2
|
Brouillard A, Davignon LM, Turcotte AM, Marin MF. Morphologic alterations of the fear circuitry: the role of sex hormones and oral contraceptives. Front Endocrinol (Lausanne) 2023; 14:1228504. [PMID: 38027091 PMCID: PMC10661904 DOI: 10.3389/fendo.2023.1228504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Endogenous sex hormones and oral contraceptives (OCs) have been shown to influence key regions implicated in fear processing. While OC use has been found to impact brain morphology, methodological challenges remain to be addressed, such as avoiding selection bias between OC users and non-users, as well as examining potential lasting effects of OC intake. Objective We investigated the current and lasting effects of OC use, as well as the interplay between the current hormonal milieu and history of hormonal contraception use on structural correlates of the fear circuitry. We also examined the role of endogenous and exogenous sex hormones within this network. Methods We recruited healthy adults aged 23-35 who identified as women currently using (n = 62) or having used (n = 37) solely combined OCs, women who never used any hormonal contraceptives (n = 40), or men (n = 41). Salivary endogenous sex hormones and current users' salivary ethinyl estradiol (EE) were assessed using liquid chromatography - tandem mass spectrometry. Using structural magnetic resonance imaging, we extracted surface-based gray matter volumes (GMVs) and cortical thickness (CT) for regions of interest of the fear circuitry. Exploratory whole-brain analyses were conducted with surface-based and voxel-based morphometry methods. Results Compared to men, all three groups of women exhibited a larger GMV of the dorsal anterior cingulate cortex, while only current users showed a thinner ventromedial prefrontal cortex. Irrespective of the menstrual cycle phase, never users exhibited a thicker right anterior insular cortex than past users. While associations with endogenous sex hormones remain unclear, we showed that EE dosage in current users had a greater influence on brain anatomy compared to salivary EE levels and progestin androgenicity, with lower doses being associated with smaller cortical GMVs. Discussion Our results highlight a sex difference for the dorsal anterior cingulate cortex GMV (a fear-promoting region), as well as a reduced CT of the ventromedial prefrontal cortex (a fear-inhibiting region) specific to current OC use. Precisely, this finding was driven by lower EE doses. These findings may represent structural vulnerabilities to anxiety and stress-related disorders. We showed little evidence of durable anatomical effects, suggesting that OC intake can (reversibly) affect fear-related brain morphology.
Collapse
Affiliation(s)
- Alexandra Brouillard
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | - Lisa-Marie Davignon
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | | | - Marie-France Marin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| |
Collapse
|
3
|
Arnoriaga-Rodríguez M, Mayneris-Perxachs J, Contreras-Rodríguez O, Burokas A, Ortega-Sanchez JA, Blasco G, Coll C, Biarnés C, Castells-Nobau A, Puig J, Garre-Olmo J, Ramos R, Pedraza S, Brugada R, Vilanova JC, Serena J, Barretina J, Gich J, Pérez-Brocal V, Moya A, Fernández-Real X, Ramio-Torrentà L, Pamplona R, Sol J, Jové M, Ricart W, Portero-Otin M, Maldonado R, Fernández-Real JM. Obesity-associated deficits in inhibitory control are phenocopied to mice through gut microbiota changes in one-carbon and aromatic amino acids metabolic pathways. Gut 2021; 70:2283-2296. [PMID: 33514598 PMCID: PMC8588299 DOI: 10.1136/gutjnl-2020-323371] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inhibitory control (IC) is critical to keep long-term goals in everyday life. Bidirectional relationships between IC deficits and obesity are behind unhealthy eating and physical exercise habits. METHODS We studied gut microbiome composition and functionality, and plasma and faecal metabolomics in association with cognitive tests evaluating inhibitory control (Stroop test) and brain structure in a discovery (n=156), both cross-sectionally and longitudinally, and in an independent replication cohort (n=970). Faecal microbiota transplantation (FMT) in mice evaluated the impact on reversal learning and medial prefrontal cortex (mPFC) transcriptomics. RESULTS An interplay among IC, brain structure (in humans) and mPFC transcriptomics (in mice), plasma/faecal metabolomics and the gut metagenome was found. Obesity-dependent alterations in one-carbon metabolism, tryptophan and histidine pathways were associated with IC in the two independent cohorts. Bacterial functions linked to one-carbon metabolism (thyX,dut, exodeoxyribonuclease V), and the anterior cingulate cortex volume were associated with IC, cross-sectionally and longitudinally. FMT from individuals with obesity led to alterations in mice reversal learning. In an independent FMT experiment, human donor's bacterial functions related to IC deficits were associated with mPFC expression of one-carbon metabolism-related genes of recipient's mice. CONCLUSION These results highlight the importance of targeting obesity-related impulsive behaviour through the induction of gut microbiota shifts.
Collapse
Affiliation(s)
- María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Oren Contreras-Rodríguez
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERSAM, Barcelona, Spain
| | - Aurelijus Burokas
- Laboratory of Neuropharmacology, Deparment of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Present address: Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Juan-Antonio Ortega-Sanchez
- Laboratory of Neuropharmacology, Deparment of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gerard Blasco
- Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Claudia Coll
- Neuroimmunology and Multiple Sclerosis Unit, Deparment of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Carles Biarnés
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Josep Puig
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Josep Garre-Olmo
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Research Group on Aging, Health and Disability, Girona Biomedical Research Institute, Health Assistance Institute, Girona, Spain
| | - Rafel Ramos
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Barcelona, Catalonia, Spain
| | - Salvador Pedraza
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Deparment of Radiology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Ramon Brugada
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Cardiovascular Genetics Center, CIBER-CV, Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, Girona, Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Deparment of Cardiology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Joan C Vilanova
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Deparment of Radiology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Joaquín Serena
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Department of Neurology, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jordi Barretina
- Girona Biomedical Research Institute (IdibGi), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Jordi Gich
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Neurodegeneration and Neuroinflammation Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Vicente Pérez-Brocal
- Joint Investigation Unit of FISABIO and I2Sysbio, University of València and CSIC, Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrés Moya
- Joint Investigation Unit of FISABIO and I2Sysbio, University of València and CSIC, Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Xavier Fernández-Real
- Institute of Mathematics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lluis Ramio-Torrentà
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
- Neuroimmunology and Multiple Sclerosis Unit, Deparment of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
- Department of Neurology, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
- Neurodegeneration and Neuroinflammation Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Reinald Pamplona
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Joaquim Sol
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
- Institut Català de la Salut, Atenció Primària, Lleida, Spain
- Research Support Unit Lleida, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Lleida, Spain
| | - Mariona Jové
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Manuel Portero-Otin
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Deparment of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Jose Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
- Deparment of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| |
Collapse
|
7
|
Ryherd K, Jasinska K, Van Dyke JA, Hung YH, Baron E, Mencl WE, Zevin J, Landi N. Cortical regions supporting reading comprehension skill for single words and discourse. BRAIN AND LANGUAGE 2018; 186:32-43. [PMID: 30212746 PMCID: PMC6447036 DOI: 10.1016/j.bandl.2018.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/16/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
A substantial amount of variation in reading comprehension skill is explained by listening comprehension skill, suggesting tight links between printed and spoken discourse processing. In addition, both word level (e.g., vocabulary) and discourse-level sub-skills (e.g., inference-making) support overall comprehension. However, while these contributions to variation in comprehension skill have been well-studied behaviorally, the underlying neurobiological basis of these relationships is less well understood. In order to examine the neural bases of individual differences in reading comprehension as a function of input modality and processing level, we examined functional neural activation to both spoken and printed single words and passages in adolescents with a range of comprehension skill. Data driven Partial Least Squares Correlation (PLSC) analyses revealed that comprehension skill was positively related to activation in a number of regions associated with discourse comprehension and negatively related to activation in regions associated with executive function and memory across processing levels and input modalities.
Collapse
Affiliation(s)
- K Ryherd
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States; Haskins Laboratories, New Haven, CT, United States; CT Institute for the Brain and Cognitive Sciences, Storrs, CT, United States
| | - K Jasinska
- Department of Linguistics and Cognitive Science, University of Delaware, United States; Haskins Laboratories, New Haven, CT, United States
| | - J A Van Dyke
- Haskins Laboratories, New Haven, CT, United States; CT Institute for the Brain and Cognitive Sciences, Storrs, CT, United States
| | - Y-H Hung
- Haskins Laboratories, New Haven, CT, United States
| | - E Baron
- Haskins Laboratories, New Haven, CT, United States
| | - W E Mencl
- Haskins Laboratories, New Haven, CT, United States; Department of Linguistics, Yale University, New Haven, CT, United States
| | - J Zevin
- Haskins Laboratories, New Haven, CT, United States; Departments of Psychology and Linguistics, University of Southern California, Los Angeles, CA, United States
| | - N Landi
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States; Haskins Laboratories, New Haven, CT, United States; Yale Child Study Center, Yale University, New Haven, CT, United States; CT Institute for the Brain and Cognitive Sciences, Storrs, CT, United States.
| |
Collapse
|