic preconditioning protects against cerebral ischemia injury in rats by upregulating miR-204-5p and activating the PINK1/Parkin signaling pathway. Metab Brain Dis 2022; 37:945-959. [PMID: 35067796 DOI: 10.1007/s11011-022-00910-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
Remote ischemic preconditioning (RiPC) is the process where preconditioning ischemia protects the organs against the subsequent index ischemia. RiPC is a protective method for brain damage. This study is to explore the effect and mechanism of RiPC in cerebral ischemia injury in rats through regulation of miR-204-5p/BRD4 expression. Middle cerebral artery occlusion (MCAO) rat model and glucose deprivation (OGD) neuron model were established. The effect of RiPC on neurological deficits, cerebral infarct size, autophagy marker, inflammatory cytokines and apoptosis was evaluated. miR-204-5p expression was analyzed using RT-qPCR, and then downregulated using miR-204-5p antagomir to estimate its effect on MCAO rats. The downstream mechanism of miR-204-5p was explored. RiPC promoted autophagy, reduced cerebral infarct volume and neurological deficit score, and alleviated apoptosis and cerebral ischemia injury in rats, with no significant effects on healthy rat brains. RiPC up-regulated miR-204-5p expression in MCAO rats. miR-204-5p knockdown partially reversed the effect of RiPC. RiPC promoted autophagy in OGD cells, and attenuated inflammation and apoptosis. miR-204-5p targeted BRD4, which partially reversed the effect of miR-204-5p on OGD cells. RiPC activated the PINK1/Parkin pathway via the miR-204-5p/BRD4 axis. In conclusion, RiPC activated the PINK1/Parkin pathway and prevented cerebral ischemia injury by up-regulating miR-204-5p and inhibiting BRD4.
Collapse
Affiliation(s)
- Yiming Jiao
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Jinlan Wang
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Yanjie Jia
- The Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengzhou Xue
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China.
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China.
| |
Collapse
|
19
|
Odabas FO, Uca AU, Akdag T, Demirdögen F, Altas M, Tokgoz OS. Possible roles of sestrin2 in multiple sclerosis and its relationships with clinical outcomes. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:399-404. [PMID: 35195231 DOI: 10.1590/0004-282x-anp-2021-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Characterized by demyelination, inflammation and axonal damage, multiple sclerosis (MS) is one of the most common disorders of central nervous system led by the immune system. There is an urgent and obvious need for biomarkers for the diagnosis and follow-up of MS. OBJECTIVE To investigate serum levels of sestrin2 (SESN2), a protein that responds to acute stress, in MS patients. METHODS A total of 85 participants, 40 patients diagnosed previously with relapsing-remitting MS and 45 healthy controls, were included. Serum SESN2 parameters were investigated in blood samples drawn from each participant in the patient and control groups. RESULTS SESN2 levels were significantly lower in MS patients than in controls (z: -3.06; p=0.002). In the ROC analysis of SESN2, the predictive level for MS was 2.36 ng/mL [sensitivity, 72.50%; specificity, 55.56%; p=0.002; area under the curve (AUC)=0.693]. For the cut-off value in both groups, SESN2 was an independent predictor for MS [Exp (B)=3.977, 95% confidence interval (95%CI) 1.507-10.494 and p=0.013]. CONCLUSIONS The decreased expression of SESN2 may play a role in MS pathogenesis, and SESN2 could be used as a biomarker for MS and as immunotherapeutic agent to treat MS.
Collapse
Affiliation(s)
- Faruk Omer Odabas
- University of Health Sciences, Konya City Hospital, Department of Neurology, Konya, Turkey
| | - Ali Ulvi Uca
- Necmettin Erbakan University, Meram Medical School, Department of Neurology, Konya, Turkey
| | - Turan Akdag
- Necmettin Erbakan University, Vocational School of Meram, Konya, Turkey
| | - Filiz Demirdögen
- Binali Yıldırım Unıversıty Mengücek Gazi Educatıon and Research Hospıtal, Erzincan, Department of Neurology, Turkey
| | - Mustafa Altas
- Necmettin Erbakan University, Meram Medical School, Department of Neurology, Konya, Turkey
| | - Osman Serhat Tokgoz
- Necmettin Erbakan University, Meram Medical School, Department of Neurology, Konya, Turkey
| |
Collapse
|
20
|
Irisin: A Promising Target for Ischemia-Reperfusion Injury Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5391706. [PMID: 34745418 PMCID: PMC8570861 DOI: 10.1155/2021/5391706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022]
Abstract
Ischemia-reperfusion injury (IRI) is defined as the total combined damage that occurs during a period of ischemia and following the recovery of blood flow. Oxidative stress, mitochondrial dysfunction, and an inflammatory response are factors contributing to IRI-related damage that can each result in cell death. Irisin is a polypeptide that is proteolytically cleaved from the extracellular domain of fibronectin type III domain-containing protein 5 (FNDC5). Irisin acts as a myokine that potentially mediates beneficial effects of exercise by reducing oxidative stress, improving mitochondrial fitness, and suppressing inflammation. The existing literature also suggests a possible link between irisin and IRI, involving mechanisms similar to those associated with exercise. This article will review the pathogenesis of IRI and the potential benefits and current limitations of irisin as a therapeutic strategy for IRI, while highlighting the mechanistic correlations between irisin and IRI.
Collapse
|
21
|
Ala M, Eftekhar SP. Target Sestrin2 to Rescue the Damaged Organ: Mechanistic Insight into Its Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8790369. [PMID: 34765085 PMCID: PMC8577929 DOI: 10.1155/2021/8790369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Sestrin2 is a stress-inducible metabolic regulator and a conserved antioxidant protein which has been implicated in the pathogenesis of several diseases. Sestrin2 can protect against atherosclerosis, heart failure, hypertension, myocardial infarction, stroke, spinal cord injury neurodegeneration, nonalcoholic fatty liver disease (NAFLD), liver fibrosis, acute kidney injury (AKI), chronic kidney disease (CKD), and pulmonary inflammation. Oxidative stress and cellular damage signals can alter the expression of Sestrin2 to compensate for organ damage. Different stress signals such as those mediated by P53, Nrf2/ARE, HIF-1α, NF-κB, JNK/c-Jun, and TGF-β/Smad signaling pathways can induce Sestrin2 expression. Subsequently, Sestrin2 activates Nrf2 and AMPK. Furthermore, Sestrin2 is a major negative regulator of mTORC1. Sestrin2 indirectly regulates the expression of several genes and reprograms intracellular signaling pathways to attenuate oxidative stress and modulate a large number of cellular events such as protein synthesis, cell energy homeostasis, mitochondrial biogenesis, autophagy, mitophagy, endoplasmic reticulum (ER) stress, apoptosis, fibrogenesis, and lipogenesis. Sestrin2 vigorously enhances M2 macrophage polarization, attenuates inflammation, and prevents cell death. These alterations in molecular and cellular levels improve the clinical presentation of several diseases. This review will shed light on the beneficial effects of Sestrin2 on several diseases with an emphasis on underlying pathophysiological effects.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Parsa Eftekhar
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
22
|
Luo J, Chen J, Yang C, Tan J, Zhao J, Jiang N, Zhao Y. 6-Gingerol protects against cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome and apoptosis via TRPV1 / FAF1 complex dissociation-mediated autophagy. Int Immunopharmacol 2021; 100:108146. [PMID: 34537481 DOI: 10.1016/j.intimp.2021.108146] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Our previous studies demonstrated that autophagy alleviates cerebral I/R injury by inhibiting NLRP3 inflammasome-mediated inflammation. 6-Gingerol, a phenolic compound extracted from ginger, was reported to possess potent antiapoptotic and anti-inflammatory activities and is associated with autophagy. However, the effects of 6-Gingerol in cerebral I/R injury have not been elucidated, and whether they involve autophagy-induced NLRP3 inflammasome inhibition remains unclear. METHODS Adult male Sprague-Dawley (SD) rats were subjected to middle cerebral artery occlusion (MCAO) for 1 h, followed by reperfusion for 24 h. 6-Gingerol and 3-methyladenine (3-MA) were injected intraperitoneally, and si-TRPV1 was injected via the lateral ventricle. Cerebral infarct volume, brain edema, neurological deficits, HE and Nissl were used to evaluate the morphological and functional changes of brain tissue, respectively. TRPV1, FAF1, autophagy related (LC3II/I, P62, Beclin1), inflammation related (NLRP3, cleaved-caspase-1, caspase-1, cleaved-IL-1β, IL-1β, cleaved-IL-18, IL-18) and apoptosis related (Bcl-2, Bax, cleaved-caspase-3) proteins were assessed by Western blot, immunofluorescence staining and coimmunoprecipitation, respectively. Enzyme linked immunosorbent assay (ELISA) was used to evaluate the changes in the expression levels of interleukin-1 (IL-1β) and interleukin-18(IL-18), respectively. The degree of neuronal apoptosis was evaluated by TUNEL staining. Neuronal ultrastructure was examined by transmission electron microscopy. RESULT 6-Gingerol treatment significantly reduced cerebral infarct volume, improved brain edema and neurological scores, and reversed brain histomorphological damage after I/R injury. In addition, 6-Gingerol significantly reduced NLRP3 inflammasome-derived inflammation and neuronal apoptosis and upregulated autophagy. The autophagy inhibitor 3-MA rescued the effects of 6-Gingerol on the NLRP3 inflammasome and apoptosis. Moreover, the findings illustrated that 6-Gingerol inhibited autophagy-induced NLRP3 inflammasome activation and apoptosis through the dissociation of TRPV1 from FAF1. CONCLUSION In brief, 6-Gingerol exerts antiapoptotic and anti-inflammatory effects via TRPV1/FAF1 complex dissociation-mediated autophagy during cerebral I/R injury. Therefore, 6-Gingerol may be an effective drug for the treatment of I/R injury.
Collapse
Affiliation(s)
- Jing Luo
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Jialei Chen
- Department of First Clinical College, Chongqing Medical University, Chongqing 400016, China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China
| | - Junyi Tan
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
23
|
Potential Roles of Sestrin2 in Alzheimer's Disease: Antioxidation, Autophagy Promotion, and Beyond. Biomedicines 2021; 9:biomedicines9101308. [PMID: 34680426 PMCID: PMC8533411 DOI: 10.3390/biomedicines9101308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disease. It presents with progressive memory loss, worsens cognitive functions to the point of disability, and causes heavy socioeconomic burdens to patients, their families, and society as a whole. The underlying pathogenic mechanisms of AD are complex and may involve excitotoxicity, excessive generation of reactive oxygen species (ROS), aberrant cell cycle reentry, impaired mitochondrial function, and DNA damage. Up to now, there is no effective treatment available for AD, and it is therefore urgent to develop an effective therapeutic regimen for this devastating disease. Sestrin2, belonging to the sestrin family, can counteract oxidative stress, reduce activity of the mammalian/mechanistic target of rapamycin (mTOR), and improve cell survival. It may therefore play a crucial role in neurodegenerative diseases like AD. However, only limited studies of sestrin2 and AD have been conducted up to now. In this article, we discuss current experimental evidence to demonstrate the potential roles of sestrin2 in treating neurodegenerative diseases, focusing specifically on AD. Strategies for augmenting sestrin2 expression may strengthen neurons, adapting them to stressful conditions through counteracting oxidative stress, and may also adjust the autophagy process, these two effects together conferring neuronal resistance in cases of AD.
Collapse
|
24
|
Chen M, Wang Z, Zhou W, Lu C, Ji T, Yang W, Jin Z, Tian Y, Lei W, Wu S, Fu Q, Wu Z, Wu X, Han M, Fang M, Yang Y. SIRT1/PGC-1α signaling activation by mangiferin attenuates cerebral hypoxia/reoxygenation injury in neuroblastoma cells. Eur J Pharmacol 2021; 907:174236. [PMID: 34116043 DOI: 10.1016/j.ejphar.2021.174236] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 02/08/2023]
Abstract
Ischemia reperfusion injury (IRI) is associated with poor prognoses in the setting of ischemic brain diseases. Silence information regulator 1 (SIRT1) is a member of the third class of nicotinamide adenine dinucleotide (NAD+)-dependent sirtuins. Recently, the role of SIRT1/peroxisome proliferators-activated receptor-γ coactivator 1α (PGC-1α) pathway in organ (especially the brain) protection under various pathological conditions has been widely investigated. Mangiferin (MGF), a natural C-glucosyl xanthone polyhydroxy polyphenol, has been shown to be beneficial to several nervous system diseases and the protective effects of MGF can be achieved through the regulation of SIRT1 signaling. This study is designed to investigate the protective effects of MGF treatment in the setting of cerebral IRI and to elucidate the potential mechanisms. We first evaluated the toxicity of MGF and chose the safe concentrations for the following experiments. MGF exerted obvious neuroprotection against hypoxia/reoxygenation (HR)-induced injury, indicated by restored cell viability and cell morphology, decreased lactate dehydrogenase (LDH) release and reactive oxygen species generation. MGF also restored the protein expressions of SIRT1, PGC-1α, Nrf2, NQO1, HO-1, NRF1, UCP2, and Bcl2 down-regulated by HR treatment. However, SIRT1 siRNA could reverse MGF-induced neuroprotection and decrease the expressions of molecules mentioned above. Taken together, our findings suggest that MGF treatment exerts neuroprotection against HR injury via activating SIRT1/PGC-1α signaling. These findings may provide a theoretical basis for the exploitation of MGF as a potential neuroprotective drug candidate, which may be beneficial for the ischemic stroke patients in clinic.
Collapse
Affiliation(s)
- Mengfan Chen
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, China
| | - Wenying Zhou
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chenxi Lu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Ting Ji
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Wenwen Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Songdi Wu
- Department of Neurology, Xi'an No.1 Hospital, School of Life Sciences and Medicine, Northwest University, 30 Fenxiang, Xi'an, China
| | - Qi Fu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Zhen Wu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Xue Wu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Mengzhen Han
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Minfeng Fang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China.
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China.
| |
Collapse
|
25
|
Mitochondrial Quality Control in Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2021; 58:5253-5271. [PMID: 34275087 DOI: 10.1007/s12035-021-02494-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/12/2021] [Indexed: 12/27/2022]
Abstract
Ischemic stroke is one of the leading causes of death and also a major cause of adult disability worldwide. Revascularization via reperfusion therapy is currently a standard clinical procedure for patients with ischemic stroke. Although the restoration of blood flow (reperfusion) is critical for the salvage of ischemic tissue, reperfusion can also, paradoxically, exacerbate neuronal damage through a series of cellular alterations. Among the various theories postulated for ischemia/reperfusion (I/R) injury, including the burst generation of reactive oxygen species (ROS), activation of autophagy, and release of apoptotic factors, mitochondrial dysfunction has been proposed to play an essential role in mediating these pathophysiological processes. Therefore, strict regulation of the quality and quantity of mitochondria via mitochondrial quality control is of great importance to avoid the pathological effects of impaired mitochondria on neurons. Furthermore, timely elimination of dysfunctional mitochondria via mitophagy is also crucial to maintain a healthy mitochondrial network, whereas intensive or excessive mitophagy could exacerbate cerebral I/R injury. This review will provide a comprehensive overview of the effect of mitochondrial quality control on cerebral I/R injury and introduce recent advances in the understanding of the possible signaling pathways of mitophagy and potential factors responsible for the double-edged roles of mitophagy in the pathological processes of cerebral I/R injury.
Collapse
|
26
|
Che X, Chai J, Fang Y, Zhang X, Zu A, Li L, Sun S, Yang W. Sestrin2 in hypoxia and hypoxia-related diseases. Redox Rep 2021; 26:111-116. [PMID: 34225572 PMCID: PMC8259815 DOI: 10.1080/13510002.2021.1948774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objectives: Sestrin2 is a stress-inducible protein and play an important role in adapting stress states of cells. This article reviewed the role of Sestrin2 in hypoxia and hypoxia-related diseases to provide new perspectives for future research and new therapeutic targets for hypoxia-related diseases. Methods: A review was conducted through an electronic search of PubMed and Medline databases. Keywords included Sestrin2, ROS, hypoxia, and hypoxia-related disease. Articles from 2008 to 2021 were mostly included and older ones were not excluded. Results: Sestrin2 is upregulated under various stress conditions, especially hypoxia. Under hypoxic condition, Sestrin2 plays a protective role by reducing the generation of ROS through various pathways, such as adenosine monophosphatea-ctivated protein kinase (AMPK) / mammalian target of rapamycin (mTOR) pathway and nuclear factor-E2-related factor2 (Nrf2) pathway. In addition, Sestrin2 is involved in various hypoxia-related diseases, such as cerebral hypoxic disease, myocardial hypoxic disease, hypoxia-related respiratory disease, and diabetes. Discussion: Sestrin2 is involved in various hypoxia-related diseases and maybe a therapeutic target. Furthermore, most studies focus on cerebral and myocardial ischemia reperfusion. More researches on hypoxia-related respiratory diseases, kidney injury, and diabetes are needed in future.
Collapse
Affiliation(s)
- Xiaojing Che
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China.,Innovation Class & Second Class, 2017 Clinical Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Jiagui Chai
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China.,Innovation Class & Second Class, 2017 Clinical Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Yan Fang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China
| | - Xifeng Zhang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China
| | - Anju Zu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China
| | - Lin Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China.,School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People's Republic of China
| | - Weimin Yang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
27
|
Liu L, Cao Q, Gao W, Li B, Xia Z, Zhao B. Melatonin protects against focal cerebral ischemia-reperfusion injury in diabetic mice by ameliorating mitochondrial impairments: involvement of the Akt-SIRT3-SOD2 signaling pathway. Aging (Albany NY) 2021; 13:16105-16123. [PMID: 34118791 PMCID: PMC8266371 DOI: 10.18632/aging.203137] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
Diabetic patients are more vulnerable to cerebral ischemia-reperfusion (CIR) injury and have a worse prognosis and higher mortality after ischemic stroke than non-diabetic counterparts. Melatonin can exert neuroprotective effects against CIR injury in nondiabetic animal models. However, its effects on diabetic CIR injury and the underlying mechanisms remain unclarified. Herein, we found that melatonin administration improved neurological deficit, cerebral infarct volume, brain edema, and cell viability, reduced mitochondrial swelling, reactive oxygen species generation, and cytoplasmic cytochrome C release, and increased mitochondrial antioxidant enzymes activities, adenosine triphosphate production, and mitochondrial membrane potential in both streptozotocin-induced diabetic mice and high glucose-treated HT22 cells. Importantly, melatonin also activated protein kinase B (Akt) and sirtuin 3 (SIRT3)/superoxide dismutase 2 (SOD2) signaling and upregulated mitochondrial biogenesis-related transcription factors. However, these effects were largely attenuated by LY294002 (a specific Akt signaling blocker) administration. Additionally, 3-TYP (a selective SIRT3 inhibitor) and SIRT3 siRNA inhibited the above protective effects of melatonin as well as the upregulation of SIRT3 and the decrease of SOD2 acetylation but did not affect the p-Akt/Akt ratio. Overall, we demonstrate that melatonin can alleviate CIR injury in diabetic mice by activating Akt-SIRT3-SOD2 signaling and subsequently improving mitochondrial damage.
Collapse
Affiliation(s)
- Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Quan Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wenwei Gao
- Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Bingyu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
28
|
Zhao N, Wang T, Peng L, Li Y, Zhao Y, Yu S. Attenuation of Inflammation by DJ-1 May Be a Drug Target for Cerebral Ischemia-Reperfusion Injury. Neurochem Res 2021; 46:1470-1479. [PMID: 33683631 DOI: 10.1007/s11064-021-03288-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/28/2022]
Abstract
The pathophysiological process of cerebral apoplexy is complex, and there are currently no specific drugs for this condition. The study of effective drug targets has become a hot topic in neuroscience. Currently, adeno-associated viruses (AAVs) and polypeptides are commonly used in drug research. DJ-1 has been widely considered a neuroprotective target in recent times, but the mechanism of its neuroprotective effects is unclear. In this study, we simulated ischemic injury by establishing a middle cerebral artery occlusion reperfusion (MCAO/R) model to compare the protective effect of DJ-1 overexpression induced by DJ-1 AAV and ND-13 on cerebral ischemia-reperfusion (I/R) injury. We found that DJ-1 overexpression and ND-13 significantly reduced the neurological function scores and infarct volume and alleviated pathological damage to brain tissue. In addition, Western blotting, ELISA and immunofluorescence labeling revealed that DJ-1 overexpression and ND-13 increased the expression of the anti-inflammatory cytokines IL-10 and IL-4, and decreased the levels of the pro-inflammatory cytokines IL-1β and TNF-α. In summary, our study shows that DJ-1 overexpression and ND-13 can regulate the expression of inflammatory factors and alleviate cerebral I/R injury. Thus, DJ-1 is a possible drug target for cerebral I/R injury.
Collapse
Affiliation(s)
- Na Zhao
- Department of Pathology, Basic Medical College, Chongqing Medical University, Yixueyuan Road 1, Chongqing, 400016, People's Republic of China
- Molecular Medical Laboratory, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Tingting Wang
- Department of Pathology, Basic Medical College, Chongqing Medical University, Yixueyuan Road 1, Chongqing, 400016, People's Republic of China
- Molecular Medical Laboratory, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Li Peng
- Department of Pathology, Basic Medical College, Chongqing Medical University, Yixueyuan Road 1, Chongqing, 400016, People's Republic of China
- Molecular Medical Laboratory, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yumei Li
- Department of Pathology, Basic Medical College, Chongqing Medical University, Yixueyuan Road 1, Chongqing, 400016, People's Republic of China
- Molecular Medical Laboratory, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yong Zhao
- Department of Pathology, Basic Medical College, Chongqing Medical University, Yixueyuan Road 1, Chongqing, 400016, People's Republic of China
- Molecular Medical Laboratory, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shanshan Yu
- Department of Pathology, Basic Medical College, Chongqing Medical University, Yixueyuan Road 1, Chongqing, 400016, People's Republic of China.
- Molecular Medical Laboratory, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
29
|
Hsieh YH, Chao AC, Lin YC, Chen SD, Yang DI. The p53/NF-kappaB-dependent induction of sestrin2 by amyloid-beta peptides exerts antioxidative actions in neurons. Free Radic Biol Med 2021; 169:36-61. [PMID: 33852931 DOI: 10.1016/j.freeradbiomed.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 12/30/2022]
Abstract
Accumulation of senile plaques mainly composed of neurotoxic amyloid-beta peptide (Aβ) is a pathological hallmark of Alzheimer's disease (AD). Sestrin2 inducible by various types of stressors is known to promote autophagy and exert antioxidative effects. In this work, we revealed the molecular mechanisms underlying Aβ induction of sestrin2 and tested whether antioxidation, in addition to autophagy regulation, also contributes to its neuroprotective effects in primary rat cortical neurons. We found that Aβ25-35 triggered nuclear translocation of p65 and p50, two subunits of nuclear factor-kappaB (NF-κB), and p53. Aβ25-35-induced sestrin2 expression was abolished by the p65 siRNA, the NF-κB inhibitor SN50, and the p53 inhibitor pifithrin-alpha (PFT-α). Further, Aβ25-35 enhanced binding of p50 and p53 to sestrin2 gene promoter that was abolished respectively by the p50 shRNA and PFT-α. Both p50 shRNA and PFT-α attenuated Aβ25-35-induced expression as well as nuclear translocation of all three transcription factors, namely p65, p50, and p53. Interestingly, p50 binding to the promoters of its target genes required p53 activity, whereas p50 also negatively regulated p53 binding to its target sequences. Suppression of sestrin2 expression by siRNA enhanced Aβ25-35- and Aβ1-42-induced production of reactive oxygen species (ROS), lipid peroxidation, and formation of 8-hydroxy-2-deoxyguanosine (8-OH-dG). In contrast, overexpression of the sestrin2 N-terminal or C-terminal fragments neutralized Aβ25-35-induced ROS production. We concluded that Aβ-induced sestrin2 contributing to antioxidant effects in neurons is in part mediated by p53 and NF-κB, which also mutually affect the expression of each other.
Collapse
Affiliation(s)
- Yi-Heng Hsieh
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei City, 112, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei City, 112, Taiwan
| | - A-Ching Chao
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan; Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung City, 807, Taiwan
| | - Yi-Chun Lin
- Department of Neurology, Taipei City Hospital, Taipei City, 106, Taiwan
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, 833, Taiwan; Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, 833, Taiwan
| | - Ding-I Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei City, 112, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei City, 112, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, 112, Taiwan.
| |
Collapse
|
30
|
Adewale Q, Khan AF, Carbonell F, Iturria-Medina Y. Integrated transcriptomic and neuroimaging brain model decodes biological mechanisms in aging and Alzheimer's disease. eLife 2021; 10:e62589. [PMID: 34002691 PMCID: PMC8131100 DOI: 10.7554/elife.62589] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Both healthy aging and Alzheimer's disease (AD) are characterized by concurrent alterations in several biological factors. However, generative brain models of aging and AD are limited in incorporating the measures of these biological factors at different spatial resolutions. Here, we propose a personalized bottom-up spatiotemporal brain model that accounts for the direct interplay between hundreds of RNA transcripts and multiple macroscopic neuroimaging modalities (PET, MRI). In normal elderly and AD participants, the model identifies top genes modulating tau and amyloid-β burdens, vascular flow, glucose metabolism, functional activity, and atrophy to drive cognitive decline. The results also revealed that AD and healthy aging share specific biological mechanisms, even though AD is a separate entity with considerably more altered pathways. Overall, this personalized model offers novel insights into the multiscale alterations in the elderly brain, with important implications for identifying effective genetic targets for extending healthy aging and treating AD progression.
Collapse
Affiliation(s)
- Quadri Adewale
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealCanada
| | - Ahmed F Khan
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealCanada
| | | | - Yasser Iturria-Medina
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealCanada
| | | |
Collapse
|
31
|
Pan C, Chen Z, Li C, Han T, Liu H, Wang X. Sestrin2 as a gatekeeper of cellular homeostasis: Physiological effects for the regulation of hypoxia-related diseases. J Cell Mol Med 2021; 25:5341-5350. [PMID: 33942488 PMCID: PMC8184687 DOI: 10.1111/jcmm.16540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Sestrin2 (SESN2) is a conserved stress‐inducible protein (also known as hypoxia‐inducible gene 95 (HI95)) that is induced under hypoxic conditions. SESN2 represses the production of reactive oxygen species (ROS) and provides cytoprotection against various noxious stimuli, including hypoxia, oxidative stress, endoplasmic reticulum (ER) stress and DNA damage. In recent years, the determination of the regulation and signalling mechanisms of SESN2 has increased our understanding of its role in the hypoxic response. SESN2 has well‐documented roles in hypoxia‐related diseases, making it a potential target for diagnosis and treatment. This review discusses the regulatory mechanisms of SESN2 and highlights the significance of SESN2 as a biomarker and therapeutic target in hypoxia‐related diseases, such as cancer, respiratory‐related diseases, cardiovascular diseases and cerebrovascular diseases.
Collapse
Affiliation(s)
- Cunyao Pan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,Department of Public Health, Lanzhou University, Lanzhou, China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chao Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Tie Han
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Hui Liu
- Department of Public Health, Lanzhou University, Lanzhou, China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
32
|
Piochi LF, Machado IF, Palmeira CM, Rolo AP. Sestrin2 and mitochondrial quality control: Potential impact in myogenic differentiation. Ageing Res Rev 2021; 67:101309. [PMID: 33626408 DOI: 10.1016/j.arr.2021.101309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 01/24/2023]
Abstract
Mitochondria are highly dynamic organelles capable of adapting their network, morphology, and function, playing a role in oxidative phosphorylation and many cellular processes in most cell types. Skeletal muscle is a very plastic tissue, subjected to many morphological changes following diverse stimuli, such as during myogenic differentiation and regenerative myogenesis. For some time now, mitochondria have been reported to be involved in myogenesis by promoting a bioenergetic remodeling and assisting myoblasts in surviving the process. However, not much is known about the interplay between mitochondrial quality control and myogenic differentiation. Sestrin2 (SESN2) is a well described regulator of autophagy and antioxidant responses and has been gaining attention due to its role in aging-associated pathologies and redox signaling promoted by reactive oxygen species (ROS) in many tissues. Current evidence involving SESN2-associated pathways suggest that it can act as a potential regulator of mitochondrial quality control following induction by ROS under stress conditions, such as during myogenesis. Yet, there are no studies directly assessing SESN2 involvement in myogenic differentiation. This review provides novel insights pertaining the involvement of SESN2 in myogenic differentiation by analyzing the interactions between ROS and mitochondrial remodeling.
Collapse
Affiliation(s)
- Luiz F Piochi
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Ivo F Machado
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB, 3004-504, Coimbra, Portugal
| | - Carlos M Palmeira
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB, 3004-504, Coimbra, Portugal
| | - Anabela P Rolo
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB, 3004-504, Coimbra, Portugal.
| |
Collapse
|
33
|
Qin S, Tang H, Li W, Gong Y, Li S, Huang J, Fang Y, Yuan W, Liu Y, Wang S, Guo Y, Guo Y, Xu Z. AMPK and its Activator Berberine in the Treatment of Neurodegenerative Diseases. Curr Pharm Des 2021; 26:5054-5066. [PMID: 32445451 DOI: 10.2174/1381612826666200523172334] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disorders are heterogeneous diseases associated with either acute or progressive neurodegeneration, causing the loss of neurons and axons in the central nervous system (CNS), showing high morbidity and mortality, and there are only a few effective therapies. Here, we summarized that the energy sensor adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), and its agonist berberine can combat the common underlying pathological events of neurodegeneration, including oxidative stress, neuroinflammation, mitochondrial disorder, glutamate excitotoxicity, apoptosis, autophagy disorder, and disruption of neurovascular units. The abovementioned effects of berberine may primarily depend on activating AMPK and its downstream targets, such as the mammalian target of rapamycin (mTOR), sirtuin1 (SIRT1), nuclear factor erythroid-2 related factor-2 (Nrf2), nuclear factor-κB (NF-κB), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), nicotinamide adenine dinucleotide (NAD+), and p38 mitogen-activated protein kinase (p38 MAPK). It is hoped that this review will provide a strong basis for further scientific exploration and development of berberine's therapeutic potential against neurodegeneration.
Collapse
Affiliation(s)
- Siru Qin
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huiling Tang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yinan Gong
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Huang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuxin Fang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjuan Yuan
- The First people’s hospital of Lanzhou city, Gansu, China
| | - Yangyang Liu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shenjun Wang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongming Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
34
|
Zhou XR, Ru XC, Xiao C, Pan J, Lou YY, Tang LH, Yang JT, Qian LB. Sestrin2 is involved in the Nrf2-regulated antioxidative signaling pathway in luteolin-induced prevention of the diabetic rat heart from ischemia/reperfusion injury. Food Funct 2021; 12:3562-3571. [PMID: 33900303 DOI: 10.1039/d0fo02942d] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Luteolin attenuates myocardial ischemia/reperfusion (I/R) injury in diabetes through activating the nuclear factor erythroid 2-related factor 2 (Nrf2)-related antioxidative response. Though sestrin2, a highly conserved stress-inducible protein, is regarded as a modulator of Nrf2 and reduces I/R injury, the effect of sestrin2 on luteolin-induced prevention of the diabetic heart from I/R injury remains unclear. We hypothesized that luteolin could relieve myocardial I/R injury in diabetes by activating the sestrin2-modulated Nrf2 antioxidative response. Diabetes was induced in rats using a single dose of streptozotocin (65 mg kg-1, i.p.) for 6 weeks, and then luteolin (100 mg kg-1 d-1, i.g.), Nrf2 inhibitor brusatol, or sestrin2 blocker leucine was administered for 2 consecutive weeks. After that, the hearts were isolated and exposed to global I/R (30 min/120 min). Luteolin markedly improved cardiac function, myocardial viability and expressions of Nrf2-regulated antioxidative genes, and reduced lactate dehydrogenase release, malondialdehyde, and 8-hydroxydeoxyguanosine in the diabetic I/R hearts. Ca2+-induced mitochondrial permeability transition and membrane potential disruption were markedly inhibited in luteolin-treated diabetic ventricular myocytes. All these effects of luteolin were significantly reversed by Nrf2 inhibitor brusatol or sestrin2 inhibitor leucine. Luteolin-induced diminished Keap1 and augmented nuclear translocation and ARE binding activity of Nrf2 were hampered by leucine in the diabetic I/R heart. In addition, luteolin-induced augmented transcription of sestrin2 was markedly blocked by brusatol in the diabetic I/R heart. These data suggest that sestrin2 and Nrf2 positively interact to promote antioxidative actions and attenuate mitochondrial damage, by which luteolin relieves diabetic myocardial I/R injury.
Collapse
Affiliation(s)
- Xin-Ru Zhou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu Y, Li M, Sun M, Zhang Y, Li X, Sun W, Quan N. Sestrin2 is an endogenous antioxidant that improves contractile function in the heart during exposure to ischemia and reperfusion stress. Free Radic Biol Med 2021; 165:385-394. [PMID: 33581276 DOI: 10.1016/j.freeradbiomed.2021.01.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/25/2022]
Abstract
Sestrin2 (Sesn2) is a stress-inducible protein that plays a critical role in the response to ischemic stress. We recently recognized that Sesn2 may protect the heart against ischemic insults by reducing the generation of reactive oxygen species (ROS). After 45 min of ischemia followed by 24 h of reperfusion, myocardial infarcts were significantly larger in Sesn2 KO hearts than in wild-type hearts. Isolated cardiomyocytes from wild-type hearts treated with hypoxia and reoxygenation (H/R) stress showed significantly greater Sesn2 levels, compared with normoxic hearts (p < 0.05). Intriguingly, the administration of adeno-associated virus 9-Sesn2 into Sesn2 knockout (KO) hearts rescued Sesn2 protein levels and significantly improved the cardiac function of Sesn2 KO mice exposed to ischemia and reperfusion. The rescued levels of Sesn2 in Sesn2 KO hearts significantly ameliorated ROS generation and the activation of ROS-related stress signaling pathways during ischemia and reperfusion. Moreover, the rescued Sesn2 levels in Sesn2 KO cardiomyocytes improved the maximal velocity of cardiomyocyte shortening by H/R stress. Rescued Sesn2 levels also improved peak height, peak shortening amplitude, and maximal velocity of the re-lengthening of Sesn2 KO cardiomyocytes subjected to H/R. Finally, the rescued Sesn2 levels significantly augmented intracellular calcium levels and reduced the mean time constant of transient calcium decay in Sesn2 KO cardiomyocytes exposed to H/R. Overall, these findings indicated that Sesn2 can act as an endogenous antioxidant to maintain intracellular redox homeostasis under ischemic stress conditions.
Collapse
Affiliation(s)
- Yunxia Liu
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Meina Li
- Department of Infection Control, The First Hospital of Jilin University, Changchun, 130021, China
| | - Meihua Sun
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yaoting Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xuan Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Wanqing Sun
- Fuwai Hospital, National Centre for Cardiovascular Disease, No. 167 Beilishi Road, Xicheng, Beijing, 100037, China.
| | - Nanhu Quan
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
36
|
Oliveira RP, Machado IF, Palmeira CM, Rolo AP. The potential role of sestrin 2 in liver regeneration. Free Radic Biol Med 2021; 163:255-267. [PMID: 33359262 DOI: 10.1016/j.freeradbiomed.2020.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022]
Abstract
Liver regeneration is a remarkably complex phenomenon conserved across all vertebrates, enabling the restoration of lost liver mass in a matter of days. Unfortunately, extensive damage to the liver may compromise this process, often leading to the death of affected individuals. Ischemia/reperfusion injury (IRI) is a common source of damage preceding regeneration, often present during liver transplantation, resection, trauma, or hemorrhagic shock. Increased oxidative stress and mitochondrial dysfunction are key hallmarks of IRI, which can jeopardize the liver's ability to regenerate. Therefore, a better understanding of both liver regeneration and IRI is of important clinical significance. In the current review, we discuss the potential role of sestrin 2 (SESN2), a novel anti-aging protein, in liver regeneration and ischemia/reperfusion preceding regeneration. We highlight its beneficial role in protecting cells from mitochondrial dysfunction and oxidative stress as key aspects of its involvement in liver regeneration. Additionally, we describe how its ability to promote the expression of Nrf2 bears significant importance in this context. Finally, we focus on a potential novel link between SESN2, mitohormesis and ischemic preconditioning, which could explain some of the protective effects of preconditioning.
Collapse
Affiliation(s)
- Raúl P Oliveira
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Ivo F Machado
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos M Palmeira
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Anabela P Rolo
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
37
|
Liu Y, Li M, Du X, Huang Z, Quan N. Sestrin 2, a potential star of antioxidant stress in cardiovascular diseases. Free Radic Biol Med 2021; 163:56-68. [PMID: 33310138 DOI: 10.1016/j.freeradbiomed.2020.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Physiological reactive oxygen species (ROS) play an important role in cellular signal transduction. However, excessive ROS is an important pathological mechanism in most cardiovascular diseases (CVDs), such as myocardial aging, cardiomyopathy, ischemia/reperfusion injury (e.g., myocardial infarction) and heart failure. Programmed cell death, hypertrophy and fibrosis may be due to oxidative stress. Sestrin 2 (Sesn2), a stress-inducible protein associated with various stress conditions, is a potential antioxidant. Sesn2 can suppress the process of heart damage caused by oxidative stress, promote cell survival and play a key role in a variety of CVDs. This review discusses the effect of Sesn2 on the redox signal, mainly via participation in the signaling pathway of nuclear factor erythroid 2-related factor 2, activation of adenosine monophosphate-activated protein kinase and inhibition of mammalian target of rapamycin complex 1. It also discusses the effect of Sesn2's antioxidant activity on different CVDs. We speculate that Sesn2 plays an important role in CVDs by stimulating the process of antioxidation and promoting the adaptation of cells to stress conditions and/or the environment, opening a new avenue for related therapeutic strategies.
Collapse
Affiliation(s)
- Yunxia Liu
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Meina Li
- Department of Infection Control, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaoyu Du
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhehao Huang
- Department of Neurosurgery, The Third Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Nanhu Quan
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
38
|
Liu X, Li M, Zhu J, Huang W, Song J. Sestrin2 protects against traumatic brain injury by reinforcing the activation of Nrf2 signaling. Hum Exp Toxicol 2020; 40:1095-1111. [PMID: 33375867 DOI: 10.1177/0960327120984224] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sestrin2 (SESN2) is stress-inducible protein that confers cytoprotective effects against various noxious stimuli. Accumulating evidence has documented that SESN2 has potent anti-apoptosis and anti-oxidative stress functions. However, whether it provides neuroprotection in traumatic brain injury (TBI) models remains unexplored. The purpose of this study was to explore the regulatory effect of SESN2 on TBI using in vivo and in vitro models. We found that TBI resulted in a marked induction of SESN2 in the cerebral cortex tissues of mice. SESN2 overexpression in the brain by in vivo gene transfer significantly decreased neurological deficit, brain edema, and neuronal apoptosis of mice with TBI. Moreover, the overexpression of SESN2 significantly decreased the oxidative stress induced by TBI in mice. In vitro studies of TBI demonstrated that SESN2 overexpression decreased apoptosis and oxidative stress in scratch-injured cortical neurons. Notably, SESN2 overexpression increased the nuclear levels of nuclear factor-erythroid 2-related factor 2 (Nrf2) and enhanced the activation of Nrf2 antioxidant signaling in in vivo and in vitro models of TBI. In addition, the inhibition of Nrf2 significantly abolished SESN2-mediated neuroprotective effects in vivo and in vitro. In conclusion, these results of our work demonstrate that SESN2 protects against TBI by enhancing the activation of Nrf2 antioxidant signaling.
Collapse
Affiliation(s)
- Xiaobin Liu
- Department of Neurosurgery, 162798The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.,These authors (Xiaobin Liu and Min Li) contributed equally to this work and shared the first authorship
| | - Min Li
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.,These authors (Xiaobin Liu and Min Li) contributed equally to this work and shared the first authorship
| | - Jiabao Zhu
- Department of Neurosurgery, Yuncheng Central Hospital of Shanxi Medical University, Yucheng, Shanxi, China
| | - Weidong Huang
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jinning Song
- Department of Neurosurgery, 162798The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
39
|
Liu H, Wang J, Wang D, Kong M, Ning C, Zhang X, Xiao J, Zhang X, Liu J, Zhao X. Cybrid Model Supports Mitochondrial Genetic Effect on Pig Litter Size. Front Genet 2020; 11:579382. [PMID: 33384712 PMCID: PMC7770168 DOI: 10.3389/fgene.2020.579382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
In pigs, mitochondrial DNA (mtDNA) polymorphism and the correlation to reproductive performance across breeds and individuals have been largely reported, however, experimental proof has never been provided. In this study, we analyzed 807 sows for correlation of total number born (TNB) and mitotype, which presented the maximum of 1.73 piglets for mtDNA contribution. Cybrid models representing different mitotypes were generated for identification of the mtDNA effect. Results indicated significant differences on cellular and molecular characteristics among cybrids, including energy metabolic traits, mtDNA copy numbers and transcriptions, mRNA and protein expressions on mitochondrial biogenesis genes and reproduction-related genes. Referring to mitotypes, the cybrids with prolific mitotypes presented significantly higher oxygen consumption rate (OCR) productions, mtDNA transcriptions and copy numbers than those with common mitotypes, while both mRNA and protein expressions of PPARA, TFAM, ER1, ER2, and ESRRG in prolific cybrids were significantly higher than those with common mitotypes. Cybrid models reflected the mtDNA effect on pig litter size, suggesting the potential application of mtDNA polymorphism in pig selection and breeding practices.
Collapse
Affiliation(s)
- Hao Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Wenshang Professor Workstation of China Agricultural University, Jining, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
| | - Dan Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Minghua Kong
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chao Ning
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xing Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Wenshang Professor Workstation of China Agricultural University, Jining, China
| | - Jinlong Xiao
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Wenshang Professor Workstation of China Agricultural University, Jining, China
| | - Xin Zhang
- Wenshang Professor Workstation of China Agricultural University, Jining, China.,Jining Animal Husbandry Station, Jining, China
| | - Jianfeng Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xingbo Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Wenshang Professor Workstation of China Agricultural University, Jining, China
| |
Collapse
|
40
|
Tan J, Luo J, Meng C, Jiang N, Cao J, Zhao J. Syringin exerts neuroprotective effects in a rat model of cerebral ischemia through the FOXO3a/NF-κB pathway. Int Immunopharmacol 2020; 90:107268. [PMID: 33316740 DOI: 10.1016/j.intimp.2020.107268] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 11/29/2020] [Indexed: 01/31/2023]
Abstract
Inflammation plays an important role in the pathogenesis of cerebral ischemia. Syringin (SYR) is an active substance isolated from Acanthopanax senticosus plants, and possesses anti-inflammatory and neuroprotective properties. However, its effects on cerebral ischemic injury, as well as the underlying molecular events, are still unclear. The purpose of this study was to investigate the effect of SYR in a rat model of cerebral ischemia and address the related molecular mechanism. A middle cerebral artery occlusion/reperfusion model (MCAO) was used to simulate ischemic injury. SYR treatment clearly reduced the infarct volume, decreased cerebral water content, improved the neurological score, and attenuated neuronal death. Moreover, SYR decreased the expression of NF-κB, IL-1β, IL-6, TNF-α, and MPO, promoted FOXO3a phosphorylation and cytoplasmic retention, and inhibited the nuclear translocation of NF-κB. FOXO3a knockdown by RNA interference significantly prevented SYR-induced inhibition of NF-κB-mediated inflammation. Confocal microscopy revealed that SYR reduced NF-κB translocation to the nucleus, and FOXO3a silencing reversed this effect. Finally, immunofluorescence and CO-IP experiments showed that SYR promoted the interaction between FOXO3a and NF-κB. In conclusion, SYR exerted a protective effect against brain I/R injury by reducing the inflammation accompanying cerebral ischemia. This effect was mediated by the FOXO3a /NF-κB pathway.
Collapse
Affiliation(s)
- Junyi Tan
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jing Luo
- Department of Pathology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Changchang Meng
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jing Cao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
41
|
Abstract
Sestrins are a family of proteins that respond to a variety of environmental stresses, including genotoxic, oxidative, and nutritional stresses. Sestrins affect multiple signaling pathways: AMP-activated protein kinase, mammalian target of rapamycin complexes, insulin-AKT, and redox signaling pathways. By regulating these pathways, Sestrins are thought to help adapt to stressful environments and subsequently restore cell and tissue homeostasis. In this review, we describe how Sestrins mediate physiological stress responses in the context of nutritional and chemical stresses (liver), physical movement and exercise (skeletal muscle), and chemical, physical, and inflammatory injuries (heart). These findings also support the idea that Sestrins are a molecular mediator of hormesis, a paradoxical beneficial effect of low- or moderate-level stresses in living organisms.
Collapse
Affiliation(s)
- Myungjin Kim
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| | - Allison H Kowalsky
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| |
Collapse
|
42
|
Zhang D, Lu Y, Zhao X, Zhang Q, Li L. Aerobic exercise attenuates neurodegeneration and promotes functional recovery - Why it matters for neurorehabilitation & neural repair. Neurochem Int 2020; 141:104862. [PMID: 33031857 DOI: 10.1016/j.neuint.2020.104862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Aerobic exercise facilitates optimal neurological function and exerts beneficial effects in neurologic injuries. Both animal and clinical studies have shown that aerobic exercise reduces brain lesion volume and improves multiple aspects of cognition and motor function after stroke. Studies using animal models have proposed a wide range of potential molecular mechanisms that underlie the neurological benefits of aerobic exercise. Furthermore, additional exercise parameters, including time of initiation, exercise dosage (exercise duration and intensity), and treatment modality are also critical for clinical application, as identifying the optimal combination of parameters will afford patients with maximal functional gains. To clarify these issues, the current review summarizes the known neurological benefits of aerobic exercise under both physiological and pathological conditions and then considers the molecular mechanisms underlying these benefits in the contexts of stroke-like focal cerebral ischemia and cardiac arrest-induced global cerebral ischemia. In addition, we explore the key roles of exercise parameters on the extent of aerobic exercise-induced neurological benefits to elucidate the optimal combination for aerobic exercise intervention. Finally, the current challenges for aerobic exercise implementation after stroke are discussed.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Xudong Zhao
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Lei Li
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
43
|
Sun S, Jiang T, Duan N, Wu M, Yan C, Li Y, Cai M, Wang Q. Activation of CB1R-Dependent PGC-1α Is Involved in the Improved Mitochondrial Biogenesis Induced by Electroacupuncture Pretreatment. Rejuvenation Res 2020; 24:104-119. [PMID: 32746712 DOI: 10.1089/rej.2020.2315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Electroacupuncture (EA) pretreatment induces cerebral ischemic tolerance; however, the mechanism remains poorly understood. This study aimed to determine the participation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-mediated mitochondrial biogenesis in the neuroprotection of EA and whether cannabinoid receptor 1 (CB1R) is involved in this mechanism. At 2 hours after EA pretreatment, adult male C57BL/6j mice were subjected to 60-minute right middle cerebral artery occlusion (MCAO). Mitochondrial function, the level of mitochondrial biogenesis-related proteins (nuclear transcription factor 1, NRF1; mitochondrial transcription factor A, TFAM), and mitochondrial DNA (mtDNA) were measured. A small interfering RNA (siRNA) targeting PGC-1α and the CB1R antagonists AM251 and SR141716A were given to the animals before EA pretreatment, and mitochondrial function and biogenesis were examined after MCAO. EA ameliorated the mitochondrial function, upregulated the NRF1 and TFAM expression, and increased the mtDNA levels and the volume and number of mitochondria. EA pretreatment increased the expression of PGC-1α, whereas the PGC-1α siRNA and CB1R antagonists reversed the improved neuroprotection and increased mitochondrial biogenesis induced by EA. Our results indicated that EA pretreatment protects the mitochondria and promotes mitochondrial biogenesis by activating CB1R-dependent PGC-1α, which provides a novel mechanism for EA pretreatment-induced ischemic tolerance.
Collapse
Affiliation(s)
- Sisi Sun
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Medical Department of the Emergency Centre of Xi'an, Xi'an, China
| | - Tao Jiang
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Duan
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meiyan Wu
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chaoying Yan
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Li
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Qiang Wang
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
44
|
Liu Y, Du X, Huang Z, Zheng Y, Quan N. Sestrin 2 controls the cardiovascular aging process via an integrated network of signaling pathways. Ageing Res Rev 2020; 62:101096. [PMID: 32544433 DOI: 10.1016/j.arr.2020.101096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/03/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
As an inevitable biological process, cardiovascular aging is the greatest risk factor for cardiovascular diseases (CVDs). Sestrin 2 (Sesn2), a stress-inducible and age-related protein associated with various stress conditions, plays a pivotal role in slowing this process. It acts as an anti-aging agent, mainly through its antioxidant enzymatic activity and regulation of antioxidant signaling pathways, as well as by activating adenosine monophosphate-activated protein kinase and inhibiting mammalian target of rapamycin complex 1. In this review, we first introduce the biochemical functions of Sesn2 in the cardiovascular aging process, and describe how Sesn2 expression is regulated under various stress conditions. Next, we emphasize the role of Sesn2 signal transduction in a series of age-related CVDs, including hypertension, myocardial ischemia and reperfusion, atherosclerosis, and heart failure, as well as provide potential mechanisms for the association of Sesn2 with CVDs. Finally, we present the potential therapeutic applications of Sesn2-directed therapy and future prospects.
Collapse
Affiliation(s)
- Yunxia Liu
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaoyu Du
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhehao Huang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yang Zheng
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Nanhu Quan
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
45
|
Li Y, Zhang J, Zhou K, Xie L, Xiang G, Fang M, Han W, Wang X, Xiao J. Elevating sestrin2 attenuates endoplasmic reticulum stress and improves functional recovery through autophagy activation after spinal cord injury. Cell Biol Toxicol 2020; 37:401-419. [PMID: 32740777 DOI: 10.1007/s10565-020-09550-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological trauma that causes losses of motor and sensory function. Sestrin2, also known as hypoxia inducible gene 95, is emerging as a critical determinant of cell homeostasis in response to cellular stress. However, the role of sestrin2 in the neuronal response to endoplasmic reticulum (ER) stress and the potential mechanism remain undefined. In this study, we investigated the effects of sestrin2 on ER stress and delineated an underlying molecular mechanism after SCI. Here, we found that elevated sestrin2 is a protective process in neurons against chemical ER stress induced by tunicamycin (TM) or traumatic invasion, while treatment with PERK inhibitor or knockdown of ATF4 reduces sestrin2 expression upon ER stress. In addition, we demonstrated that overexpression of sestrin2 limits ER stress, promoting neuronal survival and improving functional recovery after SCI, which is associated with activation of autophagy and restoration of autophagic flux mediated by sestrin2. Moreover, we also found that sestrin2 activates autophagy dependent on the AMPK-mTOR signaling pathway. Consistently, inhibition of AMPK abrogates the effect of sestrin2 on the activation of autophagy, and blockage of autophagic flux abolishes the effect of sestrin2 on limiting ER stress and neural death. Together, our data reveal that upregulation of sestrin2 is an important resistance mechanism of neurons to ER stress and the potential role of sestrin2 as a therapeutic target for SCI. Graphical abstract.
Collapse
Affiliation(s)
- Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jing Zhang
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ling Xie
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Guangheng Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Mingqiao Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Wen Han
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China. .,Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
46
|
Li Y, Wu J, Yu S, Zhu J, Zhou Y, Wang P, Li L, Zhao Y. Sestrin2 promotes angiogenesis to alleviate brain injury by activating Nrf2 through regulating the interaction between p62 and Keap1 following photothrombotic stroke in rats. Brain Res 2020; 1745:146948. [PMID: 32526292 DOI: 10.1016/j.brainres.2020.146948] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/14/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022]
Abstract
AIMS The lack of effective treatments for ischemic stroke is concerning. Here, we aimed to examine the protective effects of sestrin2 in ischemic stroke and determine the mechanism by which sestrin2 attenuates cerebral injuries. MAIN METHODS Ischemic stroke was induced in Sprague-Dawley rats using a photothrombotic ischemia (PTI) model. After sestrin2 was overexpressed or silenced, neurological deficits and brain infarction were evaluated. Cerebral angiogenesis and the expression of related proteins were examined by Western blotting and immunofluorescence. The interaction between p62 and Keap1 was measured by coimmunoprecipitation (CoIP) and an in situ proximity ligation assay (PLA). KEY FINDINGS The overexpression of sestrin2 was found to improve the neurological function of rats 10 days after PTI and to reduce the infarct volume and brain edema in rats 10 days after PTI. It was shown that upregulating sestrin2 enhanced the relative immunofluorescence intensity of CD34, CD31 and DCX. Sestrin2 overexpressionalso increased the number and total length of CD34 and CD31 positive vessels and the expression of nuclear and total Nrf2, HO-1, VEGF and p62. However, downregulating sestrin2 induced almost the opposite results. Furthermore, we demonstrated that sestrin2 increased the interaction between p62 and Keap1. SIGNIFICANCE Based on our data, sestrin2 may promote angiogenesis by activating the Nrf2 pathway through increasing the interaction between p62 and Keap1 via upregulating p62 expression.
Collapse
Affiliation(s)
- Yixin Li
- Department of Pathology Chongqing Medical University, Yixueyuan Road 1, 400016 Chongqing, China
| | - Jingxian Wu
- Department of Pathology Chongqing Medical University, Yixueyuan Road 1, 400016 Chongqing, China
| | - Shanshan Yu
- Department of Pathology Chongqing Medical University, Yixueyuan Road 1, 400016 Chongqing, China
| | - Jin Zhu
- Department of Pathology Chongqing Medical University, Yixueyuan Road 1, 400016 Chongqing, China
| | - Yang Zhou
- Department of Pathology Chongqing Medical University, Yixueyuan Road 1, 400016 Chongqing, China
| | - Peng Wang
- Department of Pathology Chongqing Medical University, Yixueyuan Road 1, 400016 Chongqing, China
| | - Lingyu Li
- Department of Pathology Chongqing Medical University, Yixueyuan Road 1, 400016 Chongqing, China.
| | - Yong Zhao
- Department of Pathology Chongqing Medical University, Yixueyuan Road 1, 400016 Chongqing, China.
| |
Collapse
|
47
|
Gao A, Li F, Zhou Q, Chen L. Sestrin2 as a potential therapeutic target for cardiovascular diseases. Pharmacol Res 2020; 159:104990. [PMID: 32505836 DOI: 10.1016/j.phrs.2020.104990] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/17/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022]
Abstract
Sestrin2 is a cysteine sulfinyl reductase that plays crucial roles in regulation of antioxidant actions. Sestrin2 provides cytoprotection against multiple stress conditions, including hypoxia, endoplasmic reticulum (ER) stress and oxidative stress. Recent research reveals that upregulation of Sestrin2 is induced by various transcription factors such as p53 and activator protein 1 (AP-1), which further promotes AMP-activated protein kinase (AMPK) activation and inhibits mammalian target of rapamycin protein kinase (mTOR) signaling. Sestrin2 triggers autophagy activity to reduce cellular reactive oxygen species (ROS) levels by promoting nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) activation and Kelch-like ECH-associated protein 1 (Keap1) degradation, which plays a pivotal role in homeostasis of metabolic regulation. Under hypoxia and ER stress conditions, elevated Sestrin2 expression maintains cellular homeostasis through regulation of antioxidant genes. Sestrin2 is responsible for diminishing cellular ROS accumulation through autophagy via AMPK activation, which displays cardioprotection effect in cardiovascular diseases. In this review, we summarize the recent understanding of molecular structure, biological roles and biochemical functions of Sestrin2, and discuss the roles and mechanisms of Sestrin2 in autophagy, hypoxia and ER stress. Understanding the precise functions and exact mechanism of Sestrin2 in cellular homeostasis will provide the evidence for future experimental research and aid in the development of novel therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Anbo Gao
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, People's Republic of China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421002, Hunan, People's Republic of China
| | - Feng Li
- Medical Shcool, Hunan University of Chinese Medicine, Changsha 410000, Hunan, People's Republic of China
| | - Qun Zhou
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, Hunan, People's Republic of China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, People's Republic of China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421002, Hunan, People's Republic of China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Provincial Science and Technology Department, 28 Western Changshen Road, Hengyang 421002, Hunan, People's Republic of China.
| |
Collapse
|
48
|
Yang L, Ma YM, Shen XL, Fan YC, Zhang JZ, Li PA, Jing L. The Involvement of Mitochondrial Biogenesis in Selenium Reduced Hyperglycemia-Aggravated Cerebral Ischemia Injury. Neurochem Res 2020; 45:1888-1901. [DOI: 10.1007/s11064-020-03055-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/29/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
|
49
|
Liu J, Li Y, Mei C, Ning X, Pang J, Gu L, Wu L. Phytic acid exerts protective effects in cerebral ischemia-reperfusion injury by activating the anti-oxidative protein sestrin2. Biosci Biotechnol Biochem 2020; 84:1401-1408. [PMID: 32290775 DOI: 10.1080/09168451.2020.1754158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cerebral ischemia reperfusion (I/R) is a therapeutic strategy for ischemia; however, it usually causes injury by the aspect of inflammation and neuron apoptosis. This investigation aims to investigate the protective effects of phytic acid (IP6) for cerebral I/R injury in vitro. PC-12 cells under Oxygen and glucose deprivation/reperfusion (OGD/R) were performed to mimic cerebral I/R. IP6 was pretreated before PC-12 cells under OGD/R treatment. The data showed that IP6 activated the expression of sestrin2 in OGD/R injured PC-12 cells. IP6 inhibited OGD/R induced inflammation, oxidative stress, and apoptosis by activating sestrin2. Besides, p38 MAPK may mediate the effects of sestrin2 activated by IP6. Therefore, IP6 can be a potential drug to prevent neurological damage in cerebral I/R injury.
Collapse
Affiliation(s)
- Jing Liu
- Neurology Department, Affiliated Hospital of Beihua University , Jilin, China
| | - Ying Li
- Rehabilitation Center, Beijing Xiaotangshan Hospital , Beijing, China
| | - Chunli Mei
- Neurology Department, Beihua University , Jilin, China
| | - Xianbin Ning
- Neurosurgery Department, Affiliated Hospital of Beihua University , Jilin, China
| | - Jinfeng Pang
- Neurosurgery Department, Affiliated Hospital of Beihua University , Jilin, China
| | - Lei Gu
- Rehabilitation Center, Beijing Xiaotangshan Hospital , Beijing, China
| | - Liang Wu
- Rehabilitation Center, Beijing Xiaotangshan Hospital , Beijing, China
| |
Collapse
|
50
|
Sesamol Alleviates Obesity-Related Hepatic Steatosis via Activating Hepatic PKA Pathway. Nutrients 2020; 12:nu12020329. [PMID: 31991934 PMCID: PMC7071159 DOI: 10.3390/nu12020329] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/30/2022] Open
Abstract
This study aimed to investigate the effect of sesamol (SEM) on the protein kinase A (PKA) pathway in obesity-related hepatic steatosis treatment by using high-fat diet (HFD)-induced obese mice and a palmitic acid (PA)-treated HepG2 cell line. SEM reduced the body weight gain of obese mice and alleviated related metabolic disorders such as insulin resistance, hyperlipidemia, and systemic inflammation. Furthermore, lipid accumulation in the liver and HepG2 cells was reduced by SEM. SEM downregulated the gene and protein levels of lipogenic regulator factors, and upregulated the gene and protein levels of the regulator factors responsible for lipolysis and fatty acid β-oxidation. Meanwhile, SEM activated AMP-activated protein kinase (AMPK), which might explain the regulatory effect of SEM on fatty acid β-oxidation and lipogenesis. Additionally, the PKA-C and phospho-PKA substrate levels were higher after SEM treatment. Further research found that after pretreatment with the PKA inhibitor, H89, lipid accumulation was increased even with SEM administration in HepG2 cells, and the effect of SEM on lipid metabolism-related regulator factors was abolished by H89. In conclusion, SEM has a positive therapeutic effect on obesity and obesity-related hepatic steatosis by regulating the hepatic lipid metabolism mediated by the PKA pathway.
Collapse
|