1
|
Cui X, Zhang F, Meng H, Yuan T, Li M, Yuan D, Fan X, Jia X, Wang Q, Xing L, Wu C. Transport of miR-766-3p to A549 cells by plasma-derived exosomes and its effect on intracellular survival of Mycobacterium tuberculosis by regulating NRAMP1 expression in A549 cells. Microbiol Res 2025; 290:127943. [PMID: 39504604 DOI: 10.1016/j.micres.2024.127943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024]
Abstract
Exosomal microRNAs (miRNAs) in circulation were recognized as potential biomarkers for the diagnosis of multiple diseases. However, its potential as a diagnostic hallmark for tuberculosis (TB) has yet to be explored. Here, we comprehensively analyze miRNA profiles in exosomes derived from the plasma of active TB patients and healthy persons to evaluate its efficacy in TB diagnosis. Small-RNA transcriptomic profiling analysis identified a total of 14 differentially expressed miRNAs (DEmiRNAs), among which the diagnostic potential of exosomal miR-766-3p, miR-376c-3p, miR-1283, and miR-125a-5p was evident from their respective areas under the ROC curve, which were 0.8963, 0.8313, 0.8097, and 0.8050, respectively. The bioinformatics analysis and Luciferase reporter assays confirmed that the 3'-untranslated region of natural resistance-associated macrophage protein 1 (NRAMP1) mRNA was targeted by miR-766-3p. The exosomes could be internalized by the A549 cells in co-culturing experiments. Furthermore, both increased miR-766-3p and decreased NRAMP1 expression were observed in Mtb-infected A549 cells. MiR-766-3p overexpression reduced the NRAMP1 levels, but increased intracellular Mtb, suggesting that miR-766-3p may facilitate Mtb survival by targeting NRAMP1. Moreover, miR-766-3p-transfected cells exhibited increased apoptosis and reduced proliferation following Mtb infection. Taken together, circulating exosomal miR-766-3p, miR-1283, miR-125a-5p, and miR-376c-3p may serve as candidate hallmarks for TB diagnosis where the presence of miR-766-3p seems associated with the vulnerability to Mtb infection in humans and could be a new molecular target for therapeutic intervention of TB.
Collapse
Affiliation(s)
- Xiaogang Cui
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Fengfeng Zhang
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Hangting Meng
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Tianqi Yuan
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Miao Li
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Dan Yuan
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Xiaoxia Fan
- Taiyuan Fourth People's Hospital, Taiyuan 030053, China
| | - Xiaohui Jia
- Taiyuan Fourth People's Hospital, Taiyuan 030053, China
| | - Quanhong Wang
- Taiyuan Fourth People's Hospital, Taiyuan 030053, China.
| | - Li Xing
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
2
|
Yu H, Jia X, Niu H, Xie L, Du B, Pang Y, Xu X, Li J. miR-23a regulates the disease resistance of grass carp (Ctenopharyngodon idella) by targeting autophagy-related genes, ATG3 and ATG12. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108812. [PMID: 37172750 DOI: 10.1016/j.fsi.2023.108812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
miRNAs play a key role in the autophagy process. In recent years, the emerging role of autophagy in regulating immune response has attracted increasing attention. Since then, specific miRNAs have also been found to play an immune function indirectly by modulating autophagy as well. This study proved that miR-23a could downregulate grass carp autophagy simultaneously by targeting ATG3 and ATG12. Besides, both ATG3 and ATG12 mRNA levels were increased in kidney and intestine after being infected by Aeromonas hydrophila; yet almost at the same time, miR-23a was decreased. Besides, we illustrated that grass carp miR-23a could affect antimicrobial capacity, proliferation, migration, and antiapoptotic abilities of CIK cells. These results indicate that miR-23a was related to grass carp autophagy and plays an important role in antimicrobial immunity through targeting ATG3 and ATG12, which provides important information on autophagy-related miRNAs about the defense and immune mechanisms against pathogens in teleost.
Collapse
Affiliation(s)
- Hongyan Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xuewen Jia
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Huiqin Niu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lingli Xie
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Biao Du
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yifang Pang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
3
|
Qin W, Saris A, van ’t Veer C, Roelofs JJTH, Scicluna BP, de Vos AF, van der Poll T. Myeloid miR-155 plays a limited role in antibacterial defense during Klebsiella-derived pneumosepsis and is dispensable for lipopolysaccharide- or Klebsiella-induced inflammation in mice. Pathog Dis 2023; 81:ftad031. [PMID: 37858304 PMCID: PMC10636497 DOI: 10.1093/femspd/ftad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/02/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Abstract
MicroRNA-155 (miR-155) plays a crucial role in regulating host inflammatory responses during bacterial infection. Previous studies have shown that constitutive miR-155 deficiency alleviates inflammation while having varying effects in different bacterial infection models. However, whether miR-155 in myeloid cells is involved in the regulation of inflammatory and antibacterial responses is largely elusive. Mice with myeloid cell specific miR-155 deficiency were generated to study the in vitro response of bone marrow-derived macrophages (BMDMs), alveolar macrophages (AMs) and peritoneal macrophages (PMs) to lipopolysaccharide (LPS), and the in vivo response after intranasal or intraperitoneal challenge with LPS or infection with Klebsiella (K.) pneumoniae via the airways. MiR-155-deficient macrophages released less inflammatory cytokines than control macrophages upon stimulation with LPS in vitro. However, the in vivo inflammatory cytokine response to LPS or K. pneumoniae was not affected by myeloid miR-155 deficiency. Moreover, bacterial outgrowth in the lungs was not altered in myeloid miR-155-deficient mice, but Klebsiella loads in the liver of these mice were significantly higher than in control mice. These data argue against a major role for myeloid miR-155 in host inflammatory responses during LPS-induced inflammation and K. pneumoniae-induced pneumosepsis but suggest that myeloid miR-155 contributes to host defense against Klebsiella infection in the liver.
Collapse
Affiliation(s)
- Wanhai Qin
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Anno Saris
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Cornelis van ’t Veer
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei Hospital, University of Malta, MSD 2080, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080, Msida, Malta
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
MiR-181a-5p Delivered by Adipose-Derived Mesenchymal Stem Cell Exosomes Alleviates Klebsiella pneumonia Infection-Induced Lung Injury by Targeting STAT3 Signaling. Mediators Inflamm 2022; 2022:5188895. [PMID: 36570020 PMCID: PMC9771653 DOI: 10.1155/2022/5188895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 12/23/2022] Open
Abstract
Background Klebsiella pneumoniae (K. pneu) is a leading cause of gram-negative pneumonia, which requires effective treatment. Adipose-derived mesenchymal stem cell- (ADSC-) derived exosomal microRNAs (miRNAs) have presented the inhibitory effect of multiple diseases. However, the function of ADSC-derived exosomal miRNAs in K. pneu remains unclear. Aim In this study, we aimed to explore the effect of ADSC-derived exosomal miR-181-5p on K. pneu infection-induced lung injury. Methods C57BL/6 mouse model was established by infection of K. pneu. ADSCs and exosomes were extracted and characterized in vitro. The translocation of ADSC-derived exosomes to bone marrow-derived macrophages (BMDMs) was detected. The level of miR-181a-5p was detected by real-time PCR. The secretion of inflammatory factors was determined by ELISA. The interaction between miR-181a-5p with STAT3 was identified. Results We successfully isolated the ADSCs that express positive markers CD90 and CD105 rather than CD31 and CD45. The exosomal miR-181a-5p secreted by ADSCs were internalized by BMDM and K. pneu infection stimulated the miR-181a-5p level in bronchoalveolar lavage fluid (BALF) and BMDM. ADSC-derived exosomal miR-181a-5p repressed pulmonary outgrowth and dissemination of K. pneu infection in mice, repressed cellular infiltration in lung tissue, and attenuated the inflammasome activity and the levels of IL-1β and IL-18 in the lung. Mechanically, miR-181a-5p was able to inhibit STAT3 expression at posttranscriptional levels and repressed Nlrp3 and Asc expression in BMDM. Conclusion Consequently, we concluded that ADSC-derived exosomal miR-181a-5p alleviated Klebsiella pneumonia infection-induced lung injury by targeting STAT3 signaling. ADSC-derived exosomal miR-181a-5p may serve as a potential candidate for the treatment of Klebsiella pneumonia infection-induced lung injury.
Collapse
|
5
|
do Nascimento Soares T, Silva Valadares V, Cardoso Amorim G, de Mattos Lacerda de Carvalho M, Berrêdo‐Pinho M, Ceneviva Lacerda Almeida F, Mascarello Bisch P, Batista PR, Miranda Santos Lery L. The C‐terminal extension of
VgrG4
from
Klebsiella pneumoniae
remodels host cell microfilaments. Proteins 2022; 90:1655-1668. [PMID: 35430767 PMCID: PMC9542434 DOI: 10.1002/prot.26344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen, which concerns public health systems worldwide, as multiple antibiotic‐resistant strains are frequent. One of its pathogenicity factors is the Type VI Secretion System (T6SS), a macromolecular complex assembled through the bacterial membranes. T6SS injects effector proteins inside target cells. Such effectors confer competitive advantages or modulate the target cell signaling and metabolism to favor bacterial infection. The VgrG protein is a T6SS core component. It may present a variable C‐terminal domain carrying an additional effector function. Kp52.145 genome encodes three VgrG proteins, one of them with a C‐terminal extension (VgrG4‐CTD). VgrG4‐CTD is 138 amino acids long, does not contain domains of known function, but is conserved in some Klebsiella, and non‐Klebsiella species. To get insights into its function, recombinant VgrG4‐CTD was used in pulldown experiments to capture ligands from macrophages and lung epithelial cells. A total of 254 proteins were identified: most of them are ribosomal proteins. Cytoskeleton‐associated and proteins involved in the phagosome maturation pathway were also identified. We further showed that VgrG4‐CTD binds actin and induces actin remodeling in macrophages. This study presents novel clues on the role of K. pneumoniae T6SS in pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Marcia Berrêdo‐Pinho
- Laboratório de Microbiologia Celular Instituto Oswaldo Cruz Rio de Janeiro Brazil
| | - Fábio Ceneviva Lacerda Almeida
- Centro Nacional de Ressonância Magnética Nuclear Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Paulo Mascarello Bisch
- Laboratório de Física‐Biológica Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | | | |
Collapse
|
6
|
Zhang F, Zhou Y, Ding J. The current landscape of microRNAs (miRNAs) in bacterial pneumonia: opportunities and challenges. Cell Mol Biol Lett 2022; 27:70. [PMID: 35986232 PMCID: PMC9392286 DOI: 10.1186/s11658-022-00368-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022] Open
Abstract
MicroRNAs (miRNAs), which were initially discovered in Caenorhabditis elegans, can regulate gene expression by recognizing cognate sequences and interfering with the transcriptional or translational machinery. The application of bioinformatics tools for structural analysis and target prediction has largely driven the investigation of certain miRNAs. Notably, it has been found that certain miRNAs which are widely involved in the inflammatory response and immune regulation are closely associated with the occurrence, development, and outcome of bacterial pneumonia. It has been shown that certain miRNA techniques can be used to identify related targets and explore associated signal transduction pathways. This enhances the understanding of bacterial pneumonia, notably for "refractory" or drug-resistant bacterial pneumonia. Although these miRNA-based methods may provide a basis for the clinical diagnosis and treatment of this disease, they still face various challenges, such as low sensitivity, poor specificity, low silencing efficiency, off-target effects, and toxic reactions. The opportunities and challenges of these methods have been completely reviewed, notably in bacterial pneumonia. With the continuous improvement of the current technology, the miRNA-based methods may surmount the aforementioned limitations, providing promising support for the clinical diagnosis and treatment of "refractory" or drug-resistant bacterial pneumonia.
Collapse
Affiliation(s)
- Fan Zhang
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yunxin Zhou
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
7
|
Du Y, Guo H, Guo L, Miao J, Ren H, Liu K, Ren L, He J, Wang X, Chen J, Li J, Wang Y, Wang J, Huang N. The regulatory effect of acetylation of HMGN2 and H3K27 on pyocyanin-induced autophagy in macrophages by affecting Ulk1 transcription. J Cell Mol Med 2021; 25:7524-7537. [PMID: 34278675 PMCID: PMC8335688 DOI: 10.1111/jcmm.16788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/05/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022] Open
Abstract
Pyocyanin (PYO) is a major virulence factor secreted by Pseudomonas aeruginosa, and autophagy is a crucial homeostatic mechanism for the interaction between the pathogens and the host. It remains unknown whether PYO leads to autophagy in macrophages by regulating histone acetylation. The high mobility group nucleosomal binding domain 2 (HMGN2) has been reported to regulate the PYO‐induced autophagy and oxidative stress in the epithelial cells; however, the underlying molecular mechanism has not been fully elucidated. In this study, PYO was found to induce autophagy in macrophages, and the mechanism might be correlated with the up‐regulation of HMGN2 acetylation (HMGN2ac) and the down‐regulation of H3K27 acetylation (H3K27ac) by modulation of the activities of acetyltransferases and deacetylases. Moreover, we further demonstrated that the up‐regulated HMGN2ac enhances its recruitment to the Ulk1 promoter, while the down‐regulation of H3K27ac reduces its recruitment to the Ulk1 promoter, thereby promoting or inhibiting the transcription of Ulk1. In conclusion, HMGN2ac and H3K27ac play regulatory roles in the PYO‐induced autophagy in macrophages.
Collapse
Affiliation(s)
- Yu Du
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.,Department of Anesthesiology, Nanchong Central Hospital, Second Clinical Medical Institution, North Sichuan Medical College, Nanchong, China
| | - Hongjun Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijuan Guo
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Junming Miao
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hongyu Ren
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Keyun Liu
- Department of Physiology, School of Medicine, Hubei University for Nationalities, Enshi, China
| | - Laibin Ren
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jinchen He
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoying Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Junli Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingyu Li
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ji Wang
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ning Huang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
MicroRNA Interference in Hepatic Host-Pathogen Interactions. Int J Mol Sci 2021; 22:ijms22073554. [PMID: 33808062 PMCID: PMC8036276 DOI: 10.3390/ijms22073554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022] Open
Abstract
The liver is well recognized as a non-immunological visceral organ that is involved in various metabolic activities, nutrient storage, and detoxification. Recently, many studies have demonstrated that resident immune cells in the liver drive various immunological reactions by means of several molecular modulators. Understanding the mechanistic details of interactions between hepatic host immune cells, including Kupffer cells and lymphocytes, and various hepatic pathogens, especially viruses, bacteria, and parasites, is necessary. MicroRNAs (miRNAs), over 2600 of which have been discovered, are small, endogenous, interfering, noncoding RNAs that are predicted to regulate more than 15,000 genes by degrading specific messenger RNAs. Several recent studies have demonstrated that some miRNAs are associated with the immune response to pathogens in the liver. However, the details of the underlying mechanisms of miRNA interference in hepatic host-pathogen interactions still remain elusive. In this review, we summarize the relationship between the immunological interactions of various pathogens and hepatic resident immune cells, as well as the role of miRNAs in the maintenance of liver immunity against pathogens.
Collapse
|
9
|
Hou J, Yan D, Liu Y, Huang P, Cui H. The Roles of Integrin α5β1 in Human Cancer. Onco Targets Ther 2020; 13:13329-13344. [PMID: 33408483 PMCID: PMC7781020 DOI: 10.2147/ott.s273803] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cell adhesion to the extracellular matrix has important roles in tissue integrity and human health. Integrins are heterodimeric cell surface receptors that are composed by two non-covalently linked alpha and beta subunits that mainly participate in the interaction of cell-cell adhesion and cell-extracellular matrix and regulate cell motility, adhesion, differentiation, migration, proliferation, etc. In mammals, there have been eighteen α subunits and 8 β subunits and so far 24 distinct types of αβ integrin heterodimers have been identified in humans. Integrin α5β1, also known as the fibronectin receptor, is a heterodimer with α5 and β1 subunits and has emerged as an essential mediator in many human carcinomas. Integrin α5β1 alteration is closely linked to the progression of several types of human cancers, including cell proliferation, angiogenesis, tumor metastasis, and cancerogenesis. In this review, we will introduce the functions of integrin α5β1 in cancer progression and also explore its regulatory mechanisms. Additionally, the potential clinical applications as a target for cancer imaging and therapy are discussed. Collectively, the information reviewed here may increase the understanding of integrin α5β1 as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Du Yan
- Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400716, People's Republic of China
| | - Yudong Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Pan Huang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| |
Collapse
|
10
|
Chen YC, Lee CP, Hsiao CC, Hsu PY, Wang TY, Wu CC, Chao TY, Leung SY, Chang YP, Lin MC. MicroRNA-23a-3p Down-Regulation in Active Pulmonary Tuberculosis Patients with High Bacterial Burden Inhibits Mononuclear Cell Function and Phagocytosis through TLR4/TNF-α/TGF-β1/IL-10 Signaling via Targeting IRF1/SP1. Int J Mol Sci 2020; 21:E8587. [PMID: 33202583 PMCID: PMC7697976 DOI: 10.3390/ijms21228587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this study is to explore the role of microRNAs (miR)-21/23a/146a/150/155 targeting the toll-like receptor pathway in active tuberculosis (TB) disease and latent TB infection (LTBI). Gene expression levels of the five miRs and predicted target genes were assessed in peripheral blood mononuclear cells from 46 patients with active pulmonary TB, 15 subjects with LTBI, and 17 non-infected healthy subjects (NIHS). THP-1 cell lines were transfected with miR-23a-3p mimics under stimuli with Mycobacterium TB-specific antigens. Both miR-155-5p and miR-150-5p gene expressions were decreased in the active TB group versus the NIHS group. Both miR-23a-3p and miR-146a-5p gene expressions were decreased in active TB patients with high bacterial burden versus those with low bacterial burden or control group (LTBI + NIHS). TLR2, TLR4, and interleukin (IL)10 gene expressions were all increased in active TB versus NIHS group. MiR-23a-3p mimic transfection reversed ESAT6-induced reduction of reactive oxygen species generation, and augmented ESAT6-induced late apoptosis and phagocytosis, in association with down-regulations of the predicted target genes, including tumor necrosis factor (TNF)-α, TLR4, TLR2, IL6, IL10, Notch1, IL6R, BCL2, TGF-β1, SP1, and IRF1. In conclusion, the down-regulation of miR-23a-3p in active TB patients with high bacterial burden inhibited mononuclear cell function and phagocytosis through TLR4/TNF-α/TGF-β1/IL-10 signaling via targeting IRF1/SP1.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
- Department of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chiu Ping Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
| | - Chang-Chun Hsiao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Ting-Ya Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
| | - Tung-Ying Chao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
| | - Sum-Yee Leung
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
| | - Yu-Ping Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
| |
Collapse
|
11
|
Geng F, Liu Z, Chen X, Chen H, Liu Y, Yang J, Zheng M, Yang L, Teng Y. High mobility group nucleosomal binding 2 reduces integrin α5/β1-mediated adhesion of Klebsiella pneumoniae on human pulmonary epithelial cells via nuclear factor I. Microbiol Immunol 2020; 64:825-834. [PMID: 33034909 DOI: 10.1111/1348-0421.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/12/2020] [Accepted: 10/07/2020] [Indexed: 11/28/2022]
Abstract
It has been reported that high mobility group nucleosomal binding domain 2 (HMGN2) is a nucleus-related protein that regulates gene transcription and plays a critical role in bacterial clearance. An elevated level of HMGN2 reduced integrin α5/β1 expression of human pulmonary epithelial A549 cells was demonstrated during Klebsiella pneumoniae infection, thus weakening bacterial adhesion and invasion. However, the mechanism by which HMGN2 regulates integrin expression remains unclear. This study found that a transcription factor-nuclear factor I (NFI), which serves as the potential target of HMGN2 regulated integrin expression. The results showed that HMGN2 was able to promote NFIA and NFIB expression by increasing H3K27 acetylation of NFIA/B promoter regions. The integrin α5/β1 expression was significantly enhanced by knockdown of NFIA/B via a siRNA approach. Meanwhile, NFIA/B silence could also compromise the inhibition effect of HMGN2 on the integrin α5/β1 expression. Mechanistically, it was demonstrated that HMGN2 facilitated the recruitment of NFI on the promoter regions of integrin α5/β1 according to the chromatin immunoprecipitation assay. In addition, it was further demonstrated that the knockdown of NFIA/B induced more adhesion of Klebsiella pneumoniae on pulmonary epithelial A549 cells, which could be reversed by the application of an integrin inhibitor RGD. The results revealed a regulatory role of HMGN2 on the transcription level of integrin α5/β1, indicating a potential treatment strategy against Klebsiella pneumoniae-induced infectious lung diseases.
Collapse
Affiliation(s)
- Fan Geng
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zhihao Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xingmin Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Huan Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yanzhuo Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jing Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Min Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lu Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yan Teng
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| |
Collapse
|
12
|
Nguyen GT, Shaban L, Mack M, Swanson KD, Bunnell SC, Sykes DB, Mecsas J. SKAP2 is required for defense against K. pneumoniae infection and neutrophil respiratory burst. eLife 2020; 9:56656. [PMID: 32352382 PMCID: PMC7250567 DOI: 10.7554/elife.56656] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Klebsiella pneumoniae is a respiratory, blood, liver, and bladder pathogen of significant clinical concern. We show that the adaptor protein, SKAP2, is required for protection against K. pneumoniae (ATCC 43816) pulmonary infections. Skap2-/- mice had 100-fold higher bacterial burden when compared to wild-type and burden was controlled by SKAP2 expression in innate immune cells. Skap2-/- neutrophils and monocytes were present in infected lungs, and the neutrophils degranulated normally in response to K. pneumoniae infection in mice; however, K. pneumoniae-stimulated reactive oxygen species (ROS) production in vitro was abolished. K. pneumoniae-induced neutrophil ROS response required the activity of SFKs, Syk, Btk, PLCγ2, and PKC. The loss of SKAP2 significantly hindered the K. pneumoniae-induced phosphorylation of SFKs, Syk, and Pyk2 implicating SKAP2 as proximal to their activation in pathogen-signaling pathways. In conclusion, SKAP2-dependent signaling in neutrophils is essential for K. pneumoniae-activated ROS production and for promoting bacterial clearance during infection. Klebsiella pneumoniae is a type of bacteria that can cause life-threatening infections – including pneumonia, blood stream infections, and urinary tract infections – in hospitalized patients. These infections can be difficult to treat because some K. pneumoniae are resistant to antibiotics. The bacteria are normally found in the human intestine, and they do not usually cause infections in healthy people. This implies that healthy people’s immune systems are better able to fend off K. pneumoniae infections; learning how could help scientists develop new ways to treat or prevent infections in hospitalized patients. In healthy people, a type of immune cell called neutrophils are the first line of defense against bacterial infections. Several different proteins are needed to activate neutrophils, including a protein called SKAP2. But the role of this protein in fighting K. pneumoniae infections is not clear. To find out what role SKAP2 plays in the defense against pneumonia caused by K. pneumoniae, Nguyen et al. compared infections in mice with and without the protein. Mice lacking SKAP2 in their white blood cells had more bacteria in their lungs than normal mice. The experiments showed that neutrophils from mice with SKAP2 produce a burst of chemicals called “reactive oxygen species”, which can kill bacteria. But neutrophils without the protein do not. Without SKAP2, several proteins that help produce reactive oxygen species do not work. Understanding the role of SKAP2 in fighting infections may help scientists better understand the immune system. This could help clinicians to treat conditions that cause it to be hyperactive or ineffective. More studies are needed to determine if SKAP2 works the same way in human neutrophils and if it works against all types of K. pneumoniae. If it does, then scientists might be able use this information to develop therapies that help the immune system fight infections.
Collapse
Affiliation(s)
- Giang T Nguyen
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States
| | - Lamyaa Shaban
- Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Boston, United States
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Kenneth D Swanson
- Brain Tumor Center and Neuro-Oncology Unit, Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, United States
| | - Stephen C Bunnell
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Department of Immunology, School of Medicine, Tufts University, Boston, United States
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
| | - Joan Mecsas
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, United States
| |
Collapse
|
13
|
Wang X, Chen S, Ren H, Chen J, Li J, Wang Y, Hua Y, Wang X, Huang N. HMGN2 regulates non-tuberculous mycobacteria survival via modulation of M1 macrophage polarization. J Cell Mol Med 2019; 23:7985-7998. [PMID: 31596045 PMCID: PMC6850944 DOI: 10.1111/jcmm.14599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 01/02/2023] Open
Abstract
Non‐tuberculous mycobacteria (NTM), also known as an environmental and atypical mycobacteria, can cause the chronic pulmonary infectious diseases. Macrophages have been suggested as the main host cell to initiate the innate immune responses to NTM infection. However, the molecular mechanism to regulate the antimicrobial immune responses to NTM is still largely unknown. Current study showed that the NTM clinical groups, Mycobacterium abscessus and Mycobacterium smegmatis, significantly induced the M1 macrophage polarization with the characteristic production of nitric oxide (NO) and marker gene expression of iNOS, IFNγ, TNF‐α, IL1‐β and IL‐6. Interestingly, a non‐histone nuclear protein, HMGN2 (high‐mobility group N2), was found to be spontaneously induced during NTM‐activated M1 macrophage polarization. Functional studies revealed that HMGN2 deficiency in NTM‐infected macrophage promotes the expression of M1 markers and the production of NO via the enhanced activation of NF‐κB and MAPK signalling. Further studies exhibited that HMGN2 knock‐down also enhanced IFNγ‐induced M1 macrophage polarization. Finally, we observed that silencing HMGN2 affected the survival of NTM in macrophage, which might largely relevant to enhanced macrophage polarization into M1 phenotype under the NTM infection. Collectively, current studies thus suggested a novel function of HMGN2 in regulating the anti‐non‐tuberculous mycobacteria innate immunity of macrophage.
Collapse
Affiliation(s)
- Xinyuan Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.,Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Shanze Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hongyu Ren
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Junli Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingyu Li
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuanqi Hua
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoying Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ning Huang
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
High-mobility group protein N2 induces autophagy by activating AMPK/ULK1 pathway and thereby boosts UPEC proliferation within bladder epithelial cells. Biochem Biophys Res Commun 2019; 513:193-200. [PMID: 30952427 DOI: 10.1016/j.bbrc.2019.03.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/11/2019] [Indexed: 02/05/2023]
Abstract
Urinary tract infection is one of the most common bacterial infections which is mainly caused by Escherichia coli (UPEC). Autophagy plays a key role in immune response to eliminate invading pathogens. Exploring the effect of autophagy on UPEC infection and the molecular mechanisms will be benefit for the treatment of urinary tract infection. High-mobility group protein N2 (HMGN2), a highly conserved nuclear protein and an antibacterial peptide, has been associated with bacterial infection induced immune response; however, whether this function is due to the regulation of autophagy remains unclear. In this study, we demonstrate for the first time that HMGN2 is upregulated in UPEC infection of bladder epithelial cell line 5637 (BEC 5637). Furthermore, HMGN2 enhances autophagy in BEC 5637 via activation of AMPK and ULK1, whereas UPEC suppresses autophagy. In addition, the enhanced autophagy activity by HMGN2 overexpression or rapamycin boosts the proliferation of UPEC J96 in BEC 5637. In summary, our data indicate that HMGN2 activates autophagy via AMPK/ULK1 pathway which can be utilized by UPEC J96 for their proliferation within bladder epithelial cells.
Collapse
|
15
|
Knolle MD, Chin SB, Rana BMJ, Englezakis A, Nakagawa R, Fallon PG, Git A, McKenzie ANJ. MicroRNA-155 Protects Group 2 Innate Lymphoid Cells From Apoptosis to Promote Type-2 Immunity. Front Immunol 2018; 9:2232. [PMID: 30356668 PMCID: PMC6189280 DOI: 10.3389/fimmu.2018.02232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/07/2018] [Indexed: 12/27/2022] Open
Abstract
Group-2 innate lymphoid cells (ILC2) play critical roles in the initiation and maintenance of type-2 immune responses, predominantly through their production of the type-2 cytokines IL-5, IL-9, and IL-13. ILC2 are essential for the efficient elimination of helminth parasites, but also contribute to the detrimental type-2 immune responses that underlie diseases such as asthma and allergy. While several transcription factors have been identified that regulate the development and function of ILC2, less is known about the post-transcriptional mechanisms that regulate these processes. We identified micro-RNAs (miRNAs) that are co-ordinately regulated in ILC2 from mice exposed to two different stimuli, namely IL-33 “alarmin” administration or Nippostrongylus brasiliensis parasitic worm infection. miR-155 is upregulated in ILC2 in response to both stimuli and miR-155−/− mice had impaired IL-33-driven ILC2 responses. Using mixed bone marrow chimeras, we demonstrate that this deficit is intrinsic to ILC2 and that miR-155 protects ILC2 from apoptosis, while having little impact on ILC2 proliferation or cytokine production. These data reveal a subset of miRNAs that are regulated upon ILC2 activation and establish a specific role for miR-155 in regulating ILC2 survival following activation.
Collapse
Affiliation(s)
- Martin D Knolle
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Shau Bing Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Batika M J Rana
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Rinako Nakagawa
- Immunity and Cancer Laboratory, Francis Crick Institute, London, United Kingdom
| | - Padraic G Fallon
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Anna Git
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Andrew N J McKenzie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
16
|
Drury RE, O'Connor D, Pollard AJ. The Clinical Application of MicroRNAs in Infectious Disease. Front Immunol 2017; 8:1182. [PMID: 28993774 PMCID: PMC5622146 DOI: 10.3389/fimmu.2017.01182] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are short single-stranded non-coding RNA sequences that posttranscriptionally regulate up to 60% of protein encoding genes. Evidence is emerging that miRNAs are key mediators of the host response to infection, predominantly by regulating proteins involved in innate and adaptive immune pathways. miRNAs can govern the cellular tropism of some viruses, are implicated in the resistance of some individuals to infections like HIV, and are associated with impaired vaccine response in older people. Not surprisingly, pathogens have evolved ways to undermine the effects of miRNAs on immunity. Recognition of this has led to new experimental treatments, RG-101 and Miravirsen—hepatitis C treatments which target host miRNA. miRNAs are being investigated as novel infection biomarkers, and they are being used to design attenuated vaccines, e.g., against Dengue virus. This comprehensive review synthesizes current knowledge of miRNA in host response to infection with emphasis on potential clinical applications, along with an evaluation of the challenges still to be overcome.
Collapse
Affiliation(s)
- Ruth E Drury
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| | - Daniel O'Connor
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
17
|
MicroRNA-155 regulates casein kinase 1 gamma 2: a potential pathogenetic role in chronic lymphocytic leukemia. Blood Cancer J 2017; 7:e606. [PMID: 28885613 PMCID: PMC5709749 DOI: 10.1038/bcj.2017.80] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
18
|
Liu K, Wang X, Sha K, Zhang F, Xiong F, Wang X, Chen J, Li J, Churilov LP, Chen S, Wang Y, Huang N. Nuclear protein HMGN2 attenuates pyocyanin-induced oxidative stress via Nrf2 signaling and inhibits Pseudomonas aeruginosa internalization in A549 cells. Free Radic Biol Med 2017; 108:404-417. [PMID: 28408162 DOI: 10.1016/j.freeradbiomed.2017.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/17/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Abstract
Pyocyanin (PCN, 1-hydroxy-5-methyl-phenazine) is one of the most essential virulence factors of Pseudomonas aeruginosa (PA) to cause various cytotoxic effects in long-term lung infectious diseases, however the early effect of this bacterial toxin during PA infection and subsequent autonomous immune response in host cells have not been fully understood yet. Our results display that early onset of PCN stimulates Pseudomonas aeruginosa PAO1 adhesion and invasion in A549 cells via ROS production. Non-histone nuclear protein HMGN2 is found to be involved in the regulation of PCN-induced oxidative stress by promoting intracellular ROS clearance. Mechanistically, HMGN2 facilitates nuclear translocation of transcription factor Nrf2 upon PCN stimulation and in turn elevates antioxidant gene expression. We also found that actin cytoskeleton dynamics is targeted by ROS, which is to be exploited by PAO1 for host cell internalization. HMGN2 regulates actin skeleton rearrangement in both PCN-dependent and independent manners and specifically attenuates PCN-mediated PAO1 infection via ROS elimination. These results uncover a novel link between nuclear protein HMGN2 and Nrf2-mediated cellular redox circumstance and suggest roles of HMGN2 in autonomous immune response to PA infection.
Collapse
Affiliation(s)
- Keyun Liu
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China; Department of Physiology, School of Medicine, Hubei University for Nationalities, Enshi 445000, China
| | - Xinyuan Wang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Kaihui Sha
- School of Nursing, Binzhou Medical University, Binzhou 256600, China
| | - Fumei Zhang
- Experimental Center, Northwest University for Nationalities, Lanzhou 730030, China
| | - Feng Xiong
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoying Wang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Junli Chen
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingyu Li
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Leonid P Churilov
- Department of Pathology, Faculty of Medicine, Saint Petersburg State University, Saint Petersburg 199034, Russia; Saint Petersburg State Research Institute of Phthisiopulmonology, Saint Petersburg 191036, Russia
| | - Shanze Chen
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yi Wang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Ning Huang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
19
|
Cohen TS. Role of MicroRNA in the Lung's Innate Immune Response. J Innate Immun 2016; 9:243-249. [PMID: 27915347 DOI: 10.1159/000452669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
The immune response to respiratory pathogens must be robust enough to defend the host yet properly constrained such that inflammation-induced tissue damage is avoided. MicroRNA (miRNA) are small noncoding RNA which posttranscriptionally influence gene expression. In this review, we discuss recent experimental evidence of the contribution of miRNA to the lung's response to bacterial and viral pathogens.
Collapse
Affiliation(s)
- Taylor S Cohen
- Department of Infectious Disease, Medimmune, Gaithersburg, MD, USA
| |
Collapse
|