1
|
Fan L, Cai X, Wang H, Ye J, Feng Y, Huang Z, Qu C. Topological defects and nanoholes in graphene oxide/hexagonal boron nitride heterostructures: stress buildup and accumulation. RSC Adv 2022; 12:33988-34005. [PMID: 36544995 PMCID: PMC9706512 DOI: 10.1039/d2ra06581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
The built-in distorted stress field of graphene (Gr) and its derivatives in defective state will induce local geometrical buckling due to the geometry of monatomic layer. The random distribution and types of functional groups (FGOs) and defects will have a significant impact on the stress accumulation and geometrical deformation of two-dimensional (2D) materials. By using molecular dynamics (MD), structure design and nonlinear mechanics theory, a new model (combining both planar 2D heterostructures and graphene oxide (GO)) was established to study geometrical effects, stress accumulation, bonding energies and mechanical properties of 2D interface (key point) at stress distortion field and accumulated stress field. The results show that grain boundaries (GBs), nanoholes and FGOs have different effects on the mechanical properties and out-of-plane deformation of 2D materials. By using Von-mises stresses and statistical mechanics, the geometrical effects, built-in distortion stress transfer and attenuation appeared in the each domain of 2D materials during the order-disorder transition processes. Moreover, there are two opposite aspects of stress accumulation, transmission, attenuation and geometrical effects of grain boundary (GBs), FGOs and nanoholes with distance. The ratio of strain energy (bond length and angle) is very sensitive to each domain of 2D materials. Finally, the 2D planar configuration gradually changes to a negative Gaussian surface, and the softening and weakening effects induced by GBs, nanoholes and FGOs are gradually enhanced. It is hoped that the current results can be used as a guide to adjust the geometry and stress accumulation of 2D materials in the new growth point.
Collapse
Affiliation(s)
- Lei Fan
- School of Civil Engineering and Architecture, Zhejiang University of Science & TechnologyHangzhouChina
| | - Xinyu Cai
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Hongwei Wang
- School of Civil Engineering and Architecture, Zhejiang University of Science & TechnologyHangzhouChina
| | - Jian Ye
- School of Civil Engineering and Architecture, Zhejiang University of Science & TechnologyHangzhouChina
| | - Yong Feng
- School of Civil Engineering and Architecture, Zhejiang University of Science & TechnologyHangzhouChina
| | - Zhuye Huang
- School of Civil Engineering and Architecture, Zhejiang University of Science & TechnologyHangzhouChina
| | - Chen Qu
- School of Civil Engineering and Architecture, Zhejiang University of Science & TechnologyHangzhouChina
| |
Collapse
|
2
|
Dindorkar SS, Yadav A. Comparative study on adsorption behaviour of the monolayer graphene, boron nitride and silicon carbide hetero-sheets towards carbon monoxide: Insights from first-principle studies. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
3
|
Molaei F, Eshkalak KE, Sadeghzadeh S, Siavoshi H. Hypersonic impact properties of pristine and hybrid single and multi-layer C 3N and BC 3 nanosheets. Sci Rep 2021; 11:7972. [PMID: 33846361 PMCID: PMC8041847 DOI: 10.1038/s41598-021-86537-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/17/2021] [Indexed: 12/03/2022] Open
Abstract
Carbon, nitrogen, and boron nanostructures are promising ballistic protection materials due to their low density and excellent mechanical properties. In this study, the ballistic properties of C3N and BC3 nanosheets against hypersonic bullets with Mach numbers greater than 6 were studied. The critical perforation conditions, and thus, the intrinsic impact strength of these 2D materials were determined by simulating ballistic curves of C3N and BC3 monolayers. Furthermore, the energy absorption scaling law with different numbers of layers and interlayer spacing was investigated, for homogeneous or hybrid configurations (alternated stacking of C3N and the BC3). Besides, we created a hybrid sheet using van der Waals bonds between two adjacent sheets based on the hypervelocity impacts of fullerene (C60) molecules utilizing molecular dynamics simulation. As a result, since the higher bond energy between N-C compared to B-C, it was shown that C3N nanosheets have higher absorption energy than BC3. In contrast, in lower impact speeds and before penetration, single-layer sheets exhibited almost similar behavior. Our findings also reveal that in hybrid structures, the C3N layers will improve the ballistic properties of BC3. The energy absorption values with a variable number of layers and variable interlayer distance (X = 3.4 Å and 4X = 13.6 Å) are investigated, for homogeneous or hybrid configurations. These results provide a fundamental understanding of ultra-light multilayered armors' design using nanocomposites based on advanced 2D materials. The results can also be used to select and make 2D membranes and allotropes for DNA sequencing and filtration.
Collapse
Affiliation(s)
- Fatemeh Molaei
- Mining and Geological Engineering Department, The University of Arizona, Arizona, USA
| | - Kasra Einalipour Eshkalak
- Qazvin Tarom Copper Company Lab, MSc of Nanotechnology Engineering, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Sadegh Sadeghzadeh
- Nanotechnology Engineering, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran.
| | - Hossein Siavoshi
- Mining and Geological Engineering Department, The University of Arizona, Arizona, USA
| |
Collapse
|
4
|
Patra L, Mallick G, Sachdeva G, Shock C, Pandey R. Orientation-dependent mechanical response of graphene/BN hybrid nanostructures. NANOTECHNOLOGY 2021; 32:235703. [PMID: 33588399 DOI: 10.1088/1361-6528/abe671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Graphene-based hybrid van der Waals structures have emerged as a new class of materials for novel multifunctional applications. In such a vertically-stacked heterostructure, it is expected that its mechanical strength can be tailored by the orientation of the constituent monolayers relative to each other. In this paper, we explore this hypothesis by investigating the orientation dependence of the mechanical properties of graphene/h-BN heterostructures together with that of graphene and h-BN bilayers. The calculated results simulating the pull-out experiment show a noticeable dependence of the (out-of-plane) transverse mechanical response, which is primarily governed by the interlayer strength, on the stacking configurations. The degree of the dependence is directly related to the nature of the interlayer interactions, which change from covalent to covalent polar in going from graphene bilayer to graphene/BN to BN bilayer. In contrast, molecular dynamics simulations mimicking nanoindentation experiments predict that the in-plane mechanical response, which mainly depends on the intra-layer interactions, shows little or no dependence on the stacking-order. The BN monolayer is predicted to fracture before graphene regardless of the stacking pattern or configuration in the graphene/BN heterostructure, affirming the mechanical robustness of graphene. Thus, the graphene-based hybrid structures retain both stiffness and toughness required for a wide range of optoelectromechanical applications.
Collapse
Affiliation(s)
- Lokanath Patra
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States of America
| | - Govind Mallick
- DEVCOM Army Research Laboratory, Weapons, and Materials Research Directorate, ATTN: FCDD-RLW, Aberdeen Proving Ground, Aberdeen, Maryland 21005-5069, United States of America
| | - Geeta Sachdeva
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States of America
| | - Cameron Shock
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States of America
| | - Ravindra Pandey
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States of America
| |
Collapse
|
5
|
Sanaeepur M. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:688-694. [PMID: 32395399 PMCID: PMC7188999 DOI: 10.3762/bjnano.11.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
A nanometer-scaled resonant tunneling diode based on lateral heterojunctions of armchair graphene and boron nitride nanoribbons, exhibiting negative differential resistance is proposed. Low-bandgap armchair graphene nanoribbons and high-bandgap armchair boron nitride nanoribbons are used to design the well and the barrier region, respectively. The effect of all possible substitutional defects (including BC, NC, CB, and CN) at the interface of graphene and boron nitride nanoribbons on the negative differential resistance behavior of the proposed resonant tunneling diode is investigated. Transport simulations are carried out in the framework of tight-binding Hamiltonians and non-equilibrium Green's functions. The results show that a single substitutional defect at the interface of armchair graphene and boron nitride nanoribbons can dramatically affect the negative differential resistance behavior depending on its type and location in the structure.
Collapse
Affiliation(s)
- Majid Sanaeepur
- Department of Electrical Engineering, Faculty of Engineering, Arak University, Arak, 3815688349, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| |
Collapse
|
6
|
Eshkalak KE, Sadeghzadeh S, Molaei F. Aluminum nanocomposites reinforced with monolayer polyaniline (C3N): assessing the mechanical and ballistic properties. RSC Adv 2020; 10:19134-19148. [PMID: 35515467 PMCID: PMC9054041 DOI: 10.1039/d0ra03204b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
This study unveils C3N, a new material that serves as an excellent reinforcement to enhance the mechanical properties of aluminum using a molecular dynamics simulation method. Results show that the C3N nanosheets greatly improve the mechanical properties of aluminum-based nanocomposites. With only 1.3 wt% C3N, the Young's modulus, fracture strength, and fracture strain increased by 27, 70, and 51 percent, respectively. A comparison between the reinforcement of graphene and C3N in an aluminum (Al) matrix shows that in terms of the mechanical properties, the graphene–aluminum composite is weaker than the C3N–aluminum composite in the tensile tests, but slightly stronger in the energy adsorption tests. Our findings show that the mechanical properties are highly dependent on the strain rate and temperature. The effects of various imperfections, such as the vacancy, crack, and void defects, on the mechanical properties were also studied. Results show that in the presence of void defects, the structure exhibited higher mechanical properties than when there were other defects. This phenomenon was found to be related to the decrease in the effective load transfer from aluminum to C3N. Furthermore, by increasing the weight percent of the nanosheets up to 5%, the energy absorption rate increased by 25% compared to the pure aluminum. When C3N was placed on top of the aluminum surface, the silicon nanoparticles were associated with a 35% energy adsorption by the nanocomposite. The results of this paper could be used to help understand and overcome some limitations in the fabrication of metallic nanocomposites with 2D material reinforcement. This study unveils C3N, a new material that serves as an excellent reinforcement to enhance the mechanical properties of aluminum using a molecular dynamics simulation method.![]()
Collapse
Affiliation(s)
| | - Sadegh Sadeghzadeh
- School of Advanced Technologies
- Iran University of Science and Technology
- Tehran
- Iran
| | - Fatemeh Molaei
- Mining and Geological Engineering Department
- The University of Arizona
- USA
| |
Collapse
|
7
|
Defective graphene domains in boron nitride sheets. J Mol Model 2019; 25:230. [PMID: 31324988 DOI: 10.1007/s00894-019-4093-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
Novel two-dimensional materials have emerged as hybrid structures that combine graphene and hexagonal boron nitride (h-BN) domains. During their growth process, structural defects such as vacancies and change of atoms connectivity are unavoidable. In the present study, we use first-principle calculations to investigate the electronic structure of graphene domains endowed with a single carbon atom vacancy or Stone-Wales defects in h-BN sheets. The results show that both kinds of defects yield localized states within the bandgap. Alongside this change in the bandgap configuration, it occurs a splitting of the spin channels in such a way that electrons with up and down spins populate different energy levels above and below the Fermi level, respectively. Such a spin arrangement is associated to lattice magnetization. Stone-Wales defects solely point to the appearance of new intragap levels. These results demonstrated that vacancies could significantly affect the electronic properties of hybrid graphene/h-BN sheets. Graphical Abstract A Boron-Nitride sheet doped with a vacancy endowed Carbon domain.
Collapse
|
8
|
Hosseini E, Zakertabrizi M, Habibnejad Korayem A, Shahsavari R. Tunable, Multifunctional Ceramic Composites via Intercalation of Fused Graphene Boron Nitride Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8635-8644. [PMID: 30719919 DOI: 10.1021/acsami.8b19409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ternary two-dimensional (2D) materials such as fused graphene-boron nitride (GBN) nanosheets exhibit attractive physical and tunable properties far beyond their parent structures. Although these features impart several multifunctional properties in various matrices, a fundamental understanding on the nature of the interfacial interactions of these ternary 2D materials with host matrices and the role of their individual components has been elusive. Herein, we focus on intercalated GBN/ceramic composites as a model system and perform a series of density functional theory calculations to fill this knowledge gap. Propelled by more polarity and negative Gibbs free energy, our results demonstrate that GBN is more water-soluble than graphene and hexagonal boron nitride (h-BN), making it a preferred choice for slurry preparation and resultant intercalations. Further, a chief attribute of the intercalated GBN/ceramic is the formation of covalent C-O and B-O bonds between the two structures, changing the hybridization of GBN from sp2 to sp3. This change, combined with the electron release in the vicinity of the interfacial regions, leads to several nonintuitive mechanical and electrical alterations of the composite such as exhibiting higher young's modulus, strength, and ductility as well as sharp decline in the band gap. As a limiting case, though both tobermorite ceramic and h-BN are wide band gap materials, their intercalated composite becomes a p-type semiconductor, contrary to intuition. These multifunctional features, along with our fundamental electronic descriptions of the origin of property change, provide key guidelines for synthesizing next generation of multifunctional bilayer ceramics with remarkable properties on demand.
Collapse
Affiliation(s)
- Ehsan Hosseini
- School of Civil Engineering , Iran University of Science and Technology , Tehran , Iran
| | - Mohammad Zakertabrizi
- School of Civil Engineering , Iran University of Science and Technology , Tehran , Iran
| | - Asghar Habibnejad Korayem
- School of Civil Engineering , Iran University of Science and Technology , Tehran , Iran
- Department of Civil Engineering , Monash University Melbourne , Clayton , Victoria 3800 , Australia
| | - Rouzbeh Shahsavari
- Department of Civil and Environmental Engineering , Rice University , Houston , Texas 77005 , United States
- C-Crete Technologies LLC , Stafford , Texas 77477 , United States
| |
Collapse
|
9
|
Munir KS, Wen C, Li Y. Carbon Nanotubes and Graphene as Nanoreinforcements in Metallic Biomaterials: a Review. ACTA ACUST UNITED AC 2019; 3:e1800212. [PMID: 32627403 DOI: 10.1002/adbi.201800212] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/22/2019] [Indexed: 12/13/2022]
Abstract
Current challenges in existing metallic biomaterials encourage undertaking research in the development of novel materials for biomedical applications. This paper critically reviews the potential of carbon nanotubes (CNT) and graphene as nanoreinforcements in metallic biomaterials for bone tissue engineering. Unique and remarkable mechanical, electrical, and biological properties of these carbon nanomaterials allow their use as secondary-phase reinforcements in monolithic biomaterials. The nanoscale dimensions and extraordinarily large surface areas of CNT and graphene make them suitable materials for purposeful reaction with living organisms. However, the cytocompatibility of CNT and graphene is still a controversial issue that impedes advances in utilizing these promising materials in clinical orthopedic applications. The interaction of CNT and graphene with biological systems including proteins, nucleic acids, and human cells is critically reviewed to assess their cytocompatibity in vitro and in vivo. It is revealed that composites reinforced with CNT and graphene show enhanced adhesion of osteoblast cells, which subsequently promotes bone tissue formation in vivo. This potential is expected to pave the way for developing ground-breaking technologies in regenerative medicine and bone tissue engineering. In addition, current progress and future research directions are highlighted for the development of CNT and graphene reinforced implants for bone tissue engineering.
Collapse
Affiliation(s)
- Khurram S Munir
- School of Engineering, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
10
|
Li Y, Wei A, Ye H, Yao H. Mechanical and thermal properties of grain boundary in a planar heterostructure of graphene and hexagonal boron nitride. NANOSCALE 2018; 10:3497-3508. [PMID: 29404556 DOI: 10.1039/c7nr07306b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, the mechanical properties of grain boundaries (GBs) in planar heterostructures of graphene and hexagonal boron nitride (h-BN) were studied using the molecular dynamics method in combination with the density functional theory and classical disclination theory. The hybrid interface between graphene and h-BN grains was optimally matched by a non-bisector GB composed of pentagon-heptagon defects arranged in a periodic manner. GB was found to be a vulnerable spot to initiate failure under uniaxial tension; moreover, the tensile strength was found to anomalously increase with an increase in the mismatch angle between graphene and h-BN grains, i.e., the density of pentagon-heptagon defects along the GBs. The disclination theory was successfully adopted to predict the stress field caused by lattice mismatch at the GB. Comparison between stress contours of GBs with different mismatch angles demonstrates that the arrangement of 5-7 disclinations along the GB is crucial to the strength, and the stress concentration at the GB decreases with an increase in disclination density; this results in an anomalous increase of strength with an increase in the mismatch angle of grains. Moreover, the thermal transfer efficiency of the hybrid GB was revealed to be dependent not only on the mismatch angle of grains but also on the direction of the thermal flux. Thermal transfer efficiency from graphene to h-BN is higher than that from h-BN to graphene. Detailed analyses for the phonon density of states (PDOS) of GB atoms were carried out for the mismatch angle-dependence of interfacial conductance. Our results provide useful insights for the application of two-dimensional polycrystalline heterostructures in next-generation electronic nanodevices.
Collapse
Affiliation(s)
- Yinfeng Li
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering (State Key Laboratory of Ocean Engineering), Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | |
Collapse
|