1
|
Rinne N, Wikman P, Sahari E, Salmi J, Einarsdóttir E, Kere J, Alho K. Developmental dyslexia susceptibility genes DNAAF4, DCDC2, and NRSN1 are associated with brain function in fluently reading adolescents and young adults. Cereb Cortex 2024; 34:bhae144. [PMID: 38610086 PMCID: PMC11014888 DOI: 10.1093/cercor/bhae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 04/14/2024] Open
Abstract
Reading skills and developmental dyslexia, characterized by difficulties in developing reading skills, have been associated with brain anomalies within the language network. Genetic factors contribute to developmental dyslexia risk, but the mechanisms by which these genes influence reading skills remain unclear. In this preregistered study (https://osf.io/7sehx), we explored if developmental dyslexia susceptibility genes DNAAF4, DCDC2, NRSN1, and KIAA0319 are associated with brain function in fluently reading adolescents and young adults. Functional MRI and task performance data were collected during tasks involving written and spoken sentence processing, and DNA sequence variants of developmental dyslexia susceptibility genes previously associated with brain structure anomalies were genotyped. The results revealed that variation in DNAAF4, DCDC2, and NRSN1 is associated with brain activity in key language regions: the left inferior frontal gyrus, middle temporal gyrus, and intraparietal sulcus. Furthermore, NRSN1 was associated with task performance, but KIAA0319 did not yield any significant associations. Our findings suggest that individuals with a genetic predisposition to developmental dyslexia may partly employ compensatory neural and behavioral mechanisms to maintain typical task performance. Our study highlights the relevance of these developmental dyslexia susceptibility genes in language-related brain function, even in individuals without developmental dyslexia, providing valuable insights into the genetic factors influencing language processing.
Collapse
Affiliation(s)
- Nea Rinne
- Department of Psychology and Logopedics, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
| | - Patrik Wikman
- Department of Psychology and Logopedics, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
| | - Elisa Sahari
- Department of Psychology and Speech-Language Pathology, University of Turku, Assistentinkatu 7, 20500 Turku, Finland
| | - Juha Salmi
- Department of Neuroscience and Biomedical Engineering, Otakaari 3, Aalto University, (AALTO), P.O. BOX 00076, Espoo, Finland
| | - Elisabet Einarsdóttir
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of Technology, SE-171 21, Solna, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, H7 Medicin, Huddinge, Sweden
- Folkhälsan Research Center, and Stem Cells and Metabolism Research Program (STEMM), University of Helsinki, PL 63, Haartmaninkatu 8, Helsinki, Finland
| | - Kimmo Alho
- Department of Psychology and Logopedics, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
- Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University, Espoo, Finland
| |
Collapse
|
2
|
Watts K, Wills C, Madi A, Palles C, Maughan TS, Kaplan R, Al-Tassan NA, Kerr R, Kerr DJ, Houlston RS, Escott-Price V, Cheadle JP. Genetic variation in ST6GAL1 is a determinant of capecitabine and oxaliplatin induced hand-foot syndrome. Int J Cancer 2022; 151:957-966. [PMID: 35467766 PMCID: PMC9545609 DOI: 10.1002/ijc.34046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
Cancer patients treated with capecitabine and oxaliplatin (XELOX) often develop hand-foot syndrome (HFS) or palmar-plantar erythrodysesthesia. Genetic variation in ST6GAL1 is a risk factor for type-2 diabetes (T2D), a disease also associated with HFS. We analysed genome-wide association data for 10 toxicities in advanced colorectal cancer (CRC) patients from the COIN and COIN-B trials. One thousand and fifty-five patients were treated with XELOX ± cetuximab and 745 with folinic acid, fluorouracil and oxaliplatin ± cetuximab. We also analysed rs6783836 in ST6GAL1 with HFS in CRC patients from QUASAR2. Using UK Biobank data, we sought to confirm an association between ST6GAL1 and T2D (17 384 cases, 317 887 controls) and analysed rs6783836 against markers of diabetes, inflammation and psoriasis. We found that 68% of patients from COIN and COIN-B with grade 2-3 HFS responded to treatment as compared to 58% with grade 0-1 HFS (odds ratio [OR] = 1.1, 95% confidence interval [CI] = 1.02-1.2, P = 2.0 × 10-4 ). HFS was also associated with improved overall survival (hazard ratio = 0.92, 95% CI = 0.84-0.99, P = 4.6 × 10-2 ). rs6783836 at ST6GAL1 was associated with HFS in patients treated with XELOX (OR = 3.1, 95% CI = 2.1-4.6, P = 4.3 × 10-8 ) and was borderline significant in patients receiving capecitabine from QUASAR2, but with an opposite allele effect (OR = 0.66, 95% CI = 0.42-1.03, P = .05). ST6GAL1 was associated with T2D (lead SNP rs3887925, OR = 0.94, 95% CI = 0.92-0.96, P = 1.2 × 10-8 ) and the rs6783836-T allele was associated with lowered HbA1c levels (P = 5.9 × 10-3 ) and lymphocyte count (P = 2.7 × 10-3 ), and psoriasis (P = 7.5 × 10-3 ) beyond thresholds for multiple testing. In conclusion, HFS is a biomarker of treatment outcome and rs6783836 in ST6GAL1 is a potential biomarker for HFS with links to T2D and inflammation.
Collapse
Affiliation(s)
- Katie Watts
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Christopher Wills
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Ayman Madi
- The Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, UK
| | - Claire Palles
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | - Timothy S Maughan
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Richard Kaplan
- MRC Clinical Trials Unit, University College of London, London, UK
| | - Nada A Al-Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rachel Kerr
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | - David J Kerr
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Valentina Escott-Price
- Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Jeremy P Cheadle
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Lancaster HS, Liu X, Dinu V, Li J. Identifying interactive biological pathways associated with reading disability. Brain Behav 2020; 10:e01735. [PMID: 32596987 PMCID: PMC7428467 DOI: 10.1002/brb3.1735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Past research has suggested that reading disability is a complex disorder involving genetic and environment contributions, as well as gene-gene and gene-environment interaction, but to date little is known about the underlying mechanisms. METHOD Using the Avon Longitudinal Study of Parents and Children, we assessed the contributions of genetic, demographic, and environmental variables on case-control status using machine learning. We investigated the functional interactions between genes using pathway and network analysis. RESULTS Our results support a systems approach to studying the etiology of reading disability with many genes (e.g., RAPGEF2, KIAA0319, DLC1) and biological pathways (e.g., neuron migration, positive regulation of dendrite regulation, nervous system development) interacting with each other. We found that single nucleotide variants within genes often had opposite effects and that enriched biological pathways were mediated by neuron migration. We also identified behavioral (i.e., receptive language, nonverbal intelligence, and vocabulary), demographic (i.e., mother's highest education), and environmental (i.e., birthweight) factors that influenced case-control status when accounting for genetic information. DISCUSSION The behavioral and demographic factors were suggested to be protective against reading disability status, while birthweight conveyed risk. We provided supporting evidence that reading disability has a complex biological and environmental etiology and that there may be a shared genetic and neurobiological architecture for reading (dis)ability.
Collapse
Affiliation(s)
- Hope Sparks Lancaster
- College of Health SolutionsArizona State UniversityTempeAZUSA
- Department of Computing, Informatics, and Decision Systems EngineeringSchools of EngineeringArizona State UniversityTempeAZUSA
| | - Xiaonan Liu
- Department of Computing, Informatics, and Decision Systems EngineeringSchools of EngineeringArizona State UniversityTempeAZUSA
| | - Valentin Dinu
- College of Health SolutionsArizona State UniversityTempeAZUSA
| | - Jing Li
- School of Industrial and Systems EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| |
Collapse
|
4
|
Nishiyama KV, Satta Y, Gojobori J. Do Genes Associated with Dyslexia of Chinese Characters Evolve Neutrally? Genes (Basel) 2020; 11:genes11060658. [PMID: 32560373 PMCID: PMC7349701 DOI: 10.3390/genes11060658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/13/2020] [Accepted: 06/13/2020] [Indexed: 12/29/2022] Open
Abstract
Dyslexia, or reading disability, is found to have a genetic basis, and several related genes have been reported. We investigated whether natural selection has acted on single nucleotide polymorphisms (SNPs) that were reported to be associated with risk/non-risk for the reading disability of Chinese characters. We applied recently developed 2D SFS-based statistics to SNP data of East Asian populations to examine whether there is any sign of selective sweep. While neutrality was not rejected for most SNPs, significant signs of selection were detected for two linkage disequilibrium (LD) regions containing the reported SNPs of GNPTAB and DCDC2. Furthermore, we searched for a selection target site among the SNPs in these LD regions, because a causal site is not necessarily a reported SNP but could instead be a tightly linked site. In both LD regions, we found candidate target sites, which may have an effect on expression regulation and have been selected, although which genes these SNPs affect remains unknown. Because most people were not engaged in reading until recently, it is unlikely that there has been selective pressure on reading ability itself. Consistent with this, our results suggest a possibility of genetic hitchhiking, whereby alleles of the reported SNPs may have increased in frequency together with the selected target, which could have functions for other genes and traits apart from reading ability.
Collapse
|
5
|
Liu L, Gu H, Hou F, Xie X, Li X, Zhu B, Zhang J, Wei WH, Song R. Dyslexia associated functional variants in Europeans are not associated with dyslexia in Chinese. Am J Med Genet B Neuropsychiatr Genet 2019; 180:488-495. [PMID: 31264768 DOI: 10.1002/ajmg.b.32750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/30/2019] [Accepted: 06/14/2019] [Indexed: 01/09/2023]
Abstract
Genome-wide association studies (GWAS) of developmental dyslexia (DD) often used European samples and identified only a handful associations with moderate or weak effects. This study aims to identify DD functional variants by integrating the GWAS associations with tissue-specific functional data and test the variants in a Chinese DD study cohort named READ. We colocalized associations from nine DD related GWAS with expression quantitative trait loci (eQTL) derived from brain tissues and identified two eSNPs rs349045 and rs201605. Both eSNPs had supportive evidence of chromatin interactions observed in human hippocampus tissues and their respective target genes ZNF45 and DNAH9 both had lower expression in brain tissues in schizophrenia patients than controls. In contrast, an eSNP rs4234898 previously identified based on eQTL from the lymphoblastic cell lines of dyslexic children had no chromatin interaction with its target gene SLC2A3 in hippocampus tissues and SLC2A3 expressed higher in the schizophrenia patients than controls. We genotyped the three eSNPs in the READ cohort of 372 cases and 354 controls and discovered only weak associations in rs201605 and rs4234898 with three DD symptoms (p < .05). The lack of associations could be due to low power in READ but could also implicate different etiology of DD in Chinese.
Collapse
Affiliation(s)
- Lingfei Liu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaiting Gu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Hou
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Zhu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - Wen-Hua Wei
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Association between KIAA0319 SNPs and risk of dyslexia: a meta-analysis. J Genet 2019. [DOI: 10.1007/s12041-019-1103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Deng KG, Zhao H, Zuo PX. Association between KIAA0319 SNPs and risk of dyslexia: a meta-analysis. J Genet 2019; 98:62. [PMID: 31204720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aetiology of developmental dyslexia (DD) is complex; although candidate genes have been suggested, the molecular mechanism and risk factors remain unknown. The KIAA0319 gene is functionally related to neuronal migration and axon growth, and several studies have examined associations between KIAA0319 polymorphisms with DD, but the results remain inconsistent. The sample size affects the results of meta-analysis. The aim of this meta-analysis was to clarify the effect of KIAA0319 polymorphisms on dyslexia susceptibility according to the available evidence. All eligible case-control and transmission/disequilibrium test (TDT) studies published until March 2018 were identified by searchingMedline, PubMed, Embase, Web of Science and Chinese Biomedical Database, limited to Chinese and English language papers. Pooled odds ratios and 95% confidence intervals were calculated using STATS package v12.0. A total of 11 related studies, including 3130 cases of dyslexia and 3460 healthy control subjects, as well as four TDT studies with 842 families were included in our meta-analysis. The results indicated that the polymorphisms rs4504469, rs2038137, rs2179515, rs3212236, rs6935076, rs9461045, rs2143340 and rs761100 have no association between the polymorphisms and dyslexia risk. Three subgroup meta-analyseswere performed according to the study design, country and population. The stratified analysis revealed that the KIAA0319 rs4504469 minor allele was a risk allele t in the TDT subgroup, rs3212236 minor allele was a risk allele t in the UK subgroup and rs6935076 minor allele was a risk allele t in the Canada subgroup. Further studies with larger sample sizes that assess gene-gene and gene-environment interactions are required. The sample size of our study is larger than that of the previous studies, and the results are different from those of the previous studies.We have synthesized all the current studies on KIAA0319 and obtained reliable results.
Collapse
Affiliation(s)
- Ke-Gao Deng
- Medical School, University of Shihezi, Xinjiang 83 2000, People's Republic of China.
| | | | | |
Collapse
|
8
|
Fazia T, Pastorino R, Foco L, Han L, Abney M, Beecham A, Hadjixenofontos A, Guo H, Gentilini D, Papachristou C, Bitti PP, Ticca A, Berzuini C, McCauley JL, Bernardinelli L. Investigating multiple sclerosis genetic susceptibility on the founder population of east-central Sardinia via association and linkage analysis of immune-related loci. Mult Scler 2018; 24:1815-1824. [PMID: 28933650 DOI: 10.1177/1352458517732841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND A wealth of single-nucleotide polymorphisms (SNPs) responsible for multiple sclerosis (MS) susceptibility have been identified; however, they explain only a fraction of MS heritability. OBJECTIVES We contributed to discovery of new MS susceptibility SNPs by studying a founder population with high MS prevalence. METHODS We analyzed ImmunoChip data from 15 multiplex families and 94 unrelated controls from the Nuoro Province, Sardinia, Italy. We tested each SNP for both association and linkage with MS, the linkage being explored in terms of identity-by-descent (IBD) sharing excess and using gene dropping to compute a corresponding empirical p-value. By targeting regions that are both associated and in linkage with MS, we increase chances of identifying interesting genomic regions. RESULTS We identified 486 MS-associated (p < 1 × 10-4) and 18,426 MS-linked (p < 0.05) SNPs. A total of 111 loci were both linked and associated with MS, 18 of them pointing to 14 non-major histocompatibility complex (MHC) genes, and 93 of them located in the MHC region. CONCLUSION We discovered new suggestive signals and confirmed some previously identified ones. We believe this to represent a significant step toward an understanding of the genetic basis of MS.
Collapse
Affiliation(s)
- Teresa Fazia
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
| | - Roberta Pastorino
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
| | - Luisa Foco
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy; Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Lide Han
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Mark Abney
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Ashley Beecham
- John P. Hussmann Institute for Human Genomics and Dr John Macdonald Foundation, Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Athena Hadjixenofontos
- John P. Hussmann Institute for Human Genomics and Dr John Macdonald Foundation, Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Hui Guo
- Center for Biostatistics, Institute of Population Health, The University of Manchester, Manchester, UK
| | - Davide Gentilini
- Unità di Bioinformatica e Statistica Genomica, Istituto Auxologico Italiano-IRCCS, Milano, Italy
| | | | - Pier Paolo Bitti
- Immunoematologia e Medicina Trasfusionale, Ospedale "San Francesco" Nuoro, ASSL Nuoro, Azienda Tutela Salute Sardegna, Nuoro, Italy
| | - Anna Ticca
- Neurologia e Stroke Unit, Ospedale "San Francesco" Nuoro, ASSL Nuoro, Azienda Tutela Salute Sardegna, Nuoro, Italy
| | - Carlo Berzuini
- Center for Biostatistics, Institute of Population Health, The University of Manchester, Manchester, UK
| | - Jacob L McCauley
- John P. Hussmann Institute for Human Genomics and Dr John Macdonald Foundation, Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Luisa Bernardinelli
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Bashir NA, Ragab ES, Khabour OF, Khassawneh BY, Alfaqih MA, Momani JA. The Association between Epidermal Growth Factor Receptor ( EGFR) Gene Polymorphisms and Lung Cancer Risk. Biomolecules 2018; 8:biom8030053. [PMID: 30011810 PMCID: PMC6164867 DOI: 10.3390/biom8030053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 01/21/2023] Open
Abstract
Lung cancer is the leading cause of cancer death globally. The epidermal growth factor receptor (EGFR) plays an important role in cell proliferation and signaling. In this study, we examined the association between EGFR gene polymorphisms and lung cancer risk among the Jordanian population. A total of 129 patients with primary lung cancer and 129 matched healthy controls were recruited into this study. EGFR rs712829, rs712830, rs2072454, and rs11543848 single nucleotide polymorphisms (SNPs) were genotyped to test for their association with lung cancer risk. A significant association was observed between the rs712829 SNP and lung cancer risk (p < 0.05) where the GG + GT genotypes were higher in lung cancer patients when compared to controls. In addition, no association was detected between rs712830, rs2072454, and rs11543848 SNPs and lung cancer risk. When patients were stratified according to the lung cancer type, a significant association was detected between both rs712829 and rs2072454 and adenocarcinoma lung cancer (p < 0.05). Haplotype analysis of all four SNPs showed a significant association between the TCCG haplotype and both lung cancer and the adenocarcinoma subtype (p < 0.001). In conclusion, EGFR rs712829, rs2072454 SNPs, and TCCG haplotypes are associated with a risk of lung cancer among Jordanians. Since genetic associations are affected by the genetic background of populations, more studies in other Arab populations are required to confirm the present findings.
Collapse
Affiliation(s)
- Nabil A Bashir
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Entesar S Ragab
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Basheer Y Khassawneh
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Mahmoud A Alfaqih
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Jafar A Momani
- Respiratory Medicine Division, King Hussein Medical Center, Amman 11733, Jordan.
| |
Collapse
|
10
|
Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl Psychiatry 2017; 7:e987. [PMID: 28045463 PMCID: PMC5545717 DOI: 10.1038/tp.2016.240] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental deficit characterized by impaired reading acquisition, in spite of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. Despite the successful characterization of DD-susceptibility genes, we are far from understanding the molecular etiological pathways underlying the development of reading (dis)ability. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed results. More optimally reduced measures of functioning, that is, intermediate phenotypes (IPs), represent a target for researching disease-associated genetic variants and for elucidating the underlying mechanisms. Imaging data provide a viable IP for complex neurobehavioral disorders and have been extensively used to investigate both morphological, structural and functional brain abnormalities in DD. Performing joint genetic and neuroimaging studies in humans is an emerging strategy to link DD-candidate genes to the brain structure and function. A limited number of studies has already pursued the imaging-genetics integration in DD. However, the results are still not sufficient to unravel the complexity of the reading circuit due to heterogeneous study design and data processing. Here, we propose an interdisciplinary, multilevel, imaging-genetic approach to disentangle the pathways from genes to behavior. As the presence of putative functional genetic variants has been provided and as genetic associations with specific cognitive/sensorial mechanisms have been reported, new hypothesis-driven imaging-genetic studies must gain momentum. This approach would lead to the optimization of diagnostic criteria and to the early identification of 'biologically at-risk' children, supporting the definition of adequate and well-timed prevention strategies and the implementation of novel, specific remediation approach.
Collapse
|