1
|
Wu HY, Liu YH, He QX, Ye JW, Tian B. Differential distribution shifts in two subregions of East Asian subtropical evergreen broadleaved forests-a case of Magnoliaceae. FRONTIERS IN PLANT SCIENCE 2024; 14:1326207. [PMID: 38322424 PMCID: PMC10844446 DOI: 10.3389/fpls.2023.1326207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024]
Abstract
Aim East Asian subtropical evergreen broad-leaved forests (EBLFs) are composed of western and eastern subregions with different topographical and environmental conditions. The distribution shifts over time of plants in the two subregions are predicted to be different, but the difference has seldom been investigated. Methods Potential distributions of 53 Magnoliaceae species (22 in the western and 31 in the eastern subregion) during the last glacial maximum (LGM), present, and the 2070s were predicted using MaxEnt based on 58 environmental variables. The changes in the distribution range size and centroid over time were analyzed. Species-level potential habitats were overlaid to uncover species diversity distribution, and the distributions over time were overlaid to discover long-term refugia. Results At present, the potential distributions are significantly larger than those shown by the occurrence points. During the LGM, 20/22 species in the western subregion experienced increases in range size through downwards and southward migrations, while decreases in range size in the eastern subregion (27/31 species) were accompanied by northward and eastward migrations. In the future, range size declines and northward shifts will both be found; northwestward shifts will exist in most (20/22 species) species in the western subregion, while both northwest- and northeastward shifts will occur in the eastern subregion. The diversity hotspots experienced a slight southward shift in the past and upwards to the mountain region in the future in the western subregion; in the eastern subregion, shrinks occurred in eastern China in the past and shrinks were shown in all regions in the future. Long-term refugia-preserving diversity was found in the mountains across the entire EBLFs region. Main conclusions Significant differences in distribution shifts from past to present and similar distribution shifts from present to future are revealed in the two subregions. Species diversity in both subregions experienced no significant shifts from past to future, and Magnoliaceae plants could be preserved in mountainous regions throughout the EBLFs.
Collapse
Affiliation(s)
- Hai-Yang Wu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yue-Han Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Qiu-Xiang He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Jun-Wei Ye
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Bin Tian
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, China
- Yunnan Key Laboratory of Plateau Wetland Conservation Restoration and Ecological Services, Southwest Forestry University, Kunming, China
| |
Collapse
|
2
|
Dodson J, Shi G, Song M. A perspective from the past in conservation of plant biodiversity in central China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:248. [PMID: 36583791 DOI: 10.1007/s10661-022-10851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Biodiversity has increasingly come under threat from human activity everywhere on Earth. China, with over 33,000 species of vascular plants, is a megadiverse region, in part because of its diversity in topography and climates. One of its most extensive biomes is broadleaved evergreen/warm mixed forest which dominates eastern Asia and Central China. There is some debate about how glacial/interglacial cycles across the Quaternary had an impact on this biome. There were certainly broad scale changes in distribution of many key species. Here, we examine the four palaeoecological records from Central China that contain both LGM and Mid-Holocene vegetation records and consider the degree of biodiversity in Central China with the aim of developing a broad overview of the history on plants in the region. It is clear that in the mountainous regions of Central China, many taxa survived the LGM in situ, showing that there was enough stable habitat to support key species. Some mountainous areas have high degrees of endemism which suggests that fragmentation of populations across glacial/interglacial cycles may have been an important component in favoring speciation. The consideration of past records and modern species distributions have significance in selecting conservation areas.
Collapse
Affiliation(s)
- John Dodson
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia.
| | - Ge Shi
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Menglin Song
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Ye J, Li D. Diversification of East Asian subtropical evergreen broadleaved forests over the last 8 million years. Ecol Evol 2022; 12:e9451. [PMID: 36329812 PMCID: PMC9618824 DOI: 10.1002/ece3.9451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
The evolution of subtropical evergreen broadleaved forests (EBLFs) in East Asia is interesting while complicated. Genus-level phylogenies indicate that the origins of EBLFs could trace back to the Oligocene-Miocene boundary or even the Eocene, while population-level phylogeographic evidence suggests that they diversified after the Miocene, particularly in the Pleistocene. Here, we review the origins of dominant plant species to better understand the evolution of EBLFs. We compiled published estimates of the timing of origin of dominant species and diversification of evergreen relict genera from East Asian EBLFs. We also traced and visualized the evolution of EBLFs in the region using dated phylogenies and geographic distributions of the reviewed taxa. Most (76.1%) of the dominant species originated after the late Miocene, ca. 8 million years ago. Of the 10 evergreen relict genera, eight diverged near the late Miocene-Pliocene boundary or during the late Pliocene, and the remaining two diverged during the Pleistocene. Over the past 8 million years, geo-climatic changes have triggered origins of most of the dominant EBLF species and provided refugia for evergreen relict genera. Three pulsed phases of evolution are suggested by genetic studies at the genus, species, and population levels. Fossil evidence and spatiotemporal investigations should be integrated to fully understand the evolution of EBLFs in East Asia.
Collapse
Affiliation(s)
- Jun‐Wei Ye
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of EducationSouthwest Forestry UniversityKunmingChina
| | - De‐Zhu Li
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
| |
Collapse
|
4
|
Wang L, Li Y, Noshiro S, Suzuki M, Arai T, Kobayashi K, Xie L, Zhang M, He N, Fang Y, Zhang F. Stepped Geomorphology Shaped the Phylogeographic Structure of a Widespread Tree Species ( Toxicodendron vernicifluum, Anacardiaceae) in East Asia. FRONTIERS IN PLANT SCIENCE 2022; 13:920054. [PMID: 35720535 PMCID: PMC9201781 DOI: 10.3389/fpls.2022.920054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Species' phylogeographic patterns reflect the interplay between landscape features, climatic forces, and evolutionary processes. Here, we used two chloroplast DNA (cpDNA) markers (trnL and trnL-F) to explore the role of stepped geomorphology in shaping the phylogeographic structure of Toxicodendron vernicifluum, an economically important tree species widely distributed in East Asia. The range-wide pattern of sequence variation was analyzed based on a dataset including 357 individuals from China, together with published sequences of 92 individuals mainly from Japan and South Korea. We identified five chloroplast haplotypes based on seven substitutions across the 717-bp alignment. A clear east-west phylogeographic break was recovered according to the stepped landforms of mainland China. The wild trees of the western clade were found to be geographically restricted to the "middle step", which is characterized by high mountains and plateaus, while those of the eastern clade were confined to the "low step", which is mainly made up of hills and plains. The two major clades were estimated to have diverged during the Early Pleistocene, suggesting that the cool glacial climate may have caused the ancestral population to retreat to at least two glacial refugia, leading to allopatric divergence in response to long-term geographic isolation. Migration vector analyses based on the outputs of ecological niche models (ENMs) supported a gradual range expansion since the Last Interglacial. Mountain ranges in western China and the East China Sea land bridge were inferred to be dispersal corridors in the western and eastern distributions of T. vernicifluum, respectively. Overall, our study provides solid evidence for the role of stepped geomorphology in shaping the phylogeographic patterns of T. vernicifluum. The resulting east-west genetic discontinuities could persist for a long time, and could occur at a much larger scale than previously reported, extending from subtropical (e.g., the Xuefeng Mountain) to warm-temperate China (e.g., the Taihang Mountain).
Collapse
Affiliation(s)
- Lu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Shuichi Noshiro
- Center for Obsidian and Lithic Studies, Meiji University, Tokyo, Japan
| | | | | | | | - Lei Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Mingyue Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Na He
- Xi’an Research Institute of Chinese Lacquer, All China Federation of Supply and Marketing Cooperatives, Xi’an, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Feilong Zhang
- Xi’an Research Institute of Chinese Lacquer, All China Federation of Supply and Marketing Cooperatives, Xi’an, China
| |
Collapse
|
5
|
Guo R, Zhang YH, Zhang HJ, Landis JB, Zhang X, Wang HC, Yao XH. Molecular phylogeography and species distribution modelling evidence of 'oceanic' adaptation for Actinidia eriantha with a refugium along the oceanic-continental gradient in a biodiversity hotspot. BMC PLANT BIOLOGY 2022; 22:89. [PMID: 35227218 PMCID: PMC8883688 DOI: 10.1186/s12870-022-03464-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Refugia is considered to be critical for maintaining biodiversity; while discerning the type and pattern of refugia is pivotal for our understanding of evolutionary processes in the context of conservation. Interglacial and glacial refugia have been studied throughout subtropical China. However, studies on refugia along the oceanic-continental gradient have largely been ignored. We used a liana Actinidia eriantha, which occurs across the eastern moist evergreen broad-leaved forests of subtropical China, as a case study to test hypotheses of refugia along the oceanic-continental gradient and 'oceanic' adaptation. RESULTS The phylogeographic pattern of A. eriantha was explored using a combination of three cpDNA markers and 38 nuclear microsatellite loci, Species distribution modelling and dispersal corridors analysis. Our data showed intermediate levels of genetic diversity [haplotype diversity (hT) = 0.498; unbiased expected heterozygosity (UHE) = 0.510] both at the species and population level. Microsatellite loci revealed five clusters largely corresponding to geographic regions. Coalescent time of cpDNA lineages was dated to the middle Pliocene (ca. 4.03 Ma). Both geographic distance and climate difference have important roles for intraspecific divergence of the species. The Zhejiang-Fujian Hilly Region was demonstrated to be a refugium along the oceanic-continental gradient of the species and fit the 'refugia in refugia' pattern. Species distribution modelling analysis indicated that Precipitation of Coldest Quarter (importance of 44%), Temperature Seasonality (29%) and Mean Temperature of Wettest Quarter (25%) contributed the most to model development. By checking the isolines in the three climate layers, we found that A. eriantha prefer higher precipitation during the coldest quarter, lower seasonal temperature difference and lower mean temperature during the wettest quarter, which correspond to 'oceanic' adaptation. Actinidia eriantha expanded to its western distribution range along the dispersal corridor repeatedly during the glacial periods. CONCLUSIONS Overall, our results provide integrated evidence demonstrating that the Zhejiang-Fujian Hilly Region is a refugium along the oceanic-continental gradient of Actinidia eriantha in subtropical China and that speciation is attributed to 'oceanic' adaptation. This study gives a deeper understanding of the refugia in subtropical China and will contribute to the conservation and utilization of kiwifruit wild resources in the context of climate change.
Collapse
Affiliation(s)
- Rui Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| | - Yong-Hua Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Hua-Jie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, 14853, USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng-Chang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Xiao-Hong Yao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
6
|
Fan D, Lei S, Liang H, Yao Q, Kou Y, Cheng S, Yang Y, Qiu Y, Zhang Z. More opportunities more species: Pleistocene differentiation and northward expansion of an evergreen broad-leaved tree species Machilus thunbergii (Lauraceae) in Southeast China. BMC PLANT BIOLOGY 2022; 22:35. [PMID: 35038992 PMCID: PMC8762935 DOI: 10.1186/s12870-021-03420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The broad continuum between tropical and temperate floras in Eastern Asia (EAS) are thought to be one of the main factors responsible for a prominent species diversity anomaly of temperate plants between EAS and eastern North America (ENS). However, how the broad continuum and niche evolution between tropical and temperate floras in EAS contributes to lineage divergence and species diversity remains largely unknown. RESULTS Population genetic structure, demography, and determinants of genetic structure [i.e., isolation-by-distance (IBD), isolation-by-resistance (IBR), and isolation-by-environment (IBE)] of Machilus thunbergii Sieb. et Zucc. (Lauraceae) were evaluated by examining sequence variation of ten low-copy nuclear genes across 43 populations in southeast China. Climatic niche difference and potential distributions across four periods (Current, mid-Holocene, the last glacial maximum, the last interglacial) of two genetic clusters were determined by niche modelling. North and south clusters of populations in M. thunbergii were revealed and their demarcation line corresponds well with the northern boundary of tropical zone in China of Zhu & Wan. The divergence time between the clusters and demographic expansion of M. thunbergii occurred after the mid-Pleistocene climate transition (MPT, 0.8-1.2 Ma). Migration rates between clusters were asymmetrical, being much greater from north to south than the reverse. Significant effects of IBE, but non-significant effects of IBD and IBR on population genetic divergence were detected. The two clusters have different ecological niches and require different temperature regimes. CONCLUSIONS The north-south genetic differentiation may be common across the temperate-tropical boundary in southeast China. Divergent selection under different temperature regimes (possibly above and below freezing temperature in winter) could account for this divergence pattern. The broad continuum between tropical and temperate floras in EAS may have provided ample opportunities for tropical plant lineages to acquire freezing tolerance and to colonize the temperate regions during the late-Cenozoic global cooling. Our findings shed deeper insights into the high temperate plant species diversity in EAS.
Collapse
Affiliation(s)
- Dengmei Fan
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shuqing Lei
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Hua Liang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Qi Yao
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yixuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Shanmei Cheng
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yi Yang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yingxiong Qiu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiyong Zhang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
7
|
Zhang G, Peng H, Zhou H, Ji X, Zhang S. Comparison of density and basal area estimation of mountain natural forests based on distance-based sampling methods in Zhejiang, China. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Ye JW, Li DZ. Distinct late Pleistocene subtropical-tropical divergence revealed by fifteen low-copy nuclear genes in a dominant species in South-East China. Sci Rep 2021; 11:4147. [PMID: 33603069 PMCID: PMC7892551 DOI: 10.1038/s41598-021-83473-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
In East Asia, genetic divergence is usually considered to be correlated to different floristic regions, however, subtropical-tropical divergence is largely ignored, compared to widely explored temperate-subtropical divergence. Lindera aggregata (Lauraceae), a dominant species in South-East China was selected to address this issue. Fifteen low-copy nuclear genes (LCGs) and four chloroplast DNA (cpDNA) fragments were used to detect its evolutionary history. In LCGs, STRUCTURE and dated Bayesian phylogeny analyses detect distinct subtropical-tropical divergence since late Pleistocene. Approximate Bayesian calculation (ABC) further supports the distinct subtropical-tropical divergence, and close related Taiwan and South China populations are diverged at the last interglacial. Isolation by distance, isolation by environment and isolation by resistance analyses suggest the current climatic difference rather than geographical distance contributes to the genetic differentiation. Principle component analysis shows populations of tropical cluster occur in warmer area with higher precipitation. Ancestral area reconstruction based on Bayesian phylogeny indicates that ancestral L. aggregata populations are distributed in tropical region. In cpDNA, although unique haplotypes are found in tropical region, distinct subtropical-tropical divergence is absent. In conclusion, distinct late Pleistocene subtropical-tropical divergence of L. aggregata is triggered by climate. It is likely that L. aggregata is originated in Southwest-South China and experienced hierarchical dispersal from south to north. The South China Sea land bridge has dual role in connecting or isolating Taiwan and mainland populations since the last glaciation.
Collapse
Affiliation(s)
- Jun-Wei Ye
- grid.458460.b0000 0004 1764 155XGermplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China ,grid.464444.20000 0000 8877 107XNatural History Research Centre of Shanghai Natural History Museum, Shanghai Science & Technology Museum, Shanghai, 200041 China
| | - De-Zhu Li
- grid.458460.b0000 0004 1764 155XGermplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| |
Collapse
|
9
|
Zhu H, Yi XGUI, Li YF, Zhu SX, Li M, Duan YF, Wang XR. Phylogeography and population genetic structure of flowering cherry speciesCerasus dielsianain subtropical China. SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2019.1670750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hong Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Xian-GUI Yi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yong-Fu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Shu-Xia Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Meng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yi-Fan Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Xian-Rong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| |
Collapse
|
10
|
Xu X, Cheng F, Peng L, Sun Y, Hu X, Li S, Xian H, Jia K, Abbott RJ, Mao J. Late Pleistocene speciation of three closely related tree peonies endemic to the Qinling-Daba Mountains, a major glacial refugium in Central China. Ecol Evol 2019; 9:7528-7548. [PMID: 31346420 PMCID: PMC6635923 DOI: 10.1002/ece3.5284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/22/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
Determining the factors promoting speciation is a major task in ecological and evolutionary research and can be aided by phylogeographic analysis. The Qinling-Daba Mountains (QDM) located in central China form an important geographic barrier between southern subtropical and northern temperate regions, and exhibit complex topography, climatic, and ecological diversity. Surprisingly, few phylogeographic analyses and studies of plant speciation in this region have been conducted. To address this issue, we investigated the genetic divergence and evolutionary histories of three closely related tree peony species (Paeonia qiui, P. jishanensis, and P. rockii) endemic to the QDM. Forty populations of the three tree peony species were genotyped using 22 nuclear simple sequence repeat markers (nSSRs) and three chloroplast DNA sequences to assess genetic structure and phylogenetic relationships, supplemented by morphological characterization and ecological niche modeling (ENM). Morphological and molecular genetic analyses showed the three species to be clearly differentiated from each other. In addition, coalescent analyses using DIYABC conducted on nSSR variation indicated that the species diverged from each other in the late Pleistocene, while ecological niche modeling (ENM) suggested they occupied a larger area during the Last Glacial Maximum (LGM) than at present. The combined genetic evidence from nuclear and chloroplast DNA and the results of ENM indicate that each species persisted through the late Pleistocene in multiple refugia in the Qinling, Daba, and Taihang Mountains with divergence favored by restricted gene flow caused by geographic isolation, ecological divergence, and limited pollen and seed dispersal. Our study contributes to a growing understanding of the origin and population structure of tree peonies and provides insights into the high level of plant endemism present in the Qinling-Daba Mountains of Central China.
Collapse
Affiliation(s)
- Xing‐Xing Xu
- Peony International Research Institute, National Flower Engineering Research Centre, Key Laboratory for the Genetics and Breeding of Forest Trees and Ornamental Plants, College of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Fang‐Yun Cheng
- Peony International Research Institute, National Flower Engineering Research Centre, Key Laboratory for the Genetics and Breeding of Forest Trees and Ornamental Plants, College of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Li‐Ping Peng
- Peony International Research Institute, National Flower Engineering Research Centre, Key Laboratory for the Genetics and Breeding of Forest Trees and Ornamental Plants, College of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Yan‐Qiang Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Xian‐Ge Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - San‐Yuan Li
- Forestry Department of Shaanxi ProvinceXi'anShaanxiChina
| | - Hong‐Li Xian
- Forestry Department of Shaanxi ProvinceXi'anShaanxiChina
| | - Kai‐Hua Jia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Richard J. Abbott
- School of Biology, Mitchell BuildingUniversity of St AndrewsSt AndrewsFifeUK
| | - Jian‐Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
11
|
Fan D, Huang J, Hu H, Sun Z, Cheng S, Kou Y, Zhang Z. Evolutionary Hotspots of Seed Plants in Subtropical China: A Comparison With Species Diversity Hotspots of Woody Seed Plants. Front Genet 2018; 9:333. [PMID: 30177954 PMCID: PMC6109751 DOI: 10.3389/fgene.2018.00333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
Genetic diversity is a fundamental level of biodiversity. However, it is frequently neglected in conservation prioritization because intraspecific genetic diversity is difficult to measure at large scales. In this study, we synthesized population genetic or phylogeographic datasets of 33 seed plants in subtropical China into multi-species genetic landscapes. The genetic landscapes identified 18 evolutionary hotspots with high within-population genetic diversity (WGD), and among-population genetic diversity (AGD), or both. The western subtropical China is rich in AGD (possessing four major AGD hotspots), deserving a high conservation priority. We found that WGD was positively correlated with longitude, with most WGD hotspots locating in east subtropical China. The results showed that the locations of 12 of 18 evolutionary hotspots corresponded approximately to those of previously identified species diversity (SD) hotspots, however, a positive and significant correlation existed only between AGD and SD, not between WGD and SD. Therefore, spatial patterns of species richness in plants in subtropical China cannot generally be used as surrogate for their intraspecific diversity. This study identified multi-species evolutionary hotspots and correlated multi-species genetic diversity with SD across subtropical China for the first time, providing profound implications for the conservation of biodiversity in this important ecoregion.
Collapse
Affiliation(s)
- Dengmei Fan
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China
| | - Jihong Huang
- Key Laboratory of Forest Ecology and Environment, The State Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Huili Hu
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China
| | - Zhixia Sun
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shanmei Cheng
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China
| | - Yixuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China
| | - Zhiyong Zhang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
12
|
Hohmann N, Wolf EM, Rigault P, Zhou W, Kiefer M, Zhao Y, Fu CX, Koch MA. Ginkgo biloba's footprint of dynamic Pleistocene history dates back only 390,000 years ago. BMC Genomics 2018; 19:299. [PMID: 29703145 PMCID: PMC5921299 DOI: 10.1186/s12864-018-4673-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND At the end of the Pliocene and the beginning of Pleistocene glaciation and deglaciation cycles Ginkgo biloba went extinct all over the world, and only few populations remained in China in relict areas serving as sanctuary for Tertiary relict trees. Yet the status of these regions as refuge areas with naturally existing populations has been proven not earlier than one decade ago. Herein we elaborated the hypothesis that during the Pleistocene cooling periods G. biloba expanded its distribution range in China repeatedly. Whole plastid genomes were sequenced, assembled and annotated, and sequence data was analyzed in a phylogenetic framework of the entire gymnosperms to establish a robust spatio-temporal framework for gymnosperms and in particular for G. biloba Pleistocene evolutionary history. RESULTS Using a phylogenetic approach, we identified that Ginkgoatae stem group age is about 325 million years, whereas crown group radiation of extant Ginkgo started not earlier than 390,000 years ago. During repeated warming phases, Gingko populations were separated and isolated by contraction of distribution range and retreated into mountainous regions serving as refuge for warm-temperate deciduous forests. Diversification and phylogenetic splits correlate with the onset of cooling phases when Ginkgo expanded its distribution range and gene pools merged. CONCLUSIONS Analysis of whole plastid genome sequence data representing the entire spatio-temporal genetic variation of wild extant Ginkgo populations revealed the deepest temporal footprint dating back to approximately 390,000 years ago. Present-day directional West-East admixture of genetic diversity is shown to be the result of pronounced effects of the last cooling period. Our evolutionary framework will serve as a conceptual roadmap for forthcoming genomic sequence data, which can then provide deep insights into the demographic history of Ginkgo.
Collapse
Affiliation(s)
- Nora Hohmann
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany.,Present address: Department of Environmental Sciences, Botany, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Eva M Wolf
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany
| | - Philippe Rigault
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany.,GYDLE Inc., 1135 Grande Allée Ouest, Suite 220, QC, Québec, G1S 1E7, Canada
| | - Wenbin Zhou
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Markus Kiefer
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany
| | - Yunpeng Zhao
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Cheng-Xin Fu
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Marcus A Koch
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Bai WN, Yan PC, Zhang BW, Woeste KE, Lin K, Zhang DY. Demographically idiosyncratic responses to climate change and rapid Pleistocene diversification of the walnut genus Juglans (Juglandaceae) revealed by whole-genome sequences. THE NEW PHYTOLOGIST 2018; 217:1726-1736. [PMID: 29178135 DOI: 10.1111/nph.14917] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/24/2017] [Indexed: 05/18/2023]
Abstract
Whether species demography and diversification are driven primarily by extrinsic environmental changes such as climatic oscillations in the Quaternary or by intrinsic biological interactions like coevolution between antagonists is a matter of active debate. In fact, their relative importance can be assessed by tracking past population fluctuations over considerable time periods. We applied the pairwise sequentially Markovian coalescent approach on the genomes of 11 temperate Juglans species to estimate trajectories of changes in effective population size (Ne ) and used a Bayesian-coalescent based approach that simultaneously considers multiple genomes (G-PhoCS) to estimate divergence times between lineages. Ne curves of all study species converged 1.0 million yr ago, probably reflecting the time when the walnut genus last shared a common ancestor. This estimate was confirmed by the G-PhoCS estimates of divergence times. But all species did not react similarly to the dramatic climatic oscillations following early Pleistocene cooling, so the timing and amplitude of changes in Ne differed among species and even among conspecific lineages. The population histories of temperate walnut species were not driven by extrinsic environmental changes alone, and a key role was probably played by species-specific factors such as coevolutionary interactions with specialized pathogens.
Collapse
Affiliation(s)
- Wei-Ning Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Peng-Cheng Yan
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Cloud Computing Key Technology and Application, Beijing Computing Center, Beijing, 100094, China
| | - Bo-Wen Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Keith E Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA
| | - Kui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
14
|
Tian S, Kou Y, Zhang Z, Yuan L, Li D, López-Pujol J, Fan D, Zhang Z. Phylogeography of Eomecon chionantha in subtropical China: the dual roles of the Nanling Mountains as a glacial refugium and a dispersal corridor. BMC Evol Biol 2018; 18:20. [PMID: 29426277 PMCID: PMC5807764 DOI: 10.1186/s12862-017-1093-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/24/2017] [Indexed: 11/29/2022] Open
Abstract
Background Mountains have not only provided refuge for species, but also offered dispersal corridors during the Neogene and Quaternary global climate changes. Compared with a plethora of studies on the refuge role of China’s mountain ranges, their dispersal corridor role has received little attention in plant phylogeographic studies. Using phylogeographic data of Eomecon chionantha Hance (Papaveraceae), this study explicitly tested whether the Nanling Mountains, which spans from west to east for more than 1000 km in subtropical China, could have functioned as a dispersal corridor during the late Quaternary in addition to a glacial refugium. Results Our analyses revealed a range-wide lack of phylogeographic structure in E. chionantha across three kinds of molecular markers [two chloroplast intergenic spacers, nuclear ribosomal internal transcribed spacer (nrITS), and six nuclear microsatellite loci]. Demographic inferences based on chloroplast and nrITS sequences indicated that E. chionantha could have experienced a strong postglacial range expansion between 6000 and 1000 years ago. Species distribution modelling showed that the Nanling Mountains and the eastern Yungui Plateau were the glacial refugia of E. chionantha. Reconstruction of dispersal corridors indicated that the Nanling Mountains also have acted as a corridor of population connectivity for E. chionantha during the late Quaternary. Conclusions Our results suggest that the Nanling Mountains may acted dual roles as a dispersal corridor in east-west direction and as a glacial refugium in subtropical China during the late Quaternary. The population connectivity mediated by the mountain range and a strong postglacial range expansion are the most likely reasons for the lack of phylogeographic structure in E. chionantha. The hypothesis of dual roles of the mountain range presented here sheds new insights into the phylogeographic patterns of organisms in subtropical China. Electronic supplementary material The online version of this article (10.1186/s12862-017-1093-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuang Tian
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China.,Jingdezhen University, Jingdezhen, Jiangxi, 333000, China
| | - Yixuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Zhirong Zhang
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Lin Yuan
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Derong Li
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Jordi López-Pujol
- Instituto Botánico de Barcelona, IBB, CSIC-ICUB, Passeig del Migdia s/n, 08038, Barcelona, Spain
| | - Dengmei Fan
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China.
| | - Zhiyong Zhang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China.
| |
Collapse
|
15
|
Yu XQ, Gao LM, Soltis DE, Soltis PS, Yang JB, Fang L, Yang SX, Li DZ. Insights into the historical assembly of East Asian subtropical evergreen broadleaved forests revealed by the temporal history of the tea family. THE NEW PHYTOLOGIST 2017; 215:1235-1248. [PMID: 28695680 DOI: 10.1111/nph.14683] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/04/2017] [Indexed: 05/22/2023]
Abstract
Subtropical evergreen broadleaved forests (EBLFs) inhabit large areas of East Asia. Although paleovegetation reconstructions have revealed that the subtropical EBLFs existed in Southwest China during the Miocene, the historical construction of these forests remains poorly known. Here, we used the tea family (Theaceae), a characteristic component of the subtropical EBLFs, to gain new insights into the assembly of this important biome. Using a robust phylogenetic framework of Theaceae based on plastome and nuclear ribosomal DNA sequence data, the temporal history of the family was reconstructed. Data from other characteristic components of subtropical EBLFs, including Fagaceae, Lauraceae and Magnoliaceae, were also integrated. Most of the essential elements of the subtropical EBLFs appear to have originated around the Oligocene-Miocene (O-M) boundary. However, small woody lineages (e.g. Camellia, Hartia) from Theaceae were dated to the late Miocene. Accelerated net diversification rates within Theaceae were also detected near the O-M transition period and the late Miocene. Our results suggest that two independent intensifications of the East Asian summer monsoon (EASM) around the O-M boundary and the late Miocene may have facilitated the historical assembly of the subtropical EBLFs in East Asia.
Collapse
Affiliation(s)
- Xiang-Qin Yu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Lian-Ming Gao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32608, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32608, USA
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Liang Fang
- College of Life Sciences, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Shi-Xiong Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| |
Collapse
|
16
|
Fan D, Sun Z, Li B, Kou Y, Hodel RGJ, Jin Z, Zhang Z. Dispersal corridors for plant species in the Poyang Lake Basin of southeast China identified by integration of phylogeographic and geospatial data. Ecol Evol 2017; 7:5140-5148. [PMID: 28770054 PMCID: PMC5528243 DOI: 10.1002/ece3.2999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 11/24/2022] Open
Abstract
Measuring the dispersal of wildlife through landscapes is notoriously difficult. Recently, the categorical least cost path algorithm that integrates population genetic data with species distribution models has been applied to reveal population connectivity. In this study, we use this method to identify the possible dispersal corridors of five plant species (Castanopsis tibetana, Schima superba, Cyclocarya paliurus, Sargentodoxa cuneata, Eomecon chionantha) in the Poyang Lake Basin (PLB, largely coinciding with Jiangxi Province), China, in the late Quaternary. The results showed that the strongest population connectivity for the five species occurred in the Wuyi Mountains and the Yu Mountains of the eastern PLB (East Corridor) during the late Quaternary. In the western PLB, populations of the five species were connected by the Luoxiao Mountains and the Jiuling Mountains (West Corridor) but with a lower degree of connectivity. There were some minor connections between the eastern and the western populations across the Gannan Hills. When the corridors of five species were overlaid, the East Corridor and the West Corridor were mostly shared by multiple species. These results indicate that plant species in the PLB could have responded to the Quaternary climate changes by moving along the East Corridor and the West Corridor. Given that dispersal corridors have seldom been considered in the governmental strategies of biodiversity conservation in the PLB, preserving and restoring natural vegetation along these corridors should be prioritized to mitigate the effects of anthropogenic climate change by facilitating migration of plant species and other biota.
Collapse
Affiliation(s)
- Dengmei Fan
- Laboratory of Subtropical Biodiversity Jiangxi Agricultural University Nanchang Jiangxi China
| | - Zhixia Sun
- Laboratory of Subtropical Biodiversity Jiangxi Agricultural University Nanchang Jiangxi China
| | - Bo Li
- Laboratory of Subtropical Biodiversity Jiangxi Agricultural University Nanchang Jiangxi China
| | - Yixuan Kou
- Laboratory of Subtropical Biodiversity Jiangxi Agricultural University Nanchang Jiangxi China
| | | | - Zhinong Jin
- Nanchang Institute of Technology Nanchang Jiangxi China
| | - Zhiyong Zhang
- Laboratory of Subtropical Biodiversity Jiangxi Agricultural University Nanchang Jiangxi China
| |
Collapse
|
17
|
The demographic response of a deciduous shrub (the Indigofera bungeana complex, Fabaceae) to the Pleistocene climate changes in East Asia. Sci Rep 2017; 7:697. [PMID: 28386059 PMCID: PMC5428846 DOI: 10.1038/s41598-017-00613-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/06/2017] [Indexed: 11/25/2022] Open
Abstract
East Asia harbors the highest level of floristic diversity among the world’s temperate regions. Despite the increase in phylogeographic studies of temperate plants in East Asia, far less attention has been paid to widely distributed deciduous shrubs that widespread across several floral regions. We sequenced two chloroplast DNA (cpDNA) fragments (ndhJ-trnF and trnD-trnT) and one nuclear DNA (Pgk1) of 472 individuals from 51 populations of such a group, the Indigofera bungeana complex. We used population genetic data as well as ecological niche modelling to examine the evolutionary history and glacial refugia during the Last Glacial Maximum (LGM) of this group. We recovered 133 cpDNA and 68 nuclear haplotypes. The star-phylogeny of the recovered cpDNA and nuclear haplotypes and demographic analyses suggested distinct range expansion of I. bungeana complex have occurred during the early and middle Pleistocene. The climate change of the LGM might have affected little on the distribution of this complex based on the niche modelling. However, these climate changes and geographic isolation probably resulted in fixtures of the private haplotypes and genetic differentiations between regions. Our results suggested that this arid-tolerant species complex may have different responses to the Quaternary climate changes with those climate-sensitive species.
Collapse
|
18
|
Potential effects of climate change on geographic distribution of the Tertiary relict tree species Davidia involucrata in China. Sci Rep 2017; 7:43822. [PMID: 28272437 PMCID: PMC5341038 DOI: 10.1038/srep43822] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/01/2017] [Indexed: 11/09/2022] Open
Abstract
This study, using species distribution modeling (involving a new approach that allows for uncertainty), predicts the distribution of climatically suitable areas prevailing during the mid-Holocene, the Last Glacial Maximum (LGM), and at present, and estimates the potential formation of new habitats in 2070 of the endangered and rare Tertiary relict tree Davidia involucrata Baill. The results regarding the mid-Holocene and the LGM demonstrate that south-central and southwestern China have been long-term stable refugia, and that the current distribution is limited to the prehistoric refugia. Given future distribution under six possible climate scenarios, only some parts of the current range of D. involucrata in the mid-high mountains of south-central and southwestern China would be maintained, while some shift west into higher mountains would occur. Our results show that the predicted suitable area offering high probability (0.5‒1) accounts for an average of only 29.2% among the models predicted for the future (2070), making D. involucrata highly vulnerable. We assess and propose priority protected areas in light of climate change. The information provided will also be relevant in planning conservation of other paleoendemic species having ecological traits and distribution ranges comparable to those of D. involucrata.
Collapse
|