1
|
Bissinger R, Nemkov T, D'Alessandro A, Grau M, Dietz T, Bohnert BN, Essigke D, Wörn M, Schaefer L, Xiao M, Beirne JM, Kalo MZ, Schork A, Bakchoul T, Omage K, Kong L, Gonzalez-Menendez I, Quintanilla-Martinez L, Fehrenbacher B, Schaller M, Dhariwal A, Birkenfeld AL, Grahammer F, Qadri SM, Artunc F. Proteinuric chronic kidney disease is associated with altered red blood cell lifespan, deformability and metabolism. Kidney Int 2021; 100:1227-1239. [PMID: 34537228 DOI: 10.1016/j.kint.2021.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
Anemia is a common complication of chronic kidney disease, affecting the quality of life of patients. Among various factors, such as iron and erythropoietin deficiency, reduced red blood cell (RBC) lifespan has been implicated in the pathogenesis of anemia. However, mechanistic data on in vivo RBC dysfunction in kidney disease are lacking. Herein, we describe the development of chronic kidney disease-associated anemia in mice with proteinuric kidney disease resulting from either administration of doxorubicin or an inducible podocin deficiency. In both experimental models, anemia manifested at day 10 and progressed at day 30 despite increased circulating erythropoietin levels and erythropoiesis in the bone marrow and spleen. Circulating RBCs in both mouse models displayed altered morphology and diminished osmotic-sensitive deformability together with increased phosphatidylserine externalization on the outer plasma membrane, a hallmark of RBC death. Fluorescence-labelling of RBCs at day 20 of mice with doxorubicin-induced kidney disease revealed premature clearance from the circulation. Metabolomic analyses of RBCs from both mouse models demonstrated temporal changes in redox recycling pathways and Lands' cycle, a membrane lipid remodeling process. Anemic patients with proteinuric kidney disease had an increased proportion of circulating phosphatidylserine-positive RBCs. Thus, our observations suggest that reduced RBC lifespan, mediated by altered RBC metabolism, reduced RBC deformability, and enhanced cell death contribute to the development of anemia in proteinuric kidney disease.
Collapse
Affiliation(s)
- Rosi Bissinger
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Division of Hematology, University of Colorado Denver, Aurora, Colorado, USA
| | - Marijke Grau
- Institute of Molecular and Cellular Sports Medicine, German Sport University of Cologne, Köln, Germany
| | - Thomas Dietz
- Institute of Molecular and Cellular Sports Medicine, German Sport University of Cologne, Köln, Germany
| | - Bernhard N Bohnert
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany
| | - Daniel Essigke
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Matthias Wörn
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Lina Schaefer
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Mengyun Xiao
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Jonathan M Beirne
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - M Zaher Kalo
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Anja Schork
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany
| | - Tamam Bakchoul
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Kingsley Omage
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Lingsi Kong
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | | | | | - Birgit Fehrenbacher
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Achal Dhariwal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Andreas L Birkenfeld
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany
| | - Florian Grahammer
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Syed M Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, Ontario, Canada
| | - Ferruh Artunc
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Bissinger R, Lang E, Gonzalez-Menendez I, Quintanilla-Martinez L, Ghashghaeinia M, Pelzl L, Sukkar B, Bhuyan AAM, Salker MS, Singh Y, Fehrenbacher B, Fakhri H, Umbach AT, Schaller M, Qadri SM, Lang F. Genetic deficiency of the tumor suppressor protein p53 influences erythrocyte survival. Apoptosis 2019; 23:641-650. [PMID: 30238335 DOI: 10.1007/s10495-018-1481-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The transcription factor p53 suppresses tumor growth by inducing nucleated cell apoptosis and cycle arrest. Because of its influence on primitive erythroid cell differentiation and survival, p53 is an important determinant of erythropoiesis. However, the impact of p53 on the fate of erythrocytes, cells lacking nucleus and mitochondria, during their post-maturation phase in the circulation remained elusive. Erythrocyte survival may be compromised by suicidal erythrocyte death or eryptosis, which is hallmarked by phosphatidylserine translocation and stimulated by increase of cytosolic Ca2+ concentration. Here, we comparatively examined erythrocyte homeostasis in p53-mutant mice (Trp53tm1Tyj/J) and in corresponding WT mice (C57BL/6J) by analyzing eryptosis and erythropoiesis. To this end, spontaneous cell membrane phosphatidylserine exposure and cytosolic Ca2+ concentration were higher in erythrocytes drawn from Trp53tm1Tyj/J mice than from WT mice. Eryptosis induced by glucose deprivation, a pathophysiological cell stressor, was slightly, but significantly more prominent in erythrocytes drawn from Trp53tm1Tyj/J mice as compared to WT mice. The loss of erythrocytes by eryptosis was fully compensated by enhanced erythropoiesis in Trp53tm1Tyj/J mice, as reflected by increased reticulocytosis and abundance of erythroid precursor cells in the bone marrow. Accordingly, erythrocyte number, packed cell volume and hemoglobin were similar in Trp53tm1Tyj/J and WT mice. Taken together, functional p53 deficiency enhances the turnover of circulating erythrocytes by parallel increase of eryptosis and stimulated compensatory erythropoiesis.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine III, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Elisabeth Lang
- Department of Molecular Medicine II, Heinrich-Heine University, Düsseldorf, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Eberhard-Karls University Tübingen, Tübingen, Germany.,Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard-Karls University Tübingen, Tübingen, Germany.,Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Mehrdad Ghashghaeinia
- Psoriasis Center, Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Lisann Pelzl
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Basma Sukkar
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Abdulla Al Mamun Bhuyan
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Madhuri S Salker
- Research Institute for Women's Health, University Hospital Tübingen, Tübingen, Germany
| | - Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Birgit Fehrenbacher
- Department of Dermatology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Hajar Fakhri
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Anja T Umbach
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Syed M Qadri
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada. .,Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.
| | - Florian Lang
- Department of Internal Medicine III, Eberhard-Karls University Tübingen, Tübingen, Germany. .,Department of Molecular Medicine II, Heinrich-Heine University, Düsseldorf, Germany. .,Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany.
| |
Collapse
|
3
|
Ecker A, da Silva RS, Dos Santos MM, Ardisson-Araújo D, Rodrigues OED, da Rocha JBT, Barbosa NV. Safety profile of AZT derivatives: Organoselenium moieties confer different cytotoxic responses in fresh human erythrocytes during in vitro exposures. J Trace Elem Med Biol 2018; 50:240-248. [PMID: 30262286 DOI: 10.1016/j.jtemb.2018.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The incorporation of selenium in the structure of nucleosides is a promising strategy to develop novel therapeutic molecules. OBJECTIVE To assess the toxic effects of three AZT derivatives containing organoselenium moieties on human erythrocytes. METHODOLOGY Freshly human erythrocytes were acutely treated with AZT and selenium derivatives SZ1 (chlorophenylseleno), SZ2 (phenylseleno) and SZ3 (methylphenylseleno) at concentrations ranging from 10 to 500 μM. Afterwards, parameters related to membrane damage, redox dyshomeostasis and eryptosis were determined in the cells. RESULTS The effects of AZT and derivatives toward erythrocytes differed considerably. Overall, the SZ3 exhibited similar effect profiles to the prototypal AZT, without causing cytotoxicity. Contrary, the derivative SZ1 induced hemolysis and increased the membrane fragility of cells. Reactive species generation, lipid peroxidation and thiol depletion were also substantially increased in cells after exposure to SZ1. δ-ALA-D and Na+/K+-ATPase activities were inhibited by derivatives SZ1 and SZ2. Additionally, both derivatives caused eryptosis, promoting cell shrinkage and translocation of phosphatidylserine at the membrane surface. The size and granularity of erythrocytes were not modified by any compound. CONCLUSION The insertion of either chlorophenylseleno or, in a certain way, phenylseleno moietes in the structure of AZT molecule was harmful to erythrocytes and this effect seems to involve a pro-oxidant activity. This was not true for the derivative encompassing methylphenylseleno portion, making it a promising candidate for pharmacological studies.
Collapse
Affiliation(s)
- Assis Ecker
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Rafael S da Silva
- LabSelen-NanoBio - Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Matheus Mulling Dos Santos
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Daniel Ardisson-Araújo
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Oscar E D Rodrigues
- LabSelen-NanoBio - Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Nilda Vargas Barbosa
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
4
|
Cao H, Qadri SM, Lang E, Pelzl L, Umbach AT, Leiss V, Birnbaumer L, Nürnberg B, Pieske B, Voelkl J, Gawaz M, Bissinger R, Lang F. Heterotrimeric G-protein subunit Gα i2 contributes to agonist-sensitive apoptosis and degranulation in murine platelets. Physiol Rep 2018; 6:e13841. [PMID: 30187671 PMCID: PMC6125243 DOI: 10.14814/phy2.13841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 07/27/2018] [Indexed: 01/06/2023] Open
Abstract
Gαi2 , a heterotrimeric G-protein subunit, regulates various cell functions including ion channel activity, cell differentiation, proliferation and apoptosis. Platelet-expressed Gαi2 is decisive for the extent of tissue injury following ischemia/reperfusion. However, it is not known whether Gαi2 plays a role in the regulation of platelet apoptosis, which is characterized by caspase activation, cell shrinkage and cell membrane scrambling with phosphatidylserine (PS) translocation to the platelet surface. Stimulators of platelet apoptosis include thrombin and collagen-related peptide (CoRP), which are further known to enhance degranulation and activation of αIIb β3-integrin and caspases. Using FACS analysis, we examined the impact of agonist treatment on activation and apoptosis in platelets drawn from mice lacking Gαi2 and their wild-type (WT) littermates. As a result, treatment with either thrombin (0.01 U/mL) or CoRP (2 μg/mL or 5 μg/mL) significantly upregulated PS-exposure and significantly decreased forward scatter, reflecting cell size, in both genotypes. Exposure to CoRP triggered a significant increase in active caspase 3, ceramide formation, surface P-selectin, and αIIb β3-integrin activation. These molecular alterations were significantly less pronounced in Gαi2 -deficient platelets as compared to WT platelets. In conclusion, our data highlight a previously unreported role of Gαi2 signaling in governing platelet activation and apoptosis.
Collapse
Affiliation(s)
- Hang Cao
- Department of Vegetative & Clinical PhysiologyEberhard‐Karls UniversityTübingenGermany
| | - Syed M. Qadri
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonOntarioCanada
- Centre for InnovationCanadian Blood ServicesHamiltonOntarioCanada
| | - Elisabeth Lang
- Department of Molecular Medicine IIHeinrich Heine UniversityDüsseldorfGermany
| | - Lisann Pelzl
- Department of Vegetative & Clinical PhysiologyEberhard‐Karls UniversityTübingenGermany
| | - Anja T. Umbach
- Department of Vegetative & Clinical PhysiologyEberhard‐Karls UniversityTübingenGermany
| | - Veronika Leiss
- Department of Pharmacology and Experimental TherapyInterfaculty Center of Pharmacology and Drug Research (ICePhA)Eberhard‐Karls UniversityTübingenGermany
| | - Lutz Birnbaumer
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesNational Institutes of HealthDurhamNorth Carolina
- Institute of Biomedical Research (BIOMED)Catholic University of ArgentinaBuenos AiresArgentina
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental TherapyInterfaculty Center of Pharmacology and Drug Research (ICePhA)Eberhard‐Karls UniversityTübingenGermany
| | - Burkert Pieske
- Department of Internal Medicine and CardiologyCharité‐Universitätsmedizin Berlin, and German Heart InstituteBerlinGermany
- Berlin Institute of Health (BIH)BerlinGermany
- DZHK (German Centre for Cardiovascular Research), partner siteBerlinGermany
| | - Jakob Voelkl
- Department of Internal Medicine and CardiologyCharité‐Universitätsmedizin Berlin, and German Heart InstituteBerlinGermany
- Berlin Institute of Health (BIH)BerlinGermany
- DZHK (German Centre for Cardiovascular Research), partner siteBerlinGermany
| | - Meinrad Gawaz
- Department of Internal Medicine IIIEberhard‐Karls UniversityTübingenGermany
| | - Rosi Bissinger
- Department of Internal Medicine IIIEberhard‐Karls UniversityTübingenGermany
| | - Florian Lang
- Department of Vegetative & Clinical PhysiologyEberhard‐Karls UniversityTübingenGermany
- Department of Molecular Medicine IIHeinrich Heine UniversityDüsseldorfGermany
| |
Collapse
|
5
|
Bissinger R, Bhuyan AAM, Qadri SM, Lang F. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J 2018; 286:826-854. [PMID: 30028073 DOI: 10.1111/febs.14606] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
The average lifespan of circulating erythrocytes usually exceeds hundred days. Prior to that, however, erythrocytes may be exposed to oxidative stress in the circulation which could cause injury and trigger their suicidal death or eryptosis. Oxidative stress activates Ca2+ -permeable nonselective cation channels in the cell membrane, thus, stimulating Ca2+ entry and subsequent cell membrane scrambling resulting in phosphatidylserine exposure and activation of Ca2+ -sensitive K+ channels leading to K+ exit, hyperpolarization, Cl- exit, and ultimately cell shrinkage due to loss of KCl and osmotically driven water. While the mechanistic link between oxidative stress and anemia remains ill-defined, several diseases such as diabetes, hepatic failure, malignancy, chronic kidney disease and inflammation have been identified to display both increased oxidative stress as well as eryptosis. Recent compelling evidence suggests that oxidative stress is an important perpetrator in accelerating erythrocyte loss in different systemic conditions and an underlying mechanism for anemia associated with these pathological states. In the present review, we discuss the role of oxidative stress in reducing erythrocyte survival and provide novel insights into the possible use of antioxidants as putative antieryptotic and antianemic agents in a variety of systemic diseases.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine III, Eberhard-Karls-University Tübingen, Germany
| | - Abdulla Al Mamun Bhuyan
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany
| | - Syed M Qadri
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Florian Lang
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany.,Department of Molecular Medicine II, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
6
|
Alvarez-Sala A, López-García G, Attanzio A, Tesoriere L, Cilla A, Barberá R, Alegría A. Effects of Plant Sterols or β-Cryptoxanthin at Physiological Serum Concentrations on Suicidal Erythrocyte Death. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1157-1166. [PMID: 29345907 DOI: 10.1021/acs.jafc.7b05575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The eryptotic and hemolytic effects of a phytosterol (PS) mixture (β-sitosterol, campesterol, stigmasterol) or β-cryptoxanthin (β-Cx) at physiological serum concentration and their effect against oxidative stress induced by tert-butylhydroperoxide (tBOOH) (75 and 300 μM) were evaluated. β-Cryptoxanthin produced an increase in eryptotic cells, cell volume, hemolysis, and glutathione depletion (GSH) without ROS overproduction and intracellular Ca2+ influx. Co-incubation of both bioactive compounds protected against β-Cx-induced eryptosis. Under tBOOH stress, PS prevented eryptosis, reducing Ca2+ influx, ROS overproduction and GSH depletion at 75 μM, and hemolysis at both tBOOH concentrations. β-Cryptoxanthin showed no cytoprotective effect. Co-incubation with both bioactive compounds completely prevented hemolysis and partially prevented eryptosis as well as GSH depletion induced by β-Cx plus tBOOH. Phytosterols at physiological serum concentrations help to prevent pro-eryptotic and hemolytic effects and are promising candidate compounds for ameliorating eryptosis-associated diseases.
Collapse
Affiliation(s)
- Andrea Alvarez-Sala
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| | - Gabriel López-García
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo , Via Archirafi 28, 90123 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo , Via Archirafi 28, 90123 Palermo, Italy
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| |
Collapse
|
7
|
Characterizing pathology in erythrocytes using morphological and biophysical membrane properties: Relation to impaired hemorheology and cardiovascular function in rheumatoid arthritis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2381-2391. [DOI: 10.1016/j.bbamem.2017.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/15/2023]
|
8
|
Lang F, Bissinger R, Abed M, Artunc F. Eryptosis - the Neglected Cause of Anemia in End Stage Renal Disease. Kidney Blood Press Res 2017; 42:749-760. [PMID: 29151105 DOI: 10.1159/000484215] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/23/2017] [Indexed: 11/19/2022] Open
Abstract
End stage renal disease (ESRD) invariably leads to anemia which has been mainly attributed to compromised release of erythropoietin from the defective kidneys with subsequent impairment of erythropoiesis. However, erythropoietin replacement only partially reverses anemia pointing to the involvement of additional mechanisms. As shown more recently, anemia of ESRD is indeed in large part a result of accelerated erythrocyte loss due to suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the cell surface. Phosphatidylserine exposing erythrocytes are bound to and engulfed by macrophages and are thus rapidly cleared from circulating blood. If the loss of erythrocytes cannot be fully compensated by enhanced erythropoiesis, stimulation of eryptosis leads to anemia. Eryptotic erythrocytes may further adhere to the vascular wall and thus impair microcirculation. Stimulators of eryptosis include complement, hyperosmotic shock, energy depletion, oxidative stress, and a wide variety of xenobiotics. Signaling involved in the stimulation of eryptosis includes increase of cytosolic Ca2+ activity, ceramide, caspases, calpain, p38 kinase, protein kinase C, Janus-activated kinase 3, casein kinase 1α, and cyclin-dependent kinase 4. Eryptosis is inhibited by AMP-activated kinase, p21-activated kinase 2, cGMP-dependent protein kinase, mitogen- and stress-activated kinase MSK1/2, and some illdefined tyrosine kinases. In ESRD eryptosis is stimulated at least in part by a plasma component, as it is triggered by exposure of erythrocytes from healthy individuals to plasma from ESRD patients. Several eryptosis-stimulating uremic toxins have been identified, such as vanadate, acrolein, methylglyoxal, indoxyl sulfate, indole-3-acetic acid and phosphate. Attempts to fully reverse anemia in ESRD with excessive stimulation of erythropoiesis enhances the number of circulating suicidal erythrocytes and bears the risk of interference with micocirculation, At least in theory, anemia in ESRD could preferably be treated with replacement of erythropoietin and additional inhibition of eryptosis thus avoiding eryptosis-induced impairment of microcirculation. A variety of eryptosis inhibitors have been identified, their efficacy in ESRD remains, however, to be shown.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology I, University of Tübingen, Tübingen, Germany.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Rosi Bissinger
- Department of Internal Medicine III, University of Tübingen, Tübingen, Germany
| | - Majed Abed
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | - Ferruh Artunc
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Lang E, Bissinger R, Qadri SM, Lang F. Suicidal death of erythrocytes in cancer and its chemotherapy: A potential target in the treatment of tumor-associated anemia. Int J Cancer 2017; 141:1522-1528. [DOI: 10.1002/ijc.30800] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/17/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Elisabeth Lang
- Department of Molecular Medicine II; Heinrich Heine University of Düsseldorf; Düsseldorf Germany
| | - Rosi Bissinger
- Department of Internal Medicine III; Eberhard-Karls-University of Tübingen; Tübingen Germany
| | - Syed M. Qadri
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
- Centre for Innovation, Canadian Blood Services; Hamilton ON Canada
| | - Florian Lang
- Department of Internal Medicine III; Eberhard-Karls-University of Tübingen; Tübingen Germany
| |
Collapse
|
10
|
Qadri SM, Bissinger R, Solh Z, Oldenborg PA. Eryptosis in health and disease: A paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev 2017; 31:349-361. [PMID: 28669393 DOI: 10.1016/j.blre.2017.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
Abstract
During the course of their natural ageing and upon injury, anucleate erythrocytes can undergo an unconventional apoptosis-like cell death, termed eryptosis. Eryptotic erythrocytes display a plethora of morphological alterations including volume reduction, membrane blebbing and breakdown of the membrane phospholipid asymmetry resulting in phosphatidylserine externalization which, in turn, mediates their phagocytic recognition and clearance from the circulation. Overall, the eryptosis machinery is tightly orchestrated by a wide array of endogenous mediators, ion channels, membrane receptors, and a host of intracellular signaling proteins. Enhanced eryptosis shortens the lifespan of circulating erythrocytes and confers a procoagulant phenotype; this phenomenon has been tangibly implicated in the pathogenesis of anemia, deranged microcirculation, and increased prothrombotic risk associated with a multitude of clinical conditions. Herein, we reviewed the molecular mechanisms dictating eryptosis and erythrophagocytosis and critically analyzed the current evidence leading to the pathophysiological ramifications of eryptotic cell death in the context of human disease.
Collapse
Affiliation(s)
- Syed M Qadri
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.
| | - Rosi Bissinger
- Department of Internal Medicine, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Ziad Solh
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Medical Services and Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Meyring-Wösten A, Kuntsevich V, Campos I, Williams S, Ma J, Patel S, Ornillo C, Thijssen S, Kotanko P. Erythrocyte Sodium Sensitivity and Eryptosis in Chronic Hemodialysis Patients. Kidney Blood Press Res 2017; 42:314-326. [DOI: 10.1159/000477608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/07/2017] [Indexed: 11/19/2022] Open
|
12
|
Abed M, Thiel C, Towhid S, Alzoubi K, Honisch S, Lang F, Königsrainer A. Stimulation of Erythrocyte Cell Membrane Scrambling by C-Reactive Protein. Cell Physiol Biochem 2017; 41:806-818. [DOI: 10.1159/000458745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/25/2017] [Indexed: 12/29/2022] Open
Abstract
Background: Eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phosphatidylserine-translocation, is triggered by fever and inflammation. Signaling includes increased cytosolic Ca2+-activity ([Ca2+]i), caspase activation, and ceramide. Inflammation is associated with increased plasma concentration of C-reactive protein (CRP). The present study explored whether CRP triggers eryptosis. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ceramide abundance and caspase-3-activity utilizing FITC-conjugated antibodies. Moreover, blood was drawn from patients with acute appendicitis (9♀,11♂) and healthy volunteers (10♀,10♂) for determination of CRP, blood count and phosphatidylserine. Results: A 48h CRP treatment significantly increased the percentage of annexin-V-binding cells (≥5µg/ml), [Ca2+]i (≥5µg/ml), ceramide (20µg/ml) and caspase-activity (20µg/ml). Annexin-V-binding was significantly blunted by caspase inhibitor zVAD (10µM). The percentage of phosphatidylserine-exposing erythrocytes in freshly drawn blood was significantly higher in appendicitis patients (1.83±0.21%) than healthy volunteers (0.81±0.09%), and significantly higher following a 24h incubation of erythrocytes from healthy volunteers to patient plasma than to plasma from healthy volunteers. The percentage of phosphatidylserine-exposing erythrocytes correlated with CRP plasma concentration. Conclusion: C-reactive protein triggers eryptosis, an effect at least partially due to increase of [Ca2+]i, increase of ceramide abundance and caspase activation.
Collapse
|
13
|
Qadri SM, Chen D, Schubert P, Perruzza DL, Bhakta V, Devine DV, Sheffield WP. Pathogen inactivation by riboflavin and ultraviolet light illumination accelerates the red blood cell storage lesion and promotes eryptosis. Transfusion 2016; 57:661-673. [DOI: 10.1111/trf.13959] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Syed M. Qadri
- Centre for Innovation, Canadian Blood Services; McMaster University; Hamilton Ontario Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| | - Deborah Chen
- Centre for Innovation, Canadian Blood Services; University of British Columbia; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - Peter Schubert
- Centre for Innovation, Canadian Blood Services; University of British Columbia; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - Darian L. Perruzza
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| | - Varsha Bhakta
- Centre for Innovation, Canadian Blood Services; McMaster University; Hamilton Ontario Canada
| | - Dana V. Devine
- Centre for Innovation, Canadian Blood Services; University of British Columbia; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - William P. Sheffield
- Centre for Innovation, Canadian Blood Services; McMaster University; Hamilton Ontario Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| |
Collapse
|