1
|
Durmus H, Burak AM, Goktug S, Aysegul B. Metabolomic modelling and neuroprotective effects of carvacrol against acrylamide toxicity in rat's brain and sciatic nerve. Clin Exp Pharmacol Physiol 2024; 51:e13841. [PMID: 38302077 DOI: 10.1111/1440-1681.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
The study aimed to investigate the harmful effects of acrylamide (AA), which forms in carbohydrate-rich foods at temperatures above 120°C, on the central and peripheral nervous systems and to evaluate the potential neuroprotective effects of carvacrol (CRV). Male Wistar Albino rats were subjected to AA (40 mg/kg/bw/day) and CRV (50 mg/kg/bw/day) for 15 days. Following the last administration, evaluations revealed disrupted gait, heightened thermal sensitivity and altered paw withdrawal thresholds in AA-exposed rats. Notably, AA reduced glutathione (GSH) and raised malondialdehyde (MDA) levels in both brain and sciatic nerve tissues. AA raised nuclear factor erythroid 2-related factor 2 (Nrf2), caspase 3 and nuclear factor κB (NF-κB) gene expressions while decreasing NR4A2. CRV co-administration mitigated gait abnormalities, elevated GSH levels and lowered MDA levels in both tissues. CRV also modulated gene expression, reducing Nrf2 and NF-κB while increasing NR4A2. Histopathological signs of AA-induced neurodegeneration and elevated glial fibrillary acidic protein levels observed in brain and sciatic nerve tissues were rectified with simultaneous administration of CRV, thereby demonstrating neuroprotective efficacy in both regions. This study is pioneering in demonstrating CRV's neuroprotective potential against AA-induced neurotoxicity in both central and peripheral nervous systems, effectively addressing limitations in the literature. In conclusion, the study revealed AA-induced neurodegeneration in the brain and sciatic nerve, with CRV significantly mitigating this neurotoxicity. This novel research underscores CRV's promise as a neuroprotective agent against AA-induced adverse effects in both the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Hatipoglu Durmus
- Department of Physiology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Ates M Burak
- Department of Pathology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Senturk Goktug
- Department of Physiology, Faculty of Veterinary Medicine, Aksaray University, Aksaray, Türkiye
| | - Bulut Aysegul
- Department of Pathology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| |
Collapse
|
2
|
Qneibi M, Bdir S, Maayeh C, Bdair M, Sandouka D, Basit D, Hallak M. A Comprehensive Review of Essential Oils and Their Pharmacological Activities in Neurological Disorders: Exploring Neuroprotective Potential. Neurochem Res 2024; 49:258-289. [PMID: 37768469 DOI: 10.1007/s11064-023-04032-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Numerous studies have demonstrated essential oils' diverse chemical compositions and pharmacological properties encompassing antinociceptive, anxiolytic-like, and anticonvulsant activities, among other notable effects. The utilization of essential oils, whether inhaled, orally ingested, or applied topically, has commonly been employed as adjunctive therapy for individuals experiencing anxiety, insomnia, convulsions, pain, and cognitive impairment. The utilization of synthetic medications in the treatment of various disorders and symptoms is associated with a wide array of negative consequences. Consequently, numerous research groups across the globe have been prompted to explore the efficacy of natural alternatives such as essential oils. This review provides a comprehensive overview of the existing literature on the pharmacological properties of essential oils and their derived compounds and the underlying mechanisms responsible for these observed effects. The primary emphasis is on essential oils and their constituents, specifically targeting the nervous system and exhibiting significant potential in treating neurodegenerative disorders. The current state of research in this field is characterized by its preliminary nature, highlighting the necessity for a more comprehensive overlook of the therapeutic advantages of essential oils and their components. Integrating essential oils into conventional therapies can enhance the effectiveness of comprehensive treatment regimens for neurodegenerative diseases, offering a more holistic approach to addressing the multifaceted nature of these conditions.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Diana Basit
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mira Hallak
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
3
|
Avola R, Furnari AG, Graziano ACE, Russo A, Cardile V. Management of the Brain: Essential Oils as Promising Neuroinflammation Modulator in Neurodegenerative Diseases. Antioxidants (Basel) 2024; 13:178. [PMID: 38397776 PMCID: PMC10886016 DOI: 10.3390/antiox13020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Neuroinflammation, a pivotal factor in the pathogenesis of various brain disorders, including neurodegenerative diseases, has become a focal point for therapeutic exploration. This review highlights neuroinflammatory mechanisms that hallmark neurodegenerative diseases and the potential benefits of essential oils in counteracting neuroinflammation and oxidative stress, thereby offering a novel strategy for managing and mitigating the impact of various brain disorders. Essential oils, derived from aromatic plants, have emerged as versatile compounds with a myriad of health benefits. Essential oils exhibit robust antioxidant activity, serving as scavengers of free radicals and contributing to cellular defense against oxidative stress. Furthermore, essential oils showcase anti-inflammatory properties, modulating immune responses and mitigating inflammatory processes implicated in various chronic diseases. The intricate mechanisms by which essential oils and phytomolecules exert their anti-inflammatory and antioxidant effects were explored, shedding light on their multifaceted properties. Notably, we discussed their ability to modulate diverse pathways crucial in maintaining oxidative homeostasis and suppressing inflammatory responses, and their capacity to rescue cognitive deficits observed in preclinical models of neurotoxicity and neurodegenerative diseases.
Collapse
Affiliation(s)
- Rosanna Avola
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy;
| | | | | | - Alessandra Russo
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy;
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
4
|
Pei X, Zhang L, Liu D, Wu Y, Li X, Cao Y, Du X. Notoginsenoside R1 attenuates brain injury in rats with traumatic brain injury: Possible mediation of apoptosis via ERK1/2 signaling pathway. PLoS One 2023; 18:e0295903. [PMID: 38109303 PMCID: PMC10727368 DOI: 10.1371/journal.pone.0295903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023] Open
Abstract
Traumatic brain injury (TBI) occurs worldwide and is associated with high mortality and disability rate. Apoptosis induced by TBI is one of the important causes of secondary injury after TBI. Notoginsenoside R1 (NGR1) is the main phytoestrogen extracted from Panax notoginseng. Many studies have shown that NGR1 has potent neuroprotective, anti-inflammatory, and anti-apoptotic properties and is effective in ischemia-reperfusion injury. Therefore, we investigated the potential neuroprotective effects of NGR1 after TBI and explored its molecular mechanism of action. A rat model of TBI was established using the controlled cortical impact (CCI) method. The expression levels of Bcl-2, Bax, caspase 3, and ERK1/2-related molecules in the downstream pathway were also detected by western blotting. The expression levels of pro-inflammatory cytokines were detected by real-time quantitative PCR. Nissl staining was used to clarify the morphological changes around the injury foci in rats after TBI. Fluoro-Jade B (FJB) and terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) fluorescence staining were used to detect the apoptosis of neural cells in each group of rats. The results showed that NGR1 administration reduced neurological deficits after TBI, as well as brain edema and brain tissue apoptosis. It also significantly inhibited the expression of pro-inflammatory cytokines. Furthermore, NGR1 decreased the expression levels of extracellular signal-regulated kinase (ERK) and p-RSK1, which are phosphorylated after trauma. This study suggests that NGR1 can improve neuronal apoptosis in brain injury by inhibiting the ERK signaling pathway. NGR1 is a potential novel neuroprotective agent for the treatment of secondary brain injury after TBI.
Collapse
Affiliation(s)
- Xiaoxian Pei
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
- Medical College of Soochow University, Suzhou, China
| | - Ling Zhang
- Translational Medicine Center, The First People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Dan Liu
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Yajuan Wu
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Xiaowei Li
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Ying Cao
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Xiangdong Du
- Department of Psychiatric, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Ortiz-Mendoza N, Martínez-Gordillo MJ, Martínez-Ambriz E, Basurto-Peña FA, González-Trujano ME, Aguirre-Hernández E. Ethnobotanical, Phytochemical, and Pharmacological Properties of the Subfamily Nepetoideae (Lamiaceae) in Inflammatory Diseases. PLANTS (BASEL, SWITZERLAND) 2023; 12:3752. [PMID: 37960108 PMCID: PMC10648697 DOI: 10.3390/plants12213752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Nepetoideae is the most diverse subfamily of Lamiaceae, and some species are well known for their culinary and medicinal uses. In recent years, there has been growing interest in the therapeutic properties of the species of this group regarding inflammatory illnesses. This study aims to collect information on traditional uses through ethnobotanical, pharmacological, and phytochemical information of the subfamily Nepetoideae related to inflammatory diseases. UNAM electronic resources were used to obtain the information. The analysis of the most relevant literature was compiled and organised in tables. From this, about 106 species of the subfamily are traditionally recognised to alleviate chronic pain associated with inflammation. Pharmacological studies have been carried out in vitro and in vivo on approximately 308 species belonging to the genera Salvia, Ocimum, Thymus, Mentha, Origanum, Lavandula, and Melissa. Phytochemical and pharmacological evaluations have been performed and mostly prepared as essential oil or high polarity extracts, whose secondary metabolites are mainly of a phenolic nature. Other interesting and explored metabolites are diterpenes from the abietane, clerodane, and kaurane type; however, they have only been described in some species of the genera Salvia and Isodon. This review reveals that the Nepetoideae subfamily is an important source for therapeutics of the inflammatory process.
Collapse
Affiliation(s)
- Nancy Ortiz-Mendoza
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria Coyoacán, Edificio D, 1° Piso, Circuito de Posgrados, Mexico City 04510, Mexico
| | - Martha Juana Martínez-Gordillo
- Departamento de Biología Comparada, Herbario de la Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Emmanuel Martínez-Ambriz
- Instituto de Ecología, A.C., Red de Biodiversidad y Sistemática, Xalapa 91073, Veracruz, Mexico;
| | | | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Eva Aguirre-Hernández
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
6
|
Rashno M, Sarkaki A, Farbood Y, Rashno M, Khorsandi L, Naseri MKG, Dianat M. Possible mechanisms involved in the neuroprotective effects of chrysin against mild traumatic brain injury-induced spatial cognitive decline: An in vivo study in a rat model. Brain Res Bull 2023; 204:110779. [PMID: 37827266 DOI: 10.1016/j.brainresbull.2023.110779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Traumatic brain injury (TBI) is recognized as an important risk factor for cognitive deficits. The present study was designed to determine the potential neuroprotective effects of chrysin, a natural flavonoid compound, against TBI-induced spatial cognitive decline and the possible mechanisms involved. Oral administration of chrysin (25, 50, or 100 mg/kg/day) was initiated in rats immediately following the induction of the diffuse TBI model using the weight-dropping Marmarou model. Spatial cognitive ability, hippocampal synaptic plasticity, blood-brain barrier (BBB) permeability, brain water content, and histological changes were assessed at scheduled time points. The animals subjected to TBI exhibited spatial cognitive decline in the Morris water maze (MWM) test, which was accompanied by inhibition of hippocampal long-term potentiation (LTP) induction at the perforant path-dentate gyrus (PP-DG) synapses. Additionally, TBI caused BBB disruption, brain edema, and neuronal loss. Interestingly, treatment with chrysin (especially in the dose of 100 mg/kg) alleviated all the above-mentioned neuropathological changes related to TBI. The results provide evidence that chrysin improves TBI-induced spatial cognitive decline, which may be partly related to the amelioration of hippocampal synaptic dysfunction, alleviation of BBB disruption, reduction of brain edema, and prevention of neuronal loss.
Collapse
Affiliation(s)
- Masome Rashno
- Department of Physiology, School of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, School of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, School of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Kazem Gharib Naseri
- Department of Physiology, School of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Department of Physiology, School of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Abbasloo E, Amiresmaili S, Shirazpour S, Khaksari M, Kobeissy F, Thomas TC. Satureja khuzistanica Jamzad essential oil and pure carvacrol attenuate TBI-induced inflammation and apoptosis via NF-κB and caspase-3 regulation in the male rat brain. Sci Rep 2023; 13:4780. [PMID: 36959464 PMCID: PMC10036533 DOI: 10.1038/s41598-023-31891-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/20/2023] [Indexed: 03/25/2023] Open
Abstract
Traumatic brain injury (TBI) causes progressive dysfunction that induces biochemical and metabolic changes that lead to cell death. Nevertheless, there is no definitive FDA-approved therapy for TBI treatment. Our previous immunohistochemical results indicated that the cost-effective natural Iranian medicine, Satureja khuzistanica Jamzad essential oil (SKEO), which consists of 94.16% carvacrol (CAR), has beneficial effects such as reducing neuronal death and inflammatory markers, as well as activating astrocytes and improving neurological outcomes. However, the molecular mechanisms of these neuroprotective effects have not yet been elucidated. This study investigated the possible mechanisms involved in the anti-inflammatory and anti-apoptotic properties of SKEO and CAR after TBI induction. Eighty-four male Wistar rats were randomly divided into six groups: Sham, TBI, TBI + Vehicle, TBI + CAR (100 and 200 mg/kg), and TBI + SKEO (200 mg/kg) groups. After establishing the "Marmarou" weight drop model, diffuse TBI was induced in the rat brain. Thirty minutes after TBI induction, SKEO & CAR were intraperitoneally injected. One day after TBI, injured rats exhibited significant brain edema, neurobehavioral dysfunctions, and neuronal apoptosis. Western blot results revealed upregulation of the levels of cleaved caspase-3, NFκB p65, and Bax/Bcl-2 ratio, which was attenuated by CAR and SKEO (200 mg/kg). Furthermore, the ELISA results showed that CAR treatment markedly prevents the overproduction of the brain pro-inflammatory cytokines, including IL-1β, TNF-α, and IL-6. Moreover, the neuron-specific enolase (NSE) immunohistochemistry results revealed the protective effect of CAR and SKEO on post-TBI neuronal death. The current study revealed that the possible neuroprotective mechanisms of SKEO and CAR might be related to (at least in part) modulating NF-κB regulated inflammation and caspase-3 protein expression. It also suggested that CAR exerts more potent protective effects than SKEO against TBI. Nevertheless, the administration of SKEO and CAR may express a novel therapeutic approach to ameliorate TBI-related secondary phase neuropathological outcomes.
Collapse
Affiliation(s)
- Elham Abbasloo
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Sara Shirazpour
- Department of Physiology and Pharmacology, Faculty of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Neurotrauma, Multiomics and Biomarkers, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, USA
- Translational Neurotrauma Research Program, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, USA
| |
Collapse
|
8
|
Arora K, Vats V, Kaushik N, Sindhawani D, Saini V, Arora DM, Kumar Y, Vashisht E, Singh G, Verma PK. A Systematic Review on Traumatic Brain Injury Pathophysiology and Role of Herbal Medicines in its Management. Curr Neuropharmacol 2023; 21:2487-2504. [PMID: 36703580 PMCID: PMC10616914 DOI: 10.2174/1570159x21666230126151208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a worldwide problem. Almost about sixtynine million people sustain TBI each year all over the world. Repetitive TBI linked with increased risk of neurodegenerative disorder such as Parkinson, Alzheimer, traumatic encephalopathy. TBI is characterized by primary and secondary injury and exerts a severe impact on cognitive, behavioral, psychological and other health problem. There were various proposed mechanism to understand complex pathophysiology of TBI but still there is a need to explore more about TBI pathophysiology. There are drugs present for the treatment of TBI in the market but there is still need of more drugs to develop for better and effective treatment of TBI, because no single drug is available which reduces the further progression of this injury. OBJECTIVE The main aim and objective of structuring this manuscript is to design, develop and gather detailed data regarding about the pathophysiology of TBI and role of medicinal plants in its treatment. METHOD This study is a systematic review conducted between January 1995 to June 2021 in which a consultation of scientific articles from indexed periodicals was carried out in Science Direct, United States National Library of Medicine (Pubmed), Google Scholar, Elsvier, Springer and Bentham. RESULTS A total of 54 studies were analyzed, on the basis of literature survey in the research area of TBI. CONCLUSION Recent studies have shown the potential of medicinal plants and their chemical constituents against TBI therefore, this review targets the detailed information about the pathophysiology of TBI and role of medicinal plants in its treatment.
Collapse
Affiliation(s)
- Kaushal Arora
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vishal Vats
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Nalin Kaushik
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127031, India
| | - Deepanshu Sindhawani
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vaishali Saini
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Divy Mohan Arora
- Department of Pharmaceutical Sciences Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Yogesh Kumar
- Sat Priya College of Pharmacy, Rohtak, Haryana, 124001, India
| | - Etash Vashisht
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
9
|
Rezvani Kakhki B, Ghasemi T, Vafadar Moradi E, Abbasi Shaye Z, Mousavi SM. Aromatherapy with Isopropyl Alcohol versus Intravenous Ondansetron in Management of Mild Brain Trauma Nausea and Vomiting; a Randomized Clinical Trial. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2022; 10:e87. [PMID: 36426172 PMCID: PMC9676696 DOI: 10.22037/aaem.v10i1.1792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Nausea and vomiting are common complaints among patients who refer to the emergency department with head trauma. This study aimed to compare the effect of aromatherapy with isopropyl alcohol versus intravenous ondansetron in management of mild head trauma nausea and vomiting. METHODS This randomized clinical trial was conducted on patients with isolated mild head trauma complaining of nausea and vomiting who were referred to emergency department during a 6-month period. Patients were randomly divided into control (IV ondansetron + aromatherapy with saline) and intervention (IV saline + aromatherapy with isopropyl alcohol) groups. The frequency of vomiting and the severity of nausea (from 0 to 100 with the verbal scaling) were written before, and 10 and 30 minutes after intervention and compared between groups. RESULTS A total of 210 patients (105 patients in each group) with a median age of 38 years were included in the study, 112 (54.3%) of which were male. Ten minutes after aromatherapy, no significant difference was observed in nausea and vomiting between the two groups (p >0.05). Nausea score after 30 minutes (p = 0.015) was significantly lower in the intervention group compared to the control group, but vomiting after 30 minutes (p <0.001) was higher in the intervention group. CONCLUSION Aromatherapy using isopropyl alcohol significantly reduced nausea of patients with mild isolate head trauma after 30 minutes. Regarding vomiting, no favorable result was observed in this study. However, the frequency of vomiting was reduced in both control and intervention groups.
Collapse
Affiliation(s)
- Behrang Rezvani Kakhki
- Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. ,Corresponding author: Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. E-mail: , Tel: +989153114371
| | - Tahereh Ghasemi
- Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Vafadar Moradi
- Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abbasi Shaye
- Clinical research development center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Mousavi
- Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Seyedan AA, Dezfoulian O, Alirezaei M. Satureja khuzistanica Jamzad essential oil prevents doxorubicin-induced apoptosis via extrinsic and intrinsic mitochondrial pathways. Res Pharm Sci 2020; 15:481-490. [PMID: 33628290 PMCID: PMC7879789 DOI: 10.4103/1735-5362.297851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 05/10/2020] [Accepted: 10/06/2020] [Indexed: 11/06/2022] Open
Abstract
Background and purpose: In addition to hepato-cardiotoxicity, doxorubicin (DOX) also induces nephrotoxicity which is considered as the limiting factor for this drug in cancer therapy. The effect of carvacrol, the main active ingredient of Satureja khuzistanica Jamzad essential oil (SKEO), in the amelioration of DOX- induced cardiotoxicity is well established. The aim of the present study was to evaluate the possible protective effects of SKEO against DOX-induced nephrotoxicity. Experimental approach: SKEO was intraperitoneally administered at 50, 100, and 200 mg/kg to male Wistar rats for 12 consecutive days. Five groups of animals including negative control (saline), vehicle (Tween® 20), SKEO50, DOX (at 8th day of treatment), and SKEO50 + DOX were assessed. Findings/Results: Creatinine, urea concentrations, and caspase-3 activity significantly elevated in the serum of DOX treated group in contrast to other groups after injection of a single dose of DOX (20 mg/kg i.p.), however, SKEO reduced glutathione peroxidase and caspase-3 activity against other groups while SKEO + DOX was also significantly reduced caspase-3 activity against DOX group. Other biochemical markers changes were not significant. Immunohistochemical assessment unveiled that SKEO + DOX improved the activity of Bcl-2 family proteins (Bax and Bcl-2) and caspase-8 protein to the advantage of cell survival in both intrinsic mitochondrial and extrinsic pathway down streamed to the terminal caspase-3 apoptotic molecule., Conclusion and implications: It was concluded that SKEO could have influential effects against apoptosis induced by DOX, but not improperly ameliorate oxidative stress.
Collapse
Affiliation(s)
- Ali Al Seyedan
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, I.R. Iran
| | - Omid Dezfoulian
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, I.R. Iran
| | - Masoud Alirezaei
- Department of Biochemistry, School of Veterinary Medicine, Lorestan University, Khorramabad, I.R. Iran
| |
Collapse
|
11
|
Liu KL, Yu XJ, Sun TZ, Wang YC, Chen MX, Su YW, Zhang HC, Chen YM, Gao HL, Shi XL, Qi J, Li Y, Li HB, Dong WJ, He JK, Kang YM. Effects of seawater immersion on open traumatic brain injury in rabbit model. Brain Res 2020; 1743:146903. [PMID: 32445716 DOI: 10.1016/j.brainres.2020.146903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 11/19/2022]
Abstract
We emulated instances of open traumatic brain injuries (TBI) in a maritime disaster. New Zealand rabbit animal models were used to evaluate the pathophysiological changes in open TBI with and without the influence of artificial seawater. New Zealand rabbits were randomly divided into 3 groups. Control group consisted of only normal animals. Animals in TBI and TBI + Seawater groups underwent craniotomy with dura mater incised and brain tissue exposed to free-fall impact. Afterward, only TBI + Seawater group received on-site artificial seawater infusion. Brain water content (BWC) and permeability of blood-brain barrier (BBB) were assessed. Reactive oxygen species levels were measured. Western blotting and immunofluorescence were employed to detect: apoptosis-related factors Caspase-3, Bax and Bcl-2; angiogenesis-related factors CD31 and CD34; astrogliosis-related factor glial fibrillary acidic protein (GFAP); potential neuron injury indicator neuron-specific enolase (NSE). Hematoxylin & eosin, Masson-trichrome and Nissl stainings were performed for pathological observations. Comparing to Control group, TBI group manifested abnormal neuronal morphology; increased BWC; compromised BBB integrity; increased ROS, Bax, CD31, CD34, Caspase-3 and GFAP expressions; decreased Bcl-2 and NSE expression. Seawater immersion caused all changes, except BWC, to become more significant. Seawater immersion worsens the damage inflicted to brain tissue by open TBI. It aggravates hypoxia in brain tissue, upregulates ROS expression, increases neuron sensitivity to apoptosis-inducing factors, and promotes angiogenesis as well as astrogliosis.
Collapse
Affiliation(s)
- Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi an 710061, China
| | - Tian-Ze Sun
- Department of Human Anatomy and Histology and Embryology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi an 710061, China
| | - Yi-Chang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Meng-Xuan Chen
- College of Stomatology, Xi'an Jiaotong University, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, 98 XiWu Road, Xi'an, Shaanxi 710004, People's Republic of China
| | - Yan-Wen Su
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao-Chen Zhang
- School of Clinical Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan-Mei Chen
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi an 710061, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi an 710061, China
| | - Xiao-Lian Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi an 710061, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi an 710061, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi an 710061, China
| | - Wei-Jiang Dong
- Department of Human Anatomy and Histology and Embryology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi an 710061, China.
| | - Jian-Kang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi an 710061, China.
| |
Collapse
|
12
|
Aziz ZAA, Nasir HM, Ahmad A, Setapar SHM, Ahmad H, Noor MHM, Rafatullah M, Khatoon A, Kausar MA, Ahmad I, Khan S, Al-Shaeri M, Ashraf GM. Enrichment of Eucalyptus oil nanoemulsion by micellar nanotechnology: transdermal analgesic activity using hot plate test in rats' assay. Sci Rep 2019; 9:13678. [PMID: 31548590 PMCID: PMC6757054 DOI: 10.1038/s41598-019-50134-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/22/2019] [Indexed: 01/18/2023] Open
Abstract
Eucalyptus globulus is an aromatic medicinal plant which known for its 1,8-cineole main pharmacological constituent exhibits as natural analgesic agent. Eucalyptus globulus-loaded micellar nanoparticle was developed via spontaneous emulsification technique and further evaluation for its analgesic efficacy study, in vivo analgesic activity assay in rats. The nanoemulsion system containing Eucalyptus-micelles was optimized at different surfactant types (Tween 40, 60 and 80) and concentrations (3.0, 6.0, 9.0, 12.0, 15.0, and 18.0 wt. %). These formulations were characterized by thermodynamically stability, viscosity, micelles particle size, pH, and morphology structure. The spontaneous emulsification technique offered a greener micelles formation in nanoemulsion system by slowly titrated of organic phase, containing Eucalyptus globulus (active compound), grape seed oil (carrier oil) and hydrophilic surfactant into aqueous phase, and continuously stirred for 30 min to form a homogeneity solution. The characterizations evaluation revealed an optimized formulation with Tween 40 surfactant type at 9.0 wt. % of surfactant concentration promoted the most thermodynamic stability, smaller micelles particle size (d = 17.13 ± 0.035 nm) formed with spherical shape morphological structure, and suitable in viscosity (≈2.3 cP) and pH value (6.57) for transdermal purpose. The in vivo analgesic activity assay of optimized emulsion showed that the transdermal administration of micellar nanoparticle of Eucalyptus globulus on fore and hind limb of rats, possessed the central and peripheral analgesic effects by prolonged the rats pain responses towards the heat stimulus after being put on top of hot plate (55 °C), with longest time responses, 40.75 s at 60 min after treatment administration. Thus, this study demonstrated that micellar nanoparticle of Eucalyptus globulus formed in nanoemulsion system could be promising as an efficient transdermal nanocarrier for the analgesic therapy alternative.
Collapse
Affiliation(s)
- Zarith Asyikin Abdul Aziz
- Centre of Lipid Engineering and Applied Research (CLEAR), Ibnusina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
| | - Hasmida Mohd Nasir
- Centre of Lipid Engineering and Applied Research (CLEAR), Ibnusina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
| | - Akil Ahmad
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
- School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Siti Hamidah Mohd Setapar
- Centre of Lipid Engineering and Applied Research (CLEAR), Ibnusina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia.
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia.
- SHE Empire Sdn Bhd, No 44, Jalan Pulai Ria 2, Bandar Baru Kangkar Pulai, 81300, Skudai, Johor, Malaysia.
| | - Hafandi Ahmad
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Mohd Hezmee Mohd Noor
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Mohd Rafatullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Asma Khatoon
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Research center for Advanced Material Sciences, King Khalid University Abha, Abha, Saudi Arabia
| | - Shahida Khan
- Applied Nutrition Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
13
|
Keshavarzi Z, Shakeri F, Barreto GE, Bibak B, Sathyapalan T, Sahebkar A. Medicinal plants in traumatic brain injury: Neuroprotective mechanisms revisited. Biofactors 2019; 45:517-535. [PMID: 31206893 DOI: 10.1002/biof.1516] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/05/2019] [Indexed: 01/31/2023]
Abstract
Traumatic brain injury (TBI) is the most prevalent health problem affecting all age groups, and leads to many secondary problems in other organs especially kidneys, gastrointestinal tract, and heart function. In this review, the search terms were TBI, fluid percussion injury, cold injury, weight drop impact acceleration injury, lateral fluid percussion, cortical impact injury, and blast injury. Studies with Actaea racemosa, Artemisia annua, Aframomum melegueta, Carthamus tinctorius, Cinnamomum zeylanicum, Crocus sativus, Cnidium monnieri, Curcuma longa, Gastrodia elata, Malva sylvestris, Da Chuanxiong Formula, Erigeron breviscapus, Panax ginseng, Salvia tomentosa, Satureja khuzistanica, Nigella sativa, Drynaria fortune, Dracaena cochinchinensis, Polygonum cuspidatum, Rosmarinus officinalis, Rheum tanguticum, Centella asiatica, and Curcuma zedoaria show a significant decrease in neuronal injury by different mechanisms such as increasing superoxide dismutase and catalase activities, suppressing nuclear factor kappa B (NF-κB), interleukin 1 (IL-1), glial fibrillary acidic protein, and IL-6 expression. The aim of this study was to evaluate the neuroprotective effects of medicinal plants in central nervous system pathologies by reviewing the available literature.
Collapse
Affiliation(s)
- Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Feng RY, Chen Q, Yang WJ, Tong XG, Sun ZM, Yan H. Immune Tolerance Therapy: A New Method for Treatment of Traumatic Brain Injury. Chin Med J (Engl) 2018; 131:1990-1998. [PMID: 30082532 PMCID: PMC6085845 DOI: 10.4103/0366-6999.238147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective: Due to the special anatomical structure and pathophysiological mechanism of the central nervous system (CNS), there is a big difference between the repair of brain injury and other systems of the body. More and more evidence shows that targetedly reducing the autoimmune response of brain tissue without affecting the immune function in other parts of the body will be the best optimized treatment for brain injury. Data Sources: This review was based on data in articles published in PubMed up to June 5, 2017, with the following keywords: “immune tolerance”, “traumatic brain injury”, and “central nervous system”. Study Selection: Original articles and critical reviews on immune tolerance and brain damage were selected for this review. References of the retrieved articles were also screened to search for potentially relevant papers. Results: The CNS is isolated from the immune system through the blood-brain barrier. After brain injury, brain antigens are released into the systemic circulation to induce damaging immune responses. Immune tolerance can effectively reduce the brain edema and neurological inflammatory response after brain injury, which is beneficial to the recovery of neurological function. The clinical application prospect and theoretical research value of the treatment of immune tolerance on traumatic brain injury (TBI) is worth attention. Conclusions: The establishment of immune tolerance mechanism has a high clinical value in the treatment of TBI. It opens up new opportunities for the treatment of brain damage.
Collapse
Affiliation(s)
- Ruo-Yang Feng
- Department of Neurosurgery, Tianjin Medical University, Tianjin 300070, China
| | - Qian Chen
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases; Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Wei-Jian Yang
- Department of Neurosurgery, Tianjin Medical University, Tianjin 300070, China
| | - Xiao-Guang Tong
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Zhi-Ming Sun
- Department of Spine Surgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Hua Yan
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin 300350, China
| |
Collapse
|
15
|
Chen J, Hu J, Liu H, Xiong Y, Zou Y, Huang W, Shao M, Wu J, Yu L, Wang X, Wang X, Lin L. FGF21 Protects the Blood-Brain Barrier by Upregulating PPARγ via FGFR1/β-klotho after Traumatic Brain Injury. J Neurotrauma 2018; 35:2091-2103. [PMID: 29648978 DOI: 10.1089/neu.2017.5271] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Blood-brain barrier (BBB) disruption and dysfunction result in brain edema, which is responsible for more than half of all deaths after severe traumatic brain injury (TBI). Fibroblast growth factor 21 (FGF21) has a potential neuroprotective function in the brain. However, the effects and underlying possible mechanism of action on BBB integrity following TBI remain unknown. The purpose of the current study was to determine the effects of FGF21 on BBB protection and TBI treatment. The effects of recombinant human FGF21 (rhFGF21) on BBB integrity and on tight junction (TJ) and adhesion junction (AJ) proteins were investigated both in a TBI mouse model and an in vitro BBB disruption model established with tumor necrosis factor alpha (TNF-α)-induced human brain microvascular endothelial cells (HBMECs). The ability of rhFGF21 to form an FGF21/FGFR1/β-klotho complex was confirmed by in vitro β-klotho small interfering RNA (siRNA) transfection and FGFR1 co-immunoprecipitation. In addition, the specific FGFR1 and peroxisome proliferator-activated receptor gamma (PPARγ) inhibitors PD173074 and GW9662, respectively, were applied to further explore the possible mechanism of rhFGF21 in BBB maintenance after TBI. rhFGF21 markedly reduced neurofunctional behavior deficits and cerebral edema degree, preserved BBB integrity, and recued brain tissue loss and neuron apoptosis in the mouse model after TBI. Both in vivo and in vitro, rhFGF21 upregulated TJ and AJ proteins, thereby preserving the BBB. Moreover, rhFGF21 activated PPARγ in TNF-α-induced HBMECs through formation of an FGF21/FGFR1/β-klotho complex. rhFGF21 protected the BBB through FGF21/FGFR1/β-klotho complex formation and PPARγ activation, which upregulated TJ and AJ proteins.
Collapse
Affiliation(s)
- Jun Chen
- 1 School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Jian Hu
- 1 School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Huan Liu
- 1 School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Ye Xiong
- 2 The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Yuchi Zou
- 2 The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Wenting Huang
- 3 School of the First Clinical Medical Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Mingjie Shao
- 3 School of the First Clinical Medical Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Jiamin Wu
- 1 School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Li Yu
- 4 The Affiliated Hospital of Medical School of Ningbo University , Ningbo, Zhejiang, China
| | - Xiaojie Wang
- 1 School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Xue Wang
- 1 School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Li Lin
- 1 School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| |
Collapse
|