1
|
Tan L, Miao Z, Zhao Y, Liang Y, Xu N, Chen X, Tu Y, He C. Dual regulation of phaseol on osteoclast formation and osteoblast differentiation by targeting TAK1 kinase for osteoporosis treatment. J Adv Res 2024:S2090-1232(24)00565-4. [PMID: 39662728 DOI: 10.1016/j.jare.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION Osteoporosis is an osteolytic disorder resulting from an inequilibrium between osteoblast-mediated osteogenesis and osteoclast-driven bone absorption. Safe and effective approaches for osteoporosis management are still highly demanded. PURPOSE This study aimed to examine the osteoprotective effect and the mechanisms of phaseol (PHA) in vitro and in vivo. METHODS Virtual screening identified the potential inhibitors of transforming growth factor-beta-activated kinase 1 (TAK1) from coumestans. The interaction between PHA and TAK1 was investigated by molecular simulation, pronase and thermal resistance assays. The maturation and function of osteoclasts were determined using tartrate-resistant acid phosphatase staining, bone absorption and F-actin ring formation assays. The differentiation and calcification of osteoblasts were assessed by alkaline phosphatase staining and Alizarin Red S staining. The activity of related targets and pathways were detected using immunoblotting, immunofluorescence and co-immunoprecipitation assays. The in vivo osteoprotective effect of PHA was evaluated using a lipopolysaccharide (LPS)-induced mouse osteoporosis model. RESULTS Firstly, we confirmed that TAK1 was essential in controlling bone remodeling by regulating osteogenesis and osteoclastogenesis. Moreover, PHA, a coumestan compound predominantly present in leguminous plants, was identified as a potent TAK1 inhibitor through virtual and real experiments. Subsequently, PHA was observed to enhance osteoblast differentiation and calcification, while suppress osteoclast maturation and bone resorptive function in vitro. Mechanistically, PHA remarkably inhibited the TRAF6-TAK1 complex formation, and inhibited the activation of TAK1, MAPK and NF-κB pathways by targeting TAK1. In the in vivo study, PHA strongly attenuated bone loss, inflammatory responses, and osteoclast over-activation in lipopolysaccharide-induced osteoporosis mice. CONCLUSION PHA had a dual-functional regulatory impact on osteogenesis and osteoclastogenesis by targeting TAK1, suppressing TRAF6-TAK1 complex generation, and modulating its associated signaling pathways, ultimately leading to mitigating osteoporosis. This study offered compelling evidence in favor of using PHA for preventing and managing osteoporosis as both a bone anabolic and anti-resorptive agent.
Collapse
Affiliation(s)
- Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Zhimin Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yuxin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yongkai Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Nan Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|
2
|
Dong R, Wei J, Tian S, Wang J, Ma Y, Li Y, Liu RX, Liu YQ. Single-cell RNA transcriptomics reveals Du-Zhong-Wan promotes osteoporotic fracture healing via YAP/β-catenin/VEGF axis in BMSCs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155572. [PMID: 39366157 DOI: 10.1016/j.phymed.2024.155572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Our previous study demonstrated that Du-Zhong-Wan (DZW) promoted osteoporotic fracture (OPF) healing by enhancing osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and angiogenesis of endothelial cells (ECs). However, the heterogeneity of BMSCs and ECs, as well as the specific molecular mechanism underlying these effects, still require further evaluation. PURPOSE The primary objective of this study was to elucidate the heterogeneity of BMSCs and ECs, as well as the cellular-level mechanism of DZW against OPF through single-cell RNA sequencing. METHODS In this study, we presented a single-cell atlas of mouse femoral callus, comparing samples with and without DZW treatment, utilizing single-cell RNA sequencing. Variable genes were identified using the FindVariableGenes (FVG) and principal component analysis (PCA) analysis. Additionally, uniform manifold approximation and projection (U-MAP) was employed to reduce and visualize the distinct subclusters. The CellPhoneDB2 method was employed to analyze intercellular communication and quantify the interaction between ligands and receptors within distinct cell clusters. The osteogenic differentiation capacity of BMSCs was assessed by micro-CT, alkaline phosphatase (ALP), and alizarin red S (ARS) assay. The scratch wound assay and tube formation assay were utilized to assess the angiogenic capabilities of ECs in vitro. Additionally, western blot and immunofluorescence experiments were utilized to elucidate the related protein expression. RESULTS Consistent with our previous studies, DZW obviously promoted osteoporotic fracture healing. Moreover, this study discovered 14 cell clusters at the femoral fracture callus, where the BMSCs most actively interacted with ECs, through single-cell sequencing. Notably, DZW significantly elevated the proportion of Lepr+ BMSCs and Podxl+ ECs subgroup, which were respectively considered essential cells for osteoblastogenesis and angiogenesis of arteriolar vessels. The increased proportion of Podxl+ ECs was partially attributed to vascular endothelial growth factor (VEGF), secreted by BMSCs, which were able to be reversed by YAP pharmacological inhibitor verteporfin. Furthermore, the western blot assay revealed elevated expression levels of YAP/β-catenin, VEGF, RUNX2, and OCN in BMSCs treated with DZW, which were counteracted by verteporfin. CONCLUSION The data above indicates that DZW elevates the proportion of LEPR+ BMSCs and Podxl+ ECs, therefore contributing for the osteogenic ability of BMSCs and BMSCs-mediated angiogenesis via activation of the YAP/β-catenin/VEGF axis, which provides novel potential targets and mechanism for DZW in treating OPF in sub-clusters and molecular level.
Collapse
Affiliation(s)
- Renchao Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jun Wei
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuo Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yilin Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rui-Xia Liu
- The First Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan-Qiu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
4
|
Shang G, Zhou X, Yin J, Niu X, Zhao Y, Li X, Tong Q, Bao B, Cao Y, Cheng F, Li Z, Yao W. Multi-omics analysis of kidney, bone and bone marrow explored potential mechanisms of Erzhi Wan against osteoporosis with kidney-Yin deficiency. J Pharm Biomed Anal 2024; 246:116211. [PMID: 38759323 DOI: 10.1016/j.jpba.2024.116211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Osteoporosis (OP) is a metabolic bone disease that can lead to major health challenges. The theory of Traditional Chinese medicine believes that kidney-Yin deficiency (KYD) is the main cause of postmenopausal osteoporosis. This study was aimed to investigate the effect of EZW on anti-osteoporosis with KYD, and explore potential mechanisms from the perspective of the kidney, bone and bone marrow through analysis of metabolomics and proteomics. The model of OP with KYD was established by rats treated with bilateral ovariectomy (OVX), and then given intragastric administration of thyroid and reserpine to induce. Micro-CT was applied to determine the microstructures of bone. Serum levels associated with bone turnover markers and kidney-Yin deficiency were detected by enzyme-linked immunosorbent (ELISA) assay. The differential metabolites in the kidney, bone and bone marrow were analyzed by metabolomics. The differentially expressed proteins in these three tissues were detected via proteomics. The findings suggested that EZW could alleviate a variety of metabolites and proteins among the kidney, bone and bone marrow, primarily in amino acid metabolism, carbohydrate metabolism, nucleotide metabolism and lipid metabolism, thus leading to improvements of OP with KYD, which provided theoretical basis for clinical treatment of EZW on OP with KYD.
Collapse
Affiliation(s)
- Guanxiong Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaoqi Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jiu Yin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xuan Niu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yan Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xin Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qingheng Tong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yudan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Fangfang Cheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhipeng Li
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210009, PR China.
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
5
|
Qin W, Yang L, Chen X, Ye S, Liu A, Chen D, Hu K. Wedelolactone Promotes the Chondrogenic Differentiation of Mesenchymal Stem Cells by Suppressing EZH2. Int J Stem Cells 2023; 16:326-341. [PMID: 36310024 PMCID: PMC10465333 DOI: 10.15283/ijsc22046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 08/31/2023] Open
Abstract
Background and Objectives Osteoarthritis (OA) is a degenerative disease that leads to the progressive destruction of articular cartilage. Current clinical therapeutic strategies are moderately effective at relieving OA-associated pain but cannot induce chondrocyte differentiation or achieve cartilage regeneration. We investigated the ability of wedelolactone, a biologically active natural product that occurs in Eclipta alba (false daisy), to promote chondrogenic differentiation. Methods and Results Real-time reverse transcription-polymerase chain reaction, immunohistochemical staining, and immunofluorescence staining assays were used to evaluate the effects of wedelolactone on the chondrogenic differentiation of mesenchymal stem cells (MSCs). RNA sequencing, microRNA (miRNA) sequencing, and isobaric tags for relative and absolute quantitation analyses were performed to explore the mechanism by which wedelolactone promotes the chondrogenic differentiation of MSCs. We found that wedelolactone facilitates the chondrogenic differentiation of human induced pluripotent stem cell-derived MSCs and rat bone-marrow MSCs. Moreover, the forkhead box O (FOXO) signaling pathway was upregulated by wedelolactone during chondrogenic differentiation, and a FOXO1 inhibitor attenuated the effect of wedelolactone on chondrocyte differentiation. We determined that wedelolactone reduces enhancer of zeste homolog 2 (EZH2)-mediated histone H3 lysine 27 trimethylation of the promoter region of FOXO1 to upregulate its transcription. Additionally, we found that wedelolactone represses miR-1271-5p expression, and that miR-1271-5p post-transcriptionally suppresses the expression of FOXO1 that is dependent on the binding of miR-1271-5p to the FOXO1 3'-untranscribed region. Conclusions These results indicate that wedelolactone suppresses the activity of EZH2 to facilitate the chondrogenic differentiation of MSCs by activating the FOXO1 signaling pathway. Wedelolactone may therefore improve cartilage regeneration in diseases characterized by inflammatory tissue destruction, such as OA.
Collapse
Affiliation(s)
- Wei Qin
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Xiaotong Chen
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shanyu Ye
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aijun Liu
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongfeng Chen
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kunhua Hu
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Jiao Y, Wang X, Wang Q, Geng Q, Cao X, Zhang M, Zhao L, Deng T, Xu Y, Xiao C. Mechanisms by which kidney-tonifying Chinese herbs inhibit osteoclastogenesis: Emphasis on immune cells. Front Pharmacol 2023; 14:1077796. [PMID: 36814488 PMCID: PMC9939464 DOI: 10.3389/fphar.2023.1077796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
The immune system plays a crucial role in regulating osteoclast formation and function and has significance for the occurrence and development of immune-mediated bone diseases. Kidney-tonifying Chinese herbs, based on the theory of traditional Chinese medicine (TCM) to unify the kidney and strengthen the bone, have been widely used in the prevention and treatment of bone diseases. The common botanical drugs are tonifying kidney-yang and nourishing kidney-yin herbs, which are divided into two parts: one is the compound prescription of TCM, and the other is the single preparation of TCM and its active ingredients. These botanical drugs regulate osteoclastogenesis directly and indirectly by immune cells, however, we have limited information on the differences between the two botanical drugs in osteoimmunology. In this review, the mechanism by which kidney-tonifying Chinese herbs inhibiting osteoclastogenesis was investigated, emphasizing the immune response. The differences in the mechanism of action between tonifying kidney-yang herbs and nourishing kidney-yin herbs were analysed, and the therapeutic value for immune-mediated bone diseases was evaluated.
Collapse
Affiliation(s)
- Yi Jiao
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qiong Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qishun Geng
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiaoxue Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lu Zhao
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Yuan Xu, ; Cheng Xiao,
| | - Cheng Xiao
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China,Department of Emergency, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Yuan Xu, ; Cheng Xiao,
| |
Collapse
|
7
|
Ha NM, Hop NQ, Son NT. Wedelolactone: A molecule of interests. Fitoterapia 2023; 164:105355. [PMID: 36410612 DOI: 10.1016/j.fitote.2022.105355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The search for bioactive molecules from medicinal plants of the family Asteraceae has been one of the targets in various phytochemical and pharmacological investigations for many years. According to these studies, wedelolactone, a coumestan of the secondary metabolite type, is a key compound found in several Eclipta and Wedelia herbal plants. To date, numerous experimental studies with intention of highlighting its role in drug development programs were carried out, but an extensive review is not sufficient. OBJECTIVE The current review aims to fill the gaps in extensive knowledge about phytochemistry, synthesis, pharmacology, and pharmacokinetics of coumestan wedelolactone. MATERIALS AND METHODS The databases Google Scholar, Scopus, PubMed, Web of Science, Science Direct, Medline, and CNKI were used to compile the list of references. In order to find references, "wedelolactone" was considered separately or in combination with "phytochemistry", "synthesis", "pharmacology", and "pharmacokinetics." Since the 1950s, >100 publications have been collected and reviewed. RESULTS Wedelolactone is likely to be a characteristic metabolite of two genera Eclipta and Wedelia, the family Asteraceae, while it could be synthetically derived from mono-phenol derivatives, through Sonogashira and cross-coupling reactions. Numerous biomedical investigations on wedelolactone revealed that its pharmacological values included anticancer, antiinflammatory, antidiabetic, antiobesity, antimyotoxicity, antibacterial, antioxidant, antivirus, anti-aging, cardiovascular, serine protease inhibition, especially its protective health benefits to living organs such as liver, kidney, lung, neuron, eye, bone, and tooth. The combination of wedelolactone and potential agents is a preferential approach to improve its biomedical values. Pharmacokinetic study exhibited that wedelolactone was metabolized in rat plasma due to hydrolysis, open-ring lactone, methylation, demethylation, and glucuronidation. CONCLUSIONS Wedelolactone is a promising agent with the great pharmacological values. Molecular mechanisms of the actions of this compound at both in vitro and in vivo levels are now available. However, reports highlighting biosynthesis and structure-activity relationship are still not adequate. Moreover, chemo-preventive records utilizing nano-technological approaches to improve its bioavailability are needed since the solubility in the living body environment is still limited.
Collapse
Affiliation(s)
- Nguyen Manh Ha
- Faculty of Chemical Technology, Hanoi University of Industry, Hanoi, Viet Nam
| | - Nguyen Quang Hop
- Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2), Nguyen Van Linh, Xuanhoa, Phucyen, Vinhphuc, Viet Nam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam.
| |
Collapse
|
8
|
Bhattacharyya S, Law S. Environmental pollutant ENU induced leukemic NF-kB signaling amelioration by Eclipta alba in murine model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2435-2449. [PMID: 34420458 DOI: 10.1080/09603123.2021.1969341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Exposure to N-nitroso compounds (NOCs) in our environment via pesticides, tobacco, and smoked meat can be potentially carcinogenic. The induction of N-N' ethylnitrosourea (ENU), a genotoxic NOC, leads to leukemogenesis. The study aimed to explore the ameliorating effect of the Ayurvedic herb Eclipta alba on the bone marrow cells of ENU-induced leukemic mice. Eclipta alba is investigated for its anti-cancer effect on various cell lines, but never on haematological malignant models. Theefficacy of the extract was explored on leukemia by changes in body weight, survivability, peripheral blood hemogram, bone marrow cytological, histological, and cell culture studies pre-and post-treatment. The treated group revealed significant immunomodulation of the expressional profile of NF-kB family and IL-1β in marrow cells, by flow-cytometry, and immunofluorescence study. Through our experimental endeavour we depicted the cellular mechanism, signaling modality and tried to establish the anti-cancer potency of Eclipta alba on ENU-induced leukemia.
Collapse
Affiliation(s)
- Subhashree Bhattacharyya
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata-West Bengal, India
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata-West Bengal, India
| |
Collapse
|
9
|
Tian S, Zou Y, Wang J, Li Y, An BZ, Liu YQ. Protective effect of Du-Zhong-Wan against osteoporotic fracture by targeting the osteoblastogenesis and angiogenesis couple factor SLIT3. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115399. [PMID: 35649495 DOI: 10.1016/j.jep.2022.115399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/12/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Du-Zhong-Wan (DZW) is a traditional Chinese medicine (TCM) composed of Eucommia ulmoides Oliv. and Dipsacus asper Wall. ex C.B. Clarke in the ratio 1:1. Based on the TCM theory, DZW nourishes the kidney to strengthen the bones. The literature research revealed that DZW possesses anti-fatigue, anti-depressant, and anti-osteoporotic properties. However, the action and mechanism of DZW on osteoporotic fracture remains slightly unclear. AIM OF THE STUDY To evaluate the pharmacological effect of DZW on ovariectomized mice with an open femoral fracture and reveal the underlying mechanism. MATERIALS AND METHODS We conducted ovariectomy for 5 weeks, followed by unilateral open transverse femoral fracture for another 3 weeks in C57BL/6 mice; during this process, DZW was administrated. The femur bone and vertebra tissues were collected and analyzed by micro-computed tomography, histomorphometry, mechanical strength testing, immunohistochemistry staining, and qRT-PCR analyses. In addition, alkaline phosphatase (ALP) and Alizarin red S (ARS) staining were performed to determine the extent of osteoblastogenesis from bone marrow mesenchymal stem cells (BMSCs). Western blotting was performed to examine the protein expression. RESULTS DZW treatment significantly improved the bone histomorphometric parameters in mice undergoing ovariectomy when combined with the femoral fracture, including an increase in the bone volume, trabecular number, and bone formation rate and a decrease in the bone erosion area. Simultaneously, DZW treatment histologically promoted fractured callus formation. Mechanical strength testing revealed significantly higher stiffness and an ultimate load after treatment with DZW. The angiogenesis of H-type vessels was enhanced by DZW, as evidenced by increased levels of CD31 and endomucin (EMCN), the H-type vessel endothelium markers, at the fractured endosteum and metaphysis regions. Relative to the osteoporotic fracture mice, the DZW treatment group showed an increased proangiogenic factor SLIT3 level. The increased level of SLIT3 was also recorded during the process of DZW-stimulated osteoblastogenesis from BMSCs. CONCLUSIONS For the first time, we demonstrated that DZW promoted osteoporotic fracture healing by enhancing osteoblastogenesis and angiogenesis of the H-type vessels. This enhanced combination of osteoblastogenesis and angiogenesis was possibly related to the production of proangiogenic factor SLIT3 induced by DZW.
Collapse
Affiliation(s)
- Shuo Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yixuan Zou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yilin Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bao-Zhen An
- The First Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan-Qiu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
10
|
Lu YC, Chang TK, Lin TC, Yeh ST, Fang HW, Huang CH, Huang CH. The potential role of herbal extract Wedelolactone for treating particle-induced osteolysis: an in vivo study. J Orthop Surg Res 2022; 17:335. [PMID: 35765082 PMCID: PMC9237967 DOI: 10.1186/s13018-022-03228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Osteolysis is one of the most prevalent clinical complications affecting people who undergo total joint replacement (TJR). Wedelolactone (WDL) is a coumestan compound derived from the Wedelia chinensis plant and has been demonstrated to exhibit anti-inflammatory properties. This study aimed to investigate the oral administration of WDL as a potential treatment for particle-induced osteolysis using a well-established mice calvarial disease model. Methods Thirty-two C57BL/6 J mice were randomized into four groups: Sham, vehicle, osteolysis group with oral WDL treatment for 4 weeks (WDL 4w), and osteolysis group treated for 8 weeks (WDL 8w). Micro-CT was used to quantitatively analyze the bone mineral density (BMD), bone volume/tissue volume (BV/TV) and trabecular bone thickness (Tb.Th). Osteoclast numbers were also measured from histological slides by two investigators who were blind to the treatment used. Results The results from micro-CT observation showed that BMD in the WDL 8w group improved significantly over the vehicle group (p < 0.05), but there was no significant difference between WDL 4w and 8w for BV/TV and Tb.Th. Osteoclast numbers in the WDL 4w group were also lower than the vehicle group (p < 0.05), but the difference between WDL 8w and 4w groups was not significant. Conclusions Particle-induced osteolysis is an inevitable long-term complication after TJR. The results of this animal study indicate that an oral administration of WDL can help reduce the severity of osteolysis without adverse effects.
Collapse
Affiliation(s)
- Yung-Chang Lu
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ting-Kuo Chang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Chiao Lin
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Shu-Ting Yeh
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Hsu-Wei Fang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Chun-Hsiung Huang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Orthopaedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chang-Hung Huang
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan. .,Department of Orthopaedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan. .,School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Institute of Geriatric Welfare Technology and Science, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
11
|
Peng Z, Xu R, You Q. Role of Traditional Chinese Medicine in Bone Regeneration and Osteoporosis. Front Bioeng Biotechnol 2022; 10:911326. [PMID: 35711635 PMCID: PMC9194098 DOI: 10.3389/fbioe.2022.911326] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/12/2022] [Indexed: 12/21/2022] Open
Abstract
According to World Health Organization (WHO), osteoporosis is a systematic bone disability marked by reduced bone mass and microarchitectural degeneration of osseous cells, which leads to increased bones feebleness and fractures vulnerability. It is a polygenetic, physiological bone deformity that frequently leads to osteoporotic fractures and raises the risk of fractures in minimal trauma. Additionally, the molecular changes that cause osteoporosis are linked to decreased fracture repair and delayed bone regeneration. Bones have the ability to regenerate as part of the healing mechanism after an accident or trauma, including musculoskeletal growth and ongoing remodeling throughout adulthood. The principal treatment approaches for bone loss illnesses, such as osteoporosis, are hormone replacement therapy (HRT) and bisphosphonates. In this review, we searched literature regarding the Traditional Chinese medicines (TCM) in osteoporosis and bone regeneration. The literature results are summarized in this review for osteoporosis and bone regeneration. Traditional Chinese medicines (TCM) have grown in popularity as a result of its success in curing ailments while causing minimal adverse effects. Natural Chinese medicine has already been utilized to cure various types of orthopedic illnesses, notably osteoporosis, bone fractures and rheumatism with great success. TCM is a discipline of conventional remedy that encompasses herbal medication, massage (tui na), acupuncture, food, and exercise (qigong) therapy. It is based on more than 2,500 years of Chinese healthcare profession. This article serves as a comprehensive review summarizing the osteoporosis, bone regeneration and the traditional Chinese medicines used since ancient times for the management of osteoporosis and bone regeneration.
Collapse
|
12
|
Yang Z, Feng L, Wang H, Li Y, Lo JHT, Zhang X, Lu X, Wang Y, Lin S, Tortorella MD, Li G. DANCR Mediates the Rescuing Effects of Sesamin on Postmenopausal Osteoporosis Treatment via Orchestrating Osteogenesis and Osteoclastogenesis. Nutrients 2021; 13:4455. [PMID: 34960006 PMCID: PMC8704418 DOI: 10.3390/nu13124455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 02/03/2023] Open
Abstract
As one of the leading causes of bone fracture in postmenopausal women and in older men, osteoporosis worldwide is attracting more attention in recent decades. Osteoporosis is a common disease mainly resulting from an imbalance of bone formation and bone resorption. Pharmaceutically active compounds that both activate osteogenesis, while repressing osteoclastogenesis hold the potential of being therapeutic medications for osteoporosis treatment. In the present study, sesamin, a bioactive ingredient derived from the seed of Sesamum Indicum, was screened out from a bioactive compound library and shown to exhibit dual-regulating functions on these two processes. Sesamin was demonstrated to promote osteogenesis by upregulating Wnt/β-catenin, while repressing osteoclastogenesis via downregulating NF-κB signaling . Furthermore, DANCR was found to be the key regulator in sesamin-mediated bone formation and resorption . In an ovariectomy (OVX)-induced osteoporotic mouse model, sesamin could rescue OVX-induced bone loss and impairment. The increased serum level of DANCR caused by OVX was also downregulated upon sesamin treatment. In conclusion, our results demonstrate that sesamin plays a dual-functional role in both osteogenesis activation and osteoclastogenesis de-activation in a DANCR-dependent manner, suggesting that it may be a possible medication candidate for osteoporotic patients with elevated DNACR expression levels.
Collapse
Affiliation(s)
- Zhengmeng Yang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Lu Feng
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China; (L.F.); (Y.W.)
| | - Haixing Wang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Yucong Li
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Jessica Hiu Tung Lo
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Xiaoting Zhang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Xuan Lu
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China; (L.F.); (Y.W.)
| | - Sien Lin
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Micky D. Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China; (L.F.); (Y.W.)
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| |
Collapse
|
13
|
Why SNP rs3755955 is associated with human bone mineral density? A molecular and cellular study in bone cells. Mol Cell Biochem 2021; 477:455-468. [PMID: 34783964 DOI: 10.1007/s11010-021-04292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022]
Abstract
SNP rs3755955 (major/minor allele: G/A) located in Iduronidase-Alpha-L- (IDUA) gene was reported to be significant for human bone mineral density (BMD). This follow-up study was to uncover the underlying association mechanism through molecular and cellular functional assays relevant to bone. We tested the effects of single nucleotide polymorphisms (SNP) rs3755955 (defined allele G as wild-type and allele A as variant-type) on osteoblastic and osteoclastic functions, as well as protein phosphorylation in stably transfected human fetal osteoblast (hFOB) cell and mononuclear-macrophage (RAW264.7) cell. In hFOB cells, transfection with variant-type IDUA significantly decreased osteoblastic gene expression (OPN, COL1A1 and RANKL) (p < 0.01), impeded cell proliferation (p < 0.05), stimulated cell apoptosis (p < 0.001) and decreased ALP enzyme activity, as compared with that of wild-type IDUA transfection. In RAW264.7 cells, transfection with variant-type IDUA significantly inhibited cell apoptosis (p < 0.01), promoted osteoclastic precursor cell migration (p < 0.0001), growth (p < 0.01), osteoclastic gene expression (TRAP, RANK, Inte-αv and Cath-K) (p < 0.05) and TRAP enzyme activity (p < 0.001), as compared with that of wild-type IDUA transfection. In both hFOB and RAW264.7 cells, the total protein and IDUA protein-specific phosphorylation levels were significantly reduced by variant IDUA transfection, as compared with that of wild-type IDUA transfection (p < 0.05). Variant allele A of phosSNP rs3755955 in IDUA gene regulates protein phosphorylation, inhibits osteoblast function and promotes osteoclastic activity. The SNP rs3755955 could alter IDUA protein phosphorylation, significantly regulates human osteoblastic and osteoclastic gene expression, and influences the growth, differentiation and activity of osteoblast and osteoclast, hence to affect BMD.
Collapse
|
14
|
Yuan Y, Guo M, Gu C, Yang Y. The role of Wnt/β-catenin signaling pathway in the pathogenesis and treatment of multiple myeloma (review). Am J Transl Res 2021; 13:9932-9949. [PMID: 34650674 PMCID: PMC8507016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a refractory hematological malignancy characterized by aberrant accumulation of plasma cells. Patients with MM are susceptible to becoming resistant to chemotherapy, eventually leading to relapse. Progression of MM is largely dependent on the bone marrow microenvironment. Stromal cells in the bone marrow microenvironment secrete Wnt ligands to activate Wnt signaling in MM, which is mediated through the transcription regulator β-catenin. In addition, Wnt/β-catenin pathway encourages osteoblast differentiation and bone formation, dysregulation of which is responsible for proliferation and drug resistance of MM cells. As a result, direct inhibition or silencing of β-catenin or associated genes in the Wnt/β-catenin pathway has been proposed to be an effective therapeutic anti-MM strategy. However, the underlying regulatory mechanism of the Wnt/β-catenin pathway in MM remains to be fully elucidated. Herein, we summarized research advances on the specific genes and molecular biology process of Wnt/β-catenin pathway involved in tumorigenesis of MM, as well as the interaction with bone marrow microenvironment. Additionally, comprehensive summaries of drugs or small molecule inhibitors acting on Wnt/β-catenin pathway and targeting MM were introduced. This review intends to provide an overview of theoretical supports for novel Wnt/β-catenin pathway based treatment strategies in MM.
Collapse
Affiliation(s)
- Yuxia Yuan
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjing 210022, Jiangsu, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Mengjie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjing 210022, Jiangsu, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Ye Yang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjing 210022, Jiangsu, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| |
Collapse
|
15
|
Cheng X, Wei J, Ge Q, Xing D, Zhou X, Qian Y, Jiang G. The optimized drug delivery systems of treating cancer bone metastatic osteolysis with nanomaterials. Drug Deliv 2021; 28:37-53. [PMID: 33336610 PMCID: PMC7751395 DOI: 10.1080/10717544.2020.1856225] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Some cancers such as human breast cancer, prostate cancer, and lung cancer easily metastasize to bone, leading to osteolysis and bone destruction accompanied by a complicated microenvironment. Systemic administration of bisphosphonates (BP) or denosumab is the routine therapy for osteolysis but with non-negligible side effects such as mandibular osteonecrosis and hypocalcemia. Thus, it is imperative to exploit optimized drug delivery systems, and some novel nanotechnology and nanomaterials have opened new horizons for scientists. Targeted and local drug delivery systems can optimize biodistribution depending on nanoparticles (NPs) or microspheres (MS) and implantable biomaterials with the controllable property. Drug delivery kinetics can be optimized by smart and sustained/local drug delivery systems for responsive delivery and sustained delivery. These delicately fabricated drug delivery systems with special matrix, structure, morphology, and modification can minimize unexpected toxicity caused by systemic delivery and achieve desired effects through integrating multiple drugs or multiple functions. This review summarized recent studies about optimized drug delivery systems for the treatment of cancer metastatic osteolysis, aimed at giving some inspiration in designing efficient multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jinrong Wei
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qi Ge
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Danlei Xing
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Yunzhu Qian
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
16
|
Xue F, Zhao Z, Gu Y, Han J, Ye K, Zhang Y. 7,8-Dihydroxyflavone modulates bone formation and resorption and ameliorates ovariectomy-induced osteoporosis. eLife 2021; 10:e64872. [PMID: 34227467 PMCID: PMC8285109 DOI: 10.7554/elife.64872] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Imbalances in bone formation and resorption cause osteoporosis. Mounting evidence supports that brain-derived neurotrophic factor (BDNF) implicates in this process. 7,8-Dihydroxyflavone (7,8-DHF), a plant-derived small molecular TrkB agonist, mimics the functions of BDNF. We show that both BDNF and 7,8-DHF promoted the proliferation, osteogenic differentiation, and mineralization of MC3T3-E1 cells. These effects might be attributed to the activation of the Wnt/β-catenin signaling pathway as the expression of cyclin D1, phosphorylated-glycogen synthase kinase-3β (p-GSK3β), β-catenin, Runx2, Osterix, and osteoprotegerin (OPG) was all significantly up-regulated. Knockdown of β-catenin restrained the up-regulation of Runx2 and Osterix stimulated by 7,8-DHF. In particular, blocking TrkB by its specific inhibitor K252a suppressed 7,8-DHF-induced osteoblastic proliferation, differentiation, and expression of osteoblastogenic genes. Moreover, BDNF and 7,8-DHF repressed osteoclastic differentiation of RAW264.7 cells. The transcription factor c-fos and osteoclastic genes such as tartrate-resistant acid phosphatase (TRAP), matrix metalloprotein-9 (MMP-9), Adamts5 were inhibited by 7,8-DHF. More importantly, 7,8-DHF attenuated bone loss, improved trabecular microarchitecture, tibial biomechanical properties, and bone biochemical indexes in an ovariectomy (OVX) rat model. The current work highlights the dual regulatory effects that 7,8-DHF exerts on bone remodeling.
Collapse
Affiliation(s)
- Fan Xue
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| | - Zhenlei Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| | - Yanpei Gu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| | - Jianxin Han
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of MedicineAtlantaUnited States
| | - Ying Zhang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| |
Collapse
|
17
|
Zhou B, Peng K, Wang G, Chen W, Kang Y. Silencing Proteasome 26S Subunit ATPase 2 (PSMC2) Protects the Osteogenic Differentiation In Vitro and Osteogenesis In Vivo. Calcif Tissue Int 2021; 109:44-54. [PMID: 33625534 DOI: 10.1007/s00223-021-00819-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
Osteoporosis is a commonly seen degenerative bone disorder in the elderly and postmenopausal women, with a low bone mineral density as a major risk factor. The osteogenic potential of bone marrow stromal cells (BMSCs) showed to be impaired during osteoporosis. We established a postmenopausal osteoporosis model in ovariectomized (OVX) mice and found the upregulation of proteasome 26S subunit ATPase 2 (PSMC2) in OVX mice. PSMC2 silencing improved OVX-impaired biomechanical properties of mice femur, OVX-decreased BMD, and OVX-destroyed bone structure. Histopathological analysis indicated that PSMC2 silencing improved bone trabecular structure and increased the contents of collagen fibers and newly formed bone or cartilage in OVX mice. In the meantime, PSMC2 silencing increased Runx2, PI3K, Wnt3a, and β-catenin protein contents while reduced CTSK protein. Within BMSCs isolated from OVX mice, PSMC2 silencing promoted BMSC osteogenic differentiation and elevated osteogenic markers' protein contents, including HOXA10, Runx2, OCN, OPN, and COL1A2. In conclusion, PSMC2 expression is upregulated in the postmenopausal osteoporosis model in OVX mice. PSMC2 silencing promotes the osteogenic differentiation of BMSCs in vitro, promotes bone formation, and inhibits bone resorption in vivo.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Kun Peng
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Guoqiang Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Weihua Chen
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yijun Kang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
18
|
Zhi D, Zhang M, Lin J, Liu P, Wang Y, Duan M. Wedelolactone improves the renal injury induced by lipopolysaccharide in HK-2 cells by upregulation of protein tyrosine phosphatase non-receptor type 2. J Int Med Res 2021; 49:3000605211012665. [PMID: 33983070 PMCID: PMC8127797 DOI: 10.1177/03000605211012665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective To explore the effects of wedelolactone (WEL) on sepsis-induced renal injury in the human renal proximal tubular epithelial cell line HK-2. Methods HK-2 cells were stimulated by 1 µg/ml lipopolysaccharide (LPS) to trigger renal injury in vitro. HK-2 cells were pretreated with or without WEL (0.1, 1 and 10 µM) before LPS stimulation. Protein and mRNA analyses were performed using enzyme-linked immunosorbent assays, Western blot analysis and quantitative reverse transcription–polymerase chain reaction. The MTT assay and flow cytometry were used to measure cell viability and the rate of cell apoptosis. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) knockdown was induced by the transection of HK-2 cells with short hairpin RNA. Results Cell viability was significantly increased in a dose-dependent manner by WEL in LPS-induced HK-2 cells. WEL also decreased the levels of four inflammatory cytokines and cell apoptosis in LPS-induced HK-2 cells. The level of PTPN2 was increased after WEL treatment. PTPN2 knockdown partly abolished the inhibitory effects of WEL on cell apoptosis, the levels of inflammatory cytokines and on p38 mitogen-activated protein kinase/nuclear factor-kappaB signalling in LPS-induced HK-2 cells. Conclusion WEL improved renal injury by suppressing inflammation and cell apoptosis through upregulating PTPN2 in HK-2 cells. PTPN2 might be used as a potential therapeutic target for LPS-induced sepsis.
Collapse
Affiliation(s)
- Deyuan Zhi
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Meng Zhang
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Pei Liu
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yajun Wang
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Tu Y, Yang Y, Li Y, He C. Naturally occurring coumestans from plants, their biological activities and therapeutic effects on human diseases. Pharmacol Res 2021; 169:105615. [PMID: 33872808 DOI: 10.1016/j.phrs.2021.105615] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Naturally occurring coumestans are known as a collection of plant-derived polycyclic aromatic secondary metabolites which are characterized by the presence of an oxygen heterocyclic four-ring system comprising a coumarin moiety and a benzofuran moiety sharing a C˭C bond. Recently, there is an increasing attention in excavating the medicinal potential of coumestans, particularly coumestrol, wedelolactone, psoralidin and glycyrol, in a variety of diseases. This review is a comprehensive inventory of the chemical structures of coumestans isolated from various plant sources during the period of 1956-2020, together with their reported biological activities. 120 molecules were collected and further classified as coumestans containing core skeleton, dimethylpyranocoumestans, furanocoumestans, O-glycosylated coumestans and others, which showed a wide range of pharmacological activities including estrogenic, anti-cancer, anti-inflammatory, anti-osteoporotic, organ protective, neuroprotective, anti-diabetic and anti-obesity, antimicrobial, immunosuppressive, antioxidant and skin-protective activities. Furthermore, this review focuses on the counteraction of coumestans against bone diseases and organ damages, and the involved molecular mechanisms, which could provide important information to better understand the medicinal values of these compounds. This review is intended to be instructive for the rational design and development of less toxic and more effective drugs with a coumestan scaffold.
Collapse
Affiliation(s)
- Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Ying Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|
20
|
Kang EY, Kim HK, Jung JY, Kim JH, Woo TK, Choi JI, Kim JH, Ahn C, Lee HG, Go GW. Combined Extract of Leonurus japonicus Houtt, Eclipta prostrata L., and Pueraria lobata Ohwi Improved Hot Flashes and Depression in an Ovariectomized Rat Model of Menopause. Foods 2021; 10:foods10010180. [PMID: 33477405 PMCID: PMC7829883 DOI: 10.3390/foods10010180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Menopause leads to ovarian hormone loss, which causes symptoms such as weight gain, hot flashes, and depression. Exploring nutraceuticals is important for treating menopausal symptoms that extensively impact women's quality of life. We hypothesized that a combination of Leonurus japonicus Houtt, Eclipta prostrata L., and Pueraria lobata Ohwi (LEPE) would alleviate menopausal symptoms in an ovariectomized menopausal rat model. Bilateral ovariectomy was performed and animals were assigned to five groups: (1) Sham, (2) Vehicle, (-) Control, (3) LEPE (100 mg/kg bw), (4) LEPE (200 mg/kg bw), and (5) Estradiol (3 μg/kg bw). LEPE was orally administered daily for 12 weeks. LEPE supplementation did not affect growth performance (body weight and feed intake) or body composition (lean mass and fat in tissue). LEPE did not cause deviations in aspartate aminotransferase, alanine aminotransferase, estradiol, and follicle-stimulating hormone levels, indicating no hepatotoxicity or endocrine disturbance. LEPE decreased type I collagen (CTX-1) but did not affect bone mineral density or osteocalcin. LEPE decreased tail temperature and increased rectal temperature, improving menopause-related vasomotor symptoms. Furthermore, LEPE ameliorated depression-related behavior, including in forced swimming and tail suspension tests. Thus, LEPE may improve menopausal symptoms by enhancing vasomotor symptoms and depression in an ovariectomized rat menopause model.
Collapse
Affiliation(s)
- Eun Young Kang
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
| | - Hyun Kyung Kim
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
| | - Ji Yeon Jung
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
| | - Ji Hyun Kim
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
| | - Tan Kyung Woo
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
| | - Jeong In Choi
- Research and Development Center, Nong Shim Co., Ltd., Seoul 07057, Korea; (J.I.C.); (J.H.K.); (C.A.)
| | - Jong Hoon Kim
- Research and Development Center, Nong Shim Co., Ltd., Seoul 07057, Korea; (J.I.C.); (J.H.K.); (C.A.)
| | - Changwon Ahn
- Research and Development Center, Nong Shim Co., Ltd., Seoul 07057, Korea; (J.I.C.); (J.H.K.); (C.A.)
| | - Hyeon Gyu Lee
- Korean Living Science Research Center, Hanyang University, Seoul 04763, Korea
- Correspondence: (H.G.L.); (G.-W.G.); Tel.: +82-2-2220-1201 (H.G.L.); +82-2-2220-1206 (G.-W.G.)
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
- Correspondence: (H.G.L.); (G.-W.G.); Tel.: +82-2-2220-1201 (H.G.L.); +82-2-2220-1206 (G.-W.G.)
| |
Collapse
|
21
|
Manandhar S, Kabekkodu SP, Pai KSR. Aberrant canonical Wnt signaling: Phytochemical based modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153243. [PMID: 32535482 DOI: 10.1016/j.phymed.2020.153243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/07/2020] [Accepted: 05/10/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Wnt signaling pathway plays a major role during development like gastrulation, axis formation, organ development and organization of body plan development. Wnt signaling aberration has been linked with various disease conditions like osteoporosis, colon cancer, hair follicle tumor, Leukemia, and Alzheimer's disease. Phytochemicals like flavonoid, glycosides, polyphenols, have been reported to directly target the markers of Wnt signaling in different disease models. PURPOSE The study deals in detail about the different phytochemical targeting key players of Wnt signaling pathway in diseases like Cancer, Osteoporosis, and Alzheimer's disease. We have focused on the Pharmacological basis of disease alleviation by phytochemical specifically targeting the Wnt signaling markers in this study. METHODS The study focused on the published articles from the preclinical rodent and invitro cell line studies related to Wnt signaling and Phytochemicals related to Cancer, Alzheimer's and Osteoporosis. The electronic databases Scopus, Web of Science and Pubmed database were used for the systematic search of literatures from 2005 up to 2019 using keywords Canonical Wnt signaling pathway, Cancer, Alzheimer's disease, Osteoporosis, Phytochemicals. The focus was to identify the target specific modulation of Wnt signaling mediated by phytochemicals. RESULTS Approximately 30 phytochemicals of different class have been identified to modulate Wnt signaling pathway acting through Axin, β-catenin translocation, GSK-3β, AKT, Wif-1 in various experimental studies. The down regulation of Wnt signaling is observed in Cancer mostly colorectal cancer, breast cancer mediated through mutations in APC and Axin genes. Different class of Phytochemicals such as flavonoid, glycosides, polyphenol, alkaloids etc. have been found to target Wnt signaling markers and alleviate Cancer. Similarly, Up regulation of Wnt signaling has been reported in Osteoporosis and neurodegenerative disease like Alzheimer's disease. CONCLUSION This review highlights the possibility of the Phytochemicals to target Wnt markers and its potential to either activate or deactivate the Wnt signaling pathway. It also describes the challenges in proper targeting of Wnt signaling and the potential risk and consequences of either up regulation or down regulation of the signaling pathway. This article highlights the possibility of Wnt signaling pathway as a therapeutic option in different diseases.
Collapse
Affiliation(s)
- Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
22
|
Karatas O, Balci Yuce H, Taskan MM, Gevrek F, Alkan C, Isiker Kara G, Temiz C. Cinnamic acid decreases periodontal inflammation and alveolar bone loss in experimental periodontitis. J Periodontal Res 2020; 55:676-685. [PMID: 32335913 DOI: 10.1111/jre.12754] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/13/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is the chronic destructive disease of the periodontium, which causes severe inflammation in the tissues. Cinnamic acid as an unsaturated carboxylic acid might prevent inflammation and periodontal destruction. The present study aimed to evaluate the effects of cinnamic acid in two different forms as free cinnamic acid and cinnamic acid liposome on experimental periodontitis in Wistar rats. METHODS Thirty-two female rats were used in the present study. Four main groups were created as follows: C: control group; P: periodontitis group; C-P: free cinnamic acid-administered periodontitis group; and CL-P: cinnamic acid liposome applied group. Periodontitis was induced via ligating 4-0 silk sutures around lower first molar teeth on both right and left mandibles. The study duration was 30 days, and the ligatures were removed from half of the rats in the periodontitis-induced groups. The other half carried the ligatures throughout 30 days, and all rats were euthanized at 30th day. Mandibles were removed and evaluated via stereomicroscope and underwent histological procedures. Inflammatory cell counts, osteoblast, and osteoclast cell counts were determined in hematoxylin-eosin-stained slides, and peroxisome proliferator-activated receptor (PPAR)-γ, cyclooxygenase (COX)-2, receptor activator of nuclear factor κ-B (RANKL), and osteoprotegerin (OPG) expressions were evaluated by immunohistochemistry. RESULTS Control group had the lowest bone loss, and periodontitis group which kept ligatures had the highest bone loss compared to the other groups. Ligature removal provided significant improvement in bone measurements. Cinnamic acid groups also showed lower bone loss compared to the periodontitis group. The inflammatory cell and osteoclast counts were also higher in the periodontitis group, and both applications of cinnamic acid decreased these values. Osteoblast cells were the lowest in the periodontitis group, and cinnamic acid increased these counts. PPAR-γ and COX-2 levels were higher in the periodontitis group, and cinnamic acid decreased these levels but not to a significant level except for the cinnamic acid liposome ligature removal group, which had significantly lower values in the PPAR-γ and COX-2. OPG levels were lower in the periodontitis group compared to the other groups. Cinnamic acid significantly decreased RANKL and increased OPG levels. CONCLUSION Periodontitis caused increased inflammation and bone destruction accompanied by increased PPAR-γ, COX-2, and RANKL levels and osteoclast counts. Cinnamic acid decreased osteoclast counts and inflammation and increased osteoblast counts and OPG expression in the present animal model of periodontitis.
Collapse
Affiliation(s)
- Ozkan Karatas
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Hatice Balci Yuce
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Mehmet Murat Taskan
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Fikret Gevrek
- Department of Histology and Embryology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Cemil Alkan
- Department of Chemistry, Faculty of Science and Literature, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Gozde Isiker Kara
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Cengiz Temiz
- Science and Technology Research and Application Center, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
23
|
Tang L, Kang Y, Sun S, Zhao T, Cao W, Fan X, Guo J, Sun L, Ta D. Inhibition of MSTN signal pathway may participate in LIPUS preventing bone loss in ovariectomized rats. J Bone Miner Metab 2020; 38:14-26. [PMID: 31414284 DOI: 10.1007/s00774-019-01029-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/06/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Menopause can lead to osteoporosis, which is characterized by destruction of bone microstructure, poor mechanical properties, and prone to fracture. LIPUS can effectively promote bone formation and fracture healing. MSTN is a transforming growth factor-β family member that acts as a negative regulator of skeletal muscle growth. A MSTN deficiency also has a positive effect on bone formation. However, whether LIPUS could inhibit bone loss and promote healing of bone injury of menopause through the inhibition of the MSTN signaling pathway has not been previously investigated. We herein investigated the effects of LIPUS on bone architecture, mechanical properties, the healing of bone defects, and its potential molecular mechanisms in ovariectomized rats. MATERIALS AND METHODS The rats were randomly divided into three groups: sham ovariectomized group (Sham), ovariectomized model group (OVX), ovariectomized model with LIPUS therapy group (OVX + LIPUS). The OVX + LIPUS rats were treated with LIPUS (1.5 MHz, 30 mW/cm2) on the femur for 20 min/day that lasted for 19 days. RESULTS LIPUS effectively improved the bone microstructure, increased mechanical properties and promoted the healing of bone defects in ovariectomized rats. Moreover, LIPUS effectively decreased the MSTN content in serum and quadriceps muscle in ovariectomized rats, and inhibited the expression of MSTN downstream signaling molecules and activated the Wnt signaling pathway in the femur. CONCLUSIONS The present study shows that LIPUS improved osteoporosis and promoted bone defect healing in the ovariectomized rats may through the inhibition of the MSTN signal pathway.
Collapse
Affiliation(s)
- Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yiting Kang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuxin Sun
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
| | - Tingting Zhao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenxin Cao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China.
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China.
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, 200032, China.
| |
Collapse
|
24
|
Sarwar S, Amed T, Qazi NG, Yu JQ, Huq F. Prospects of Wedelolactone as a Chemotherapeutic Agent in Gynecological Cancers; Clue From its In Vitro and In Silico Investigation. Curr Comput Aided Drug Des 2019; 16:365-375. [PMID: 31749430 DOI: 10.2174/1573409915666191015113134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 07/29/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Identification and development of new drug candidates to be used singly or in combination therapy is critical in anticancer research. In recent years, accumulating evidence encouraged us to investigate the anti-proliferative effects of a small and emerging phytochemical Wedelolactone (WDL) in estrogen-dependent and independent multiple gynecological tumor models. OBJECTIVE The aim of this study was to investigate the growth inhibitory effect of WDL on estrogen- dependent and independent gynecological cell lines and to explore its inhibitory potential towards key targets through in silico study. METHODS Cytotoxicity of WDL was investigated in human breast and ovarian cancer cell lines (MCF-7 and SKOV3) through 3-(4,5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) reduction assay. Epigallocatechingallate (EGCG) was used as reference natural compound while cisplatin was taken as a standard clinical agent. Both WDL and EGCG in combination with cisplatin were also evaluated for their combined growth inhibitory potential in MCF-7 cells. WDL was also evaluated in silico against key factors including braf kinases, CDPK, ERα, aromatase, topoisomerase II and dihydrofolate reductase (DHFR) playing pivotal roles in driving multiple tumors. RESULTS AND DISCUSSION The IC50 value of WDL was 25.77 ± 4.82 μM and 33.64 ± 1.45 μM in MCF-7 and SKOV-3 respectively. The binding energy order was as follows; WDL: DHFR >Braf kinases > CDPK; aromatase > topoisomerase II> ERα > NFkB > alkaline phosphatase; EGCG dihydrofolatereductase (DHFR) > aromatase >CDPK > topoisomerase II > braf kinases > alkaline phosphatase > CDPK > ERα > NFkB. CONCLUSION We identified WDL as a cytotoxic agent in breast and ovarian tumor models with the potential to inhibit multiple targets in the oncogenic pathway including estrogen receptor ERα, as depicted through its in silico study. Based on our own research findings and from literature evidence, we conclude that further research should be encouraged to investigate different aspects of wedelolactone as an additional agent to be combined with antiestrogen/endocrine therapy.
Collapse
Affiliation(s)
- Sadia Sarwar
- Discipline of Biomedical Sciences, Sydney Medical School, The University of Sydney, Cumberland Campus, NSW, Australia
| | - Tauqeer Amed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Neelum Gul Qazi
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Jun Qing Yu
- Discipline of Biomedical Sciences, Sydney Medical School, The University of Sydney, Cumberland Campus, NSW, Australia
| | - Fazlul Huq
- Discipline of Biomedical Sciences, Sydney Medical School, The University of Sydney, Cumberland Campus, NSW, Australia
| |
Collapse
|
25
|
Wu A, Bao Y, Yu H, Zhou Y, Lu Q. Berberine Accelerates Odontoblast Differentiation by Wnt/β-Catenin Activation. Cell Reprogram 2019; 21:108-114. [PMID: 30969881 DOI: 10.1089/cell.2018.0060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Berberine, a Chinese medical herbal extract, plays a key role in antidiabetic, antiangiogenesis, anti-inflammatory, antimicrobial, anticancer, and antihypercholesterolemic. Our previous studies revealed that berberine exerted odontoprotective effect by increasing odontoblast differentiation. However, the mechanisms involved in the odontoprotective effect of berberine have not been fully explored. The Wnt/β-catenin pathway is involved in odontoblast differentiation of dental pulp stem cells (DPSCs). If β-catenin is nuclear translocation, the Wnt/β-catenin pathway is activation. In this study, DPSCs were treated with or without berberine. Then, we examined the accelerative effects of berberine on odontoblast differentiation and mineralized nodules formation by real-time polymerase chain reaction, alizarin red S staining, and alkaline phosphatase staining. In addition, while treated with berberine, β-catenin translocated to the nucleus evaluated by western blot and immunofluorescent staining. Our results revealed that berberine functions as a promoter of odontoblast differentiation by promoting Wnt/β-catenin pathway, suggesting that it may be useful in guiding therapeutic strategies for the treatment of dental caries.
Collapse
Affiliation(s)
- Anqian Wu
- 1 Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yueqi Bao
- 2 Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hongqiang Yu
- 1 Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yanmin Zhou
- 1 Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin, China.,3 Department of Implantology, Stomatological Hospital of Jilin University, Changchun, Jilin, China
| | - Qi Lu
- 4 Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
26
|
Li P, Kong J, Chen Z, Huang S, Lv G, Wei B, Wei J, Jing K, Quan J, Chu J. Aloin promotes osteogenesis of bone-marrow-derived mesenchymal stem cells via the ERK1/2-dependent Runx2 signaling pathway. J Nat Med 2019; 73:104-113. [PMID: 30218208 DOI: 10.1007/s11418-018-1249-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
Abstract
Osteoporosis is characterized by low bone mass and the degeneration of bone structure, conditions which increase the risk of fracture. Aloin has been shown to affect bone metabolism, but its role in osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) remains unclear. The aim of our study was to determine whether aloin promotes the proliferation and osteogenic differentiation of BMSCs and, if so, whether it acts via activation of the ERK1/2-Runx2 signaling pathway. We found that the different concentrations of aloin tested had no obvious cytotoxic effects on the viability of BMSCs. Under osteogenic induction conditions, aloin increased cellular alkaline phosphatase activity, promoted BMSC mineralization, and increased osteogenic-related gene expression. In addition, treating the BMSCs with the signal transduction inhibitor PD98059 (ERK1/2) effectively attenuated Runx2 activation in these cells and also suppressed osteoblastic differentiation. Overall, our study demonstrates that aloin promotes osteogenic differentiation of BMSCs through activation of the ERK1/2-Runx2 signaling pathway.
Collapse
Affiliation(s)
- Peng Li
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Junchao Kong
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of Spine Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zhuming Chen
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Shuai Huang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Guihe Lv
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Bo Wei
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jinsong Wei
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Kaipeng Jing
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Juanhua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Jiaqi Chu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
27
|
Yuan Z, Min J, Zhao Y, Cheng Q, Wang K, Lin S, Luo J, Liu H. Quercetin rescued TNF-alpha-induced impairments in bone marrow-derived mesenchymal stem cell osteogenesis and improved osteoporosis in rats. Am J Transl Res 2018; 10:4313-4321. [PMID: 30662673 PMCID: PMC6325508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
To investigate the effect of quercetin on promoting the proliferation of bone marrow mesenchymal stem cells (BMSCs) and improving osteoporosis in rats. Rats were randomly divided into the sham, OVX and quercetin+OVX groups. In the sham and OVX groups, rats were given carboxymethyl cellulose sodium (CMC-Na). In the quercetin+OVX group, rats were given quercetin (50 mg/kg) once a day. Eight weeks after rats were treated, femurs were subjected to micro-CT scans, and bone biomechanical properties were analysed by the three-point flexural test. In addition, BMSCs were isolated and characterised by MTT, RT-PCR and Western blot analysis. In vivo, quercetin increased bone mineral density (BMD) and improved bone biomechanical properties in postmenopausal osteoporosis rat models. In vitro, TNF-α led to the activation of nuclear factor-kappa B (NF-κB) and the degradation of β-catenin, which were significantly inhibited by quercetin. Furthermore, quercetin promoted BMSC proliferation and osteogenic differentiation. In conclusion, quercetin improved in vitro models of osteoporosis and protected against TNF-α-induced impairments in BMSC osteogenesis.
Collapse
Affiliation(s)
- Zhen Yuan
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang UniversityNanchang, Jiangxi, People’s Republic of China
| | - Jun Min
- Department of Rehabilitation, The Third Affiliated Hospital of Nanchang UniversityNanchang, Jiangxi, People’s Republic of China
| | - Yawen Zhao
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang UniversityNanchang, Jiangxi, People’s Republic of China
| | - Qingfeng Cheng
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang UniversityNanchang, Jiangxi, People’s Republic of China
| | - Kai Wang
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang UniversityNanchang, Jiangxi, People’s Republic of China
| | - Sijian Lin
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang UniversityNanchang, Jiangxi, People’s Republic of China
| | - Jun Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang UniversityNanchang, Jiangxi, People’s Republic of China
| | - Hao Liu
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang UniversityNanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
28
|
Zhao XE, Yang Z, Zhang H, Yao G, Liu J, Wei Q, Ma B. Resveratrol Promotes Osteogenic Differentiation of Canine Bone Marrow Mesenchymal Stem Cells Through Wnt/Beta-Catenin Signaling Pathway. Cell Reprogram 2018; 20:371-381. [DOI: 10.1089/cell.2018.0032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Xiao-e Zhao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhenshan Yang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hui Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ge Yao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jie Liu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
29
|
Cordycepin Accelerates Osteoblast Mineralization and Attenuates Osteoclast Differentiation In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5892957. [PMID: 30410556 PMCID: PMC6206560 DOI: 10.1155/2018/5892957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022]
Abstract
Bone homeostasis destruction is triggered by the uncontrolled activity of osteoblasts and osteoclasts. Targeting both the regulation of bone formation and resorption is a promising strategy for treating bone disorders. Cordycepin is a major component of Chinese caterpillar fungus Cordyceps militaris. It exerts a variety of biological actions in various cells and animal models. However, its function on bone metabolism remains unclear. In the present study, we discovered a dual-action function of cordycepin in murine MC3T3-E1 and RAW264.7 cells. MC3T3-E1 cells were cultured in an osteogenic medium in the presence of 1 μM cordycepin for up two weeks. Cordycepin was used for effects of osteoblast and osteoclast differentiation. Cell viability was measured using the MTT assay. Osteoblast differentiation was confirmed by alizarin red staining, ALP activity, western blot, and real-time PCR. Osteoclast differentiation and autophagic activity were confirmed via TRAP staining, pit formation assay, confocal microscopy, western blot, and real-time PCR. Cordycepin promoted osteoblast differentiation, matrix mineralization, and induction of osteoblast markers via BMP2/Runx2/Osterix pathway. On the other hand, RAW264.7 cells were differentiated into osteoclast by RANKL treatment for 72 h. 1 μM cordycepin significantly inhibited RANKL-induced osteoclast formation and resorption activity through disturbing the actin ring-formatted sealing zone and activating cathepsin K and MMP9. These findings indicate that cordycepin might be an innovative dual-action therapeutic agent for bone disease caused by an imbalance of osteoblasts and osteoclasts.
Collapse
|
30
|
Dong P, Zhu D, Deng X, Zhang Y, Ma J, Sun X, Liu Y. Effect of hydroxyapatite nanoparticles and wedelolactone on osteoblastogenesis from bone marrow mesenchymal stem cells. J Biomed Mater Res A 2018; 107:145-153. [DOI: 10.1002/jbm.a.36541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Peipei Dong
- Institute (College) of Integrative Medicine; Dalian Medical University; Dalian, 116044 China
| | - Di Zhu
- Institute (College) of Integrative Medicine; Dalian Medical University; Dalian, 116044 China
| | - Xue Deng
- Institute (College) of Integrative Medicine; Dalian Medical University; Dalian, 116044 China
| | - Yanjie Zhang
- Research Institute of Photonics; Dalian Polytechnic University; Dalian, 116034 China
| | - Jinhui Ma
- People's Libration Army No.202 Hospital; Shenyang, 110000 China
| | - Xiaoxin Sun
- Institute (College) of Integrative Medicine; Dalian Medical University; Dalian, 116044 China
| | - Yanqiu Liu
- Institute (College) of Integrative Medicine; Dalian Medical University; Dalian, 116044 China
| |
Collapse
|
31
|
Wang C, Song Y, Gu Z, Lian M, Huang D, Lu X, Feng X, Lu Q. Wedelolactone Enhances Odontoblast Differentiation by Promoting Wnt/β-Catenin Signaling Pathway and Suppressing NF-κB Signaling Pathway. Cell Reprogram 2018; 20:236-244. [PMID: 30089027 DOI: 10.1089/cell.2018.0004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Chenfei Wang
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Yihua Song
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Min Lian
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Dan Huang
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Xiaohui Lu
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu, China
| | - Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
32
|
Luo Q, Ding J, Zhu L, Chen F, Xu L. Hepatoprotective Effect of Wedelolactone against Concanavalin A-Induced Liver Injury in Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:819-833. [PMID: 29737211 DOI: 10.1142/s0192415x1850043x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Eclipta prostrata L. is a traditional Chinese herbal medicine that has been used in the treatment of liver diseases. However, its biological mechanisms remain elusive. The current study aimed to investigate the hepatoprotective effect of wedelolactone, a major coumarin ingredient of Eclipta prostrata L., on immune-mediated liver injury. Using the well-established animal model of Concanavalin A (ConA)-induced hepatitis (CIH), we found that pretreatment of mice with wedelolactone markedly reduced both the serum levels of transaminases and the severity of liver damage. We further investigated the mechanisms of the protective effect of wedelolactone. In mice treated with wedelolactone prior to the induction of CIH, increases of serum concentrations of tumor necrosis factor (TNF)-[Formula: see text], interferon (IFN)-[Formula: see text], and interleukin (IL)-6 were dramatically attenuated. Additionally, expressions of the interferon-inducible chemokine (C-X-C motif) ligand 10 gene CXCL10 and intercellular adhesion molecule 1 gene ICAM1 were lower in livers of the treated mice. Moreover, wedelolactone-treated CIH mice exhibited reduced leukocyte infiltration and T-cell activation in liver. Furthermore, wedelolactone suppressed the activity of nuclear factor-kappa B (NF-[Formula: see text]B), a critical transcriptional factor of the above-mentioned inflammatory cytokines by limiting the phosphorylation of I kappa B alpha (I[Formula: see text]B[Formula: see text] and p65. In conclusion, these findings demonstrate the inhibitory potential of wedelolactone in immune-mediated liver injury in vivo, and show that this protection is associated with modulation of the NF-[Formula: see text]B signaling pathway.
Collapse
Affiliation(s)
- Qingqiong Luo
- * Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Jieying Ding
- * Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Liping Zhu
- * Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Fuxiang Chen
- * Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Lili Xu
- † Division of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
33
|
Jin G, Wang FF, Li T, Jia DD, Shen Y, Xu HC. Neogambogic Acid Suppresses Receptor Activator of Nuclear Factor κB Ligand (RANKL)-Induced Osteoclastogenesis by Inhibiting the JNK and NF-κB Pathways in Mouse Bone Marrow-Derived Monocyte/Macrophages. Med Sci Monit 2018; 24:2569-2577. [PMID: 29698379 PMCID: PMC5939603 DOI: 10.12659/msm.909651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Neogambogic acid (NGA) is used in traditional Chinese medicine. The aim of this study was to investigate the effects of NGA on gene signaling pathways involved in osteoclastogenesis in mouse bone marrow-derived monocyte/macrophages (BMMs) and on bone resorption in vitro. Material/Methods Primary mouse BMMs were cultured with increasing concentrations of NGA. Real-time polymerase chain reaction was used to study the expression of mRNAs corresponding to gene products specific to receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation, including tartrate-resistant acid phosphatase (TRAP), calcitonin receptor (CTR), cathepsin K (CTSK), and nuclear factor of activated T cells c1 (NFATc1). A cell counting kit-8 assay was used to evaluate cell proliferation. Western blotting and confocal immunofluorescence microscopy were used to investigate the signaling pathways. A bone resorption model was used to quantify bone resorption. Results An NGA dose of ≤0.4 μg/ml had no significant effect on the proliferation of mouse BMMs in vitro (P>0.05); concentrations of between 0.1–0.4 μg/ml significantly inhibited RANKL-induced osteoclastogenesis (P<0.01) in a dose-dependent manner. Compared with the control group, NGA significantly reduced RANKL-induced bone resorption in vitro (P <0.01), and downregulated the expression of osteoclast-related mRNAs of TRAP, CTR, CTSK, and NFATc1. NGA suppressed the activation of JNK but not the p38 signaling pathway and significantly reduced NF-κB p65 phosphorylation and the nuclear transport of NF-κB molecules, which inhibited NFATc1 expression. Conclusions NGA suppressed RANKL-induced osteoclastogenesis by inhibiting the JNK and NF-κB pathways in mouse BMMs in vitro and reduced osteoclastic bone resorption.
Collapse
Affiliation(s)
- Gu Jin
- Department of Bone and Soft Tissue Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Fang-Fang Wang
- Department of Gynecologic Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Tao Li
- Department of Bone and Soft Tissue Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Dong-Dong Jia
- Department of Bone and Soft Tissue Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Yong Shen
- Department of Emergency, Zhejiang Provincial Peoples' Hospital, Peoples' Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China (mainland)
| | - Hai-Chao Xu
- Department of Bone and Soft Tissue Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
34
|
Wedelolactone Enhances Osteoblastogenesis through ERK- and JNK-mediated BMP2 Expression and Smad/1/5/8 Phosphorylation. Molecules 2018; 23:molecules23030561. [PMID: 29498687 PMCID: PMC6017959 DOI: 10.3390/molecules23030561] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/16/2018] [Accepted: 02/28/2018] [Indexed: 02/01/2023] Open
Abstract
Our previous study showed that wedelolactone, a compound isolated from Ecliptae herba, has the potential to enhance osteoblastogenesis. However, the molecular mechanisms by which wedelolactone promoted osteoblastogenesis from bone marrow mesenchymal stem cells (BMSCs) remain largely unknown. In this study, treatment with wedelolactone (2 μg/mL) for 3, 6, and 9 days resulted in an increase in phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal protein kinase (JNK), and p38. Phosphorylation of mitogen-activated protein kinases (MAPKs), ERK and JNK started to increase on day 3 of treatment, and p38 phosphorylation was increased by day 6 of treatment. Expression of bone morphogenetic protein (BMP2) mRNA and phosphorylation of Smad1/5/8 was enhanced after treatment of cells with wedelolactone for 6 and 9 days. The addition of the JNK inhibitor SP600125, ERK inhibitor PD98059, and p38 inhibitor SB203580 suppressed wedelolactone-induced alkaline-phosphatase activity, bone mineralization, and osteoblastogenesis-related marker genes including Runx2, Bglap, and Sp7. Increased expression of BMP2 mRNA and Smad1/5/8 phosphorylation was blocked by SP600125 and PD98059, but not by SB203580. These results suggested that wedelolactone enhanced osteoblastogenesis through induction of JNK- and ERK-mediated BMP2 expression and Smad1/5/8 phosphorylation.
Collapse
|
35
|
Pei J, Fan L, Nan K, Li J, Shi Z, Dang X, Wang K. Excessive Activation of TLR4/NF-κB Interactively Suppresses the Canonical Wnt/β-catenin Pathway and Induces SANFH in SD Rats. Sci Rep 2017; 7:11928. [PMID: 28931847 PMCID: PMC5607349 DOI: 10.1038/s41598-017-12196-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor-kappa B (NF-κB) interactively affects the Wnt/β-catenin pathway and is closely related to different diseases. However, such crosstalk effect in steroid-associated necrosis of femoral head (SANFH) has not been fully explored and evaluated. In this study, early-stage SANFH was induced by two doses of lipopolysaccharide (LPS, 2 mg/kg/day) and three doses of methylprednisolone (MPS, 40 mg/kg/day). LPS and pyrrolidine dithiocarbamate (PDTC) were administered to activate the TLR4/NF-κB pathway and selectively block the activation of NF-κB, respectively. Results showed that PDTC treatment significantly reduced NF-κB expression, diminished inflammation, and effectively decreased bone resorption processes (osteoclastogenesis, adipogenesis, and apoptosis), which were evidently reinforced after osteonecrosis induction. Moreover, PDTC remarkably increased the interfered Wnt/β-catenin pathway and elevated bone formation processes (osteogenesis and angiogenesis). Ultimately, PDTC treatment effectively reduced the incidence of SANFH. Therefore, the excessive activation of TLR4/NF-κB may interactively suppress the Wnt/β-catenin pathway and induce SANFH. Hence, we propose NF-κB-targeted treatment as a novel therapeutic strategy for SANFH.
Collapse
Affiliation(s)
- Junpeng Pei
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an710004, Shaanxi Province, People's Republic of China
| | - Lihong Fan
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an710004, Shaanxi Province, People's Republic of China.
| | - Kai Nan
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an710004, Shaanxi Province, People's Republic of China
| | - Jia Li
- Department of Orthopaedics, First Affiliated Hospital of Xi'an Jiaotong University, School of Medicine, No. 277 Yanta Road, Xian, 710061, China
| | - Zhibin Shi
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an710004, Shaanxi Province, People's Republic of China
| | - Xiaoqian Dang
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an710004, Shaanxi Province, People's Republic of China
| | - Kunzheng Wang
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an710004, Shaanxi Province, People's Republic of China
| |
Collapse
|
36
|
Johnson TC, Siegel D. Directing Stem Cell Fate: The Synthetic Natural Product Connection. Chem Rev 2017; 117:12052-12086. [PMID: 28771328 DOI: 10.1021/acs.chemrev.7b00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stem cells possess remarkable potential for the treatment of a broad array of diseases including many that lack therapeutic options. However, the use of cell-based products derived from stem cells as therapeutics has limitations including rejection, sufficient availability, and lack of appropriate engraftment. Chemical control of stem cells provides potential solutions for overcoming many of the current limitations in cell-based therapeutics. The development of exogenous molecules to control stem cell self-renewal or differentiation has arrived at natural product-based agents as an important class of modulators. The ex vivo production of cryopreserved cellular products for use in tissue repair is a relatively new area of medicine in which the conventional hurdles to implementing chemicals to effect human health are changed. Translational challenges centered on chemistry, such as pharmacokinetics, are reduced. Importantly, in many cases the desired human tissues can be evaluated against new chemicals, and approaches to cellular regulation can be validated in the clinically applicable system. As a result linking new and existing laboratory syntheses of natural products with findings of the compounds' unique abilities to regulate stem cell fate provides opportunities for developing improved methods for tissue manufacture, accessing probe compounds, and generating new leads that yield manufactured cells with improved properties. This review provides a summary of natural products that have shown promise in controlling stem cell fate and which have also been fully synthesized thereby providing chemistry platforms for further development.
Collapse
Affiliation(s)
- Trevor C Johnson
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
37
|
Zhao XL, Chen LF, Wang Z. Aesculin modulates bone metabolism by suppressing receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and transduction signals. Biochem Biophys Res Commun 2017; 488:15-21. [PMID: 28465233 DOI: 10.1016/j.bbrc.2017.04.148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 11/29/2022]
Abstract
Aesculin (AES), a coumarin compound derived from Aesculus hippocasanum L, is reported to exert protective role against inflammatory diseases, gastric disease and cancer. However, direct effect of AES in bone metabolism is deficient. In this study, we examined the effects of AES on osteoclast (OC) differentiation in receptor activator of NF-κB ligand (RANKL)-induced RAW264.7 cells. AES inhibits the OC differentiation in both dose- and time-dependent manner within non-toxic concentrations, as analyzed by Tartrate Resistant Acid Phosphatase (TRAP) staining. The actin ring formation manifesting OC function is also decreased by AES. Moreover, expressions of osteoclastogenesis related genes Trap, Atp6v0d2, Cathepsin K and Mmp-9 are decreased upon AES treatment. Mechanistically, AES attenuates the activation of MAPKs and NF-κB activity upon RANKL induction, thus leading to the reduction of Nfatc1 mRNA expression. Moreover, AES inhibits Rank expression, and RANK overexpression markedly decreases AES's effect on OC differentiation and NF-κB activity. Consistently, AES protects against bone mass loss in the ovariectomized and dexamethasone treated rat osteoporosis model. Taken together, our data demonstrate that AES can modulate bone metabolism by suppressing osteoclastogenesis and related transduction signals. AES therefore could be a promising agent for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Xiao-Li Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lin-Feng Chen
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhen Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
38
|
Intermittent parathyroid hormone (PTH) promotes cementogenesis and alleviates the catabolic effects of mechanical strain in cementoblasts. BMC Cell Biol 2017; 18:19. [PMID: 28427342 PMCID: PMC5397739 DOI: 10.1186/s12860-017-0133-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/01/2017] [Indexed: 02/05/2023] Open
Abstract
Background External root resorption, commonly starting from cementum, is a severe side effect of orthodontic treatment. In this pathological process and repairing course followed, cementoblasts play a significant role. Previous studies implicated that parathyroid hormone (PTH) could act on committed osteoblast precursors to promote differentiation, and inhibit apoptosis. But little was known about the role of PTH in cementoblasts. The purpose of this study was to investigate the effects of intermittent PTH on cementoblasts and its influence after mechanical strain treatment. Results Higher levels of cementogenesis- and differentiation-related biomarkers (bone sialoprotein (BSP), osteocalcin (OCN), Collagen type I (COL1) and Osterix (Osx)) were shown in 1–3 cycles of intermittent PTH treated groups than the control group. Additionally, intermittent PTH increased alkaline phosphatase (ALP) activity and mineralized nodules formation, as measured by ALP staining, quantitative ALP assay, Alizarin red S staining and quantitative calcium assay. The morphology of OCCM-30 cells changed after mechanical strain exertion. Expression of BSP, ALP, OCN, osteopontin (OPN) and Osx was restrained after 18 h mechanical strain. Furthermore, intermittent PTH significantly increased the expression of cementogenesis- and differentiation-related biomarkers in mechanical strain treated OCCM-30 cells. Conclusions Taken together, these data suggested that intermittent PTH promoted cementum formation through activating cementogenesis- and differentiation-related biomarkers, and attenuated the catabolic effects of mechanical strain in immortalized cementoblasts OCCM-30. Electronic supplementary material The online version of this article (doi:10.1186/s12860-017-0133-0) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Huang W, Zheng X, Yang X, Fan S. Stimulation of Osteogenic Differentiation by Saikosaponin-A in Bone Marrow Stromal Cells Via WNT/β-Catenin Pathway. Calcif Tissue Int 2017; 100:392-401. [PMID: 28185033 DOI: 10.1007/s00223-017-0242-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/19/2017] [Indexed: 11/30/2022]
Abstract
Saikosaponin-A (SA), a class of native compound with numerous biological activities, may exert protective effect against postmenopausal bone loss. However, it remains unknown whether SA regulates the osteogenic differentiation of bone marrow stromal cells (BMSCs) in the treatment and prevention of osteoporosis. In this study, BMSCs were treated with various concentrations of SA to stimulate osteogenic differentiation over a 14-day period. Additionally, a canonical ovariectomized (OVX) mouse model was used to evaluate the effect of 3-month SA treatment in preventing postmenopausal osteoporosis. In vitro, we found that SA promotes alkaline phosphatase activity/staining and Alizarin red assay, stimulated the expression of osteogenic markers, i.e., runt-related transcription factor 2 (Runx2), osterix, osteopontin, and osteocalcin (OCN) in BMSCs. In vivo, the trabecular number, trabecular thickness, and trabecular bone mineral density of the distal femoral metaphysis were significantly increased in OVX mice treated intraperitoneally with SA for 3 months compared with OVX mice that not treated with SA. Moreover, the expression of Runx2 and OCN in OVX + SA mice was significantly increased than that in OVX mice. Finally, we found that SA activated the WNT/β-catenin pathway and the expression of several downstream genes including T-cell factor-1 and lymphoid enhancer factor-1. Inhibition of WNT/β-catenin pathway by Dickkopf-related protein 1 blocked the positive role of SA on osteogenesis. Therefore, SA promoted the osteogenic differentiation of BMSCs through WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Weiqi Huang
- Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630, People's Republic of China
| | - Xiaoling Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Panyu District, Guangzhou, 511400, People's Republic of China
| | - Xiaodong Yang
- Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630, People's Republic of China
| | - Shicai Fan
- Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630, People's Republic of China.
| |
Collapse
|