1
|
Galván GC, Macias E, Sanders S, Ramirez-Torres A, Stock S, You S, Riera CE, Tamukong P, Smith-Warner SA, Genkinger JM, Luthringer DJ, Freeman MR, Freedland SJ. The effects of glycemic index on prostate cancer progression in a xenograft mouse model. Prostate Cancer Prostatic Dis 2024; 27:348-354. [PMID: 38082056 PMCID: PMC11096094 DOI: 10.1038/s41391-023-00769-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 05/18/2024]
Abstract
BACKGROUND Previously, we found low-carbohydrate diets slowed prostate cancer (PC) growth and increased survival vs. a Western diet in mice, by inhibiting the insulin/IGF-1 axis. Thus, we tested whether modifying carbohydrate quality to lower glycemic index (GI) without changing quantity results in similar benefits as with reduced quantity. METHODS Male SCID mice injected with LAPC-4 cells were single-housed and randomized when their tumors reached 200 mm3 on average to a LoGI (48% carbohydrate kcal, from Hylon-VII) or HiGI Western diet (48% carbohydrate kcal, from sucrose). Body weight and tumor volume were measured weekly. Body composition was assessed 35 days after randomization. Blood glucose and serum insulin, IGF-1 and IGFBP3 were measured at study end when tumor volumes reached 800 mm3. We analyzed gene expression of mice tumors by RNA-sequencing and human tumors using the Prostate Cancer Transcriptome Atlas. RESULTS There were no significant differences in tumor volume (P > 0.05), tumor proliferation (P = 0.29), and overall survival (P = 0.15) between groups. At 35 days after randomization, the LoGI group had 30% lower body fat (P = 0.007) despite similar body weight (P = 0.58). At sacrifice, LoGI mice had smaller livers (P < 0.001) and lower glucose (P = 0.15), insulin (P = 0.11), IGF-1 (P = 0.07) and IGF-1:IGFBP3 ratio (P = 0.05), and higher IGFBP3 (P = 0.09) vs. HiGI, although none of these metabolic differences reached statistical significance. We observed differential gene expression and pathway enrichment in mice tumors by diet. The most upregulated and downregulated gene in the LoGI group showed expression patterns more closely resembling expression in human benign prostate tissue vs. PC. CONCLUSIONS In this single mouse xenograft model, consuming a low GI diet did not delay PC growth or survival vs. a high GI diet despite suggestions of decreased activation of the insulin/IGF-1 pathway. These data suggest that improving carbohydrate quality alone while consuming a high carbohydrate diet may not effectively slow PC growth.
Collapse
Affiliation(s)
| | - Everardo Macias
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Sergio Sanders
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Shannon Stock
- Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, MA, USA
- Department of Surgery, Urology Section, Veterans Affairs Health Care System, Durham, NC, USA
| | - Sungyong You
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Celine E Riera
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Patrick Tamukong
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephanie A Smith-Warner
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeanine M Genkinger
- Mailman School of Public Health, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Michael R Freeman
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Freedland
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Surgery, Urology Section, Veterans Affairs Health Care System, Durham, NC, USA.
| |
Collapse
|
2
|
Saranchova I, Xia CW, Besoiu S, Finkel PL, Ellis SLS, Kari S, Munro L, Pfeifer CG, Fazli L, Gleave ME, Jefferies WA. A novel type-2 innate lymphoid cell-based immunotherapy for cancer. Front Immunol 2024; 15:1317522. [PMID: 38524132 PMCID: PMC10958781 DOI: 10.3389/fimmu.2024.1317522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/29/2024] [Indexed: 03/26/2024] Open
Abstract
Cell-based cancer immunotherapy has achieved significant advancements, providing a source of hope for cancer patients. Notwithstanding the considerable progress in cell-based immunotherapy, the persistently low response rates and the exorbitant costs associated with their implementation still present a formidable challenge in clinical settings. In the landscape of cell-based cancer immunotherapies, an uncharted territory involves Type 2 innate lymphoid cells (ILC2s) and interleukin-33 (IL-33) which promotes ILC2 functionality, recognized for their inherent ability to enhance immune responses. Recent discoveries regarding their role in actuating cytolytic T lymphocyte responses, including curbing tumor growth rates and hindering metastasis, have added a new dimension to our understanding of the IL-33/ILC2 axis. These recent insights may hold significant promise for ILC2 cell-based immunotherapy. Nevertheless, the prospect of adoptively transferring ILC2s to confer immune protection against tumors has yet to be investigated. The present study addresses this hypothesis, revealing that ILC2s isolated from the lungs of tumor-bearing mice, and tumor infiltrating ILC2s when adoptively transferred after tumor establishment at a ratio of one ILC2 per sixty tumor cells, leads to an influx of tumor infiltrating CD4+ and CD8+ T lymphocytes as well as tumor infiltrating eosinophils resulting in a remarkable reduction in tumor growth. Moreover, we find that post-adoptive transfer of ILC2s, the number of tumor infiltrating ILC2s is inversely proportional to tumor size. Finally, we find corollaries of the IL-33/ILC2 axis enhancing the infiltration of eosinophils in human prostate carcinomas patients' expressing high levels of IL-33 versus those expressing low levels of IL-33. Our results underscore the heightened efficacy of adoptively transferred ILC2s compared to alternative approaches, revealing an approximately one hundred fifty-fold superiority on a cell-per-cell basis over CAR T-cells in the specific targeting and elimination of tumors within the same experimental model. Overall, this study demonstrates the functional significance of ILC2s in cancer immunosurveillance and provides the proof of concept of the potential utility of ILC2 cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Clara Wenjing Xia
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie Besoiu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Pablo L. Finkel
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Samantha L. S. Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Suresh Kari
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl G. Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ladan Fazli
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Martin E. Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Wilfred A. Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Xia CW, Saranchova I, Finkel PL, Besoiu S, Munro L, Pfeifer CG, Haegert A, Lin YY, Le Bihan S, Collins C, Jefferies WA. A diversity of novel type-2 innate lymphoid cell subpopulations revealed during tumour expansion. Commun Biol 2024; 7:12. [PMID: 38172434 PMCID: PMC10764766 DOI: 10.1038/s42003-023-05536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/01/2023] [Indexed: 01/05/2024] Open
Abstract
Type 2 innate lymphoid cells (ILC2s) perform vital functions in orchestrating humoral immune responses, facilitating tissue remodelling, and ensuring tissue homeostasis. Additionally, in a role that has garnered considerably less attention, ILC2s can also enhance Th1-related cytolytic T lymphocyte immune responses against tumours. Studies have thus far generally failed to address the mystery of how one ILC2 cell-type can participate in a multiplicity of functions. Here we utilized single cell RNA sequencing analysis to create the first comprehensive atlas of naïve and tumour-associated lung ILC2s and discover multiple unique subtypes of ILC2s equipped with developmental gene programs that become skewed during tumour expansion favouring inflammation, antigen processing, immunological memory and Th1-related anti-tumour CTL responses. The discovery of these new subtypes of ILC2s challenges current paradigms of ILC2 biology and provides an explanation for their diversity of function.
Collapse
Affiliation(s)
- Clara Wenjing Xia
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Pablo L Finkel
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Stephanie Besoiu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Cheryl G Pfeifer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Anne Haegert
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Yen-Yi Lin
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Stéphane Le Bihan
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Colin Collins
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- The Laboratory for Advanced Genome Analysis (LAGA), The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada.
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
4
|
Ellis SLS, Dada S, Nohara LL, Saranchova I, Munro L, Pfeifer CG, Eyford BA, Morova T, Williams DE, Cheng P, Lack NA, Andersen RJ, Jefferies WA. Curcuphenol possesses an unusual histone deacetylase enhancing activity that counters immune escape in metastatic tumours. Front Pharmacol 2023; 14:1119620. [PMID: 37637416 PMCID: PMC10449465 DOI: 10.3389/fphar.2023.1119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/03/2023] [Indexed: 08/29/2023] Open
Abstract
Curcuphenol, a common component of the culinary spices, naturally found in marine invertebrates and plants, has been identified as a novel candidate for reversing immune escape by restoring expression of the antigen presentation machinery (APM) in invasive cancers, thereby resurrecting the immune recognition of metastatic tumours. Two synthetic curcuphenol analogues, were prepared by informed design that demonstrated consistent induction of APM expression in metastatic prostate and lung carcinoma cells. Both analogues were subsequently found to possess a previously undescribed histone deacetylase (HDAC)-enhancing activity. Remarkably, the H3K27ac ChIPseq analysis of curcuphenol-treated cells reveals that the induced epigenomic marks closely resemble the changes in genome-wide pattern observed with interferon-γ, a cytokine instrumental for orchestrating innate and adaptive immunity. These observations link dietary components to modifying epigenetic programs that modulate gene expression guiding poised immunity.
Collapse
Affiliation(s)
- Samantha L. S. Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Dada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lilian L. Nohara
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Cheryl G. Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Brett A. Eyford
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Tunc Morova
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - David E. Williams
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ping Cheng
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nathan A. Lack
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- School of Medicine, Koç University, Istanbul, Türkiye
| | - Raymond J. Andersen
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wilfred A. Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Chatterjee A, Azevedo-Martins JM, Stachler MD. Interleukin-33 as a Potential Therapeutic Target in Gastric Cancer Patients: Current Insights. Onco Targets Ther 2023; 16:675-687. [PMID: 37583706 PMCID: PMC10424681 DOI: 10.2147/ott.s389120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023] Open
Abstract
Gastric cancer is a significant global health problem as it is the fifth most prevalent cancer worldwide and the fourth leading cause of cancer-related mortality. While cytotoxic chemotherapy remains the primary treatment for advanced GC, response rates are limited. Recent progresses, focused on molecular signalling within gastric cancer, have ignited new hope for potential therapeutic targets that may improve survival and/or reduce the toxic effects of traditional therapies. Carcinomas are generally initiated when critical regulatory genes get mutated, but the progression to malignancy is usually supported by the non-neoplastic cells that create a conducive environment for transformation and progression to occur. Interleukin 33 (IL-33) functions as a dual activity cytokine as it is also a nuclear factor. IL-33 is usually present in the nuclei of the cells. Upon tissue damage, it is released into the extracellular space and binds to its receptor, suppression of tumorigenicity 2 (ST2) L, which is expressed on the membranes of the target cells. IL-33 signalling activates the T Helper 2 (Th2) immune response among other responses. Although the studies on the role of IL-33 in gastric cancer are still in the early stages, they have revealed potentially important (though sometimes conflicting) functions or roles in cancer development and progression. The pro-tumorigenic roles include induction and the recruitment of tumor-associated immune cells, promoting metaplasia progression, and inducing stem cell like and EMT properties in gastric cancer cells. Therapeutic interventions to disrupt these functions may provide a unique strategy for gastric cancer prevention and treatment. This review aims to provide a summary of the role of IL-33 in GC, state its multiple functions in relation to GC, and show potential avenues for promising therapeutic investigation.
Collapse
Affiliation(s)
- Annesha Chatterjee
- University of California San Francisco, Department of Pathology, San Francisco, CA, USA
| | | | - Matthew D Stachler
- University of California San Francisco, Department of Pathology, San Francisco, CA, USA
| |
Collapse
|
6
|
Pan X, Liu J, Li M, Liang Y, Liu Z, Lao M, Fang M. The association of serum IL-33/ST2 expression with hepatocellular carcinoma. BMC Cancer 2023; 23:704. [PMID: 37507682 PMCID: PMC10375617 DOI: 10.1186/s12885-023-11179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND IL-33 is a multifunctional cytokine with dual functions. However, the clinicopathological and prognostic significance of IL-33 in cancer patients, especially in patients with hepatocellular carcinoma (HCC), remains controversial. Therefore, we conducted a study of 565 patients with HCC and 561 healthy controls and performed a meta-analysis to quantitatively evaluate the above problems. METHODS We collected blood from 565 patients with HCC and 561 healthy controls. ELISA was used to detect the concentrations of IL-33 and ST2 in the serum, and RT‒PCR was used to detect the levels of IL-33 and ST2 mRNA. Meanwhile, we collected comprehensive literature on IL-33 and the clinical characteristics of cancer patients retrieved from the PubMed, Web of Science and CNKI databases as of December 2022. An odds ratio (OR) with a 95% confidence interval (CI) was used to estimate the impact through overall and stratified analyses. RESULTS Compared with the healthy control group, the levels of ST2 mRNA and serum in the peripheral blood of HCC patients increased (p < 0.05), while the levels of IL-33 mRNA and serum showed no significant difference between the two groups (p > 0.05). In the meta-analysis section, at the tissue level, the overall analysis showed that the expression of IL-33 was positively correlated with tumor stage, histological grade, distant metastasis, and tumor size. Compared with patients with low IL-33 expression, the 3-year overall survival (OS) rate (OR = 3.467, p < 0.001) and 5-year OS rate (OR = 2.784, p < 0.001) of patients with high IL-33 expression were lower. At the serum expression level, the overall analysis showed that the expression of IL-33 increased the risk of cancer, and the serum level of IL-33 was positively correlated with tumor stage and vascular invasion. CONCLUSION IL-33/ST2 is a useful predictive or prognostic biomarker in clinical evaluation and may be used as a potential therapeutic target, but much research is needed to verify this hypothesis.
Collapse
Affiliation(s)
- Xiaolan Pan
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Jinfeng Liu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Meiqin Li
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Yihua Liang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Zhimin Liu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Ming Lao
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China.
| | - Min Fang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China.
| |
Collapse
|
7
|
Nohara LL, Ellis SLS, Dreier C, Dada S, Saranchova I, Munro L, Pfeifer CG, Coyle KM, Morrice JR, Shim DJS, Ahn P, De Voogd N, Williams DE, Cheng P, Garrovillas E, Andersen RJ, Jefferies WA. A novel cell-based screen identifies chemical entities that reverse the immune-escape phenotype of metastatic tumours. Front Pharmacol 2023; 14:1119607. [PMID: 37256225 PMCID: PMC10225555 DOI: 10.3389/fphar.2023.1119607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/21/2023] [Indexed: 06/01/2023] Open
Abstract
Genetic and epigenetic events have been implicated in the downregulation of the cellular antigen processing and presentation machinery (APM), which in turn, has been associated with cancer evasion of the immune system. When these essential components are lacking, cancers develop the ability to subvert host immune surveillance allowing cancer cells to become invisible to the immune system and, in turn, promote cancer metastasis. Here we describe and validate the first high-throughput cell-based screening assay to identify chemical extracts and unique chemical entities that reverse the downregulation of APM components in cell lines derived from metastatic tumours. Through the screening of a library of 480 marine invertebrate extracts followed by bioassay-guided fractionation, curcuphenol, a common sesquiterpene phenol derived from turmeric, was identified as the active compound of one of the extracts. We demonstrate that curcuphenol induces the expression of the APM components, TAP-1 and MHC-I molecules, in cell lines derived from both metastatic prostate and lung carcinomas. Turmeric and curcumins that contain curcuphenol have long been utilized not only as a spice in the preparation of food, but also in traditional medicines for treating cancers. The remarkable discovery that a common component of spices can increase the expression of APM components in metastatic tumour cells and, therefore reverse immune-escape mechanisms, provides a rationale for the development of foods and advanced nutraceuticals as therapeutic candidates for harnessing the power of the immune system to recognize and destroy metastatic cancers.
Collapse
Affiliation(s)
- Lilian L. Nohara
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Samantha L. S. Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Carola Dreier
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Dada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Cheryl G. Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Krysta M. Coyle
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Jessica R. Morrice
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Joo Sung Shim
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Paul Ahn
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Nicole De Voogd
- Netherlands Centre for Biodiversity Naturalis, Leiden, Netherlands
| | - David E. Williams
- Departments of Chemistry and Earth Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ping Cheng
- Departments of Chemistry and Earth Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Emmanuel Garrovillas
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Raymond J. Andersen
- Departments of Chemistry and Earth Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wilfred A. Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Ng WL, Ansell SM, Mondello P. Insights into the tumor microenvironment of B cell lymphoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:362. [PMID: 36578079 PMCID: PMC9798587 DOI: 10.1186/s13046-022-02579-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
The standard therapies in lymphoma have predominantly focused on targeting tumor cells with less of a focus on the tumor microenvironment (TME), which plays a critical role in favoring tumor growth and survival. Such an approach may result in increasingly refractory disease with progressively reduced responses to subsequent treatments. To overcome this hurdle, targeting the TME has emerged as a new therapeutic strategy. The TME consists of T and B lymphocytes, tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and other components. Understanding the TME can lead to a comprehensive approach to managing lymphoma, resulting in therapeutic strategies that target not only cancer cells, but also the supportive environment and thereby ultimately improve survival of lymphoma patients. Here, we review the normal function of different components of the TME, the impact of their aberrant behavior in B cell lymphoma and the current TME-direct therapeutic avenues.
Collapse
Affiliation(s)
- Wern Lynn Ng
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Stephen M. Ansell
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Patrizia Mondello
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| |
Collapse
|
9
|
Zhang Y, Li J, Yang F, Zhang X, Ren X, Wei F. Relationship and prognostic significance of IL-33, PD-1/PD-L1, and tertiary lymphoid structures in cervical cancer. J Leukoc Biol 2022; 112:1591-1603. [PMID: 35501298 DOI: 10.1002/jlb.5ma0322-746r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/28/2022] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
IL-33, an epithelial-derived cytokine, functions as an alarmin for the immune system in the tumor microenvironment (TME). However, the expression and role of IL-33 on cervical cancer remain unclear. The aim of this study was to investigate the expression of IL-33 and its relationship with clinicopathologic features, tertiary lymphoid structures (TLS), and programmed cell death 1 (PD-1)/programmed cell death 1 ligand (PD-L1) immune checkpoints by immunohistochemistry in 93 cervical cancer patient specimens. Down-regulation of IL-33 expression was observed in tumor tissues compared with adjacent tissues. More importantly, IL-33 was detected in the cytoplasm of tumor fraction. IL-33 expression in tumor cytoplasm was associated with tumor size and the invasive depth of tumors (p < 0.05). Meanwhile, IL-33 expression in tumor cytoplasm was positively correlated with infiltration of CD3+ T cells, CD8+ T cells, and PD-L1 expression in tumor tissues (p < 0.05). The number of TLS strongly correlated with the depth of tumor invasion, preoperative chemotherapy, human papillomavirus infection, and high level of PD-1 (p < 0.05). However, there was no significant relationship between IL-33 and TLS. Kaplan-Meier survival curves showed that the formation of TLS was associated with a better prognosis (p = 0.008). In multivariable Cox regression modeling, high expression of PD-L1 in tumor tissues was correlated with poor prognosis (HR = 0.128; 95% CI: 0.026-0.646; p = 0.013), whereas the high expression of IL-33 in tumor tissues was associated with better prognosis (HR = 5.097; 95% CI:1.050-24.755; p = 0.043). These results indicate that IL-33, TLS, and PD-L1 are potentially valuable prognostic predictor for cervical cancer. IL-33 has potential for combination with PD-L1-related antitumor therapy.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jing Li
- Department of Pediatrics, Union Hospital, Tongji medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiying Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
10
|
Tong Y, Cao Y, Jin T, Huang Z, He Q, Mao M. Role of Interleukin-1 family in bone metastasis of prostate cancer. Front Oncol 2022; 12:951167. [PMID: 36237303 PMCID: PMC9552844 DOI: 10.3389/fonc.2022.951167] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Prostate cancer (PCa) is one of the most fatal diseases in male patients with high bone metastatic potential. Bone metastasis severely shortens overall survival and brings skeletal-related events (SREs) which reduces the life quality of patients, and this situation is currently regarded as irreversible and incurable. The progression and metastasis of PCa are found to be closely associated with inflammatory cytokines and chemokines. As pivotal members of inflammatory cytokines, Interleukin-1 (IL-1) family plays a crucial role in this process. Elevated expression of IL-1 family was detected in PCa patients with bone metastasis, and accumulating evidences proved that IL-1 family could exert vital effects on the progression and bone metastasis of many cancers, while some members have dual effects. In this review, we discuss the role of IL-1 family in the bone metastasis of PCa. Furthermore, we demonstrate that many members of IL-1 family could act as pivotal biomarkers to predict the clinical stage and prognosis of PCa patients. More importantly, we have elucidated the role of IL-1 family in the bone metastasis of PCa, which could provide potential targets for the treatment of PCa bone metastasis and probable directions for future research.
Collapse
Affiliation(s)
- Yuanhao Tong
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinghao Cao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhe Jin
- Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengwei Huang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Qinyuan He
- Organization Department, Suzhou Traditional Chinese Medicine Hospital, Suzhou, China
| | - Min Mao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Min Mao,
| |
Collapse
|
11
|
Asaoka M, Kabata H, Fukunaga K. Heterogeneity of ILC2s in the Lungs. Front Immunol 2022; 13:918458. [PMID: 35757740 PMCID: PMC9222554 DOI: 10.3389/fimmu.2022.918458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are GATA3-expressing type 2 cytokine-producing innate lymphocytes that are present in various organs throughout the body. Basically, ILC2s are tissue-resident cells associated with a variety of pathological conditions in each tissue. Differences in the tissue-specific properties of ILC2s are formed by the post-natal tissue environment; however, diversity exists among ILC2s within each localized tissue due to developmental timing and activation. Diversity between steady-state and activated ILC2s in mice and humans has been gradually clarified with the advancement of single-cell RNA-seq technology. Another layer of complexity is that ILC2s can acquire other ILC-like functions, depending on their tissue environment. Further, ILC2s with immunological memory and exhausted ILC2s are both present in tissues, and the nature of ILC2s varies with senescence. To clarify how ILC2s affect human diseases, research should be conducted with a comprehensive understanding of ILC2s, taking into consideration the diversity of ILC2s rather than a snapshot of a single section. In this review, we summarize the current understanding of the heterogeneity of ILC2s in the lungs and highlight a novel field of immunology.
Collapse
Affiliation(s)
- Masato Asaoka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Crosstalk between macrophages and innate lymphoid cells (ILCs) in diseases. Int Immunopharmacol 2022; 110:108937. [PMID: 35779490 DOI: 10.1016/j.intimp.2022.108937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
Innate lymphoid cells (ILCs) and macrophages are tissue-resident cells that play important roles in tissue-immune homeostasis and immune regulation. ILCs are mainly distributed on the barrier surfaces of mammals to ensure immunity or tissue homeostasis following host, microbial, or environmental stimulation. Their complex relationships with different organs enable them to respond quickly to disturbances in environmental conditions and organ homeostasis, such as during infections and tissue damage. Gradually emerging evidence suggests that ILCs also play complex and diverse roles in macrophage development, homeostasis, polarization, inflammation, and viral infection. In turn, macrophages also determine the fate of ILCs to some extent, which indicates that network crossover between these interactions is a key determinant of the immune response. More work is needed to better define the crosstalk of ILCs with macrophages in different tissues and demonstrate how it is affected during inflammation and other diseases. Here, we summarize current research on the functional interactions between ILCs and macrophages and consider the potential therapeutic utility of these interactions for the benefit of human health.
Collapse
|
13
|
Nong C, Guan P, Li L, Zhang H, Hu H. Tumor immunotherapy: Mechanisms and clinical applications. MEDCOMM – ONCOLOGY 2022. [DOI: 10.1002/mog2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cheng Nong
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Pengbo Guan
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Li
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Hongbo Hu
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- Chongqing International Institution for Immunology Chongqing China
| |
Collapse
|
14
|
Crosstalk between ILC2s and Th2 CD4+ T Cells in Lung Disease. J Immunol Res 2022; 2022:8871037. [PMID: 35592688 PMCID: PMC9113865 DOI: 10.1155/2022/8871037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/30/2022] [Accepted: 04/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cytokine secretion, such as interleukin-4 (IL-4), IL-5, IL-9, IL-13, and amphiregulin (Areg), by type 2 innate lymphoid cells (ILC2s) is indispensable for homeostasis, remodeling/repairing tissue structure, inflammation, and tumor immunity. Often viewed as the innate cell surrogate of T helper type 2 (Th2) cells, ILC2s not only secrete the same type 2 cytokines, but are also inextricably related to CD4+T cells in terms of cell origin and regulatory factors, bridging between innate and adaptive immunity. ILC2s interact with CD4+T cells to play a leading role in a variety of diseases through secretory factors. Here, we review the latest progress on ILC2s and CD4+T cells in the lung, the close relationship between the two, and their relevance in the lung disease and immunity. This literature review aids future research in pulmonary type 2 immune diseases and guides innovative treatment approaches for these diseases.
Collapse
|
15
|
Wong NKY, Dong X, Lin YY, Xue H, Wu R, Lin D, Collins C, Wang Y. Framework of Intrinsic Immune Landscape of Dormant Prostate Cancer. Cells 2022; 11:cells11091550. [PMID: 35563856 PMCID: PMC9105276 DOI: 10.3390/cells11091550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Androgen deprivation therapy (ADT) is the standard therapy for men with advanced prostate cancer (PCa). PCa often responds to ADT and enters a dormancy period, which can be recognized clinically as a minimal residual disease. However, the majority of these patients will eventually experience a relapse in the form of castration-resistant PCa with poor survival. Therefore, ADT-induced dormancy is a unique time window for treatment that can provide a cure. The study of this well-recognized phase of prostate cancer progression is largely hindered by the scarcity of appropriate clinical tissue and clinically relevant preclinical models. Here, we report the utility of unique and clinically relevant patient-derived xenograft models in the study of the intrinsic immune landscape of dormant PCa. Using data from RNA sequencing, we have reconstructed the immune evasion mechanisms that can be utilized by dormant PCa cells. Since dormant PCa cells need to evade the host immune surveillance for survival, our results provide a framework for further study and for devising immunomodulatory mechanisms that can eliminate dormant PCa cells.
Collapse
Affiliation(s)
- Nelson K. Y. Wong
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Xin Dong
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Yen-Yi Lin
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Dong Lin
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Colin Collins
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
- Correspondence: ; Tel.: +1-604-675-8013
| |
Collapse
|
16
|
Peña-Romero AC, Orenes-Piñero E. Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers (Basel) 2022; 14:1681. [PMID: 35406451 PMCID: PMC8996887 DOI: 10.3390/cancers14071681] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Our body is constantly exposed to pathogens or external threats, but with the immune response that our body can develop, we can fight off and defeat possible attacks or infections. Nevertheless, sometimes this threat comes from an internal factor. Situations such as the existence of a tumour also cause our immune system (IS) to be put on alert. Indeed, the link between immunology and cancer is evident these days, with IS being used as one of the important targets for treating cancer. Our IS is able to eliminate those abnormal or damaged cells found in our body, preventing the uncontrolled proliferation of tumour cells that can lead to cancer. However, in several cases, tumour cells can escape from the IS. It has been observed that immune cells, the extracellular matrix, blood vessels, fat cells and various molecules could support tumour growth and development. Thus, the developing tumour receives structural support, irrigation and energy, among other resources, making its survival and progression possible. All these components that accompany and help the tumour to survive and to grow are called the tumour microenvironment (TME). Given the importance of its presence in the tumour development process, this review will focus on one of the components of the TME: immune cells. Immune cells can support anti-tumour immune response protecting us against tumour cells; nevertheless, they can also behave as pro-tumoural cells, thus promoting tumour progression and survival. In this review, the anti-tumour and pro-tumour immunity of several immune cells will be discussed. In addition, the TME influence on this dual effect will be also analysed.
Collapse
Affiliation(s)
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, 30120 Murcia, Spain;
| |
Collapse
|
17
|
Marchalot A, Mjösberg J. Innate lymphoid cells in colorectal cancer. Scand J Immunol 2022; 95:e13156. [PMID: 35274359 PMCID: PMC9286852 DOI: 10.1111/sji.13156] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
Innate lymphoid cells (ILC) can be viewed as the innate counterparts of T cells. In contrast to T cells, ILCs exert their functions in antigen‐independent manners, relying on tissue‐derived signals from other immune cells, stroma and neurons. Natural killer (NK) cells have been known for their antitumour effects for decades. However, the roles of other ILC subtypes in cancer immunity are just now starting to be unravelled. ILCs contribute to both homeostasis and inflammation in the intestinal mucosa. Intestinal inflammation predisposes the intestine for the development of colonic dysplasia and colorectal cancer (CRC). Recent data from mouse models and human studies indicate that ILCs play a role in CRC, exerting both protumoural and antitumoural functions. Studies also suggest that intratumoural ILC frequencies and expression of ILC signature genes can predict disease progression and response to PD‐1 checkpoint therapy in CRC. In this mini‐review, we focus on such recent insights and their implications for understanding the immunobiology of CRC. We also identify knowledge gaps and research areas that require further work.
Collapse
Affiliation(s)
- Anne Marchalot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
18
|
Dada S, Ellis SLS, Wood C, Nohara LL, Dreier C, Garcia NH, Saranchova I, Munro L, Pfeifer CG, Eyford BA, Kari S, Garrovillas E, Caspani G, Al Haddad E, Gray PW, Morova T, Lack NA, Andersen RJ, Tjoelker L, Jefferies WA. Specific cannabinoids revive adaptive immunity by reversing immune evasion mechanisms in metastatic tumours. Front Immunol 2022; 13:982082. [PMID: 36923728 PMCID: PMC10010394 DOI: 10.3389/fimmu.2022.982082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/20/2022] [Indexed: 02/24/2023] Open
Abstract
Emerging cancers are sculpted by neo-Darwinian selection for superior growth and survival but minimal immunogenicity; consequently, metastatic cancers often evolve common genetic and epigenetic signatures to elude immune surveillance. Immune subversion by metastatic tumours can be achieved through several mechanisms; one of the most frequently observed involves the loss of expression or mutation of genes composing the MHC-I antigen presentation machinery (APM) that yields tumours invisible to Cytotoxic T lymphocytes, the key component of the adaptive cellular immune response. Fascinating ethnographic and experimental findings indicate that cannabinoids inhibit the growth and progression of several categories of cancer; however, the mechanisms underlying these observations remain clouded in uncertainty. Here, we screened a library of cannabinoid compounds and found molecular selectivity amongst specific cannabinoids, where related molecules such as Δ9-tetrahydrocannabinol, cannabidiol, and cannabigerol can reverse the metastatic immune escape phenotype in vitro by inducing MHC-I cell surface expression in a wide variety of metastatic tumours that subsequently sensitizing tumours to T lymphocyte recognition. Remarkably, H3K27Ac ChIPseq analysis established that cannabigerol and gamma interferon induce overlapping epigenetic signatures and key gene pathways in metastatic tumours related to cellular senescence, as well as APM genes involved in revealing metastatic tumours to the adaptive immune response. Overall, the data suggest that specific cannabinoids may have utility in cancer immunotherapy regimens by overcoming immune escape and augmenting cancer immune surveillance in metastatic disease. Finally, the fundamental discovery of the ability of cannabinoids to alter epigenetic programs may help elucidate many of the pleiotropic medicinal effects of cannabinoids on human physiology.
Collapse
Affiliation(s)
- Sarah Dada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Samantha L S Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Christi Wood
- Biotechnology - Biomedical Science and Technology (BST), University of Applied Sciences, Mannheim, Germany
| | - Lilian L Nohara
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Carola Dreier
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Biotechnology - Biomedical Science and Technology (BST), University of Applied Sciences, Mannheim, Germany
| | | | - Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl G Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Brett A Eyford
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Suresh Kari
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Emmanuel Garrovillas
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Giorgia Caspani
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Eliana Al Haddad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Tunc Morova
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Nathan A Lack
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,School of Medicine, Koç University, Istanbul, Türkiye
| | - Raymond J Andersen
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Department of Urological Science, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Boersma B, Jiskoot W, Lowe P, Bourquin C. The interleukin-1 cytokine family members: Role in cancer pathogenesis and potential therapeutic applications in cancer immunotherapy. Cytokine Growth Factor Rev 2021; 62:1-14. [PMID: 34620560 DOI: 10.1016/j.cytogfr.2021.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
The interleukin-1 (IL-1) family is one of the first described cytokine families and consists of eight cytokines (IL-1β, IL-1α, IL-18, IL-33, IL-36α, IL-36β, IL-36γ and IL-37) and three receptor antagonists (IL-1Ra, IL-36Ra and IL-38). The family members are known to play an essential role in inflammation. The importance of inflammation in cancer has been well established in the past decades. This review sets out to give an overview of the role of each IL-1 family member in cancer pathogenesis and show their potential as potential anticancer drug candidates. First, the molecular structure is described. Next, both the pro- and anti-tumoral properties are highlighted. Additionally, a critical interpretation of current literature is given. To conclude, the IL-1 family is a toolbox with a collection of powerful tools that can be considered as potential drugs or drug targets.
Collapse
Affiliation(s)
- Bart Boersma
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland.
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | - Peter Lowe
- Department of Biomolecule Generation and Optimization, Institut de Recherche Pierre Fabre, Centre d'Immunologie Pierre Fabre, Saint-Julien-en-Genevois, France.
| | - Carole Bourquin
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; Department of Anesthesiology, Pharmacology and Intensive Care, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
20
|
Qi J, Crinier A, Escalière B, Ye Y, Wang Z, Zhang T, Batista L, Liu H, Hong L, Wu N, Zhang M, Chen L, Liu Y, Shen L, Narni-Mancinelli E, Vivier E, Su B. Single-cell transcriptomic landscape reveals tumor specific innate lymphoid cells associated with colorectal cancer progression. CELL REPORTS MEDICINE 2021; 2:100353. [PMID: 34467243 PMCID: PMC8385246 DOI: 10.1016/j.xcrm.2021.100353] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/29/2021] [Accepted: 06/24/2021] [Indexed: 02/08/2023]
Abstract
Innate lymphoid cells (ILCs) are tissue-resident lymphocytes differing from conventional T lymphocytes in having no antigen-specific receptors. ILCs include natural killer (NK) cells, helper-like ILC1s, ILC2s, and ILC3s, and lymphoid tissue-inducer (LTi) cells. Tumor ILCs are frequently found in various cancers, but their roles in cancer immunity and immunotherapy remain largely unclear. We report here the single-cell characterization of blood and gut helper-like ILC subsets in healthy conditions and in colorectal cancer (CRC). The healthy gut contains ILC1s, ILC3s, and ILC3/NKs, but no ILC2s. Additional tumor-specific ILC1-like and ILC2 subsets were identified in CRC patients. Signaling lymphocytic activation molecule family member 1 (SLAMF1) was found to be selectively expressed on tumor-specific ILCs, and higher levels of SLAMF1+ ILCs were observed in the blood of CRC patients. The SLAMF1-high group of CRC patients had a significantly higher survival rate than the SLAMF1-low group, suggesting that SLAMF1 is an anti-tumor biomarker in CRC. Healthy gut contains ILC1s, ILC3s, and ILC3/NKs, but no ILC2s Blood and tumor ILCs from CRC patients have unique transcriptomic features Tumor tissue from CRC patients contains a tumor specific ILC1-like subset and ILC2s SLAMF1 is identified as an anti-tumor biomarker in CRC
Collapse
Affiliation(s)
- Jingjing Qi
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Adeline Crinier
- Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, 13009 Marseille, France
| | - Bertrand Escalière
- Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, 13009 Marseille, France
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tianyu Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Luciana Batista
- Innate Pharma Research Laboratories, Innate Pharma, 13009 Marseille, France
| | - Hongzhi Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liwen Hong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingnan Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lei Shen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Emilie Narni-Mancinelli
- Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, 13009 Marseille, France
| | - Eric Vivier
- Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, 13009 Marseille, France.,Innate Pharma Research Laboratories, Innate Pharma, 13009 Marseille, France.,Immunology, Marseille Immunopole, Hôpital de la Timone, Assistance Publique des Hôpitaux de 13005 Marseille, France
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
21
|
The Janus Face of IL-33 Signaling in Tumor Development and Immune Escape. Cancers (Basel) 2021; 13:cancers13133281. [PMID: 34209038 PMCID: PMC8268428 DOI: 10.3390/cancers13133281] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Interleukin-33 (IL-33) is often released from damaged cells, acting as a danger signal. IL-33 exerts its function by interacting with its receptor suppression of tumorigenicity 2 (ST2) that is constitutively expressed on most immune cells. Therefore, IL-33/ST2 signaling can modulate immune responses to participate actively in a variety of pathological conditions, such as cancer. Like a two-faced Janus, which faces opposite directions, IL-33/ST2 signaling may play contradictory roles on its impact on cancer progression through both immune and nonimmune cellular components. Accumulating evidence demonstrates both pro- and anti-tumorigenic properties of IL-33, depending on the complex nature of different tumor immune microenvironments. We summarize and discuss the most recent studies on the contradictory effects of IL-33 on cancer progression and treatment, with a goal to better understanding the various ways for IL-33 as a therapeutic target. Abstract Interleukin-33 (IL-33), a member of the IL-1 cytokine family, plays a critical role in maintaining tissue homeostasis as well as pathological conditions, such as allergy, infectious disease, and cancer, by promoting type 1 and 2 immune responses. Through its specific receptor ST2, IL-33 exerts multifaceted functions through the activation of diverse intracellular signaling pathways. ST2 is expressed in different types of immune cells, including Th2 cells, Th1 cells, CD8+ T cells, regulatory T cells (Treg), cytotoxic NK cells, group 2 innate lymphoid cells (ILC2s), and myeloid cells. During cancer initiation and progression, the aberrant regulation of the IL-33/ST2 axis in the tumor microenvironment (TME) extrinsically and intrinsically mediates immune editing via modulation of both innate and adaptive immune cell components. The summarized results in this review suggest that IL-33 exerts dual-functioning, pro- as well as anti-tumorigenic effects depending on the tumor type, expression levels, cellular context, and cytokine milieu. A better understanding of the distinct roles of IL-33 in epithelial, stromal, and immune cell compartments will benefit the development of a targeting strategy for this IL-33/ST2 axis for cancer immunotherapy.
Collapse
|
22
|
de Lucía Finkel P, Sherwood C, Saranchova I, Xia W, Munro L, Pfeifer CG, Piret JM, Jefferies WA. Serum free culture for the expansion and study of type 2 innate lymphoid cells. Sci Rep 2021; 11:12233. [PMID: 34112824 PMCID: PMC8192527 DOI: 10.1038/s41598-021-91500-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
Type 2 innate lymphoid cells (ILC2s) were discovered approximately ten years ago and their clinical relevance is gaining greater importance. However, their successful isolation from mammalian tissues and in vitro culture and expansion continues to pose challenges. This is partly due to their scarcity compared to other leukocyte populations, but also because our current knowledge of ILC2 biology is incomplete. This study is focused on ST2+ IL-25Rlo lung resident ILC2s and demonstrate for the first time a methodology allowing mouse type 2 innate lymphoid cells to be cultured, and their numbers expanded in serum-free medium supplemented with Interleukins IL-33, IL-2, IL-7 and TSLP. The procedures described methods to isolate ILC2s and support their growth for up to a week while maintaining their phenotype. During this time, they significantly expand from low to high cell concentrations. Furthermore, for the first time, sub-cultures of primary ILC2 purifications in larger 24- and 6-well plates were undertaken in order to compare their growth in other media. In culture, ILC2s had doubling times of 21 h, a growth rate of 0.032 h−1 and could be sub-cultured in early or late phases of exponential growth. These studies form the basis for expanding ILC2 populations that will facilitate the study and potential applications of these rare cells under defined, serum-free conditions.
Collapse
Affiliation(s)
- Pablo de Lucía Finkel
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.,Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Christopher Sherwood
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.,Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Wenjing Xia
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.,Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.,Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Cheryl G Pfeifer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.,Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - James M Piret
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada.,School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada. .,The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada. .,Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada. .,Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada. .,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z4, Canada. .,Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z4, Canada. .,Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada. .,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
23
|
Maggi E, Veneziani I, Moretta L, Cosmi L, Annunziato F. Group 2 Innate Lymphoid Cells: A Double-Edged Sword in Cancer? Cancers (Basel) 2020; 12:cancers12113452. [PMID: 33233582 PMCID: PMC7699723 DOI: 10.3390/cancers12113452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Group 2 Innate Lymphoid Cells (ILC2s) belong to the family of helper ILCs which provide host defense against infectious agents, participate in inflammatory responses and mediate lymphoid organogenesis and tissue repair, mainly at the skin and mucosal level. Based on their transcriptional, phenotypic and functional profile, ILC2s mirror the features of the adaptive CD4+ Th2 cell subset, both contributing to the so-called type 2 immune response. Similar to other ILCs, ILC2s are rapidly activated by signals deriving from tissue and/or other tissue-resident immune cells. The biologic activity of ILCs needs to be tightly regulated in order to prevent them from contributing to severe inflammation and damage in several organs. Indeed, ILC2s display both enhancing and regulatory roles in several pathophysiological conditions, including tumors. In this review, we summarize the actual knowledge about ILC2s ability to induce or impair a protective immune response, their pro- or antitumor activity in murine models, human (children and adults) pathologies and the potential strategies to improve cancer immunotherapy by exploiting the features of ILC2s.
Collapse
Affiliation(s)
- Enrico Maggi
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
- Correspondence: ; Tel.: +39-06-6859-3617
| | - Irene Veneziani
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
| | - Lorenzo Moretta
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.C.); (F.A.)
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.C.); (F.A.)
| |
Collapse
|
24
|
Sivori S, Pende D, Quatrini L, Pietra G, Della Chiesa M, Vacca P, Tumino N, Moretta F, Mingari MC, Locatelli F, Moretta L. NK cells and ILCs in tumor immunotherapy. Mol Aspects Med 2020; 80:100870. [PMID: 32800530 DOI: 10.1016/j.mam.2020.100870] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Cells of the innate immunity play an important role in tumor immunotherapy. Thus, NK cells can control tumor growth and metastatic spread. Thanks to their strong cytolytic activity against tumors, different approaches have been developed for exploiting/harnessing their function in patients with leukemia or solid tumors. Pioneering trials were based on the adoptive transfer of autologous NK cell-enriched cell populations that were expanded in vitro and co-infused with IL-2. Although relevant results were obtained in patients with advanced melanoma, the effect was mostly limited to certain metastatic localizations, particularly to the lung. In addition, the severe IL-2-related toxicity and the preferential IL-2-induced expansion of Treg limited this type of approach. This limitation may be overcome by the use of IL-15, particularly of modified IL-15 molecules to improve its half-life and optimize the biological effects. Other approaches to harness NK cell function include stimulation via TLR, the use of bi- and tri-specific NK cell engagers (BiKE and TriKE) linking activating NK receptors (e.g. CD16) to tumor-associated antigens and even incorporating an IL-15 moiety (TriKE). As recently shown, in tumor patients, NK cells may also express inhibitory checkpoints, primarily PD-1. Accordingly, the therapeutic use of checkpoint inhibitors may unleash NK cells against PD-L1+ tumors. This effect may be predominant and crucial in tumors that have lost HLA cl-I expression, thus resulting "invisible" to T lymphocytes. Additional approaches in which NK cells may represent an important tool for cancer therapy, are to exploit the unique properties of the "adaptive" NK cells. These CD57+ NKG2C+ cells, despite their mature stage and a potent cytolytic activity, maintain a strong proliferating capacity. This property revealed to be crucial in hematopoietic stem cell transplantation (HSCT), particularly in the haplo-HSCT setting, to cure high-risk leukemias. T depleted haplo-HSCT (e.g. from one of the parents) allowed to save the life of thousands of patients lacking a HLA-compatible donor. In this setting, NK cells have been shown to play an essential role against leukemia cells and infections. Another major advance is represented by chimeric antigen receptor (CAR)-engineered NK cells. CAR-NK, different from CAR-T cells, may be obtained from allogeneic donors since they do not cause GvHD. Accordingly, they may represent "off-the-shelf" products to promptly treat tumor patients, with affordable costs. Different from NK cells, helper ILC (ILC1, ILC2 and ILC3), the innate counterpart of T helper cell subsets, remain rather ambiguous with respect to their anti-tumor activity. A possible exception is represented by a subset of ILC3: their frequency in peri-tumoral tissues in patients with NSCLC directly correlates with a better prognosis, possibly reflecting their ability to contribute to the organization of tertiary lymphoid structures, an important site of T cell-mediated anti-tumor responses. It is conceivable that innate immunity may significantly contribute to the major advances that immunotherapy has ensured and will continue to ensure to the cure of cancer.
Collapse
Affiliation(s)
- Simona Sivori
- Department of Experimental Medicine, University of Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Italy
| | - Daniela Pende
- UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine, University of Genoa, Italy; UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Italy; Centre of Excellence for Biomedical Research, University of Genoa, Italy
| | - Paola Vacca
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Nicola Tumino
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Francesca Moretta
- Department of Laboratory Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, University of Genoa, Italy; UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy; Department of Gynecology/Obstetrics and Pediatrics, Sapienza University, Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| |
Collapse
|
25
|
Aarstad HH, Guðbrandsdottir G, Hjelle KM, Bostad L, Bruserud Ø, Tvedt THA, Beisland C. The Biological Context of C-Reactive Protein as a Prognostic Marker in Renal Cell Carcinoma: Studies on the Acute Phase Cytokine Profile. Cancers (Basel) 2020; 12:cancers12071961. [PMID: 32707675 PMCID: PMC7409073 DOI: 10.3390/cancers12071961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
High serum levels of the acute phase protein C-reactive protein (CRP) are associated with an adverse prognosis in renal cancer. The acute phase reaction is cytokine-driven and includes a wide range of inflammatory mediators. This overall profile of the response depends on the inducing event and can also differ between patients. We investigated an extended acute phase cytokine profile for 97 renal cancer patients. Initial studies showed that the serum CRP levels had an expected prognostic association together with tumor size, stage, nuclear grading, and Leibovich score. Interleukin (IL)6 family cytokines, IL1 subfamily mediators, and tumor necrosis factor (TNF)α can all be drivers of the acute phase response. Initial studies suggested that serum IL33Rα (the soluble IL33 receptor α chain) levels were also associated with prognosis, although the impact of IL33Rα is dependent on the overall cytokine profile, including seven IL6 family members (IL6, IL6Rα, gp130, IL27, IL31, CNTF, and OSM), two IL1 subfamily members (IL1RA and IL33Rα), and TNFα. We identified a patient subset characterized by particularly high levels of IL6, IL33Rα, and TNFα alongside an adverse prognosis. Thus, the acute phase cytokine reaction differs between renal cancer patients, and differences in the acute phase cytokine profile are associated with prognosis.
Collapse
Affiliation(s)
- Helene Hersvik Aarstad
- Department of Clinical Science, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway;
| | - Gigja Guðbrandsdottir
- Department of Urology, Haukeland University Hospital, N-5021 Bergen, Norway; (G.G.); (K.M.H.); (C.B.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Karin M. Hjelle
- Department of Urology, Haukeland University Hospital, N-5021 Bergen, Norway; (G.G.); (K.M.H.); (C.B.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Leif Bostad
- Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway;
| | - Øystein Bruserud
- Department of Clinical Science, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway;
- Department of Medicine, Section for Hematology, Haukeland University Hospital, N-5021 Bergen, Norway;
- Correspondence: ; Tel.: +47-5597-2997
| | - Tor Henrik Anderson Tvedt
- Department of Medicine, Section for Hematology, Haukeland University Hospital, N-5021 Bergen, Norway;
| | - Christian Beisland
- Department of Urology, Haukeland University Hospital, N-5021 Bergen, Norway; (G.G.); (K.M.H.); (C.B.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
26
|
Jevtovic A, Pantic J, Jovanovic I, Milovanovic M, Stanojevic I, Vojvodic D, Arsenijevic N, Lukic ML, Radosavljevic GD. Interleukin-33 pretreatment promotes metastatic growth of murine melanoma by reducing the cytotoxic capacity of CD8 + T cells and enhancing regulatory T cells. Cancer Immunol Immunother 2020; 69:1461-1475. [PMID: 32285171 DOI: 10.1007/s00262-020-02522-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/15/2020] [Indexed: 01/08/2023]
Abstract
Interleukin-33 (IL-33) regulates innate and acquired immune response to pathogens, self-antigens and tumors. IL-33 effects on tumors depend on the dose and mode of administration along with the type of malignancy. We studied the effects of IL-33 on the development of primary and metastatic melanoma induced by B16-F1 cell line in C57BL/6 mice. Intraperitoneally applied IL-33 restricts primary tumor growth. When administered intranasally 3 days prior to the intravenous injection of the tumor cells, IL-33 promoted growth of B16-F1 melanoma metastases, while B16-F10 gave massive metastases independently of IL-33. To mimic natural dissemination, we next used a limited number (5 × 104) of B16-F1 cells intravenously followed by application of IL-33 intraperitoneally. IL-33 increased the size of metastases (10.96 ± 3.96 mm2) when compared to the control group (0.86 ± 0.39 mm2), without changing incidence and number of metastases. IL-33 increased expression of ST2 on both tumor and immune cells in metastases. Also, IL-33 enhanced eosinophils and anti-tumor NK cells in the lung. The striking finding was reduced cytotoxicity of CD8+ T cells derived from metastatic lung of IL-33 injected mice. IL-33 reduced the percentage of TNF-α+ and IFN-γ+ CD8+ T cells while increasing the frequency of CD8+ T cells that express inhibitory molecules (PD-1, KLRG-1 and CTLA-4). There was a significant accumulation of CD11b+Gr-1+ myeloid suppressor cells and FoxP3+, IL-10+ and CTLA-4+ regulatory T cells in the metastatic lung of IL-33 injected mice. The relevance of IL-33 for melanoma metastases was also documented in a significantly increased level of serum IL-33 in stage III melanoma patients.
Collapse
Affiliation(s)
- Andra Jevtovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia.,Department of Otorhinolaryngology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Pantic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia
| | - Ivan Stanojevic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia.
| | - Gordana D Radosavljevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia.
| |
Collapse
|
27
|
Shan Z, Liu S, Yang L, Liu Z, Hu Y, Yao Z, Tang Z, Fang L, Quan H. Repertoire of peripheral T cells in patients with oral squamous cell carcinoma. Oral Dis 2020; 26:885-893. [PMID: 32097519 DOI: 10.1111/odi.13311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/14/2019] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The establishment of adaptive immune responses to neoplasms involves not only the tumour tissue, but also the peripheral blood. We aimed to conduct a preliminary exploration to understand the immune response of T lymphocytes of peripheral blood mononuclear cells (PBMC-Ts) in oral squamous cell carcinoma (OSCC). METHODS A total of 103 blood samples from OSCC patients and 18 blood samples from healthy donors (HD) were analysed by flow cytometry. RESULTS Compared to those in HD, a series of unique features of PBMC-Ts were observed in OSCC patients including a significant increase in CD4+ T cells, a shift from naïve to memory/effector phenotype, an increased frequency of exhausted phenotypes (programmed death-1 [PD-1], T cell Ig and mucin protein-3 [Tim-3] and Tregs), an abundance of Th17s and Tc17s and an imbalance in Th17/Tc17 and Th17/Treg ratios. Furthermore, in OSCC patients, we also found that CD4+ T cells were significantly increased in patients with larger tumours than smaller tumours, memory/effector phenotype and exhausted phenotypes were significantly associated with advanced clinical stage and lymph node metastasis, and the Th17/Treg ratio was associated with early clinical stage and no lymph node metastasis. CONCLUSION PBMC-Ts may be involved in the development and progression of OSCC, which suggested to be a manifestation of an immune response between host and tumour neoantigens.
Collapse
Affiliation(s)
- Zhongyan Shan
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Sixuan Liu
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Liu Yang
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Ziyi Liu
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Yanjia Hu
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Zhigang Yao
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China.,Department of Oral Pathology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Liangjuan Fang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hongzhi Quan
- Research Institution of Stomatology, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China.,Department of Oral Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
28
|
Tumino N, Vacca P, Quatrini L, Munari E, Moretta F, Pelosi A, Mariotti FR, Moretta L. Helper Innate Lymphoid Cells in Human Tumors: A Double-Edged Sword? Front Immunol 2020; 10:3140. [PMID: 32063901 PMCID: PMC7000626 DOI: 10.3389/fimmu.2019.03140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/24/2019] [Indexed: 12/25/2022] Open
Abstract
Innate lymphoid cells (ILCs) were found to be developmentally related to natural killer (NK) cells. In humans, they are mostly located in “barrier” tissues where they contribute to innate defenses against different pathogens. ILCs are heterogeneous and characterized by a high degree of plasticity. ILC1s are Tbet+, produce interferon gamma and tumor necrosis factor alpha, but, unlike NK cells, are non-cytolytic and are Eomes independent. ILC2 (GATA-3+) secrete type-2 cytokines, while ILC3s secrete interleukin-22 and interleukin-17. The cytokine signatures of ILC subsets mirror those of corresponding helper T-cell subsets. The ILC role in defenses against pathogens is well-documented, while their involvement in tumor defenses is still controversial. Different ILCs have been detected in tumors. In general, the conflicting data reported in different tumors on the role of ILC may reflect the heterogeneity and/or differences in tumor microenvironment. The remarkable plasticity of ILCs suggests new therapeutic approaches to induce differentiation/switch toward ILC subsets more favorable in tumor control.
Collapse
Affiliation(s)
- Nicola Tumino
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Vacca
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Enrico Munari
- Department of Pathology, IRCCS Sacro Cuore Don Calabria, Negrar, Italy
| | - Francesca Moretta
- Department of Laboratory Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Andrea Pelosi
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
29
|
Wang Y, Zhang H, Jiao B, Nie J, Li X, Wang W, Wang H. The Roles of Alternative Splicing in Tumor-immune Cell Interactions. Anticancer Agents Med Chem 2020; 20:729-740. [PMID: 32560607 PMCID: PMC8388066 DOI: 10.2174/1568009620666200619123725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
Abstract
Alternative splicing (AS) plays a significant role in the hallmarks of cancer and can provide neoantigens for immunotherapy. Here, we summarize recent advances in immune system associated tumor specific-antigens (TSAs) produced by AS. We further discuss the regulating mechanisms involved in AS-mediated innate and adaptive immune responses and the anti-tumoral and protumoral roles in different types of cancer. For example, ULBP1_RI, MLL5Δ21spe, NKp44-1Δ5, MHC-IΔ7, CD200SΔ1, 2, PVR α/β/γ/δ and IL-33 variants 1/2/3 act as regulators in solid tumors and IPAK4-L and, FOXP1ΔN100 exhibit functions in hematological cancers.
Collapse
Affiliation(s)
| | - Honglei Zhang
- Address correspondence to these authors at Kunming Institute of Zoology, Chinese Academy of Sciences; 32 Jiaochang E. Road, Kunming, Yunnan, China; Tel: +86-871-68191706; E-mail: ; and Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan, China; Tel: +86-13608815577; E-mail:
| | - Baowei Jiao
- Address correspondence to these authors at Kunming Institute of Zoology, Chinese Academy of Sciences; 32 Jiaochang E. Road, Kunming, Yunnan, China; Tel: +86-871-68191706; E-mail: ; and Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan, China; Tel: +86-13608815577; E-mail:
| | - Jianyun Nie
- Address correspondence to these authors at Kunming Institute of Zoology, Chinese Academy of Sciences; 32 Jiaochang E. Road, Kunming, Yunnan, China; Tel: +86-871-68191706; E-mail: ; and Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan, China; Tel: +86-13608815577; E-mail:
| | | | | | | |
Collapse
|
30
|
Ducimetière L, Vermeer M, Tugues S. The Interplay Between Innate Lymphoid Cells and the Tumor Microenvironment. Front Immunol 2019; 10:2895. [PMID: 31921156 PMCID: PMC6923277 DOI: 10.3389/fimmu.2019.02895] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
The multifaceted roles of Innate Lymphoid Cells (ILC) have been widely interrogated in tumor immunity. Whereas, Natural Killer (NK) cells possess undisputable tumor-suppressive properties across multiple types of cancer, the other ILC family members can either promote or inhibit tumor growth depending on the environmental conditions. The differential effects of ILCs on tumor outcome have been attributed to the high degree of heterogeneity and plasticity within the ILC family members. However, it is now becoming clear that ILCs responses are shaped by their dynamic crosstalk with the different components of the tumor microenvironment (TME). In this review, we will give insights into the molecular and cellular players of the ILCs-TME interactions and we will discuss how we can use this knowledge to successfully harness the activity of ILCs for anticancer therapies.
Collapse
Affiliation(s)
- Laura Ducimetière
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Marijne Vermeer
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sonia Tugues
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Feng X, Liu H, Chu X, Sun P, Huang W, Liu C, Yang X, Sun W, Bai H, Ma Y. Recombinant virus-like particles presenting IL-33 successfully modify the tumor microenvironment and facilitate antitumor immunity in a model of breast cancer. Acta Biomater 2019; 100:316-325. [PMID: 31542504 DOI: 10.1016/j.actbio.2019.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Abstract
Recently, interleukin (IL)-33 has been closely associated with a variety of clinical cancers. IL-33 presents both protumorigenic, and less frequently, antitumorigenic functions depending on disease conditions. IL-33 signaling appears to be a possible target for the treatment of applicable tumor diseases. This study aimed to develop an effective approach to intervene in IL-33 functioning in tumors and reveal the immunotherapeutic potential of anti-IL-33 active immunization. Recombinant truncated hepatitis B virus core antigen (HBcAg), presenting mature IL-33 molecules on the surface of virus-like particles (VLPs), was prepared and used to immunize BALB/c mice in a model of murine 4T1 breast cancer. The immunization was performed through either a preventive or therapeutic strategy in two separate studies. Anti-IL-33 immunization with VLPs elicited a persistent and highly titrated specific antibody response and significantly suppressed orthotopic tumor growth in the preventive study and lung metastasis in both studies. The underlying mechanisms might include promoting tumor-specific Th1 and CTL-mediated cellular responses and the expression of the effector molecule interferon-γ (IFN-γ), suppressing T-helper type 2 (Th2) responses, and significantly reducing the infiltration of immunosuppressive Treg (regulatory T) cells and myeloid-derived suppressor cells (MDSCs) into tumor tissues in the immunized mice. In conclusion, anti-IL-33 active immunization employing recombinant VLPs as an antigen delivery platform effectively modified the tumor microenvironment and promoted antitumor immunity, indicating the potential of this approach as a new and promising immunotherapeutic strategy for the treatment of cancers where IL-33 plays a definite protumorigenic role. STATEMENT OF SIGNIFICANCE: Interleukin (IL)-33 is closely associated with a variety of clinical cancers. IL-33 signaling appears to be a possible target for the treatment of applicable tumor diseases. Recombinant truncated hepatitis B virus core antigen (HBcAg), presenting mature IL-33 molecules on the surface of virus-like particles (VLPs), was prepared and used to immunize BALB/c mice in a model of murine 4T1 breast cancer. The immunization was performed through either a preventive or therapeutic strategy in two separate studies. Anti-IL-33 immunization with VLPs elicited a persistent and highly titrated specific antibody response and significantly suppressed orthotopic tumor growth and lung metastasis in both studies. Furthermore, anti-IL-33 active immunization employing recombinant VLPs as an antigen delivery platform effectively modified the tumor microenvironment and promoted antitumor immunity, indicating its potential as a new and promising immunotherapeutic strategy for the treatment of cancers where IL-33 plays a definite protumorigenic role.
Collapse
Affiliation(s)
- Xuejun Feng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Department of Experimental Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongxian Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China
| | - Xiaojie Chu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China
| | - Pengyan Sun
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China
| | - Cunbao Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China
| | - Wenjia Sun
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, China.
| |
Collapse
|
32
|
Andreone S, Spadaro F, Buccione C, Mancini J, Tinari A, Sestili P, Gambardella AR, Lucarini V, Ziccheddu G, Parolini I, Zanetti C, D’Urso MT, De Ninno A, Businaro L, Afferni C, Mattei F, Schiavoni G. IL-33 Promotes CD11b/CD18-Mediated Adhesion of Eosinophils to Cancer Cells and Synapse-Polarized Degranulation Leading to Tumor Cell Killing. Cancers (Basel) 2019; 11:cancers11111664. [PMID: 31717819 PMCID: PMC6895824 DOI: 10.3390/cancers11111664] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Eosinophils are major effectors of Th2-related pathologies, frequently found infiltrating several human cancers. We recently showed that eosinophils play an essential role in anti-tumor responses mediated by immunotherapy with the ‘alarmin’ intereukin-33 (IL-33) in melanoma mouse models. Here, we analyzed the mechanisms by which IL-33 mediates tumor infiltration and antitumor activities of eosinophils. We show that IL-33 recruits eosinophils indirectly, via stimulation of tumor cell-derived chemokines, while it activates eosinophils directly, up-regulating CD69, the adhesion molecules ICAM-1 and CD11b/CD18, and the degranulation marker CD63. In co-culture experiments with four different tumor cell lines, IL-33-activated eosinophils established large numbers of stable cell conjugates with target tumor cells, with the polarization of eosinophil effector proteins (ECP, EPX, and granzyme-B) and CD11b/CD18 to immune synapses, resulting in efficient contact-dependent degranulation and tumor cell killing. In tumor-bearing mice, IL-33 induced substantial accumulation of degranulating eosinophils within tumor necrotic areas, indicating cytotoxic activity in vivo. Blocking of CD11b/CD18 signaling significantly reduced IL-33-activated eosinophils’ binding and subsequent killing of tumor cells, indicating a crucial role for this integrin in triggering degranulation. Our findings provide novel mechanistic insights for eosinophil-mediated anti-tumoral function driven by IL-33. Treatments enabling tumor infiltration and proper activation of eosinophils may improve therapeutic response in cancer patients.
Collapse
Affiliation(s)
- Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Francesca Spadaro
- Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.S.); (P.S.)
| | - Carla Buccione
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Jacopo Mancini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Antonella Tinari
- Center for Gender Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy;
| | - Paola Sestili
- Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.S.); (P.S.)
| | - Adriana Rosa Gambardella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Valeria Lucarini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Giovanna Ziccheddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Isabella Parolini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Cristiana Zanetti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Maria Teresa D’Urso
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, National Research Council (CNR), 00156 Rome, Italy; (A.D.N.); (L.B.)
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, National Research Council (CNR), 00156 Rome, Italy; (A.D.N.); (L.B.)
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
- Correspondence: ; Tel.: +39-0649906099
| |
Collapse
|
33
|
|
34
|
Baker KJ, Houston A, Brint E. IL-1 Family Members in Cancer; Two Sides to Every Story. Front Immunol 2019; 10:1197. [PMID: 31231372 PMCID: PMC6567883 DOI: 10.3389/fimmu.2019.01197] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/13/2019] [Indexed: 12/22/2022] Open
Abstract
The IL-1 family of cytokines currently comprises of seven ligands with pro-inflammatory activity (IL-1α and IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-36γ) as well as two ligands with anti-inflammatory activity (IL-37, IL-38). These cytokines are known to play a key role in modulating both the innate and adaptive immunes response, with dysregulation linked to a variety of autoimmune and inflammatory diseases. Given the increasing appreciation of the link between inflammation and cancer, the role of several members of this family in the pathogenesis of cancer has been extensively investigated. In this review, we highlight both the pro- and anti-tumorigenic effects identified for almost all members of this family, and explore potential underlying mechanisms accounting for these divergent effects. Such dual functions need to be carefully assessed when developing therapeutic intervention strategies targeting these cytokines in cancer.
Collapse
Affiliation(s)
- Kevin J Baker
- Department of Pathology, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aileen Houston
- Department of Medicine, University College Cork, Cork, Ireland.,CancerResearch@UCC, University College Cork, Cork, Ireland
| | - Elizabeth Brint
- Department of Pathology, University College Cork, Cork, Ireland.,CancerResearch@UCC, University College Cork, Cork, Ireland
| |
Collapse
|
35
|
Wagner M, Koyasu S. Cancer Immunoediting by Innate Lymphoid Cells. Trends Immunol 2019; 40:415-430. [PMID: 30992189 DOI: 10.1016/j.it.2019.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
The immune system plays a dual role in cancer. It conveys protective immunity but also facilitates malignant progression, either by sculpting tumor immunogenicity or by creating a microenvironment that can stimulate tumor outgrowth or aid in a subsequent metastatic cascade. Innate lymphoid cells (ILCs) embody this functional heterogeneity, although the nature of their responses in cancer has only recently begun to be unveiled. We provide an overview of recent insights into the role of ILCs in cancer. We also discuss how ILCs fit into the conceptual framework of cancer immunoediting, which integrates the dual role of the immune system in carcinogenesis. A broader understanding of their relevance in cancer is essential towards the design of successful therapeutic strategies.
Collapse
Affiliation(s)
- Marek Wagner
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
36
|
Gevariya N, Besançon M, Robitaille K, Picard V, Diabaté L, Alesawi A, Julien P, Fradet Y, Bergeron A, Fradet V. Omega-3 fatty acids decrease prostate cancer progression associated with an anti-tumor immune response in eugonadal and castrated mice. Prostate 2019; 79:9-20. [PMID: 30073695 DOI: 10.1002/pros.23706] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 07/13/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Several lines of evidence suggest effects of dietary fat on prostate cancer (PCa) development and progression. Targeting omega (ω)-3:ω6 fatty acids (FA) ratio could be beneficial against PCa by favorably modulating inflammation. Here, we studied the effects of ω3- and ω6-enriched diets on prostate tumor growth and inflammatory response in androgen-deprived and non-deprived conditions. METHODS Immune-competent eugonadal and castrated C57BL/6 mice were injected with TRAMP-C2 prostate tumor cells and daily fed with ω3- or ω6-enriched diet. FA and cytokine profiles were measured in blood and tumors using gas chromatography and multiplex immunoassay, respectively. Immune cell infiltration in tumors was profiled by multicolor flow cytometry. RESULTS ω3-enriched diet decreased prostate TRAMP-C2 tumor growth in immune-competent eugonadal and castrated mice. Cytokines associated with Th1 immune response (IL-12 [p70], IFN-γ, GM-CSF) and eosinophil recruitment (eotaxin-1, IL-5, and IL-13) were significantly elevated in tumors of ω3-fed mice. Using in vitro experiments, we confirmed ω3 FA-induced eotaxin-1 secretion by tumor cells and that eotaxin-1 secretion was regulated by androgens. Analysis of immune cell infiltrating tumors showed no major difference of immune cells' abundance between ω3- and ω6-enriched diets. CONCLUSIONS ω3-enriched diet reduces prostate tumor growth independently of androgen levels. ω3 FA can inhibit tumor cell growth and induce a local anti-tumor inflammatory response. These findings warrant further examination of dietary ω3's potential to slow down the progression of androgen-sensitive and castrate-resistant PCa by modulating immune cell function in tumors.
Collapse
Affiliation(s)
- Nikunj Gevariya
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Marjorie Besançon
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Karine Robitaille
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Valérie Picard
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Lamoussa Diabaté
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Anwar Alesawi
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Pierre Julien
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
- Endocrinology and Nephrology Axis, Centre de recherche du CHU de Québec-Université Laval-CHUL, Québec, Quebec, Canada
| | - Yves Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Alain Bergeron
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Vincent Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
37
|
Afferni C, Buccione C, Andreone S, Galdiero MR, Varricchi G, Marone G, Mattei F, Schiavoni G. The Pleiotropic Immunomodulatory Functions of IL-33 and Its Implications in Tumor Immunity. Front Immunol 2018; 9:2601. [PMID: 30483263 PMCID: PMC6242976 DOI: 10.3389/fimmu.2018.02601] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022] Open
Abstract
Interleukin-33 (IL-33) is a IL-1 family member of cytokines exerting pleiotropic activities. In the steady-state, IL-33 is expressed in the nucleus of epithelial, endothelial, and fibroblast-like cells acting as a nuclear protein. In response to tissue damage, infections or necrosis IL-33 is released in the extracellular space, where it functions as an alarmin for the immune system. Its specific receptor ST2 is expressed by a variety of immune cell types, resulting in the stimulation of a wide range of immune reactions. Recent evidences suggest that different IL-33 isoforms exist, in virtue of proteolytic cleavage or alternative mRNA splicing, with potentially different biological activity and functions. Although initially studied in the context of allergy, infection, and inflammation, over the past decade IL-33 has gained much attention in cancer immunology. Increasing evidences indicate that IL-33 may have opposing functions, promoting, or dampening tumor immunity, depending on the tumor type, site of expression, and local concentration. In this review we will cover the biological functions of IL-33 on various immune cell subsets (e.g., T cells, NK, Treg cells, ILC2, eosinophils, neutrophils, basophils, mast cells, DCs, and macrophages) that affect anti-tumor immune responses in experimental and clinical cancers. We will also discuss the possible implications of diverse IL-33 mutations and isoforms in the anti-tumor activity of the cytokine and as possible clinical biomarkers.
Collapse
Affiliation(s)
- Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Buccione
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, Naples, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
38
|
Kieler M, Unseld M, Wojta J, Kaider A, Bianconi D, Demyanets S, Prager GW. Plasma levels of interleukin-33 and soluble suppression of tumorigenicity 2 in patients with advanced pancreatic ductal adenocarcinoma undergoing systemic chemotherapy. Med Oncol 2018; 36:1. [PMID: 30426271 PMCID: PMC6244890 DOI: 10.1007/s12032-018-1223-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023]
Abstract
Interleukin-33 (IL-33) and its "decoy" receptor soluble ST2 (sST2) are involved in the development of chronic inflammation and cancer. We explored IL-33 and sST2 as a potential prognostic marker in patients with metastatic and locally advanced pancreatic ductal adenocarcinoma (PDAC). IL-33 and sST2 plasma levels were assessed in 20 patients with advanced PDAC before start of systemic chemotherapy and were analyzed in relation to clinical outcome. Kaplan Meier and multivariable Cox proportional hazards model analysis revealed a significant association between sST2 plasma levels and survival (HR 2.10, 95% CI 1.33-3.41, p = 0.002) and link high sST2 plasma levels to inferior survival in patients with advanced PDAC undergoing chemotherapy.
Collapse
Affiliation(s)
- Markus Kieler
- Division of Oncology, Department of Medicine I, Comprehensive Cancer Center, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Matthias Unseld
- Division of Oncology, Department of Medicine I, Comprehensive Cancer Center, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Johann Wojta
- Division of Cardiology, Department of Internal Medicine II, Medical University Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Alexandra Kaider
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Spitalgasse 23, Vienna, Austria
| | - Daniela Bianconi
- Division of Oncology, Department of Medicine I, Comprehensive Cancer Center, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Svitlana Demyanets
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Gerald W Prager
- Division of Oncology, Department of Medicine I, Comprehensive Cancer Center, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
39
|
Abstract
Interferon-gamma (IFNG) has long been implicated as a central orchestrator of antitumor immune responses in the elimination stage of the immunoediting paradigm. However, mounting evidence suggests that IFNG may also have important and significant protumor roles to play in the equilibrium and escape phases through its regulatory effects on immunoevasive functions that promote tumorigenesis. These seemingly contradictory effects of IFNG undoubtedly play profound roles in not only the activation of inflammatory response to cancer but also in the determination of its outcome. In the face of the recent explosion of anticancer immunotherapeutic strategies in the clinic, it is critical that a complete understanding is achieved of the underpinnings of the mechanisms that determine the two faces of IFNG signaling in cancer. Here, the current state of this dichotomy is reviewed.
Collapse
Affiliation(s)
- M Raza Zaidi
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Fournié JJ, Poupot M. The Pro-tumorigenic IL-33 Involved in Antitumor Immunity: A Yin and Yang Cytokine. Front Immunol 2018; 9:2506. [PMID: 30416507 PMCID: PMC6212549 DOI: 10.3389/fimmu.2018.02506] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022] Open
Abstract
Interleukin-33 (IL-33), considered as an alarmin released upon tissue stress or damage, is a member of the IL-1 family and binds the ST2 receptor. First described as a potent initiator of type 2 immune responses through the activation of T helper 2 (TH2) cells and mast cells, IL-33 is now also known as an effective stimulator of TH1 immune cells, natural killer (NK) cells, iNKT cells, and CD8 T lymphocytes. Moreover, IL-33 was shown to play an important role in several cancers due to its pro and anti-tumorigenic functions. Currently, IL-33 is a possible inducer and prognostic marker of cancer development with a direct effect on tumor cells promoting tumorigenesis, proliferation, survival, and metastasis. IL-33 also promotes tumor growth and metastasis by remodeling the tumor microenvironment (TME) and inducing angiogenesis. IL-33 favors tumor progression through the immune system by inducing M2 macrophage polarization and tumor infiltration, and upon activation of immunosuppressive cells such as myeloid-derived suppressor cells (MDSC) or regulatory T cells. The anti-tumor functions of IL-33 also depend on infiltrated immune cells displaying TH1 responses. This review therefore summarizes the dual role of this cytokine in cancer and suggests that new proposals for IL-33-based cancer immunotherapies should be considered with caution.
Collapse
Affiliation(s)
- Jean-Jacques Fournié
- INSERM UMR 1037 Centre de Recherche en Cancérologie de Toulouse (CRCT), ERL 5294 CNRS, Université Toulouse III Paul Sabatier, Laboratoire d'excellence Toucan, Toulouse, France
| | - Mary Poupot
- INSERM UMR 1037 Centre de Recherche en Cancérologie de Toulouse (CRCT), ERL 5294 CNRS, Université Toulouse III Paul Sabatier, Laboratoire d'excellence Toucan, Toulouse, France
| |
Collapse
|
41
|
The Role of IL-33/ST2 Pathway in Tumorigenesis. Int J Mol Sci 2018; 19:ijms19092676. [PMID: 30205617 PMCID: PMC6164146 DOI: 10.3390/ijms19092676] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer is initiated by mutations in critical regulatory genes; however, its progression to malignancy is aided by non-neoplastic cells and molecules that create a permissive environment known as the tumor stroma or microenvironment (TME). Interleukin 33 (IL-33) is a dual function cytokine that also acts as a nuclear factor. IL-33 typically resides in the nucleus of the cells where it is expressed. However, upon tissue damage, necrosis, or injury, it is quickly released into extracellular space where it binds to its cognate receptor suppression of tumorigenicity 2 (ST2)L found on the membrane of target cells to potently activate a T Helper 2 (Th2) immune response, thus, it is classified as an alarmin. While its role in immunity and immune-related disorders has been extensively studied, its role in tumorigenesis is only beginning to be elucidated and has revealed opposing roles in tumor development. The IL-33/ST2 axis is emerging as a potent modulator of the TME. By recruiting a cohort of immune cells, it can remodel the TME to promote malignancy or impose tumor regression. Here, we review its multiple functions in various cancers to better understand its potential as a therapeutic target to block tumor progression or as adjuvant therapy to enhance the efficacy of anticancer immunotherapies.
Collapse
|
42
|
Staal J, Beyaert R. Inflammation and NF-κB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells 2018; 7:E122. [PMID: 30158439 PMCID: PMC6162478 DOI: 10.3390/cells7090122] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a highly prevalent form of cancer that is usually slow-developing and benign. Due to its high prevalence, it is, however, still the second most common cause of death by cancer in men in the West. The higher prevalence of prostate cancer in the West might be due to elevated inflammation from metabolic syndrome or associated comorbidities. NF-κB activation and many other signals associated with inflammation are known to contribute to prostate cancer malignancy. Inflammatory signals have also been associated with the development of castration resistance and resistance against other androgen depletion strategies, which is a major therapeutic challenge. Here, we review the role of inflammation and its link with androgen signaling in prostate cancer. We further describe the role of NF-κB in prostate cancer cell survival and proliferation, major NF-κB signaling pathways in prostate cancer, and the crosstalk between NF-κB and androgen receptor signaling. Several NF-κB-induced risk factors in prostate cancer and their potential for therapeutic targeting in the clinic are described. A better understanding of the inflammatory mechanisms that control the development of prostate cancer and resistance to androgen-deprivation therapy will eventually lead to novel treatment options for patients.
Collapse
Affiliation(s)
- Jens Staal
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
43
|
Lin TC, Liao YC, Chang WT, Yang CH, Cheng LH, Cheng M, Cheng HC. The Establishment of a Lung Colonization Assay for Circulating Tumor Cell Visualization in Lung Tissues. J Vis Exp 2018. [PMID: 29985344 DOI: 10.3791/56761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the major cause of cancer death. The role of circulating tumor cells (CTCs) in promoting cancer metastasis, in which lung colonization by CTCs critically contributes to early lung metastatic processes, has been vigorously investigated. As such, animal models are the only approach that captures the full systemic process of metastasis. Given that problems occur in previous experimental designs for examining the contributions of CTCs to blood vessel extravasation, we established an in vivo lung colonization assay in which a long-term-fluorescence cell-tracer, carboxyfluorescein succinimidyl ester (CFSE), was used to label suspended tumor cells and lung perfusion was performed to clear non-specifically trapped CTCs prior to lung removal, confocal imaging, and quantification. Polymeric fibronectin (polyFN) assembled on CTC surfaces has been found to mediate lung colonization in the final establishment of metastatic tumor tissues. Here, to specifically test the requirement of polyFN assembly on CTCs for lung colonization and extravasation, we performed short term lung colonization assays in which suspended Lewis lung carcinoma cells (LLCs) stably expressing FN-shRNA (shFN) or scramble-shRNA (shScr) and pre-labeled with 20 μM of CFSE were intravenously inoculated into C57BL/6 mice. We successfully demonstrated that the abilities of shFN LLC cells to colonize the mouse lungs were significantly diminished in comparison to shScr LLC cells. Therefore, this short-term methodology may be widely applied to specifically demonstrate the ability of CTCs within the circulation to colonize the lungs.
Collapse
Affiliation(s)
- Tsung-Cheng Lin
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University
| | - Ying-Chih Liao
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University
| | - Wen-Tsan Chang
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University
| | - Cheng-Han Yang
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University
| | - Li-Hsin Cheng
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University
| | - Megan Cheng
- Trauma Office, Children's National Health System
| | - Hung-Chi Cheng
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University;
| |
Collapse
|
44
|
Hu W, Wu C, Li X, Zheng Z, Xie Q, Deng X, Jiang J, Wu C. Serum IL-33 level is a predictor of progression-free survival after chemotherapy. Oncotarget 2018; 8:35116-35123. [PMID: 28402273 PMCID: PMC5471039 DOI: 10.18632/oncotarget.16627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
This study aimed to evaluate the association between of serum IL-33 (sIL-33) level in gastric cancer (GC) patients and progression-free survival (PFS). A total of 62 patients with advanced GC and 32 healthy subjects were enrolled. sIL-33 level was detected in pre-chemotherapy patients, post-chemotherapy patients and healthy subjects, respectively. sIL-33 levels were 131.9 (95% CI 105.9-184.9) pg/mL, 95.1 (95% CI 70.8-140.2) pg/mL and 95.7 (95% CI 73.3-114.3) pg/mL in pre-chemotherapy patients, post-chemotherapy patients and controls, respectively. The sIL-33 level in pre-chemotherapy patients was significantly higher than that in both post-chemotherapy patients and controls (P < 0.001 and P < 0.001, respectively). There was no statistically significant difference between the sIL-33 levels in post-chemotherapy patients and controls (P > 0.05). PFS in patients with the decline extent > 30.1% (median PFS not reached) was statistically significant longer than that (median PFS 7 months, 95% CI 1.569 - 12.431) in patients with the decline extent ≤ 30.1% (P = 0.003). The decline extent of sIL-33 level (> 30.1%) was associated with longer PFS (P = 0.006). Distant metastasis was associated with the decline extent of sIL-33 level (P = 0.034). The decline extent of sIL-33 after chemoresistance could be regarded as a predictor of the PFS of GC patients.
Collapse
Affiliation(s)
- Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.,Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu Province, China
| | - Chen Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.,Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu Province, China
| | - Xiaodong Li
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.,Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu Province, China
| | - Zhuojun Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Quanqin Xie
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Xu Deng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu Province, China
| | - Changping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| |
Collapse
|
45
|
Das D, Sarkar B, Mukhopadhyay S, Banerjee C, Biswas Mondal S. An Altered Ratio of CD4+ And CD8+ T Lymphocytes in Cervical Cancer Tissues and Peripheral Blood – A Prognostic Clue? Asian Pac J Cancer Prev 2018; 19:471-478. [PMID: 29480666 PMCID: PMC5980936 DOI: 10.22034/apjcp.2018.19.2.471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Several studies have provided evidence of CD4+ and CD8+ lymphocyte infiltration in various malignancies with probable implications for prognosis. Cervical cancer accounts for a major part of the cancer burden in the developing world. Study of genetically and ethnically diverse Indian cervical cancer patients is necessary to assess effects on lymphocytic infiltration of tumour tissue. Methods: This observational study was conducted over a period of 12 months with selected cervical cancer patients meeting inclusion criteria. Samples of cervical cancer tissue and peripheral blood were obtained and tumour infiltration with CD4+ and CD8+ lymphocytes was noted. Cell numbers were quantified by flow-cytometry and proportions compared between tumour and peripheral blood samples. Results: Tumour infiltration was noted with both CD4+ (13.93±10.95) and CD8+ (19.5±12.05) lymphocyte subtypes. However, compared to peripheral blood, CD4+ cells were significantly less predominant in tumour tissue (p, 0.0013). There was a statistically significant (p, 0.0004) reversal of the ratio of CD4+ and CD8+ in the tumour tissue (0.68±0.39) compared to peripheral blood (1.5±0.66) with maximal alteration in higher stage disease. Conclusion: The study revealed that T lymphocyte infiltration of cervical cancer tissue occurs but the ratio of CD4+ to CD8+ subtypes is sifnificantly lower than in peripheral blood, especially with in advanced stages of disease. The clinical implications of such a reversal of CD4+ and CD8+ ratios is unknown, but might have prognostic significance.
Collapse
Affiliation(s)
- Diptimoy Das
- Department of Radiotherapy, Burdwan Medical College, Burdwan, India.
| | | | | | | | | |
Collapse
|
46
|
Type 2 Innate Lymphocytes Actuate Immunity Against Tumours and Limit Cancer Metastasis. Sci Rep 2018; 8:2924. [PMID: 29440650 PMCID: PMC5811448 DOI: 10.1038/s41598-018-20608-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Type 2 innate lymphoid cells (ILC2) potentiate immune responses, however, their role in mediating adaptive immunity in cancer has not been assessed. Here, we report that mice genetically lacking ILC2s have significantly increased tumour growth rates and conspicuously higher frequency of circulating tumour cells (CTCs) and resulting metastasis to distal organs. Our data support the model that IL-33 dependent tumour-infiltrating ILC2s are mobilized from the lungs and other tissues through chemoattraction to enter tumours, and subsequently mediate tumour immune-surveillance by cooperating with dendritic cells to promote adaptive cytolytic T cell responses. We conclude that ILC2s play a fundamental, yet hitherto undescribed role in enhancing anti-cancer immunity and controlling tumour metastasis.
Collapse
|
47
|
Williams DE, Gunasekara NW, Ratnaweera PB, Zheng Z, Ellis S, Dada S, Patrick BO, Wijesundera RLC, Nanayakkara CM, Jefferies WA, de Silva ED, Andersen RJ. Serpulanines A to C, N-Oxidized Tyrosine Derivatives Isolated from the Sri Lankan Fungus Serpula sp.: Structure Elucidation, Synthesis, and Histone Deacetylase Inhibition. JOURNAL OF NATURAL PRODUCTS 2018; 81:78-84. [PMID: 29303267 DOI: 10.1021/acs.jnatprod.7b00680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Serpulanines A (1), B (2), and C (3) have been isolated from extracts of the rare Sri Lankan macrofungus Serpula sp. The structures of 1, 2, and 3 were elucidated by a combination of spectroscopic and single-crystal X-ray diffraction analyses. Serpulanines A (1) and B (2) both contain the rare (E)-2-hydroxyimino hydroxamic acid functional group array. A proposed biogenesis for serpulanine B (2) suggests that its (E)-2-hydroxyimino hydroxamic acid moiety arises from a diketopiperazine precursor. Synthetic serpulanine A (1) inhibited class I/II histone deacetylases in murine metastatic lung carcinoma cells with an IC50 of 7 μM.
Collapse
Affiliation(s)
- David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| | - Niranjan W Gunasekara
- Departments of Chemistry and Plant Science, University of Colombo , Colombo 03, Sri Lanka
| | - Pamoda B Ratnaweera
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
- Departments of Chemistry and Plant Science, University of Colombo , Colombo 03, Sri Lanka
- Department of Science and Technology, Uva Wellassa University , Badulla, Sri Lanka
| | - Zehua Zheng
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| | - Samantha Ellis
- The Michael Smith Laboratories; Vancouver Prostate Centre; Departments of Medical Genetics, Microbiology & Immunology, and Zoology; and The Centre for Blood Research and Djavad Mowafaghian Centre for Brain Health, University of British Columbia , Vancouver, BC, Canada
| | - Sarah Dada
- The Michael Smith Laboratories; Vancouver Prostate Centre; Departments of Medical Genetics, Microbiology & Immunology, and Zoology; and The Centre for Blood Research and Djavad Mowafaghian Centre for Brain Health, University of British Columbia , Vancouver, BC, Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia , 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| | - Ravi L C Wijesundera
- Departments of Chemistry and Plant Science, University of Colombo , Colombo 03, Sri Lanka
| | | | - Wilfred A Jefferies
- The Michael Smith Laboratories; Vancouver Prostate Centre; Departments of Medical Genetics, Microbiology & Immunology, and Zoology; and The Centre for Blood Research and Djavad Mowafaghian Centre for Brain Health, University of British Columbia , Vancouver, BC, Canada
| | - E Dilip de Silva
- Departments of Chemistry and Plant Science, University of Colombo , Colombo 03, Sri Lanka
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| |
Collapse
|
48
|
Akimoto M, Takenaga K. Role of the IL-33/ST2L axis in colorectal cancer progression. Cell Immunol 2018; 343:103740. [PMID: 29329638 DOI: 10.1016/j.cellimm.2017.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022]
Abstract
Interleukin-33 (IL-33) has been identified as a natural ligand of ST2L. IL-33 primarily acts as a key regulator of Th2 responses through binding to ST2L, which is antagonized by soluble ST2 (sST2). The IL-33/ST2L axis is involved in various inflammatory pathologies, including ulcerative colitis (UC). Several recent investigations have also suggested that the IL-33/ST2L axis plays a role in colorectal cancer (CRC) progression. In CRC, tumor- and stroma-derived IL-33 may activate ST2L on various cell types in an autocrine and paracrine manner. Although several findings support the hypothesis that the IL-33/ST2L axis positively regulates CRC progression, other reports do not; hence, this hypothesis remains controversial. At any rate, recent studies have provided overwhelming evidence that the IL-33/ST2L axis plays important roles in CRC progression. This review summarizes the role of the IL-33/ST2L axis in the UC and CRC microenvironments.
Collapse
Affiliation(s)
- Miho Akimoto
- Department of Life Science, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| | - Keizo Takenaga
- Department of Life Science, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan.
| |
Collapse
|
49
|
Vlachostergios PJ, Paddock M, Molina AM. Molecular Targeted Therapies of Prostate Cancer. MOLECULAR PATHOLOGY LIBRARY 2018. [DOI: 10.1007/978-3-319-64096-9_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Abstract
Although immunotherapy has been at the forefront of cancer therapy for the last several years, better clinical responses are still desired. Interleukin-33 is perhaps one of the most overlooked antitumor cytokines. Its ability to promote type 1 immune responses, which control tumor growth in preclinical animal models is overshadowed by its association with type 2 immunity and poor prognosis in some human cancers. Accumulating evidence shows that IL-33 is a powerful new tool for restoring and enhancing the body's natural antitumor immunity cycle. Furthermore, the antitumor mechanisms of IL-33 are two-fold, as it can directly boost CD8+ T cell function and restore dendritic cell dysfunction in vivo. Mechanistic studies have identified a novel pathway induced by IL-33 and its receptor ST2 in which dendritic cells avoid dysfunction and retain cross-priming abilities in tumor-bearing conditions. Here, we also comment on IL-33 data in human cancers and explore the idea that endogenous IL-33 may not deserve its reputation for promoting tumor growth. In fact, tumors may hijack the IL-33/ST2 axis to avoid immune surveillance and escape antitumor immunity.
Collapse
Affiliation(s)
- Donye Dominguez
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine–Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine–Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|