1
|
Alexakis K, Baliou S, Ioannou P. Predatory Bacteria in the Treatment of Infectious Diseases and Beyond. Infect Dis Rep 2024; 16:684-698. [PMID: 39195003 DOI: 10.3390/idr16040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is an increasing problem worldwide, with significant associated morbidity and mortality. Given the slow production of new antimicrobials, non-antimicrobial methods for treating infections with significant AMR are required. This review examines the potential of predatory bacteria to combat infectious diseases, particularly those caused by pathogens with AMR. Predatory bacteria already have well-known applications beyond medicine, such as in the food industry, biocontrol, and wastewater treatment. Regarding their potential for use in treating infections, several in vitro studies have shown their potential in eliminating various pathogens, including those resistant to multiple antibiotics, and they also suggest minimal immune stimulation and cytotoxicity by predatory bacteria. In vivo animal studies have demonstrated safety and efficacy in reducing bacterial burden in various infection models. However, results can be inconsistent, suggesting dependence on factors like the animal model and the infecting bacteria. Until now, no clinical study in humans exists, but as experience with predatory bacteria grows, future studies including clinical studies in humans could be designed to evaluate their efficacy and safety in humans, thus leading to the potential for approval of a novel method for treating infectious diseases by bacteria.
Collapse
Affiliation(s)
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
2
|
Romanowski EG, Brothers KM, Calvario RC, Stella NA, Kim T, Elsayed M, Kadouri DE, Shanks RMQ. Predatory bacteria prevent the proliferation of intraocular Serratia marcescens and fluoroquinolone-resistant Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001433. [PMID: 38358321 PMCID: PMC10924457 DOI: 10.1099/mic.0.001433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Endogenous endophthalmitis caused by Gram-negative bacteria is an intra-ocular infection that can rapidly progress to irreversible loss of vision. While most endophthalmitis isolates are susceptible to antibiotic therapy, the emergence of resistant bacteria necessitates alternative approaches to combat intraocular bacterial proliferation. In this study the ability of predatory bacteria to limit intraocular growth of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus was evaluated in a New Zealand white rabbit endophthalmitis prevention model. Predatory bacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus were able to reduce proliferation of keratitis isolates of P. aeruginosa and to a lesser extent S. marcescens. However, it was not able to significantly reduce the number of intraocular S. aureus, which is not a productive prey for these predatory bacteria, suggesting that the inhibitory effect on P. aeruginosa and S. marcescens requires active predation rather than an antimicrobial immune response. Similarly, UV-inactivated B. bacteriovorus were unable to prevent proliferation of P. aeruginosa. Together, these data indicate in vivo inhibition of Gram-negative bacteria proliferation within the intra-ocular environment by predatory bacteria.
Collapse
Affiliation(s)
- Eric G. Romanowski
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kimberly M. Brothers
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel C. Calvario
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas A. Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tami Kim
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Daniel E. Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Robert M. Q. Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Liu Y, Guo W, Wang W, Zhang H, Jin Y. In situ forming hydrogel loaded with predatory bacteria treats drug-resistant corneal infection. J Control Release 2023; 364:393-405. [PMID: 37898345 DOI: 10.1016/j.jconrel.2023.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The development of potent bactericidal antibiotic alternatives is important to address the current antibiotic crisis. A representative example is the topical delivery of predatory Bdellovibrio bacteriovorus bacteria to treat ocular bacterial infection. However, the direct topical use of B. bacteriovorus suspensions has the problem of easy loss and inactivation. Here, a B. bacteriovorus in situ forming hydrogel (BIG) was constructed for the ocular delivery of B. bacteriovorus. BIGs, as a fluid in their primitive state, were temperature- and cation- dually sensitive, which was rapidly transformed into immobile gels in the ocular environment. BIGs not only kept the activity of B. bacteriovorus but also retained on the ocular surface for a long time. The biosafety of BIGs was good without HCEC cell toxicity and hemolysis. More importantly, BIGs highly inhibited the growth of drug-resistant Pseudomonas aeruginosa whether in vitro or in the infected rat eyes. The ocular infection was completely controlled by BIGs with no corneal ulcers and inflammations. This living bacteria gel is a promising medication for the local treatment of drug-resistant bacteria-induced ocular infection.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Wanting Guo
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wanmei Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hui Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
4
|
Maraş G, Ceyhan Ö, Türe Z, Sağıroğlu P, Yıldırım Y, Şentürk M. The effect of Bdellovibrio bacteriovorus containing dressing on superficial incisional surgical site infections experimentally induced by Klebsiella pneumoniae in mice. J Tissue Viability 2023; 32:541-549. [PMID: 37558561 DOI: 10.1016/j.jtv.2023.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/26/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Bdellovibrio bacteriovorus is a bacterial agent that stands out for its ability to act as a predator against gram-negative bacteria and has found application against antibiotic-resistant pathogens. The aim of this study is to determine the efficacy of Bdellovibrio bacteriovorus against antibiotic-resistant pathogens, particularly those causing infections in surgical incision sites. A total of 6 experimental groups were created in mice, and surgical area infections were initiated with Klebsiella pneumoniae in incision sites. The effects of antibiotics and Bdellovibrio bacteriovorus alone or in combination were compared to the control group. In the Bdellovibrio bacteriovorus treatment group, edema and redness were observed in all mice at 24th hours, in 20% of mice at 48th hours, and in none at the 72 nd h. A significant difference was observed in the Bdellovibrio bacteriovorus treatment groups in reducing Klebsiella pneumoniae burden in the incision area compared to antibiotics alone or Bdellovibrio bacteriovorus + antibiotics, (p < 0.001). Likewise, cytokine level determinations indicated that B. bacteriovorus applications generated a therapeutic response without inducing an inflammatory response.
Collapse
Affiliation(s)
- Gülseren Maraş
- Erciyes University, Institute of Health Sciences, Surgical Nursing, Kayseri, Turkey.
| | - Özlem Ceyhan
- Erciyes University, Faculty of Health Sciences, Internal Medicine Nursing, Kayseri, Turkey.
| | - Zeynep Türe
- Erciyes University Faculty of Medicine, Internal Medicine, Infectious Diseases and Clinical Microbiology, Kayseri, Turkey.
| | - Pınar Sağıroğlu
- Erciyes University Faculty of Medicine, Basic Medical Sciences, Medical Microbiology, Kayseri, Turkey.
| | - Yeliz Yıldırım
- Erciyes University Faculty of Veterinary Medicine, Food Hygiene and Technology, Department of Veterinary Public Health, Kayseri, Turkey.
| | - Meryem Şentürk
- Erciyes University Faculty of Veterinary Medicine, Basic Sciences, Veterinary Biochemistry, Kayseri, Turkey.
| |
Collapse
|
5
|
Mun W, Choi SY, Upatissa S, Mitchell RJ. Predatory bacteria as potential biofilm control and eradication agents in the food industry. Food Sci Biotechnol 2023; 32:1729-1743. [PMID: 37780591 PMCID: PMC10533476 DOI: 10.1007/s10068-023-01310-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are a major concern within the food industry since they have the potential to reduce productivity in situ (within the field), impact food stability and storage, and cause downstream food poisoning. Within this review, predatory bacteria as potential biofilm control and eradication agents are discussed, with a particular emphasis on the intraperiplasmic Bdellovibrio-and-like organism (BALO) grouping. After providing a brief overview of predatory bacteria and their activities, focus is given to how BALOs fulfill four attributes that are essential for biocontrol agents to be successful in the food industry: (1) Broad spectrum activity against pathogens, both plant and human; (2) Activity against biofilms; (3) Safety towards humans and animals; and (4) Compatibility with food. As predatory bacteria possess all of these characteristics, they represent a novel form of biofilm biocontrol that is ripe for use within the food industry.
Collapse
Affiliation(s)
- Wonsik Mun
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Seong Yeol Choi
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Sumudu Upatissa
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Robert J. Mitchell
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| |
Collapse
|
6
|
Romanowski EG, Brothers KM, Calvario RC, Stella NA, Kim T, Elsayed M, Kadouri DE, Shanks RMQ. Intra-ocular Predation of Fluoroquinolone-Resistant Pseudomonas aeruginosa and Serratia marcescens by Predatory Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.558130. [PMID: 37745563 PMCID: PMC10516018 DOI: 10.1101/2023.09.17.558130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Endogenous endophthalmitis caused by Gram-negative bacteria is an intra-ocular infection that can rapidly progress to irreversible loss of vision. While most endophthalmitis isolates are susceptible to antibiotic therapy, the emergence of resistant bacteria necessitates alternative approaches to combat intraocular bacterial proliferation. In this study the ability of predatory bacteria to limit intraocular growth of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus was evaluated in a New Zealand White rabbit endophthalmitis prevention model. Predatory bacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus were able to reduce proliferation of keratitis isolates of P. aeruginosa and S. marcescens. However, it was not able to significantly reduce S. aureus, which is not a productive prey for these predatory bacteria, suggesting that the inhibitory effect on P. aeruginosa requires active predation rather than an antimicrobial immune response. Similarly, UV-inactivated B. bacteriovorus were unable to prevent proliferation of P. aeruginosa. Together, these data suggest in vivo predation of Gram-negative bacteria within the intra-ocular environment.
Collapse
Affiliation(s)
- Eric G Romanowski
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Kimberly M Brothers
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Rachel C Calvario
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Nicholas A Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Tami Kim
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Robert M Q Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
7
|
Xu 徐伟青 LWQ, Bryan JS, Kilic Z, Pressé S. Two-state swimming: Strategy and survival of a model bacterial predator in response to environmental cues. Biophys J 2023; 122:3060-3068. [PMID: 37330639 PMCID: PMC10432179 DOI: 10.1016/j.bpj.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/03/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
Bdellovibrio bacteriovorus is a predatory bacterium preying upon Gram-negative bacteria. As such, B. bacteriovorus has the potential to control antibiotic-resistant pathogens and biofilm populations. To survive and reproduce, B. bacteriovorus must locate and infect a host cell. However, in the temporary absence of prey, it is largely unknown how B. bacteriovorus modulate their motility patterns in response to physical or chemical environmental cues to optimize their energy expenditure. To investigate B. bacteriovorus' predation strategy, we track and quantify their motion by measuring speed distributions as a function of starvation time. While an initial unimodal speed distribution relaxing to one for pure diffusion at long times may be expected, instead we observe a bimodal speed distribution with one mode centered around that expected from diffusion and the other centered at higher speeds. What is more, for an increasing amount of time over which B. bacteriovorus is starved, we observe a progressive reweighting from the active swimming state to an apparent diffusive state in the speed distribution. Distributions of trajectory-averaged speeds for B. bacteriovorus are largely unimodal, indicating switching between a faster swim speed and an apparent diffusive state within individual observed trajectories rather than there being distinct active swimming and apparent diffusive populations. We also find that B. bacteriovorus' apparent diffusive state is not merely caused by the diffusion of inviable bacteria as subsequent spiking experiments show that bacteria can be resuscitated and bimodality restored. Indeed, starved B. bacteriovorus may modulate the frequency and duration of active swimming as a means of balancing energy consumption and procurement. Our results thus point to a reweighting of the swimming frequency on a trajectory basis rather than a population level basis.
Collapse
Affiliation(s)
- Lance W Q Xu 徐伟青
- Department of Physics, Arizona State University, Tempe, Arizona; Center for Biological Physics, Arizona State University, Tempe, Arizona
| | - J Shepard Bryan
- Department of Physics, Arizona State University, Tempe, Arizona; Center for Biological Physics, Arizona State University, Tempe, Arizona
| | - Zeliha Kilic
- Single-Molecule Imaging Center, Saint Jude's Children Hospital, Memphis, Tennessee
| | - Steve Pressé
- Department of Physics, Arizona State University, Tempe, Arizona; Center for Biological Physics, Arizona State University, Tempe, Arizona; School of Molecular Sciences, Arizona State University, Tempe, Arizona.
| |
Collapse
|
8
|
Sason G, Yedidia I, Nussinovitch A, Chalegoua E, Pun M, Jurkevitch E. Self-demise of soft rot bacteria by activation of microbial predators by pectin-based carriers. Microb Biotechnol 2023. [PMID: 37209364 DOI: 10.1111/1751-7915.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2023] [Indexed: 05/22/2023] Open
Abstract
Soft rot pectobacteria (SRP) are phytopathogens of the genera Pectobacterium and Dickeya that cause soft rots on a wide range of crops and ornamental plants. SRP produce plant cell wall degrading enzymes (PCWDEs), including pectinases. Bdellovibrio and like organisms are bacterial predators that can prey on a variety of Gram-negative species, including SRP. In this research, a low methoxyl pectin (LMP)-based immobilization system for B. bacteriovorus is established. It takes advantage that pectin residues induce PCWDE secretion by the pathogens, bringing upon the release of the encapsulated predators. Three commercial LMPs differing in the degree of esterification (DE) and amidation (DA) were tested as potential carriers, by examining their effect on SRP growth, enzymes secretion and substrate breakdown. A clear advantage was observed for pectin 5 CS with the lowest DE and DA content. The degradation of 5 CS pectin-based carriers was further optimized by reducing cross-linker and pectin concentration, by adding gelatin and by dehydration. This resulted in SRP-induced disintegration of the carrier within 72 h. The released encapsulated predator caused a large decrease in SRP population while its own significantly increased, demonstrating the efficiency of this system in which the pathogen brings about its own demise.
Collapse
Affiliation(s)
- Gal Sason
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Iris Yedidia
- Institute of Plant Sciences, Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeTsiyon, Israel
| | - Amos Nussinovitch
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Errikos Chalegoua
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Sciences, Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeTsiyon, Israel
| | - Manoj Pun
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Sciences, Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeTsiyon, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
9
|
Lai TF, Ford RM, Huwiler SG. Advances in cellular and molecular predatory biology of Bdellovibrio bacteriovorus six decades after discovery. Front Microbiol 2023; 14:1168709. [PMID: 37256055 PMCID: PMC10225642 DOI: 10.3389/fmicb.2023.1168709] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023] Open
Abstract
Since its discovery six decades ago, the predatory bacterium Bdellovibrio bacteriovorus has sparked recent interest as a potential remedy to the antibiotic resistance crisis. Here we give a comprehensive historical overview from discovery to progressive developments in microscopy and molecular mechanisms. Research on B. bacteriovorus has moved from curiosity to a new model organism, revealing over time more details on its physiology and fascinating predatory life cycle with the help of a variety of methods. Based on recent findings in cryo-electron tomography, we recapitulate on the intricate molecular details known in the predatory life cycle including how this predator searches for its prey bacterium, to how it attaches, grows, and divides all from within the prey cell. Finally, the newly developed B. bacteriovorus progeny leave the prey cell remnants in the exit phase. While we end with some unanswered questions remaining in the field, new imaging technologies and quantitative, systematic advances will likely help to unravel them in the next decades.
Collapse
Affiliation(s)
- Ting F. Lai
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rhian M. Ford
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Simona G. Huwiler
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Romanowski EG, Stella NA, Brazile BL, Lathrop KL, Franks JM, Sigal IA, Kim T, Elsayed M, Kadouri DE, Shanks RMQ. Predatory bacteria can reduce Pseudomonas aeruginosa induced corneal perforation and proliferation in a rabbit keratitis model. Ocul Surf 2023; 28:254-261. [PMID: 37146902 PMCID: PMC11265785 DOI: 10.1016/j.jtos.2023.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE Pseudomonas aeruginosa keratitis is a severe ocular infection that can lead to perforation of the cornea. In this study we evaluated the role of bacterial quorum sensing in generating corneal perforation and bacterial proliferation and tested whether co-injection of the predatory bacteria Bdellovibrio bacteriovorus could alter the clinical outcome. P. aeruginosa with lasR mutations were observed among keratitis isolates from a study collecting samples from India, so an isogenic lasR mutant strain of P. aeruginosa was included. METHODS Rabbit corneas were intracorneally infected with P. aeruginosa strain PA14 or an isogenic ΔlasR mutant and co-injected with PBS or B. bacteriovorus. After 24 h, eyes were evaluated for clinical signs of infection. Samples were analyzed by scanning electron microscopy, optical coherence tomography, sectioned for histology, and corneas were homogenized for CFU enumeration and for inflammatory cytokines. RESULTS We observed that 54% of corneas infected by wild-type PA14 presented with a corneal perforation (n = 24), whereas only 4% of PA14 infected corneas that were co-infected with B. bacteriovorus perforate (n = 25). Wild-type P. aeruginosa proliferation was reduced 7-fold in the predatory bacteria treated eyes. The ΔlasR mutant was less able to proliferate compared to the wild-type, but was largely unaffected by B. bacteriovorus. CONCLUSION These studies indicate a role for bacterial quorum sensing in the ability of P. aeruginosa to proliferate and cause perforation of the rabbit cornea. Additionally, this study suggests that predatory bacteria can reduce the virulence of P. aeruginosa in an ocular prophylaxis model.
Collapse
Affiliation(s)
- Eric G Romanowski
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicholas A Stella
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bryn L Brazile
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kira L Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan M Franks
- Center for Biological Imaging, University of Pittsburgh School of Engineering, Pittsburgh, PA, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tami Kim
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Robert M Q Shanks
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Romanowski EG, Stella NA, Brazile BL, Lathrop KL, Franks J, Sigal IA, Kim T, Elsayed M, Kadouri DE, Shanks RM. Predatory Bacteria can Reduce Pseudomonas aeruginosa Induced Corneal Perforation and Proliferation in a Rabbit Keratitis Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532777. [PMID: 36993476 PMCID: PMC10055036 DOI: 10.1101/2023.03.15.532777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Purpose Pseudomonas aeruginosa keratitis is a severe ocular infection that can lead to perforation of the cornea. In this study we evaluated the role of bacterial quorum sensing in generating corneal perforation and bacterial proliferation and tested whether co-injection of the predatory bacteria Bdellovibrio bacteriovorus could alter the clinical outcome. P. aeruginosa with lasR mutations were observed among keratitis isolates from a study collecting samples from India, so an isogenic lasR mutant strain of P. aeruginosa was included. Methods Rabbit corneas were intracorneally infected with P. aeruginosa strain PA14 or an isogenic Δ lasR mutant and co-injected with PBS or B. bacteriovorus . After 24 h, eyes were evaluated for clinical signs of infection. Samples were analyzed by scanning electron microscopy, optical coherence tomography, sectioned for histology, and corneas were homogenized for CFU enumeration and for inflammatory cytokines. Results We observed that 54% of corneas infected by wild-type PA14 presented with a corneal perforation (n=24), whereas only 4% of PA14 infected corneas that were co-infected with B. bacteriovorus perforate (n=25). Wild-type P. aeruginosa proliferation was reduced 7-fold in the predatory bacteria treated eyes. The Δ lasR mutant was less able to proliferate compared to the wild-type, but was largely unaffected by B. bacteriovorus . Conclusion These studies indicate a role for bacterial quorum sensing in the ability of P. aeruginosa to proliferate and cause perforation of the rabbit cornea. Additionally, this study suggests that predatory bacteria can reduce the virulence of P. aeruginosa in an ocular prophylaxis model.
Collapse
Affiliation(s)
- Eric G. Romanowski
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nicholas A. Stella
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Bryn L. Brazile
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kira L. Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jonathan Franks
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Bioengineering, Swanson School of Medicine, University of Pittsburgh, Pittsburgh PA
| | - Tami Kim
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Daniel E. Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Robert M.Q. Shanks
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
12
|
Liu Y, Zhuang B, Yuan B, Zhang H, Li J, Wang W, Li R, Du L, Ding P, Jin Y. Predatory bacterial hydrogels for topical treatment of infected wounds. Acta Pharm Sin B 2023; 13:315-326. [PMID: 36815028 PMCID: PMC9939299 DOI: 10.1016/j.apsb.2022.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022] Open
Abstract
Wound infection is becoming a considerable healthcare crisis due to the abuse of antibiotics and the substantial production of multidrug-resistant bacteria. Seawater immersion wounds usually become a mortal trouble because of the infection of Vibrio vulnificus. Bdellovibrio bacteriovorus, one kind of natural predatory bacteria, is recognized as a promising biological therapy against intractable bacteria. Here, we prepared a B. bacteriovorus-loaded polyvinyl alcohol/alginate hydrogel for the topical treatment of the seawater immersion wounds infected by V. vulnificus. The B. bacteriovorus-loaded hydrogel (BG) owned highly microporous structures with the mean pore size of 90 μm, improving the rapid release of B. bacteriovorus from BG when contacting the aqueous surroundings. BG showed high biosafety with no L929 cell toxicity or hemolysis. More importantly, BG exhibited excellent in vitro anti-V. vulnificus effect. The highly effective infected wound treatment effect of BG was evaluated on mouse models, revealing significant reduction of local V. vulnificus, accelerated wound contraction, and alleviated inflammation. Besides the high bacterial inhibition of BG, BG remarkably reduced inflammatory response, promoted collagen deposition, neovascularization and re-epithelization, contributing to wound healing. BG is a promising topical biological formulation against infected wounds.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo Zhuang
- Department of Chemical Defense, Institute of NBC Defense, Beijing 102205, China
| | - Bochuan Yuan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hui Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jingfei Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wanmei Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruiteng Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pingtian Ding
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yiguang Jin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China,Corresponding author. Tel.: +86 10 88215159.
| |
Collapse
|
13
|
Biological control of soft rot in potato by κ-carrageenan carriers encapsulated microbial predators. Appl Microbiol Biotechnol 2022; 107:81-96. [DOI: 10.1007/s00253-022-12294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
|
14
|
Tajabadi FH, Karimian SM, Mohsenipour Z, Mohammadi S, Salehi M, Sattarzadeh M, Fakhari S, Momeni M, Dahmardehei M, Feizabadi MM. Biocontrol Treatment: Application of Bdellovibrio bacteriovorus HD100 against Burn Wound Infection Caused by Pseudomonas aeroginosa in Mice. Burns 2022:S0305-4179(22)00230-3. [DOI: 10.1016/j.burns.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
|
15
|
Strain-specific predation of Bdellovibrio bacteriovorus on Pseudomonas aeruginosa with a higher range for cystic fibrosis than for bacteremia isolates. Sci Rep 2022; 12:10523. [PMID: 35732651 PMCID: PMC9217795 DOI: 10.1038/s41598-022-14378-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
This work aimed to evaluate the predatory activity of Bdellovibrio bacteriovorus 109J on clinical isolates of Pseudomonas aeruginosa selected from well-characterized collections of cystic fibrosis (CF) lung colonization (n = 30) and bloodstream infections (BSI) (n = 48) including strains selected by genetic lineage (frequent and rare sequence types), antibiotic resistance phenotype (susceptible and multidrug-resistant isolates), and colony phenotype (mucoid and non-mucoid isolates). The intraspecies predation range (I-PR) was defined as the proportion of susceptible strains within the entire collection. In contrast, the predation efficiency (PE) is the ratio of viable prey cells remaining after predation compared to the initial inoculum. I-PR was significantly higher for CF (67%) than for BSI P. aeruginosa isolates (35%) probably related to an environmental origin of CF strains whereas invasive strains are more adapted to humans. I-PR correlation with bacterial features such as mucoid morphotype, genetic background, or antibiotic susceptibility profile was not detected. To test the possibility of increasing I-PR of BSI isolates, a polyhydroxyalkanoate depolymerase deficient B. bacteriovorus bd2637 mutant was used. Global median I-PR and PE values remained constant for both predators, but 31.2% of 109J-resistant isolates were susceptible to the mutant, and 22.9% of 109J-susceptible isolates showed resistance to predation by the mutant, pointing to a predator–prey specificity process. The potential use of predators in the clinical setting should be based on the determination of the I-PR for each species, and the PE of each particular target strain.
Collapse
|
16
|
Wu GD, Pan A, Zhang X, Cai YY, Wang Q, Huang FQ, Alolga RN, Li J, Qi LW, Liu Q. Cordyceps Improves Obesity and its Related Inflammation via Modulation of Enterococcus cecorum Abundance and Bile Acid Metabolism. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:817-838. [PMID: 35282803 DOI: 10.1142/s0192415x22500343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dysbiotic gut microbiota has been identified as a primary mediator of inherent inflammation that underlies the pathogenesis of obesity. Cordyceps comprises the larval body and the stroma of Cordyceps sinensis (BerK.) Sacc. parasiting on Hepialidae larvae of moths (H. pialusoberthur) with potent metabolic regulation functions. The underlying anti-obesity mechanisms, however, remain largely unknown. Here, we demonstrate that the water extract of Cordyceps attenuates glucose and lipid metabolism disorders and its associated inflammation in high-fat diet (HFD)-fed mice. 16S rRNA gene sequencing and microbiomic analysis showed that Cordyceps reduced the amounts of Enterococcus cecorum, a bile-salt hydrolase-producing microbe to regulate the metabolism of bile acids in the gut. Importantly, E. cecorum transplantation or liver-specific knockdown of farnesoid X receptor (FXR), a bile acid receptor, diminished the protective effect of Cordyceps against HFD-induced obesity. Together, our results shed light on the mechanisms that underlie the glucose- and lipid-lowering effects of Cordyceps and suggest that targeting intestinalE. cecorum or hepatic FXR are potential anti-obesity and anti-inflammation therapeutic avenues.
Collapse
Affiliation(s)
- Guo-Dong Wu
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - An Pan
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Xu Zhang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Yuan-Yuan Cai
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Qi Wang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Feng-Qing Huang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Jing Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China.,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Qun Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China.,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
17
|
Mookherjee A, Jurkevitch E. Interactions between Bdellovibrio and like organisms and bacteria in biofilms: beyond predator-prey dynamics. Environ Microbiol 2021; 24:998-1011. [PMID: 34816563 DOI: 10.1111/1462-2920.15844] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022]
Abstract
Bdellovibrio and like organisms (BALOs) prey on Gram-negative bacteria in the planktonic phase as well as in biofilms, with the ability to reduce prey populations by orders of magnitude. During the last few years, evidence has mounted for a significant ecological role for BALOs, with important implications for our understanding of microbial community dynamics as well as for applications against pathogens, including drug-resistant pathogens, in medicine, agriculture and aquaculture, and in industrial settings for various uses. However, our understanding of biofilm predation by BALOs is still very fragmentary, including gaps in their effect on biofilm structure, on prey resistance, and on evolutionary outcomes of both predators and prey. Furthermore, their impact on biofilms has been shown to reach beyond predation, as they are reported to reduce biofilm structures of non-prey cells (including Gram-positive bacteria). Here, we review the available literature on BALOs in biofilms, extending known aspects to potential mechanisms employed by the predators to grow in biofilms. Within that context, we discuss the potential ecological significance and potential future utilization of the predatory and enzymatic possibilities offered by BALOs in medical, agricultural and environmental applications.
Collapse
Affiliation(s)
- Abhirup Mookherjee
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
18
|
Cui M, Zheng M, Wiraja C, Chew SWT, Mishra A, Mayandi V, Lakshminarayanan R, Xu C. Ocular Delivery of Predatory Bacteria with Cryomicroneedles Against Eye Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102327. [PMID: 34494724 PMCID: PMC8564459 DOI: 10.1002/advs.202102327] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 05/11/2023]
Abstract
The development of potent antibiotic alternatives with rapid bactericidal properties is of great importance in addressing the current antibiotic crisis. One representative example is the topical delivery of predatory bacteria to treat ocular bacterial infections. However, there is a lack of suitable methods for the delivery of predatory bacteria into ocular tissue. This work introduces cryomicroneedles (cryoMN) for the ocular delivery of predatory Bdellovibrio bacteriovorus (B. bacteriovorus) bacteria. The cryoMN patches are prepared by freezing B. bacteriovorus containing a cryoprotectant medium in a microneedle template. The viability of B. bacteriovorus in cryoMNs remains above 80% as found in long-term storage studies, and they successfully impede the growth of gram-negative bacteria in vitro or in a rodent eye infection model. The infection is significantly relieved by nearly six times through 2.5 days of treatment without substantial effects on the cornea thickness and morphology. This approach represents the safe and efficient delivery of new class of antimicrobial armamentarium to otherwise impermeable ocular surface and opens up new avenues for the treatment of ocular surface disorders.
Collapse
Affiliation(s)
- Mingyue Cui
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SARChina
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Mengjia Zheng
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SARChina
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Sharon Wan Ting Chew
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Arti Mishra
- Ocular Infections & Anti‐Microbials Research GroupSingapore Eye Research InstituteThe Academia20 College Road, Discovery TowerSingapore169856Singapore
| | - Venkatesh Mayandi
- Ocular Infections & Anti‐Microbials Research GroupSingapore Eye Research InstituteThe Academia20 College Road, Discovery TowerSingapore169856Singapore
| | - Rajamani Lakshminarayanan
- Ocular Infections & Anti‐Microbials Research GroupSingapore Eye Research InstituteThe Academia20 College Road, Discovery TowerSingapore169856Singapore
- Ophthalmology and Visual Sciences Academic Clinical ProgramDuke‐NUS Graduate Medical School8 College RoadSingapore169857Singapore
- Department of PharmacyNational University of Singapore18 Science DriveSingapore117543Singapore
| | - Chenjie Xu
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SARChina
| |
Collapse
|
19
|
Clearance of Gram-Negative Bacterial Pathogens from the Ocular Surface by Predatory Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10070810. [PMID: 34356731 PMCID: PMC8300752 DOI: 10.3390/antibiotics10070810] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/18/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
It was previously demonstrated that predatory bacteria are able to efficiently eliminate Gram-negative pathogens including antibiotic-resistant and biofilm-associated bacteria. In this proof-of-concept study we evaluated whether two species of predatory bacteria, Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus, were able to alter the survival of Gram-negative pathogens on the ocular surface. Clinical keratitis isolates of Pseudomonas aeruginosa (strain PAC) and Serratia marcescens (strain K904) were applied to the ocular surface of NZW rabbits followed by application of predatory bacteria. At time intervals, surviving pathogenic bacteria were enumerated. In addition, B. bacteriovorus and S. marcescens were applied to porcine organ culture corneas under contact lenses, and the ocular surface was examined by scanning electron microscopy. The ocular surface epithelial layer of porcine corneas exposed to S. marcescens, but not B. bacteriovorus was damaged. Using this model, neither pathogen could survive on the rabbit ocular surface for longer than 24 h. M. aeruginosavorus correlated with a more rapid clearance of P. aeruginosa but not S. marcescens from rabbit eyes. This study supports previous evidence that predatory bacteria are well tolerated by the cornea, but suggest that predatory bacteria do not considerably change the ability of the ocular surface to clear the tested Gram-negative bacterial pathogens from the ocular surface.
Collapse
|
20
|
Cavallo FM, Jordana L, Friedrich AW, Glasner C, van Dijl JM. Bdellovibrio bacteriovorus: a potential 'living antibiotic' to control bacterial pathogens. Crit Rev Microbiol 2021; 47:630-646. [PMID: 33934682 DOI: 10.1080/1040841x.2021.1908956] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bdellovibrio bacteriovorus is a small Deltaproteobacterium which, since its discovery, has distinguished itself for the unique ability to prey on other Gram-negative bacteria. The studies on this particular "predatory bacterium", have gained momentum in response to the rising problem of antibiotic resistance, because it could be applied as a potential probiotic and antibiotic agent. Hereby, we present recent advances in the study of B. bacteriovorus, comprehending fundamental aspects of its biology, obligatory intracellular life cycle, predation resistance, and potential applications. Furthermore, we discuss studies that pave the road towards the use of B. bacteriovorus as a "living antibiotic" in human therapy, focussing on its interaction with biofilms, the host immune response, predation susceptibility and in vivo application models. The available data imply that it will be possible to upgrade this predator bacterium from a predominantly academic interest to an instrument that could confront antibiotic resistant infections.
Collapse
Affiliation(s)
- Francis M Cavallo
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lorea Jordana
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Corinna Glasner
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Atterbury RJ, Tyson J. Predatory bacteria as living antibiotics - where are we now? MICROBIOLOGY-SGM 2021; 167. [PMID: 33465024 DOI: 10.1099/mic.0.001025] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Antimicrobial resistance (AMR) is a global health and economic crisis. With too few antibiotics in development to meet current and anticipated needs, there is a critical need for new therapies to treat Gram-negative infections. One potential approach is the use of living predatory bacteria, such as Bdellovibrio bacteriovorus (small Gram-negative bacteria that naturally invade and kill Gram-negative pathogens of humans, animals and plants). Moving toward the use of Bdellovibrio as a 'living antibiotic' demands the investigation and characterization of these bacterial predators in biologically relevant systems. We review the fundamental science supporting the feasibility of predatory bacteria as alternatives to antibiotics.
Collapse
Affiliation(s)
- Robert J Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Jess Tyson
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
22
|
Topical Vancomycin 5% Is More Efficacious Than 2.5% and 1.25% for Reducing Viable Methicillin-Resistant Staphylococcus aureus in Infectious Keratitis. Cornea 2020; 39:250-253. [PMID: 31658169 DOI: 10.1097/ico.0000000000002186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Topical vancomycin 5% (50 mg/mL) has been used for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) keratitis, but patient comfort has many clinicians using lower concentrations. We compared the efficacy of different concentrations of vancomycin in the treatment of experimental MRSA keratitis. METHODS The corneas of 45 rabbits were infected with 2000 colony-forming units (CFUs) of MRSA. Corneal epithelium was abraded in the left eyes to mimic corneal ulceration. After 4 hours, the corneal CFUs were determined at the onset of treatment. The remaining rabbits were divided into 4 treatment groups (n = 9): 1) vancomycin 5%, 2) vancomycin 2.5%, 3) vancomycin 1.25%, and 4) saline. The rabbits were treated topically in both eyes every 15 minutes for 5 hours. One hour after treatment, the rabbits were clinically examined and euthanized, corneas were removed, and CFUs were determined to analyze vancomycin penetration, treatment efficacy, and bactericidal effect. RESULTS Ocular toxicity was concentration dependent from mild to moderate. For the abraded corneas, the CFUs of the vancomycin 5% group were lower than 2.5% and 1.25%, and all vancomycin groups were lower than saline. The CFUs of 2.5% were lower but similar to 1.25%. The vancomycin 5% group demonstrated a bactericidal effect and the best penetration. The CFUs of the abraded corneas treated with saline were lower than those of the intact corneas, indicating a possible antibacterial effect from the ocular surface. CONCLUSIONS Vancomycin 5% was most potent for treating experimental MRSA keratitis. The clinician may need to reassess treatment regarding antibacterial efficacy and patient comfort.
Collapse
|
23
|
Pérez J, Contreras-Moreno FJ, Marcos-Torres FJ, Moraleda-Muñoz A, Muñoz-Dorado J. The antibiotic crisis: How bacterial predators can help. Comput Struct Biotechnol J 2020; 18:2547-2555. [PMID: 33033577 PMCID: PMC7522538 DOI: 10.1016/j.csbj.2020.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Discovery of antimicrobials in the past century represented one of the most important advances in public health. Unfortunately, the massive use of these compounds in medicine and other human activities has promoted the selection of pathogens that are resistant to one or several antibiotics. The current antibiotic crisis is creating an urgent need for research into new biological weapons with the ability to kill these superbugs. Although a proper solution requires this problem to be addressed in a variety of ways, the use of bacterial predators is emerging as an excellent strategy, especially when used as whole cell therapeutic agents, as a source of new antimicrobial agents by awakening silent metabolic pathways in axenic cultures, or as biocontrol agents. Moreover, studies on their prey are uncovering mechanisms of resistance that can be shared by pathogens, representing new targets for novel antimicrobial agents. In this review we discuss potential of the studies on predator-prey interaction to provide alternative solutions to the problem of antibiotic resistance.
Collapse
Key Words
- AR, antibiotic resistance
- ARB, antibiotic-resistant bacteria
- ARG, antibiotic-resistant gene
- Antibiotic crisis
- BALOs
- BALOs, Bdellovibrio and like organisms
- BGC, biosynthetic gene cluster
- Bacterial predators
- HGT, horizontal gene transfer
- MDRB, multi-drug resistant bacteria
- Myxobacteria
- NRPS, nonribosomal peptide synthetase
- OMV, outer membrane vesicle
- OSMAC, one strain many compounds
- PKS, polyketide synthase
- SM, secondary metabolite
- WHO, World Health Organization
Collapse
Affiliation(s)
- Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| | | | | | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
24
|
Bonfiglio G, Neroni B, Radocchia G, Marazzato M, Pantanella F, Schippa S. Insight into the Possible Use of the Predator Bdellovibrio bacteriovorus as a Probiotic. Nutrients 2020; 12:E2252. [PMID: 32731403 PMCID: PMC7468853 DOI: 10.3390/nu12082252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
The gut microbiota is a complex microbial ecosystem that coexists with the human organism in the intestinal tract. The members of this ecosystem live together in a balance between them and the host, contributing to its healthy state. Stress, aging, and antibiotic therapies are the principal factors affecting the gut microbiota composition, breaking the mutualistic relationship among microbes and resulting in the overgrowth of potential pathogens. This condition, called dysbiosis, has been linked to several chronic pathologies. In this review, we propose the use of the predator Bdellovibrio bacteriovorus as a possible probiotic to prevent or counteract dysbiotic outcomes and look at the findings of previous research.
Collapse
|
25
|
Youdkes D, Helman Y, Burdman S, Matan O, Jurkevitch E. Potential Control of Potato Soft Rot Disease by the Obligate Predators Bdellovibrio and Like Organisms. Appl Environ Microbiol 2020; 86:e02543-19. [PMID: 31953332 PMCID: PMC7054095 DOI: 10.1128/aem.02543-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial soft rot diseases caused by Pectobacterium spp. and Dickeya spp. affect a wide range of crops, including potatoes, a major food crop. As of today, farmers mostly rely on sanitary practices, water management, and plant nutrition for control. We tested the bacterial predators Bdellovibrio and like organisms (BALOs) to control potato soft rot. BALOs are small, motile predatory bacteria found in terrestrial and aquatic environments. They prey on a wide range of Gram-negative bacteria, including animal and plant pathogens. To this end, BALO strains HD100, 109J, and a ΔmerRNA derivative of HD100 were shown to efficiently prey on various rot-causing strains of Pectobacterium and Dickeya solani BALO control of maceration caused by a highly virulent strain of Pectobacterium carotovorum subsp. brasilense was then tested in situ using a potato slice assay. All BALO strains were highly effective at reducing disease, up to complete prevention. Effectivity was concentration dependent, and BALOs applied before P. carotovorum subsp. brasilense inoculation performed significantly better than those applied after the disease-causing agent, maybe due to in situ consumption of glucose by the prey, as glucose metabolism by live prey bacteria was shown to prevent predation. Dead predators and the supernatant of BALO cultures did not significantly prevent maceration, indicating that predation was the major mechanism for the prevention of the disease. Finally, plastic resistance to predation was affected by prey and predator population parameters, suggesting that population dynamics affect prey response to predation.IMPORTANCE Bacterial soft rot diseases caused by Pectobacterium spp. and Dickeya spp. are among the most important plant diseases caused by bacteria. Among other crops, they inflict large-scale damage to potatoes. As of today, farmers have few options to control them. The bacteria Bdellovibrio and like organisms (BALOs) are obligate predators of bacteria. We tested their potential to prey on Pectobacterium spp. and Dickeya spp. and to protect potato. We show that different BALOs can prey on soft rot-causing bacteria and prevent their growth in situ, precluding tissue maceration. Dead predators and the supernatant of BALO cultures did not significantly prevent maceration, showing that the effect is due to predation. Soft rot control by the predators was concentration dependent and was higher when the predator was inoculated ahead of the prey. As residual prey remained, we investigated what determines their level and found that initial prey and predator population parameters affect prey response to predation.
Collapse
Affiliation(s)
- Daniel Youdkes
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yael Helman
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ofra Matan
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
26
|
Engulfment, persistence and fate of Bdellovibrio bacteriovorus predators inside human phagocytic cells informs their future therapeutic potential. Sci Rep 2019; 9:4293. [PMID: 30862785 PMCID: PMC6414686 DOI: 10.1038/s41598-019-40223-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
In assessing the potential of predatory bacteria, such as Bdellovibrio bacteriovorus, to become live therapeutic agents against bacterial infections, it is crucial to understand and quantify Bdellovibrio host cell interactions at a molecular level. Here, we quantify the interactions of live B. bacteriovorus with human phagocytic cells, determining the uptake mechanisms, persistence, associated cytokine responses and intracellular trafficking of the non-growing B. bacteriovorus in PMA-differentiated U937 cells. B. bacteriovorus are engulfed by U937 cells and persist for 24 h without affecting host cell viability and can be observed microscopically and recovered and cultured post-uptake. The uptake of predators is passive and depends on the dynamics of the host cell cytoskeleton; the engulfed predators are eventually trafficked through the phagolysosomal pathway of degradation. We have also studied the prevalence of B. bacteriovorus specific antibodies in the general human population. Together, these results quantify a period of viable persistence and the ultimate fate of B. bacteriovorus inside phagocytic cells. They provide new knowledge on predator availability inside hosts, plus potential longevity and therefore potential efficacy as a treatment in humans and open up future fields of work testing if predators can prey on host-engulfed pathogenic bacteria.
Collapse
|
27
|
Garcia CJ, Pericleous A, Elsayed M, Tran M, Gupta S, Callaghan JD, Stella NA, Franks JM, Thibodeau PH, Shanks RMQ, Kadouri DE. Serralysin family metalloproteases protects Serratia marcescens from predation by the predatory bacteria Micavibrio aeruginosavorus. Sci Rep 2018; 8:14025. [PMID: 30232396 PMCID: PMC6145908 DOI: 10.1038/s41598-018-32330-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 09/03/2018] [Indexed: 12/16/2022] Open
Abstract
Micavibrio aeruginosavorus is an obligate Gram-negative predatory bacterial species that feeds on other Gram-negative bacteria by attaching to the surface of its prey and feeding on the prey's cellular contents. In this study, Serratia marcescens with defined mutations in genes for extracellular cell structural components and secreted factors were used in predation experiments to identify structures that influence predation. No change was measured in the ability of the predator to prey on S. marcescens flagella, fimbria, surface layer, prodigiosin and phospholipase-A mutants. However, higher predation was measured on S. marcescens metalloprotease mutants. Complementation of the metalloprotease gene, prtS, into the protease mutant, as well as exogenous addition of purified serralysin metalloprotease, restored predation to wild type levels. Addition of purified serralysin also reduced the ability of M. aeruginosavorus to prey on Escherichia coli. Incubating M. aeruginosavorus with purified metalloprotease was found to not impact predator viability; however, pre-incubating prey, but not the predator, with purified metalloprotease was able to block predation. Finally, using flow cytometry and fluorescent microscopy, we were able to confirm that the ability of the predator to bind to the metalloprotease mutant was higher than that of the metalloprotease producing wild-type. The work presented in this study shows that metalloproteases from S. marcescens could offer elevated protection from predation.
Collapse
Affiliation(s)
- Carlos J Garcia
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Androulla Pericleous
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Michael Tran
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Shilpi Gupta
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Jake D Callaghan
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Nicholas A Stella
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jonathan M Franks
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Patrick H Thibodeau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15221, USA
| | - Robert M Q Shanks
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA.
| |
Collapse
|
28
|
Gupta S, Lemenze A, Donnelly RJ, Connell ND, Kadouri DE. Keeping it together: absence of genetic variation and DNA incorporation by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus during predation. Res Microbiol 2018; 169:237-243. [PMID: 29751066 DOI: 10.1016/j.resmic.2018.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
The use of predatory bacteria as a potential live therapeutic to control human infection is gaining increased attention. Earlier work with Micavibrio spp. and Bdellovibrio spp. has demonstrated the ability of these predators to control drug-resistant Gram-negative pathogens, Tier-1 select agents and biofilms. Additional studies also confirmed that introducing high doses of the predators into animals does not negatively impact animal well-being and might assist in reducing bacterial burden in vivo. The survival of predators requires extreme proximity to the prey cell, which might bring about horizontal transfer of genetic material, such as genes encoding for pathogenic genetic islands that would indirectly facilitate the spread of genetic material to other organisms. In this study, we examined the genetic makeup of several lab isolates of the predators Bdellovibriobacteriovorus and Micavibrioaeruginosavorus that were cultured repeatedly and stored over a course of 13 years. We also conducted controlled experiments in which the predators were sequentially co-cultured on Klebsiella pneumoniae followed by genetic analysis of the predator. In both cases, we saw little genetic variation and no evidence of horizontally transferred chromosomal DNA from the prey during predator-prey interaction. Culturing the predators repeatedly did not cause any change in predation efficacy.
Collapse
Affiliation(s)
- Shilpi Gupta
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07101, USA
| | - Alexander Lemenze
- Department of Medicine and the Center for Emerging Pathogens, Rutgers, New Jersey Medical School, Newark, NJ 07101, USA; Molecular Resource Facility, Rutgers, New Jersey Medical School, Newark, NJ 07101, USA
| | - Robert J Donnelly
- Molecular Resource Facility, Rutgers, New Jersey Medical School, Newark, NJ 07101, USA
| | - Nancy D Connell
- Department of Medicine and the Center for Emerging Pathogens, Rutgers, New Jersey Medical School, Newark, NJ 07101, USA
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07101, USA.
| |
Collapse
|
29
|
Negus D, Moore C, Baker M, Raghunathan D, Tyson J, Sockett RE. Predator Versus Pathogen: How Does Predatory Bdellovibrio bacteriovorus Interface with the Challenges of Killing Gram-Negative Pathogens in a Host Setting? Annu Rev Microbiol 2018; 71:441-457. [PMID: 28886689 DOI: 10.1146/annurev-micro-090816-093618] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bdellovibrio bacteriovorus is a small deltaproteobacterial predator that has evolved to invade, reseal, kill, and digest other gram-negative bacteria in soils and water environments. It has a broad host range and kills many antibiotic-resistant, clinical pathogens in vitro, a potentially useful capability if it could be translated to a clinical setting. We review relevant mechanisms of B. bacteriovorus predation and the physiological properties that would influence its survival in a mammalian host. Bacterial pathogens increasingly display conventional antibiotic resistance by expressing and varying surface and soluble biomolecules. Predators coevolved alongside prey bacteria and so encode diverse predatory enzymes that are hard for pathogens to resist by simple mutation. Predators do not replicate outside pathogens and thus express few transport proteins and thus few surface epitopes for host immune recognition. We explain these features, relating them to the potential of predatory bacteria as cellular medicines.
Collapse
Affiliation(s)
- David Negus
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , ,
| | - Chris Moore
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , ,
| | - Michelle Baker
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , , .,School of Computer Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom
| | - Dhaarini Raghunathan
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , ,
| | - Jess Tyson
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , ,
| | - R Elizabeth Sockett
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , ,
| |
Collapse
|
30
|
Im H, Choi SY, Son S, Mitchell RJ. Combined Application of Bacterial Predation and Violacein to Kill Polymicrobial Pathogenic Communities. Sci Rep 2017; 7:14415. [PMID: 29089523 PMCID: PMC5663959 DOI: 10.1038/s41598-017-14567-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/11/2017] [Indexed: 12/02/2022] Open
Abstract
Violacein is a bisindole antibiotic that is effective against Gram-positive bacteria while the bacterial predator, Bdellovibrio bacteriovorus HD100, predates on Gram-negative strains. In this study, we evaluated the use of both together against multidrug resistant pathogens. The two antibacterial agents did not antagonize the activity of the other. For example, treatment of Staphylococcus aureus with violacein reduced its viability by more than 2,000-fold with or without B. bacteriovorus addition. Likewise, predation of Acinetobacter baumannii reduced the viability of this pathogen by more than 13,000-fold, regardless if violacein was present or not. When used individually against mixed bacterial cultures containing both Gram-positive and Gram-negative strains, violacein and B. bacteriovorus HD100 were effective against only their respective strains. The combined application of both violacein and B. bacteriovorus HD100, however, reduced the total pathogen numbers by as much as 84,500-fold. Their combined effectiveness was also demonstrated using a 4-species culture containing S. aureus, A. baumannii, Bacillus cereus and Klebsiella pneumoniae. When used alone, violacein and bacterial predation reduced the total population by only 19% and 68%, respectively. In conjunction with each other, the pathogen viability was reduced by 2,965-fold (99.98%), illustrating the prospective use of these two antimicrobials together against mixed species populations.
Collapse
Affiliation(s)
- Hansol Im
- Division of Biological Sciences, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Seong Yeol Choi
- Division of Biological Sciences, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sangmo Son
- Division of Biological Sciences, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Robert J Mitchell
- Division of Biological Sciences, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
31
|
Dharani S, Kim DH, Shanks RMQ, Doi Y, Kadouri DE. Susceptibility of colistin-resistant pathogens to predatory bacteria. Res Microbiol 2017; 169:52-55. [PMID: 28919044 DOI: 10.1016/j.resmic.2017.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
The increase in multidrug-resistant Gram-negative bacterial infections has forced the reintroduction of antibiotics such as colistin. However, the spread of the plasmid-borne mcr-1 colistin resistance gene have moved us closer to an era of untreatable Gram-negative infections. To evaluate whether predatory bacteria could be used as a potential therapeutic to treat this upcoming threat, the ability of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus to prey on several clinically relevant mcr-1-positive, colistin-resistant isolates was evaluated. No change in the ability of the predators to prey on free swimming and biofilms of prey cells harboring mcr-1 was measured, as compared to their mcr-1 negative strain.
Collapse
Affiliation(s)
- Sonal Dharani
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA.
| | - Dong Hyun Kim
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA.
| | - Robert M Q Shanks
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA.
| |
Collapse
|
32
|
Baker M, Negus D, Raghunathan D, Radford P, Moore C, Clark G, Diggle M, Tyson J, Twycross J, Sockett RE. Measuring and modelling the response of Klebsiella pneumoniae KPC prey to Bdellovibrio bacteriovorus predation, in human serum and defined buffer. Sci Rep 2017; 7:8329. [PMID: 28827526 PMCID: PMC5567095 DOI: 10.1038/s41598-017-08060-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/04/2017] [Indexed: 01/26/2023] Open
Abstract
In worldwide conditions of increasingly antibiotic-resistant hospital infections, it is important to research alternative therapies. Bdellovibrio bacteriovorus bacteria naturally prey on Gram-negative pathogens, including antibiotic-resistant strains and so B. bacteriovorus have been proposed as "living antibiotics" to combat antimicrobially-resistant pathogens. Predator-prey interactions are complex and can be altered by environmental components. To be effective B. bacteriovorus predation needs to work in human body fluids such as serum where predation dynamics may differ to that studied in laboratory media. Here we combine mathematical modelling and lab experimentation to investigate the predation of an important carbapenem-resistant human pathogen, Klebsiella pneumoniae, by B. bacteriovorus in human serum versus buffer. We show experimentally that B. bacteriovorus is able to reduce prey numbers in each environment, on different timescales. Our mathematical model captures the underlying dynamics of the experimentation, including an initial predation-delay at the predator-prey-serum interface. Our research shows differences between predation in buffer and serum and highlights both the potential and limitations of B. bacteriovorus acting therapeutically against K. pneumoniae in serum, informing future research into the medicinal behaviours and dosing of this living antibacterial.
Collapse
Affiliation(s)
- Michelle Baker
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
- School of Computer Science, Jubilee Campus, University of Nottingham, Wollaton Road, Nottingham, NG8 1BB, UK
| | - David Negus
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Dhaarini Raghunathan
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Paul Radford
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Chris Moore
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Gemma Clark
- Empath Pathology Services Reception Floor A, West Block, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, NG7 2UH, UK
| | - Mathew Diggle
- Empath Pathology Services Reception Floor A, West Block, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, NG7 2UH, UK
| | - Jess Tyson
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Jamie Twycross
- School of Computer Science, Jubilee Campus, University of Nottingham, Wollaton Road, Nottingham, NG8 1BB, UK
| | - R Elizabeth Sockett
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
33
|
Jurkevitch É, Jacquet S. [Bdellovibrio and like organisms: outstanding predators!]. Med Sci (Paris) 2017; 33:519-527. [PMID: 28612728 DOI: 10.1051/medsci/20173305016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Obligate predatory bacteria, i.e. bacteria requiring a Gram negative prey cell in order to complete their cell cycle, belong to the polyphyletic group referred to as the Bdellovibrio And Like Organisms (BALO). Predatory interactions between bacteria are complex, yet their dynamics and impact on bacterial communities in the environment are becoming better understood. BALO have unique life cycles: they grow epibiotically with the predator remaining attached to the prey's envelope, dividing in a binary manner or periplasmically, i.e. by penetrating the prey's periplasm to generate a number of progeny cells. The periplasmic life cycle includes unique gene and protein patterns and unique signaling features. These ecological and cellular features, along with applications of the BALO in the medical, agricultural and environmental fields are surveyed.
Collapse
Affiliation(s)
- Édouard Jurkevitch
- Faculté d'Agriculture, de l'Alimentation et de l'Environnement, Université Hébraïque de Jérusalem, Rehovot, Israël
| | - Stéphan Jacquet
- INRA, UMR CARRTEL, 75, avenue de Corzent, 74200 Thonon-les-Bains, France
| |
Collapse
|
34
|
Effect of predatory bacteria on the gut bacterial microbiota in rats. Sci Rep 2017; 7:43483. [PMID: 28262674 PMCID: PMC5337950 DOI: 10.1038/srep43483] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/24/2017] [Indexed: 01/14/2023] Open
Abstract
Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus are Gram-negative proteobacteria that are obligate predators of other Gram-negative bacteria and are considered potential alternatives to antibiotics. Most studies focusing on predatory bacteria have been performed in vitro, thus the effect of predatory bacteria on a live host, including the impact on the ecology of the native microbiota, has yet to be fully examined. In this study, intrarectal inoculations of Sprague-Dawley rats with predatory bacteria were performed. Additionally, feces were collected for seven days post-inoculation to determine the effect on gut bacterial diversity. Rat colonic tissue exhibited no abnormal histopathological effects due to predatory bacteria. A modest increase in pro-inflammatory cytokines was measured in the colons of rats inoculated with predatory bacteria by 24 and 48 hours, with all but IL-13 returning to baseline by seven days. V4 16S rRNA gene sequencing of fecal DNA demonstrated minimal shifts in taxonomic representation over the week due to predatory bacteria. Changes in bacterial populations due to exposure to B. bacteriovorus are predicted to contribute to health, however, an overgrowth of Prevotella was observed due to exposure to M. aeruginosavorus. This study further addresses safety concerns associated with the potential use of predatory bacteria to treat infections.
Collapse
|