1
|
Kumar A, Choudhari A, Gupta AK, Kumar A. Rare-Earth based magnesium alloys as a potential biomaterial for the future. JOURNAL OF MAGNESIUM AND ALLOYS 2024; 12:3841-3897. [DOI: 10.1016/j.jma.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Luo Y, Zheng Y, Chen Z, Mo M, Xie J, Zhou X, Wu Y, Yang Q, Zheng M, Hu X, Chen L, Lan Z. Proangiogenic effect and underlying mechanism of holmium oxide nanoparticles: a new biomaterial for tissue engineering. J Nanobiotechnology 2024; 22:357. [PMID: 38902755 PMCID: PMC11191282 DOI: 10.1186/s12951-024-02642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Early angiogenesis provides nutrient supply for bone tissue repair, and insufficient angiogenesis will lead tissue engineering failure. Lanthanide metal nanoparticles (LM NPs) are the preferred materials for tissue engineering and can effectively promote angiogenesis. Holmium oxide nanoparticles (HNPs) are LM NPs with the function of bone tissue "tracking" labelling. Preliminary studies have shown that HNPs has potential of promote angiogenesis, but the specific role and mechanism remain unclear. This limits the biological application of HNPs. RESULTS In this study, we confirmed that HNPs promoted early vessel formation, especially that of H-type vessels in vivo, thereby accelerating bone tissue repair. Moreover, HNPs promoted angiogenesis by increasing cell migration, which was mediated by filopodia extension in vitro. At the molecular level, HNPs interact with the membrane protein EphrinB2 in human umbilical vein endothelial cells (HUVECs), and phosphorylated EphrinB2 can bind and activate VAV2, which is an activator of the filopodia regulatory protein CDC42. When these three molecules were inhibited separately, angiogenesis was reduced. CONCLUSION Overall, our study confirmed that HNPs increased cell migration to promote angiogenesis for the first time, which is beneficial for bone repair. The EphrinB2/VAV2/CDC42 signalling pathway regulates cell migration, which is an important target of angiogenesis. Thus, HNPs are a new candidate biomaterial for tissue engineering, providing new insights into their biological application.
Collapse
Affiliation(s)
- Yuxiao Luo
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Yifan Zheng
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Ziwei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Minhua Mo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jiling Xie
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaohe Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yupeng Wu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Qiyuan Yang
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Manjia Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Hu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Liangjiao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| | - Zedong Lan
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, 518001, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Sahoo SN, Mandal S, Khan R, Dutta S, Pal S, Ghosh D, Nandi SK, Roy M. Synergistic Effects of Cerium and Hot Forging on Biodegradation, Antibacterial Properties, and In Vivo Biocompatibility of Microalloyed Mg-Zr-Sr Alloys. ACS Biomater Sci Eng 2023; 9:2495-2513. [PMID: 37121911 DOI: 10.1021/acsbiomaterials.3c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Biodegradable magnesium (Mg)-based alloys are potential candidates for orthopedic applications. In the present study, we have discussed the effect of cerium (Ce) addition and hot forging on mechanical properties, in vitro-in vivo corrosion, antibacterial activity, and cytocompatibility of microalloyed Mg-0.2Zr-0.1Sr-xCe (x = 0 [MZS], 0.5 wt % [MZS-Ce]) alloys. Addition of 0.5 wt % Ce to forged MZS alloys leads to strengthening of the basal texture as well as formation of a higher fraction of dynamic recrystallized (DRX) grains. Hot forging and addition of cerium to the MZS alloy improve both the yield strength and ultimate tensile strength of the forged MZS-Ce alloy by 1.39 and 1.21 times, respectively, compared to those of the forged MZS alloy. The potentiodynamic polarization test in Hank's solution indicates that the corrosion resistance of the forged MZS alloy improves with addition of 0.5 wt % Ce. Uniform distribution of Mg12Ce precipitates, a higher DRX fraction, strengthened texture, and formation of a compact CeO2 passive layer result in 1.68 times reduction in the immersion corrosion rate of the forged MZS-Ce alloy compared to that of the forged MZS alloy. Addition of Ce to the MZS alloy shows excellent antibacterial activity. The forged MZS-Ce alloy exhibited the highest antibacterial efficacy (76.73%). All the alloys show favorable cytocompatibility and alkaline phosphatase (ALP) activity with MC3T3-E1 cells. The improved corrosion resistance of the forged MZS-Ce alloy (95%) leads to higher cell viability compared to that of the forged MZS alloy (85%). In vivo biodegradation and the ability to generate new bones were analyzed by implanting cylindrical samples in the rabbit femur. Histological analysis showed no adverse effects around the implants. Gradual degradation of the implants and higher new bone formation around the forged MZS-Ce sample were confirmed by micro-CT analysis. Bone regeneration around the implants (58.21%) was validated by flurochrome labeling. After 60 days, the forged MZS-Ce alloy showed controlled corrosion and better bone-implant integration, presenting it as a potential candidate for internal fracture fixation materials.
Collapse
Affiliation(s)
- Satyabrata Nigamananda Sahoo
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology─Kharagpur, Kharagpur 721302, India
| | - Santanu Mandal
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology─Kharagpur, Kharagpur 721302, India
| | - Rabiul Khan
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Sourav Dutta
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Surasree Pal
- Department of Biotechnology, Indian Institute of Technology─Kharagpur, Kharagpur 721302, India
| | - Debaki Ghosh
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Mangal Roy
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology─Kharagpur, Kharagpur 721302, India
| |
Collapse
|
4
|
Kopp A, Fischer H, Soares AP, Schmidt-Bleek K, Leber C, Kreiker H, Duda G, Kröger N, van Gaalen K, Hanken H, Jung O, Smeets R, Heiland M, Rendenbach C. Long-term in vivo observations show biocompatibility and performance of ZX00 magnesium screws surface-modified by plasma-electrolytic oxidation in Göttingen miniature pigs. Acta Biomater 2023; 157:720-733. [PMID: 36460289 DOI: 10.1016/j.actbio.2022.11.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
Bioabsorbable magnesium implants for orthopedic fixation of bone have recently become available for different fields of indication. While general questions of biocompatibility have been answered, tailoring suitable degradation kinetics for specific applications as well as long-term tissue integration remain the focus of current research. The aim of this study was the evaluation of the long-term degradation behavior and osseointegration of Mg-Ca-Zn (ZX00MEO) based magnesium implants with plasma-electrolytic oxidation (PEO) surface modification (ZX00MEO-PEO) in comparison to non-surface modified implants in vivo and in vitro. Besides a general evaluation of the biological performance of the alloy over a prolonged period, the main hypothesis was that PEO surface modification significantly reduces implant degradation rate and improves tissue interaction. In vitro, the microstructure and surface of the bioabsorbable screws were characterized by SEM/EDS, cytocompatibility and degradation testing facilitating hydrogen gas evolution, carried out following ISO 10993-5/-12 and ASTM F3268-18a/ASTM G1-03 (E1:2017). In vivo, screws were implanted in the frontal bone of Minipigs for 6, 12, and 18 months, following radiological and histomorphometric analysis. A slower and more uniform degradation and improved cytocompatibility could be shown for the ZX00MEO-PEO group in vitro. A significant reduction of degradation rate and enhanced bone formation around the ZX00MEO-PEO screws in vivo was confirmed. Proficient biocompatibility and tissue integration could generally be shown in vivo regardless of surface state. The tested magnesium alloy shows generally beneficial properties as an implant material, while PEO-surface modification further improves the bioabsorption behavior both in vitro and in vivo. STATEMENT OF SIGNIFICANCE: Devices from bioabsorbable Magnesium have recently been introduced to orthopedic applications. However, the vast degradation of Magnesium within the human body still gives limitations. While reliable in-vivo data on most promising surface treatments such as Plasma-electrolytic-Oxidation is generally scarce, long-time results in large animals are to this date completely missing. To overcome this lack of evidence, we studied a Magnesium-Calzium-Zinc-alloy with surface enhancement by PEO for the first time ever over a period of 18 months in a large animal model. In-vitro, surface-modified screws showed significantly improved cytocompatibility and reduction of degradation confirmed by hydrogen gas evolution testing, while in-vivo radiological and histological evaluation generally showed good biocompatibility and bioabsorption as well as significantly enhanced reduction of degradation and faster bone regeneration in the PEO-surface-modified group.
Collapse
Affiliation(s)
| | - Heilwig Fischer
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, Berlin 10178, Germany; Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Ana Prates Soares
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany; Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Christoph Leber
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Henri Kreiker
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Georg Duda
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, Cologne 50937, Germany
| | | | - Henning Hanken
- Department of Oral and Maxillofacial Surgery, Asklepios Hospital North, Faculty of Medicine, Semmelweis University Campus Hamburg, Hamburg 20099, Germany; Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock 18057, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Carsten Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| |
Collapse
|
5
|
Potential bioactive coating system for high-performance absorbable magnesium bone implants. Bioact Mater 2022; 12:42-63. [PMID: 35087962 PMCID: PMC8777287 DOI: 10.1016/j.bioactmat.2021.10.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Magnesium alloys are considered the most suitable absorbable metals for bone fracture fixation implants. The main challenge in absorbable magnesium alloys is their high corrosion/degradation rate that needs to be controlled. Various coatings have been applied to magnesium alloys to slow down their corrosion rates to match their corrosion rate to the regeneration rate of the bone fracture. In this review, a bioactive coating is proposed to slow down the corrosion rate of magnesium alloys and accelerate the bone fracture healing process. The main aim of the bioactive coatings is to enhance the direct attachment of living tissues and thereby facilitate osteoconduction. Hydroxyapatite, collagen type I, recombinant human bone morphogenetic proteins 2, simvastatin, zoledronate, and strontium are six bioactive agents that show high potential for developing a bioactive coating system for high-performance absorbable magnesium bone implants. In addition to coating, the substrate itself can be made bioactive by alloying magnesium with calcium, zinc, copper, and manganese that were found to promote bone regeneration. Bioactive-coated magnesium implant could accelerate bone fracture healing time to match with magnesium degradation. Hydroxyapatite, collagen type I, recombinant human bone morphogenetic proteins 2, simvastatin, zoledronate, and strontium are high potential bioactive coating materials. The incorporation of Ca, Zn, Cu, Sr, and Mn in Mg base-metal could further enhance bone formation.
Collapse
|
6
|
Magnesium-Based Alloys Used in Orthopedic Surgery. MATERIALS 2022; 15:ma15031148. [PMID: 35161092 PMCID: PMC8840615 DOI: 10.3390/ma15031148] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023]
Abstract
Magnesium (Mg)-based alloys have become an important category of materials that is attracting more and more attention due to their high potential use as orthopedic temporary implants. These alloys are a viable alternative to nondegradable metals implants in orthopedics. In this paper, a detailed overview covering alloy development and manufacturing techniques is described. Further, important attributes for Mg-based alloys involved in orthopedic implants fabrication, physiological and toxicological effects of each alloying element, mechanical properties, osteogenesis, and angiogenesis of Mg are presented. A section detailing the main biocompatible Mg-based alloys, with examples of mechanical properties, degradation behavior, and cytotoxicity tests related to in vitro experiments, is also provided. Special attention is given to animal testing, and the clinical translation is also reviewed, focusing on the main clinical cases that were conducted under human use approval.
Collapse
|
7
|
Huang Y, Zhai X, Ma T, Zhang M, Pan H, Weijia Lu W, Zhao X, Sun T, Li Y, Shen J, Yan C, Du Y. Rare earth-based materials for bone regeneration: Breakthroughs and advantages. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Jana A, Das M, Balla VK. In vitro and in vivo degradation assessment and preventive measures of biodegradable Mg alloys for biomedical applications. J Biomed Mater Res A 2021; 110:462-487. [PMID: 34418295 DOI: 10.1002/jbm.a.37297] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Magnesium (Mg) and its alloys have been widely explored as a potential biodegradable implant material. However, the fast degradation of Mg-based alloys under physiological environment has hindered their widespread use for implant applications till date. The present review focuses on in vitro and in vivo degradation of biodegradable Mg alloys, and preventive measures for biomedical applications. Initially, the corrosion assessment approaches to predict the degradation behavior of Mg alloys are discussed along with the measures to control rapid corrosion. Furthermore, this review attempts to explore the correlation between in vitro and in vivo corrosion behavior of different Mg alloys. It was found that the corrosion depends on experimental conditions, materials and the results of different assessment procedures hardly matches with each other. It has been demonstrated the corrosion rate of magnesium can be tailored by alloying elements, surface treatments and heat treatments. Various researches also studied different biocompatible coatings such as dicalcium phosphate dihydrate (DCPD), β-tricalcium phosphate (β-TCP), hydroxyapatite (HA), polycaprolactone (PCL), polylactic acid (PLA), and so on, on Mg alloys to suppress rapid degradation and examine their influence on new bone regeneration as well. This review shows the need for a standard method of corrosion assessment to predict the in vivo corrosion rate based on in vitro data, and thus reducing the in vivo experimentation.
Collapse
Affiliation(s)
- Anuradha Jana
- Bioceramics & Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mitun Das
- Bioceramics & Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vamsi Krishna Balla
- Bioceramics & Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Weng W, Biesiekierski A, Li Y, Dargusch M, Wen C. A review of the physiological impact of rare earth elements and their uses in biomedical Mg alloys. Acta Biomater 2021; 130:80-97. [PMID: 34118448 DOI: 10.1016/j.actbio.2021.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Magnesium (Mg) is well-tolerated by the body, displaying exceedingly low toxicity, rapid excretion, and numerous bioactive effects, including improved bone formation and protection against oxidative stresses; further, Mg alloys can be degraded in vivo to allow complete removal of an implant without surgical intervention, avoiding revision surgery and thrombosis concerns seen with permanent implants. Rare earth elements (REEs) have been of particular interest in alloying Mg alloys for nearly a century due to their unique chemical and physical properties but have attracted increasing attention in recent decades. The REEs contribute greatly to the mechanical and biological properties of metal alloys, and so are common in Mg alloys in a wide variety of applications; in particular, they represent the dominant alloying additions in current, clinically applied Mg alloys. Notably, the use of these elements may assist in the development of advanced Mg alloys for use as biodegradable orthopedic implants and cardiovascular stents. To this end, current research progress in this area, highlighting the physiological impact of REEs in Mg alloys, is reviewed. Clinical work and preclinical data of REE-containing Mg alloys are analyzed. The biological roles of REEs in cellular responses in vivo require further research in the development of biofunctional Mg alloy medical devices. STATEMENT OF SIGNIFICANCE: The presented work is a review into the biological impact and current application of rare-earth elements (REEs) in biodegradable Mg-based biomaterials. Despite their efficacy in improving corrosion, mechanical, and manufacturability properties of Mg alloys, the physiological effects of REEs remain poorly understood. Therefore, the present work was undertaken to both provide guidance in the development of new biomedical alloys, and highlight areas of existing concerns and unclear knowledge. Key findings of this review include a summary of current clinical and preclinical work, and the identification of Sc as the most promising REE with regards to physiological impact. Y, Ce, Pr, Gd, Dy, Yb, Sm, and Eu should be considered carefully before their use as alloying elements, with other REEs intermediate or insufficiently studied.
Collapse
Affiliation(s)
- Weijie Weng
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia; Shanghai Power Equipment Research Institute, Shanghai 200240, China
| | - Arne Biesiekierski
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia; ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Matthew Dargusch
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
10
|
Jin W, Zhou H, Li J, Ruan Q, Li J, Peng X, Li W, Chu PK. Zirconium-based nanostructured coating on the Mg-4Y-3RE alloy for corrosion retardation. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Dubey A, Jaiswal S, Lahiri D. Assessment of biomechanical stability and formulation of a statistical model on magnesium based composite in two different milieus. J Mech Behav Biomed Mater 2020; 111:103980. [PMID: 32830104 DOI: 10.1016/j.jmbbm.2020.103980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Magnesium (Mg) based temporary implants are an appealing new solution to counter the problems associated with the currently available temporary orthopaedic implants, used in fracture fixing. To make the extensive use of Mg-based implants in-vivo, mechanical integrity in the physiological environment is a prerequisite. This study presents an insight into the biomechanical stability of Mg-3Zn/HA (0, 5, and 15 wt % of HA) composites in two different milieus (simulated body fluid (SBF) and serum contained SBF (m-SBF)). After 14 days of static immersion in SBF, ~65% mechanical strength was compromised in the case of 15 wt % HA reinforcement. However, the degradation rate was slowed down by ~35% with the addition of 15 wt % HA in Mg-3Zn. Mg-3Zn/HA composite, when soaked in both fluids, was found to induce apatite layer formation on the surfaces for several days. However, in the case of m-SBF immersion, 15 wt % HA facilitated less precipitation of apatite growth when compared to SBF immersion. Nevertheless, m-SBF immersed 15 wt % HA composite facilitated better corrosion resistance and excellent mechanical stability after 14 days of immersion. The approach thereby assists in establishing an effective mechanism between the degradation and mechanical stability in in-vitro immersion. In addition, this study has also developed a semi-empirical model for prediction of the compressive strength of these composites as a function of the number of days of immersion and the content of hydroxyapatite (HA). This semi-empirical model will help in predicting the biomechanical stability for long-term in-vitro exposures, which might be of use in evaluating the effect of the in-vivo environment.
Collapse
Affiliation(s)
- Anshu Dubey
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Satish Jaiswal
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
12
|
Biesiekierski A, Li Y, Wen C. The Application of the Rare Earths to Magnesium and Titanium Metallurgy in Australia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901715. [PMID: 31265192 DOI: 10.1002/adma.201901715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Rare earth elements (REEs) have found application in metallurgical processes for nearly a century due to their unique chemical and physical properties but have gained increased attention in recent decades. Notably, the use of these elements may assist in the development of advanced magnesium and titanium products for applications spanning biomedicine, aerospace, and the automotive industry. To this end, current progress in this area, highlighting work done in Australian research organizations with particular academic expertise, is reviewed. Two areas that require further research are identified: the application of Sc and the heavy lanthanides to the development of novel magnesium alloys and the use of REEs as additives in the development of additive manufacturing of titanium parts.
Collapse
Affiliation(s)
- Arne Biesiekierski
- School of Science, Engineering and Health, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Yuncang Li
- School of Science, Engineering and Health, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Cuie Wen
- School of Science, Engineering and Health, RMIT University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
13
|
Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications. Acta Biomater 2020; 102:493-507. [PMID: 31811958 DOI: 10.1016/j.actbio.2019.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022]
Abstract
Magnesium (Mg) and its alloys are considered promising biodegradable implant materials because of their strength and natural degradation in the human body. However, the high corrosion rate of pure Mg in the physiological environment leads to rapid degradation before adequate bone healing. This mismatch between bone healing and the degradation of Mg implants supports the development of new Mg alloys with the addition of other suitable alloying elements in order to achieve simultaneously high corrosion resistance and desirable mechanical properties. This study systematically investigates the microstructure, mechanical properties, corrosion behavior, and biocompatibility of Mg-based alloys with the addition of different concentrations of scandium (Sc), i.e., Mg-0.6Zr-0.5Sr-xSc (x = 0.5, 1, 2, 3 wt.%). Results indicated that high concentration of Sc in strontium (Sr)-containing Mg alloys can alter their microstructures by suppressing the intermetallic phases along the grain boundaries and improve the corrosion resistance by forming chemically stable Sc oxide layers on the surfaces of the Mg alloys. Cytotoxicity assessment revealed that the Sc containing Mg alloys did not significantly alter the viability of human osteoblast-like SaOS2 cells. This study highlights the advantages of using Sc as an alloying element to simultaneously tune Mg alloys with higher strength and slower degradation. STATEMENT OF SIGNIFICANCE: Rare earth elements such as scandium (Sc) with both a high solid-solubility and strong affinity towards oxygen can improve the mechanical and corrosion properties of magnesium (Mg) alloys. However, the feasibility of Sc-containing Mg alloys as biodegradable implant materials is scarcely reported. This study investigates the effects of different Sc concentrations on the mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys. Our findings indicated that the addition of Sc significantly improves the mechanical and corrosion properties of Mg-Zr-Sr alloys. Moreover, in vitro cytotoxicity assessment of the Mg-Zr-Sr-Sc alloys did not show any adverse effects on the viability of osteoblast-like cells.
Collapse
|
14
|
Razavi M, Huang Y. Assessment of magnesium-based biomaterials: from bench to clinic. Biomater Sci 2019; 7:2241-2263. [DOI: 10.1039/c9bm00289h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review presents the operation procedures of commonly used standard methods for assessment of Mg-based biomaterials from bench to clinic.
Collapse
Affiliation(s)
- Mehdi Razavi
- Brunel Center for Advanced Solidification Technology (BCAST)
- Institute of Materials and Manufacturing
- Brunel University London
- London UB8 3PH
- UK
| | - Yan Huang
- Brunel Center for Advanced Solidification Technology (BCAST)
- Institute of Materials and Manufacturing
- Brunel University London
- London UB8 3PH
- UK
| |
Collapse
|
15
|
Riaz U, Shabib I, Haider W. The current trends of Mg alloys in biomedical applications-A review. J Biomed Mater Res B Appl Biomater 2018; 107:1970-1996. [PMID: 30536973 DOI: 10.1002/jbm.b.34290] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 01/25/2023]
Abstract
Magnesium (Mg) has emerged as an ideal alternative to the permanent implant materials owing to its enhanced properties such as biodegradation, better mechanical strengths than polymeric biodegradable materials and biocompatibility. It has been under investigation as an implant material both in cardiovascular and orthopedic applications. The use of Mg as an implant material reduces the risk of long-term incompatible interaction of implant with tissues and eliminates the second surgical procedure to remove the implant, thus minimizes the complications. The hurdle in the extensive use of Mg implants is its fast degradation rate, which consequently reduces the mechanical strength to support the implant site. Alloy development, surface treatment, and design modification of implants are the routes that can lead to the improved corrosion resistance of Mg implants and extensive research is going on in all three directions. In this review, the recent trends in the alloying and surface treatment of Mg have been discussed in detail. Additionally, the recent progress in the use of computational models to analyze Mg bioimplants has been given special consideration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1970-1996, 2019.
Collapse
Affiliation(s)
- Usman Riaz
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, 48859
| | - Ishraq Shabib
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, 48859.,Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan, 48859
| | - Waseem Haider
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, 48859.,Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan, 48859
| |
Collapse
|
16
|
Lanthanum-Containing Magnesium Alloy with Antitumor Function Based on Increased Reactive Oxygen Species. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Developing antitumor implants is of great significance to repair tumor-induced bone defects and simultaneously prevent bone tumor recurrence. The tumor cells, compared to normal cells, have a high reactive oxygen species level. They are vulnerable to oxidative insults under increased intrinsic oxidative stress. The lanthanum (La) ion with high phospholipid binding ability can open the mitochondrial permeability transition pore, which blocks the electron transport chain in the mitochondria, and consequently increases reactive oxygen species level. In this study, La was alloyed to Mg-6Zn-0.5Zr (ZK60) through selective laser melting technology. The results indicated that the mitochondrial membrane potential dropped whilst the reactive oxygen species increased as the La content increased. ZK60-1.0La revealed a high cell inhibition rate of 61.9% for bone tumor cell and high cell viability of 91.9% for normal cells, indicating that the alloy could induce bone tumor cell death, as well as exhibit good biocompatibility for normal cell. In addition, its degradation rate 1.23 mm/year was lower than that of ZK60 alloy 2.13 mm/year, which was mainly attributed to the grain refinement.
Collapse
|
17
|
Huo WT, Zhao LZ, Zhang W, Lu JW, Zhao YQ, Zhang YS. In vitro corrosion behavior and biocompatibility of nanostructured Ti6Al4V. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:268-279. [PMID: 30184751 DOI: 10.1016/j.msec.2018.06.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 06/02/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022]
Abstract
Ti6Al4V (TC4) alloy has long been used as a bone interfacing implant material in dentistry and orthopedics due to its excellent biocompatibility and mechanical properties. The performance of TC4 can be further tailored by altering its grain structures. In this study, by means of sliding friction treatment (SFT), a nano-grained (NG) surface layer with an average grain size of ≤100 nm on the topmost surface was successfully generated on coarse-grained (CG) TC4 alloy sheet. It was shown that the NG surface possessed notably enhanced corrosion resistance in physiological solution compared to the CG surface, due to the formation of thicker and denser passive film facilitated by surface nanocrystallization. Additionally, the NG surface with stronger hydrophilicity favorably altered the absorption of anchoring proteins such as fibronectin (Fn) and vitronectin (Vn) that can mediate subsequent osteoblast functions. The in vitro results indicated that the NG surface exhibited remarkable enhancement in osteoblast adherence, spreading and proliferation, and obviously accelerated the osteoblast differentiation as compared to CG surface. Moreover, the NG surface also demonstrated good hemocompatibility. These findings suggest that SFT can endure bio-metals with advanced multifunctional properties for biomedical applications.
Collapse
Affiliation(s)
- W T Huo
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - L Z Zhao
- State key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - W Zhang
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - J W Lu
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Y Q Zhao
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Y S Zhang
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China.
| |
Collapse
|
18
|
Yang K, Zhou C, Fan H, Fan Y, Jiang Q, Song P, Fan H, Chen Y, Zhang X. Bio-Functional Design, Application and Trends in Metallic Biomaterials. Int J Mol Sci 2017; 19:E24. [PMID: 29271916 PMCID: PMC5795975 DOI: 10.3390/ijms19010024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022] Open
Abstract
Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradable materials were proposed. Biological function design is very import for metal implants in biomedical applications. Three crucial design criteria are summarized for developing metal implants: (1) mechanical properties that mimic the host tissues; (2) sufficient bioactivities to form bio-bonding between implants and surrounding tissues; and (3) a degradation rate that matches tissue regeneration and biodegradability. This article reviews the development of metal implants and their applications in biomedical engineering. Development trends and future perspectives of metallic biomaterials are also discussed.
Collapse
Affiliation(s)
- Ke Yang
- School of Mechanical Engineering and Automation, Xihua University, Chengdu 610039, China.
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ping Song
- School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Hongyuan Fan
- School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Yu Chen
- Department of Applied Mechanics, Sichuan University, Chengdu 610065, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
19
|
Drelich AJ, Zhao S, Guillory RJ, Drelich JW, Goldman J. Long-term surveillance of zinc implant in murine artery: Surprisingly steady biocorrosion rate. Acta Biomater 2017; 58:539-549. [PMID: 28532901 PMCID: PMC5553077 DOI: 10.1016/j.actbio.2017.05.045] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/03/2017] [Accepted: 05/18/2017] [Indexed: 10/19/2022]
Abstract
Metallic zinc implanted into the abdominal aorta of rats out to 6months has been demonstrated to degrade while avoiding responses commonly associated with the restenosis of vascular implants. However, major questions remain regarding whether a zinc implant would ultimately passivate through the production of stable corrosion products or via a cell mediated fibrous encapsulation process that prevents the diffusion of critical reactants and products at the metal surface. Here, we have conducted clinically relevant long term in vivo studies in order to characterize late stage zinc implant biocorrosion behavior and products to address these critical questions. We found that zinc wires implanted in the murine artery exhibit steady corrosion without local toxicity for up to at least 20months post-implantation, despite a steady buildup of passivating corrosion products and intense fibrous encapsulation of the wire. Although fibrous encapsulation was not able to prevent continued implant corrosion, it may be related to the reduced chronic inflammation observed between 10 and 20months post-implantation. X-ray elemental and infrared spectroscopy analyses confirmed zinc oxide, zinc carbonate, and zinc phosphate as the main components of corrosion products surrounding the Zn implant. These products coincide with stable phases concluded from Pourbaix diagrams of a physiological solution and in vitro electrochemical impedance tests. The results support earlier predictions that zinc stents could become successfully bio-integrated into the arterial environment and safely degrade within a time frame of approximately 1-2years. STAEMENT OF SIGNIFICANCE Previous studies have shown zinc to be a promising candidate material for bioresorbable endovascular stenting applications. An outstanding question, however, is whether a zinc implant would ultimately passivate through the production of stable corrosion products or via a cell mediated tissue encapsulation process that prevented the diffusion of critical reactants and products at the metal surface. We found that zinc wires implanted in the murine artery exhibit steady corrosion for up to at least 20months post-implantation. The results confirm earlier predictions that zinc stents could safely degrade within a time frame of approximately 1-2years.
Collapse
Affiliation(s)
- Adam J Drelich
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Shan Zhao
- Department of Material Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Roger J Guillory
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Jaroslaw W Drelich
- Department of Material Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|