1
|
Zhong X, Qin Y, Liang C, Liang Z, Nong Y, Luo S, Guo Y, Yang Y, Wei L, Li J, Zhang M, Tang S, Liang Y, Wu J, Lam YM, Su Z. Smartphone-Assisted Nanozyme Colorimetric Sensor Array Combined "Image Segmentation-Feature Extraction" Deep Learning for Detecting Unsaturated Fatty Acids. ACS Sens 2024; 9:5167-5178. [PMID: 39298721 DOI: 10.1021/acssensors.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Conventional methods for detecting unsaturated fatty acids (UFAs) pose challenges for rapid analyses due to the need for complex pretreatment and expensive instruments. Here, we developed an intelligent platform for facile and low-cost analysis of UFAs by combining a smartphone-assisted colorimetric sensor array (CSA) based on MnO2 nanozymes with "image segmentation-feature extraction" deep learning (ISFE-DL). Density functional theory predictions were validated by doping experiments using Ag, Pd, and Pt, which enhanced the catalytic activity of the MnO2 nanozymes. A CSA mimicking mammalian olfactory system was constructed with the principle that UFAs competitively inhibit the oxidization of the enzyme substrate, resulting in color changes in the nanozyme-ABTS substrate system. Through linear discriminant analysis coupled with the smartphone App "Quick Viewer" that utilizes multihole parallel acquisition technology, oleic acid (OA), linoleic acid (LA), α-linolenic acid (ALA), and their mixtures were clearly discriminated; various edible vegetable oils, different camellia oils (CAO), and adulterated CAOs were also successfully distinguished. Furthermore, the ISFE-DL method was combined in multicomponent quantitative analysis. The sensing elements of the CSA (3 × 4) were individually segmented for single-hole feature extraction containing information from 38,868 images of three UFAs, thereby allowing for the extraction of more features and augmenting sample size. After training with the MobileNetV3 small model, the determination coefficients of OA, LA, and ALA were 0.9969, 0.9668, and 0.7393, respectively. The model was embedded in the smartphone App "Intelligent Analysis Master" for one-click quantification. We provide an innovative approach for intelligent and efficient qualitative and quantitative analysis of UFAs and other compounds with similar characteristics.
Collapse
Affiliation(s)
- Xinyu Zhong
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yuelian Qin
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Caihong Liang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Zhenwu Liang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yunyuan Nong
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Sanshan Luo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yue Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Yang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Liuyan Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Jinfeng Li
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Meiling Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Siqi Tang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yonghong Liang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Jinxia Wu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yeng Ming Lam
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University, Singapore 639798, Singapore
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning 530021, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Nanning 530021, China
- Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Nanning 530021, China
| |
Collapse
|
2
|
Xue X, Persson H, Ye L. Polydopamine functionalized dendritic fibrous silica nanoparticles as a generic platform for nucleic acid-based biosensing. Mikrochim Acta 2024; 191:180. [PMID: 38443718 PMCID: PMC10914921 DOI: 10.1007/s00604-024-06234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Accurate and rapid detection of nucleic acid sequences is of utmost importance in various fields, including disease monitoring, clinical treatment, gene analysis and drug discovery. In this study, we developed a "turn-on" fluorescence biosensor that enables simple and highly efficient detection of nucleic acid biomarkers. Our approach involves the utilization of 6-carboxyfluorescein modified single-stranded DNA (FAM-ssDNA) as molecular recognition element, along with polydopamine-functionalized dendritic fibrous nanosilica (DFNS). FAM-ssDNA serves as both specific molecular recognition element for the target analyte and reporter capable of transducing a detectable signal through Watson-Crick base pairing. The polydopamine-functionalized DFNS (DFNS@DA) exhibits strong binding to FAM-ssDNA via polyvalent metal mediated coordination leading to effective quenching by fluorescence resonance energy transfer. In the presence of a complementary target sequence, FAM-ssDNA forms hybridized structure and detaches from DFNS@DA, which causes an increased fluorescence emission. The analytical system based on FAM-ssDNA and DFNS@DA demonstrates exceptional sensitivity, selectivity, and rapid response for the detection of nucleic acid sequences, leveraging the high adsorption and quenching properties of DFNS@DA. For the first proof of concept, we demonstrated the successful detection of microRNA (miR-21) in cancer cells using the FAM-ssDNA/DFNS@DA system. Our results highlight the promising capabilities of DFNS@DA and nucleic acid-based biosensors, offering a generic and cost-effective solution for the detection of nucleic acid-related biomarkers.
Collapse
Affiliation(s)
- Xiaoting Xue
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Helena Persson
- Division of Oncology, Department of Clinical Sciences, Lund University Cancer Center, 22381, Lund, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
3
|
Larraga-Urdaz AL, Moreira-Álvarez B, Encinar JR, Costa-Fernández JM, Fernández-Sánchez ML. A plasmonic MNAzyme signal amplification strategy for quantification of miRNA-4739 breast cancer biomarker. Anal Chim Acta 2024; 1285:341999. [PMID: 38057053 DOI: 10.1016/j.aca.2023.341999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
A major challenge in the 21st century is the development of point-of-care diagnostic tools capable to detect and quantify disease biomarkers in a straightforward, affordable, sensitive, and specific manner. The remarkable plasmonic properties of gold nanoparticles (AuNPs) have promoted their use for development of simple methodologies for nucleic acid detection in combination with a variety of oligonucleotides amplification techniques. Here, assemblies of AuNPs with Multicomponent Nucleic Acid enzymes (MNAzymes) has been successfully used in the design of a highly sensitive and simple bioassay for rapid spectroscopic detection and quantification of miRNA-4739 in blood samples. The miRNA selected is a doxorubicin chemoresistant biomarker in breast cancer which overexpression promotes the proliferation, progression, and survival of cancer cells. In this work, two alternatives experimental designs, based on use of MNAzymes and AuNPs, have been optimized and applied for sensitive miRNA-4739 quantification: one based on a traditional direct measurement of wavelength shift and a second non-conventional simple approach based on isolation and measurement of free nanoparticles absorbance. Improvement in sensitivity and, higher measurement accuracy and precision were achieved with the second approach. The developed bioassay provides a detection limit as low as 7 pmolL-1 for miRNA-4739 quantification and performed satisfactory selectivity and well practical applicability by analysis of the miRNA-4739 in blood, demonstrating that the proposed strategy is a promising and suitable spectroscopic method for breast cancer diagnosis thought liquid biopsy of circulating tumoral cells.
Collapse
Affiliation(s)
- Andrea L Larraga-Urdaz
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, Oviedo 33006, Spain
| | - Borja Moreira-Álvarez
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, Oviedo 33006, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, Oviedo 33006, Spain
| | - José M Costa-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, Oviedo 33006, Spain.
| | - María Luisa Fernández-Sánchez
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, Oviedo 33006, Spain.
| |
Collapse
|
4
|
Hosseini SA, Kardani A, Yaghoobi H. A comprehensive review of cancer therapies mediated by conjugated gold nanoparticles with nucleic acid. Int J Biol Macromol 2023; 253:127184. [PMID: 37797860 DOI: 10.1016/j.ijbiomac.2023.127184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Nucleic acids provide a promising therapeutic platform by targeting various cell signaling pathways involved in cancer and genetic disorders. However, maintaining optimal stability during delivery limits their utility. Nucleic acid delivery vehicles are generally categorized into biological and synthetic carriers. Regardless of the efficiency of biological vectors, such as viral vectors, issues related to their immunogenicity and carcinogenesis are very important and vital for clinical applications. On the other hand, synthetic vectors such as lipids or polymers, have been widely used for nucleic acid delivery. Despite their transfection efficiency, low storage stability, targeting inefficiency, and tracking limitations are among the limitations of the clinical application of these vectors. In the past decades, gold nanoparticles with unique properties have been shown to be highly efficient mineral vectors for overcoming these obstacles. In this review, we focus on gold nanoparticle-nucleic acid combinations and highlight their use in the treatment of various types of cancers. Furthermore, by stating the biological applications of these structures, we will discuss their clinical applications.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arefeh Kardani
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
5
|
Chang S, Liu L, Mu C, Wen F, Xiang J, Zhai K, Wang B, Wu L, Nie A, Shu Y, Xue T, Liu Z. An Ultrasensitive SPR biosensor for RNA detection based on robust GeP 5 nanosheets. J Colloid Interface Sci 2023; 651:938-947. [PMID: 37579668 DOI: 10.1016/j.jcis.2023.08.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Ultrasensitive and rapid detection of biomarkers is among the upmost priorities in promoting healthcare advancements. Improved sensitivity of photonic sensors based on two-dimensional (2D) materials have brought exciting prospects for achieving real-time and label-free biosensing at dilute target concentrations. Here, we report a high-sensitivity surface plasmon resonance (SPR) RNA sensor using metallic 2D GeP5 nanosheets as the sensing material. Theoretical evaluations revealed that the presence of GeP5 nanosheets can greatly enhance the plasmonic electric field of the Au film thereby boosting sensing sensitivity, and that optimal sensitivity (146° RIU-1) can be achieved with 3-nm-thick GeP5. By functionalizing GeP5 nanosheets with specific cDNA probes, detection of SARS-CoV-2 RNA sequences were achieved using the GeP5-based SPR sensor, with high sensitivity down to a detection limit of 10 aM and excellent selectivity. This work demonstrates the immense potential of GeP5-based SPR sensors for advanced biosensing applications and paves the way for utilizing GeP5 nanosheets in novel sensor devices.
Collapse
Affiliation(s)
- Shaopeng Chang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Lixuan Liu
- Institute of Quantum Materials and Devices, School of Electronics and Information Engineering, Tiangong University, Tianjin 300387, China.
| | - Congpu Mu
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Fusheng Wen
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jianyong Xiang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Kun Zhai
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Bochong Wang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Leiming Wu
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Anmin Nie
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Yu Shu
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| | - Tianyu Xue
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| | - Zhongyuan Liu
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
6
|
Norouzi S, Soltani S, Alipour E. Recent advancements in biosensor designs toward the detection of intestine cancer miRNA biomarkers. Int J Biol Macromol 2023:125509. [PMID: 37364808 DOI: 10.1016/j.ijbiomac.2023.125509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Cancer diagnosis and treatment have been of broad interest among scientists in the last decades due to the high death rate, widespread occurrence, and recurrence after treatment. The survival rate of cancer patients depends greatly on early detection and appropriate treatments. Therefore developing new technologies applicable to sensitive and specific methods of cancer detection is an inevitable task for cancer researchers. Abnormal miRNA expression is contributed to severe diseases such as cancers and since their expression level and type differ strictly during carcinogenesis and later metastasis and treatments, the improved detection accuracy of these miRNAs would undoubtedly lead to early diagnosis, prognosis, and targeted therapy. Biosensors are accurate and straightforward analytical devices that have had practical applications especially in the last decade. Their domain is still growing through a combination of attractive nanomaterials and amplification methods, leading to innovative biosensing platforms for the efficient detection of miRNAs as diagnostic and prognostic biomarkers. In this review, we will provide the recent developments in biosensors to detect intestine cancer miRNA biomarkers and also discuss the challenges and outcomings of this field.
Collapse
Affiliation(s)
| | - Somaieh Soltani
- Pharmacy faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
7
|
Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: experimental results, databases, webservers and data fusion. Brief Bioinform 2022; 23:6696143. [PMID: 36094095 DOI: 10.1093/bib/bbac397] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are gene regulators involved in the pathogenesis of complex diseases such as cancers, and thus serve as potential diagnostic markers and therapeutic targets. The prerequisite for designing effective miRNA therapies is accurate discovery of miRNA-disease associations (MDAs), which has attracted substantial research interests during the last 15 years, as reflected by more than 55 000 related entries available on PubMed. Abundant experimental data gathered from the wealth of literature could effectively support the development of computational models for predicting novel associations. In 2017, Chen et al. published the first-ever comprehensive review on MDA prediction, presenting various relevant databases, 20 representative computational models, and suggestions for building more powerful ones. In the current review, as the continuation of the previous study, we revisit miRNA biogenesis, detection techniques and functions; summarize recent experimental findings related to common miRNA-associated diseases; introduce recent updates of miRNA-relevant databases and novel database releases since 2017, present mainstream webservers and new webserver releases since 2017 and finally elaborate on how fusion of diverse data sources has contributed to accurate MDA prediction.
Collapse
Affiliation(s)
- Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, 10084, China.,The Future Laboratory, Tsinghua University, Beijing, 10084, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.,Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
8
|
Treerattrakoon K, Roeksrungruang P, Dharakul T, Japrung D, Faulds K, Graham D, Bamrungsap S. Detection of a miRNA biomarker for cancer diagnosis using SERS tags and magnetic separation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1938-1945. [PMID: 35441184 DOI: 10.1039/d2ay00210h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Detection of miR-29a, a biomarker of cancers, using SERS tags and magnetic separation is described. The assay was designed to detect the miR-29a sequence by taking the complementary sequence and splitting it into a capture and detection probe. The SERS tags comprised the highly Raman active molecule 4-mercaptobenzoic acid (4-MBA) and DNA detection probes assembled onto the surface of gold nanorods (AuNRs) through the self-assembly process. The capture DNA conjugated magnetic nanoparticles (MNPs) were applied as capture probes. The detection was based on the hybridisation and sandwich complex formation. The resultant hybridisation-dependent complexes were recovered and enriched from the samples by magnetic separation. The enriched solution containing target miRNA hybridised with capture probes were dropped on a foil-covered slide to form a droplet for SERS analysis. A characteristic spectrum of 4-MBA was observed to indicate the presence of the miR-29a in the samples. The sensitivity of the assay is examined by measuring the SERS signal of the samples containing different concentrations of the miR-29a. The SERS intensity appears to increase with the concentration of miR-29a. The limit of detection (LOD) was found to be 10 pM without any amplification process. In addition, the selectivity and feasibility of the assay in complex media are evaluated with the non-target miRNAs comprising different sequences from the target miR-29a. The system was capable of detecting the target miR-29a specifically with high selectivity. These results suggest that this solution-based SERS platform has a significant capability for simple, sensitive, and selective miR-29a analysis.
Collapse
Affiliation(s)
- Kiatnida Treerattrakoon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, UK
| | - Pimporn Roeksrungruang
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Tararaj Dharakul
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Deanpen Japrung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, UK
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| |
Collapse
|
9
|
Label-Free miRNA-21 Analysis Based on Strand Displacement and Terminal Deoxynucleotidyl Transferase-Assisted Amplification Strategy. BIOSENSORS 2022; 12:bios12050328. [PMID: 35624629 PMCID: PMC9138311 DOI: 10.3390/bios12050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022]
Abstract
MicroRNAs (miRNAs) are regarded as a rising star in the biomedical industry. By monitoring slight increases in miRNA-21 levels, the possibilities of multi-type malignancy can be evaluated more precisely and earlier. However, the inconvenience and insensitivity of traditional methods for detecting miRNA-21 levels remains challenging. In this study, a partially complementary cDNA probe was designed to detect miRNA-21 with target-triggered dual amplification based on strand displacement amplification (SDA) and terminal deoxynucleotidyl transferase (TdT)-assisted amplification. In this system, the presence of miRNA-21 can hybridize with template DNA to initiate SDA, generating a large number of trigger molecules. With the assistance of TdT and dGTP, the released trigger DNA with 3′-OH terminal can be elongated to a superlong poly(guanine) sequence, and a notable fluorescence signal was observed in the presence of thioflavin T. By means of dual amplification strategy, the sensing platform showed a good response tomiRNA-21 with a detection limit of 1.7 pM (S/N = 3). Moreover, the specificity of this method was verified using a set of miRNA with sequence homologous to miRNA-21. In order to further explore its practical application capabilities, the expression of miRNA in different cell lines was quantitatively analyzed and compared with the qRT-PCR. The considerable results of this study suggest great potential for the application of the proposed approach in clinical diagnosis.
Collapse
|
10
|
Liu X, Zhao Y, Ding Y, Wang J, Liu J. Stabilization of Gold Nanoparticles by Hairpin DNA and Implications for Label-Free Colorimetric Biosensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5542-5549. [PMID: 35446580 DOI: 10.1021/acs.langmuir.2c00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With extremely high extinction coefficients and other unique optical properties, gold nanoparticles (AuNPs) have received growing interest in developing biosensors. DNA hairpin structures are very popular probes for the detection of not only complementary DNA or RNA but also aptamer targets. This work aims to understand the effect of the structure and sequence of hairpin DNA for the stabilization of AuNPs and its implications in AuNP-based label-free colorimetric biosensors. A series of hairpin DNA with various loop sizes from 4 to 26 bases and sequences (random sequences, poly-A and poly-T) were tested, but they showed similar abilities to protect AuNPs from aggregation. Using hairpin DNA with a tail under the same conditions, optimal protection was achieved with a six-base or longer tail. DNA hairpins are likely adsorbed via their tail regions or with their terminal bases if no tail is present. Molecular dynamics simulations showed that the rigidity of the hairpin loop region disfavored its adsorption to AuNPs, while the flexible tail region is favored. Finally, a DNA sensing assay was conducted using different structured DNA, where hairpin DNA with a tail doubled the sensitivity compared to the tail-free hairpin.
Collapse
Affiliation(s)
- Xun Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yu Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
11
|
Beyrampour-Basmenj H, Pourhassan-Moghamddam M, Nakhjavani SA, Faraji N, Alivand M, Zarghami N, Talebi M, Rahmati M, Ebrahimi-Kalan A. Sensitive and convenient detection of miRNA-145 using a gold nanoparticle-HCR coupled system: computational and in vitro validations. IEEE Trans Nanobioscience 2022; PP:155-162. [PMID: 35533171 DOI: 10.1109/tnb.2022.3170530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Multiple sclerosis (MS) remains a challenging disease that requires timely diagnosis. Therefore, an ultrasensitive optical biosensor based on hybridization chain reaction (HCR) was developed to detect microRNA-145 (miRNA-145) as an MS biomarker. To construct such a sensor, HCR occurred between specific hairpin probes, as MB1 contains a poly-cytosine nucleotide loop and MB2 has a poly-guanine nucleotide sticky end. By introducing miR-145 as a target sequence, long-range dsDNA polymers are formed. Then, positively charged gold nanoparticles (AuNPs) were incubated with the HCR product, which adsorbed onto the dsDNA polymers due to electrostatic adsorption. This resulted in the precipitation of the AuNPs. By incubating different concentrations of miR-145 with AuNPs, the changes in the UV-vis spectrum of the supernatant were analyzed. The proposed biosensor showed a great ability to detect miR-145 in a wide linear range from 1 pM-1 nM with an excellent detection limit (LOD) of 0.519 nM. Furthermore, the developed biosensor indicated considerable selectivity in discriminating between miR-145 and mismatched sequences. It shows high selectivity in differentiating targets. Interestingly, the proposed method was also able to detect miRNA-145 in the diluted serum samples. In conclusion, this sensing platform exhibits high selectivity and specificity for the detection of circulating microRNAs, which holds great promise for translation to routine clinical applications.
Collapse
|
12
|
Tiwari A, Chaskar J, Ali A, Arivarasan VK, Chaskar AC. Role of Sensor Technology in Detection of the Breast Cancer. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-021-00921-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Applications of hybridization chain reaction optical detection incorporating nanomaterials: A review. Anal Chim Acta 2022; 1190:338930. [PMID: 34857127 DOI: 10.1016/j.aca.2021.338930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
The development of powerful, simple and cost-effective signal amplifiers has significant implications for biological research and analysis. Hybridization chain reaction (HCR) has attracted increasing attention because of its enzyme-free, simple, and efficient amplification. In the HCR process, an initiator probe triggered a pair of metastable hairpins through a cross-opening process to propagate a chain reaction of hybridization events, yielding a long-nicked double-stranded nucleic acid structure. To achieve more noticeable signal amplification, nanomaterials, including graphene oxide, quantum dots, gold, silver, magnetic, and other nanoparticles, were integrated with HCR. Various types of colorimetric, fluorescence, plasmonic analyses or chemiluminescence optical sensing strategies incorporating nanomaterials have been developed to analyze various targets, such as nucleic acids, small biomolecules, proteins, and metal ions. This review summarized the recent advances of HCR technology pairing diverse nanomaterials in optical detection and discussed their challenges.
Collapse
|
14
|
Response of Biological Gold Nanoparticles to Different pH Values: Is It Possible to Prepare Both Negatively and Positively Charged Nanoparticles? APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mycelium-free supernatant (MFS) of a five-day-old culture medium of Fusarium oxysporum was used to synthesize gold nanoparticles (AuNPs). The experimental design of the study was to answer the question: can this production process of AuNPs be controllable like classical chemical or physical approaches? The process of producing AuNPs from 1 mM tetrachloroauric (III) acid trihydrate in MFS was monitored visually by color change at different pH values and quantified spectroscopically. The produced AuNPs were analyzed by transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The presence of capping agents was confirmed by Fourier transform infrared spectroscopy (FTIR). Two AuNP samples with acidic and alkaline pH were selected and adjusted with the pH gradient and analyzed. Finally, the size and zeta potential of all samples were determined. The results confirmed the presence of the proteins as capping agents on the surface of the AuNPs and confirmed the production of AuNPs at all pH values. All AuNP samples exhibited negative zeta potential, and this potential was higher at natural to alkaline pH values. The size distribution analysis showed that the size of AuNPs produced at alkaline pH was smaller than that at acidic pH. Since all samples had negative charge, we suspect that there were other molecules besides proteins that acted as capping agents on the surface of the AuNPs. We conclude that although the biological method of nanoparticle production is safe, green, and inexpensive, the ability to manipulate the nanoparticles to obtain both positive and negative charges is limited, curtailing their application in the medical field.
Collapse
|
15
|
Ai X, Zhao H, Hu T, Yan Y, He H, Ma C. A signal-on fluorescence-based strategy for detection of microRNA-21 based on graphene oxide and λ exonuclease-based signal amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2107-2113. [PMID: 33870957 DOI: 10.1039/d1ay00309g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MicroRNA (miRNA) expression is perturbed in various diseases. Herein, we have aimed to develop a novel and rapid fluorescence-based assay for detecting microRNA-21 (miR-21) activity based on FAM molecular signal amplification and graphene oxide (GO) quenching. In this system, a single stranded DNA (ssDNA) with a phosphate group at the 5'-end is labeled with a FAM molecular label at the 3'-end. In the presence of miR-21, this ssDNA forms a DNA/RNA duplex, which is cleaved by λ exonuclease (λ-exo), releasing FAM and resulting in fluorescence signal amplification at 530 nm. However, the DNA/RNA duplex is not generated in the absence of miR-21, which impedes λ-exo cleavage; subsequently, GO quenches the fluorescence intensity. The results show a detection limit of 0.02 nM and a wide linear range of 0.02-5 nM. The high sensitivity and easy operability of this assay can be applied for detecting miR-21 during clinical diagnosis of certain diseases and in biological research.
Collapse
Affiliation(s)
- Xiaojuan Ai
- School of Life Sciences, Central South University, Changsha 410013, China.
| | | | | | | | | | | |
Collapse
|
16
|
Shandilya R, Ranjan S, Khare S, Bhargava A, Goryacheva IY, Mishra PK. Point-of-care diagnostics approaches for detection of lung cancer-associated circulating miRNAs. Drug Discov Today 2021; 26:1501-1509. [PMID: 33647439 DOI: 10.1016/j.drudis.2021.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Circulating cell-free miRNAs (ccf-miRs) have gained significant interest as biomarkers for lung cancer (LC) diagnosis. However, the clinical application of ccf-miRs is mainly limited by time, cost, and expertise-related problems of existing detection strategies. Recently, the development of different point-of-care (POC) approaches offers useful on-site platforms, because these technologies have important features such as portability, rapid turnaround time, minimal sample requirement, and cost-effectiveness. In this review, we discuss different POC approaches for detecting ccf-miRs and highlight the utility of incorporating nanomaterials for enhanced biorecognition and signal transduction, further improving their diagnostic applicability in LC settings.
Collapse
Affiliation(s)
- Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Shashi Ranjan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Surbhi Khare
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Institute of Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
17
|
Rodriguez-Casanova A, Costa-Fraga N, Bao-Caamano A, López-López R, Muinelo-Romay L, Diaz-Lagares A. Epigenetic Landscape of Liquid Biopsy in Colorectal Cancer. Front Cell Dev Biol 2021; 9:622459. [PMID: 33614651 PMCID: PMC7892964 DOI: 10.3389/fcell.2021.622459] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and is a major cause of cancer-related deaths worldwide. Thus, there is a clinical need to improve early detection of CRC and personalize therapy for patients with this disease. In the era of precision oncology, liquid biopsy has emerged as a major approach to characterize the circulating tumor elements present in body fluids, including cell-free DNA and RNA, circulating tumor cells, and extracellular vesicles. This non-invasive tool has allowed the identification of relevant molecular alterations in CRC patients, including some indicating the disruption of epigenetic mechanisms. Epigenetic alterations found in solid and liquid biopsies have shown great utility as biomarkers for early detection, prognosis, monitoring, and evaluation of therapeutic response in CRC patients. Here, we summarize current knowledge of the most relevant epigenetic mechanisms associated with cancer development and progression, and the implications of their deregulation in cancer cells and liquid biopsy of CRC patients. In particular, we describe the methodologies used to analyze these epigenetic alterations in circulating tumor material, and we focus on the clinical utility of epigenetic marks in liquid biopsy as tumor biomarkers for CRC patients. We also discuss the great challenges and emerging opportunities of this field for the diagnosis and personalized management of CRC patients.
Collapse
Affiliation(s)
- Aitor Rodriguez-Casanova
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Nicolás Costa-Fraga
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Aida Bao-Caamano
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Laura Muinelo-Romay
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
18
|
Mollasalehi H, Hamidi A. Early-phase nano-genosensing of cell-free nucleobiomarkers in the plasma of cancerous patients. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102344. [PMID: 33253921 DOI: 10.1016/j.nano.2020.102344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/27/2022]
Abstract
The extracted miR-21 and miR-155 from the plasma of clinical samples were targeted by non-crosslinking hybridization of Au-nanoprobes without the need for biomarker amplification. Thirty samples, including those suspected to cancer and chemotherapy-treated samples, were analyzed. An increase in the concentration of target biomarkers caused a blue-shift in the visible spectrum of nanoprobes. Using magnesium chloride, the change in the color of nanoprobes was shown to be dependent on time besides intensity. Samples with high averages of intensity needed less time for colorimetric differentiation than those with low average intensity. Au-nanoprobe-21 was turned to purple-gray in clinical specimens of stomach, colon, breast, esophagus, sarcoma, diaphragm, prostate, bladder, and lung while Au-nanoprobe-155 appeared as light purple-gray in colon, breast, lung, diaphragm and esophagus samples. The LOD was measured as 5 ng μL-1 of targeted biomarkers. The developed nano-biosensing method could propose a point-of-care approach for cancer prognosis and diagnosis, facilitating targeted therapeutics.
Collapse
Affiliation(s)
- Hamidreza Mollasalehi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Asma Hamidi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
19
|
A nanobiosensor based on graphene oxide and DNA binding dye for multi-microRNAs detection. Biosci Rep 2020; 39:221397. [PMID: 31833555 PMCID: PMC6911155 DOI: 10.1042/bsr20181404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022] Open
Abstract
Multiplex assays for detection of biomarkers, provide advantageous analyses of different factors related to diagnoses of diseases. The Alzheimer’s disease (AD) is one of the most common disease in old people in societies which is increasing, significantly. A group of microRNAs (miRNAs) play an important role in developing the disease which can be considered as early stage biomarkers. Since, selective, sensitive, simple and rapid method for detection of these miRNAs in a single test is critical for early diagnosis and efficient therapy of the disease, herein, we report a sensitive fluorescence assay based on enzyme-free and isothermal hybridization chain reaction with SYBR Green and graphene oxide (GOX) for early detection of miR-137 and miR-142, as two Alzheimer’s biomarkers. Fluorescence spectrophotometry based on SYBR Green signal and GOX as the fluorescence quencher was used for detection and quantification of targets’ miRNAs and change in fluorescence intensity due to absence and presence of the targets was measured. The limit of detection in the newly designed nanobiosensor was achieved as 82 pM with a sensitive detection of the miRNAs from 0.05 to 5 nM, that is critical for detecting the biomarkers. Given the real range of concentrations of miRNAs in blood (from nanomolar to femtomolar values), the method holds great promise in dual and multiple targets detection due to its sensitivity, rapidness, inexpensive and specificity which provides a convenient detection method of Alzheimer’s in early stage.
Collapse
|
20
|
Mobed A, Hasanzadeh M. Biosensing: The best alternative for conventional methods in detection of Alzheimer's disease biomarkers. Int J Biol Macromol 2020; 161:59-71. [PMID: 32504710 DOI: 10.1016/j.ijbiomac.2020.05.257] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/29/2022]
|
21
|
Girigoswami K, Girigoswami A. A Review on the Role of Nanosensors in Detecting Cellular miRNA Expression in Colorectal Cancer. Endocr Metab Immune Disord Drug Targets 2020; 21:12-26. [PMID: 32410567 DOI: 10.2174/1871530320666200515115723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the leading causes of death across the globe. Early diagnosis with high sensitivity can prevent CRC progression, thereby reducing the condition of metastasis. OBJECTIVE The purpose of this review is (i) to discuss miRNA based biomarkers responsible for CRC, (ii) to brief on the different methods used for the detection of miRNA in CRC, (iii) to discuss different nanobiosensors so far found for the accurate detection of miRNAs in CRC using spectrophotometric detection, piezoelectric detection. METHODS The keywords for the review like micro RNA detection in inflammation, colorectal cancer, nanotechnology, were searched in PubMed and the relevant papers on the topics of miRNA related to CRC, nanotechnology-based biosensors for miRNA detection were then sorted and used appropriately for writing the review. RESULTS The review comprises a general introduction explaining the current scenario of CRC, the biomarkers used for the detection of different cancers, especially CRC and the importance of nanotechnology and a general scheme of a biosensor. The further subsections discuss the mechanism of CRC progression, the role of miRNA in CRC progression and different nanotechnology-based biosensors so far investigated for miRNA detection in other diseases, cancer and CRC. A scheme depicting miRNA detection using gold nanoparticles (AuNPs) is also illustrated. CONCLUSION This review may give insight into the different nanostructures, like AuNPs, quantum dots, silver nanoparticles, MoS2derived nanoparticles, etc., based approaches for miRNA detection using biosensors.
Collapse
Affiliation(s)
- Koyeli Girigoswami
- Medical Bionanotechnology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai, 603103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai, 603103, India
| |
Collapse
|
22
|
Wu TH, Chang CC, Yang CH, Lin WY, Ee TJ, Lin CW. Hybridization Chain Reactions Targeting the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Int J Mol Sci 2020; 21:ijms21093216. [PMID: 32370065 PMCID: PMC7246904 DOI: 10.3390/ijms21093216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
In this work, hybridization chain reactions (HCRs) toward Severe Acute Respiratory Syndrome Coronavirus 2 (SARS–CoV-2) nucleocapsid phosphoproteins gene loci and human RNase P are proposed to provide an isothermal amplification screening tool. The proposed chain reactions target the complementary DNA (cDNA) of SARS–CoV-2, with loci corresponding to gold-standard polymerase chain reaction (PCR) loci. Four hybridization chain reaction reactions are demonstrated herein, targeting N1/N2/N3 loci and human RNase P. The design of the hybridization chain reaction, herein, is assisted with an algorithm. The algorithm helps to search target sequences with low local secondary structure and high hybridization efficiency. The loop domain of the fuel hairpin molecule H1 and H2, which are the tunable segments in such reactions, are used as an optimization parameter to improve the hybridization efficiency of the chain reaction. The algorithm-derived HCR reactions were validated with gel electrophoresis. All proposed reactions exhibit a hybridization complex with a molecular mass >1.5k base pairs, which is clear evidence of chain reaction. The hybridization efficiency trend revealed by gel electrophoresis corresponds nicely to the simulated data from the algorithm. The HCR reactions and the corresponding algorithm serve as a basis to further SARS–CoV-2 sensing applications and facilitate better screening strategies for the prevention of on-going pandemics.
Collapse
Affiliation(s)
- Tzu-Heng Wu
- Department Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan; (T.-H.W.); (W.-Y.L.); (T.J.E.)
| | - Chia-Chen Chang
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Ching-Hsu Yang
- Graduate Institute of Bio-Electronics and Bio-Informatics, National Taiwan University, Taipei 10617, Taiwan;
| | - Wei-Yin Lin
- Department Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan; (T.-H.W.); (W.-Y.L.); (T.J.E.)
| | - Tan Joy Ee
- Department Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan; (T.-H.W.); (W.-Y.L.); (T.J.E.)
| | - Chii-Wann Lin
- Department Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan; (T.-H.W.); (W.-Y.L.); (T.J.E.)
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan
- Correspondence:
| |
Collapse
|
23
|
Trinh MP, Carballo JG, Adkins GB, Guo K, Zhong W. Physical and chemical template-blocking strategies in the exponential amplification reaction of circulating microRNAs. Anal Bioanal Chem 2020; 412:2399-2412. [PMID: 32072213 PMCID: PMC7141974 DOI: 10.1007/s00216-020-02496-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 01/16/2023]
Abstract
The detection of circulating miRNA through isothermal amplification wields many attractive advantages over traditional methods, such as reverse transcription RT-qPCR. However, it is challenging to control the background signal produced in the absence of target, which severely hampers applications of such methods for detecting low abundance targets in complex biological samples. In the present work, we employed both the cobalt oxyhydroxide (CoOOH) nanoflakes and the chemical modification of hexanediol to block non-specific template elongation in exponential amplification reaction (EXPAR). Adsorption by the CoOOH nanoflakes and the hexanediol modification at the 3' end effectively prevented no-target polymerization on the template itself and thus greatly improved the performance of EXPAR, detecting as low as 10 aM of several miRNA targets, including miR-16, miR-21, and miR-122, with the fluorescent DNA staining dye of SYBR Gold™. Little to no cross-reactivity was observed from the interfering strands present in 10-fold excess. Besides contributing to background reduction, the CoOOH nanoflakes strongly adsorbed nucleic acids and isolated them from a complex sample matrix, thus permitting successful detection of the target miRNA in the serum. We expect that simple but sensitive template-blocking EXPAR could be a valuable tool to help with the discovery and validation of miRNA markers in biospecimens. Graphical abstract.
Collapse
Affiliation(s)
- Michael P Trinh
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Jocelyn G Carballo
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Gary B Adkins
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Kaizhu Guo
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
24
|
Jamali Z, Taheri-Anganeh M, Shabaninejad Z, Keshavarzi A, Taghizadeh H, Razavi ZS, Mottaghi R, Abolhassan M, Movahedpour A, Mirzaei H. Autophagy regulation by microRNAs: Novel insights into osteosarcoma therapy. IUBMB Life 2020; 72:1306-1321. [PMID: 32233112 DOI: 10.1002/iub.2277] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/04/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
Osteosarcoma (OS) is a kind of primary bone cancer that is considered as the leading cause of children death. Surgery and chemotherapy are considered as common treatment approaches for OS; the rate of survival for patients is almost 60-70%. Besides the used therapeutic approaches, it seems that there is a crucial need to launch new treatments for OS. In this regard, more understanding about cellular and molecular pathways involved in OS can contribute to recovery and develop new therapeutic platforms. Autophagy is a cellular machinery that digests and degrades dysfunctional proteins and organelles, so it can regulate the cell proliferation and survival. Most of the time, OS cells use autophagy to increase their survival and proliferation and to gain the ability to resist chemotherapy. Although, there are several controversial evidences on how OS cells use autophagy. A variety of cellular and molecular pathways, that is, microRNAs (miRNAs) can modulate autophagy. MiRNAs are some endogenous, approximately 22 nucleotide RNAs that have an important role in posttranscriptional regulation of mRNAs by targeting them. There are many evidences that the various miRNA expressions in OS cells are dysregulated, so it can propel a normal cell to cancerous one by influencing the cell survival, apoptosis, and autophagy, and eventually increased chemoresitance. Hence, miRNAs can be considered as new biomarkers for OS diagnosis, and according to the role of autophagy in OS progression, miRNAs can use inhibiting or promoting autophagy agents. The present review summarizes the effects of aberrant expression of miRNAs in OS diagnosis and treatment with focus on their roles in autophagy.
Collapse
Affiliation(s)
- Zeinab Jamali
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Biological Sciences, Faculty of Nanotechnology, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkhalegh Keshavarzi
- Burn and Wound Healing Research Center, Surgical Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Taghizadeh
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Mottaghi
- Department of Oral and Maxillofacial Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadreza Abolhassan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
25
|
|
26
|
Gines G, Menezes R, Nara K, Kirstetter AS, Taly V, Rondelez Y. Isothermal digital detection of microRNAs using background-free molecular circuit. SCIENCE ADVANCES 2020; 6:eaay5952. [PMID: 32010788 PMCID: PMC6976291 DOI: 10.1126/sciadv.aay5952] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/20/2019] [Indexed: 05/04/2023]
Abstract
MicroRNAs, a class of transcripts involved in the regulation of gene expression, are emerging as promising disease-specific biomarkers accessible from tissues or bodily fluids. However, their accurate quantification from biological samples remains challenging. We report a sensitive and quantitative microRNA detection method using an isothermal amplification chemistry adapted to a droplet digital readout. Building on molecular programming concepts, we design a DNA circuit that converts, thresholds, amplifies, and reports the presence of a specific microRNA, down to the femtomolar concentration. Using a leak absorption mechanism, we were able to suppress nonspecific amplification, classically encountered in other exponential amplification reactions. As a result, we demonstrate that this isothermal amplification scheme is adapted to digital counting of microRNAs: By partitioning the reaction mixture into water-in-oil droplets, resulting in single microRNA encapsulation and amplification, the method provides absolute target quantification. The modularity of our approach enables to repurpose the assay for various microRNA sequences.
Collapse
Affiliation(s)
- Guillaume Gines
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Roberta Menezes
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Kaori Nara
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Anne-Sophie Kirstetter
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Valerie Taly
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
- Corresponding author. (Y.R.); (V.T.)
| | - Yannick Rondelez
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- Corresponding author. (Y.R.); (V.T.)
| |
Collapse
|
27
|
Lim J, Byun J, Guk K, Hwang SG, Bae PK, Jung J, Kang T, Lim EK. Highly Sensitive in Vitro Diagnostic System of Pandemic Influenza A (H1N1) Virus Infection with Specific MicroRNA as a Biomarker. ACS OMEGA 2019; 4:14560-14568. [PMID: 31528810 PMCID: PMC6740188 DOI: 10.1021/acsomega.9b01790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/31/2019] [Indexed: 05/12/2023]
Abstract
Several microRNAs (miRNAs) have been reported to be closely related to influenza A virus infection, replication, and immune response. Therefore, the development of the infectious-disease detection system using miRNAs as biomarkers is actively underway. Herein, we identified two miRNAs (miR-181c-5p and miR-1254) as biomarkers for detection of pandemic influenza A H1N1 virus infection and proposed the catalytic hairpin assembly-based in vitro diagnostic (CIVD) system for a highly sensitive diagnosis; this system is composed of two sets of cascade hairpin probes enabling to detect miR-181c-5p and miR-1254. We demonstrated that CIVD kits could not only detect subnanomolar levels of target miRNAs but also distinguish even single-base mismatches. Moreover, this CIVD kit has shown excellent detection performance in real intracellular RNA samples and confirmed results similar to those of conventional methods (microarray and quantitative real-time polymerase chain reaction).
Collapse
Affiliation(s)
- Jaewoo Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jihyun Byun
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyeonghye Guk
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Seul Gee Hwang
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Pan Kee Bae
- BioNano Health Guard Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Juyeon Jung
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Taejoon Kang
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
28
|
Catalytic hairpin assembly-assisted lateral flow assay for visual determination of microRNA-21 using gold nanoparticles. Mikrochim Acta 2019; 186:661. [DOI: 10.1007/s00604-019-3743-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/10/2019] [Indexed: 01/25/2023]
|
29
|
Chang CC, Chen CP, Wu TH, Yang CH, Lin CW, Chen CY. Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E861. [PMID: 31174348 PMCID: PMC6631916 DOI: 10.3390/nano9060861] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles are popularly used in biological and chemical sensors and their applications owing to their fascinating chemical, optical, and catalytic properties. Particularly, the use of gold nanoparticles is widespread in colorimetric assays because of their simple, cost-effective fabrication, and ease of use. More importantly, the gold nanoparticle sensor response is a visual change in color, which allows easy interpretation of results. Therefore, many studies of gold nanoparticle-based colorimetric methods have been reported, and some review articles published over the past years. Most reviews focus exclusively on a single gold nanoparticle-based colorimetric technique for one analyte of interest. In this review, we focus on the current developments in different colorimetric assay designs for the sensing of various chemical and biological samples. We summarize and classify the sensing strategies and mechanism analyses of gold nanoparticle-based detection. Additionally, typical examples of recently developed gold nanoparticle-based colorimetric methods and their applications in the detection of various analytes are presented and discussed comprehensively.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
| | - Chie-Pein Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Tzu-Heng Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Ching-Hsu Yang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Chii-Wann Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
- Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| |
Collapse
|
30
|
Li R, Gu X, Liang X, Hou S, Hu D. Aggregation of Gold Nanoparticles Caused in Two Different Ways Involved in 4-Mercaptophenylboronic Acidand Hydrogen Peroxide. MATERIALS 2019; 12:ma12111802. [PMID: 31163635 PMCID: PMC6600739 DOI: 10.3390/ma12111802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 11/30/2022]
Abstract
The difference in gold nanoparticle (AuNPs) aggregation caused by different mixing orders of AuNPs, 4-mercaptophenylboronic acid (4-MPBA), and hydrogen peroxide (H2O2) has been scarcely reported. We have found that the color change of a ((4-MPBA + AuNPs) + H2O2) mixture caused by H2O2 is more sensitive than that of a ((4-MPBA + H2O2) + AuNPs) mixture. For the former mixture, the color changes obviously with H2O2 concentrations in the range of 0~0.025%. However, for the latter mixture, the corresponding H2O2 concentration is in the range of 0~1.93%. The mechanisms on the color change originating from the aggregation of AuNPs occurring in the two mixtures were investigated in detail. For the ((4-MPBA + H2O2) + AuNPs) mixture, free 4-MPBA is oxidized by H2O2 to form bis(4-hydroxyphenyl) disulfide (BHPD) and peroxoboric acid. However, for the ((4-MPBA+AuNPs) + H2O2) mixture, immobilized 4-MPBA is oxidized by H2O2 to form 4-hydroxythiophenol (4-HTP) and boric acid. The decrease in charge on the surface of AuNPs caused by BHPD, which has alarger steric hindrance, is poorer than that caused by -4-HTP, and this is mainly responsible for the difference in the aggregation of AuNPs in the two mixtures. The formation of boric acid and peroxoboric acid in the reaction between 4-MPBA and H2O2 can alter the pH of the medium, and the effect of the pH change on the aggregation of AuNPs should not be ignored. These findings not only offer a new strategy in colorimetric assays to expand the detection range of hydrogen peroxide concentrations but also assist in deepening the understanding of the aggregation of citrate-capped AuNPs involved in 4-MPBA and H2O2, as well as in developing other probes.
Collapse
Affiliation(s)
- Runmei Li
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Xuefan Gu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Xingtang Liang
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Shi Hou
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Daodao Hu
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
31
|
Ye J, Xu M, Tian X, Cai S, Zeng S. Research advances in the detection of miRNA. J Pharm Anal 2019; 9:217-226. [PMID: 31452959 PMCID: PMC6702429 DOI: 10.1016/j.jpha.2019.05.004] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a family of endogenous, small (approximately 22 nucleotides in length), noncoding, functional RNAs. With the development of molecular biology, the research of miRNA biological function has attracted significant interest, as abnormal miRNA expression is identified to contribute to serious human diseases such as cancers. Traditional methods for miRNA detection do not meet current demands. In particular, nanomaterial-based methods, nucleic acid amplification-based methods such as rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP), strand-displacement amplification (SDA) and some enzyme-free amplifications have been employed widely for the highly sensitive detection of miRNA. MiRNA functional research and clinical diagnostics have been accelerated by these new techniques. Herein, we summarize and discuss the recent progress in the development of miRNA detection methods and new applications. This review will provide guidelines for the development of follow-up miRNA detection methods with high sensitivity and specificity, and applicability to disease diagnosis and therapy.
Collapse
Affiliation(s)
- Jiawei Ye
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingcheng Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xueke Tian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sheng Cai
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
32
|
Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat Commun 2019; 10:28. [PMID: 30604756 PMCID: PMC6318270 DOI: 10.1038/s41467-018-07947-8] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNA exhibits differential expression levels in cancer and can affect cellular transformation, carcinogenesis and metastasis. Although fluorescence techniques using dye molecule labels have been studied, label-free molecular-level quantification of miRNA is extremely challenging. We developed a surface plasmon resonance sensor based on two-dimensional nanomaterial of antimonene for the specific label-free detection of clinically relevant biomarkers such as miRNA-21 and miRNA-155. First-principles energetic calculations reveal that antimonene has substantially stronger interaction with ssDNA than the graphene that has been previously used in DNA molecule sensing, due to thanking for more delocalized 5s/5p orbitals in antimonene. The detection limit can reach 10 aM, which is 2.3–10,000 times higher than those of existing miRNA sensors. The combination of not-attempted-before exotic sensing material and SPR architecture represents an approach to unlocking the ultrasensitive detection of miRNA and DNA and provides a promising avenue for the early diagnosis, staging, and monitoring of cancer. Label-free molecular-level quantification of MicroRNA (miRNA) remains challenging. Here, the authors develop a new surface plasmon resonance sensor based on two-dimensional nanomaterial of antimonene for the specific label-free detection of clinically relevant biomarkers such as miRNA-21 and miRNA-155.
Collapse
|
33
|
Lv J, Zhou ZR, Qian RC. A DNA encoding loop program: the snowball effect enhanced microRNA visualization in living cells. Chem Commun (Camb) 2019; 55:6197-6200. [DOI: 10.1039/c9cc02169h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DNA encoding loop program (DELP); an Illustration of the DELP clustering process. In the presence of miRNA, multiple seed probes and fuel probes form enlarged GNP clusters, and the fluorescence of the FAM molecules recovers due to the opening of the hairpin DNA.
Collapse
Affiliation(s)
- Jian Lv
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
34
|
Coutinho C, Somoza Á. MicroRNA sensors based on gold nanoparticles. Anal Bioanal Chem 2018; 411:1807-1824. [PMID: 30390112 DOI: 10.1007/s00216-018-1450-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs, the dysregulation of which has been associated with the progression of several human diseases, including cancer. Interestingly, these molecules can be used as biomarkers for early disease diagnosis and can be found in a variety of body fluids and tissue samples. However, their specific properties and very low concentrations make their detection rather challenging. In this regard, current detection methods are complex, cost-ineffective, and of limited application in point-of-care settings or resource-limited facilities. Recently, nanotechnology-based approaches have emerged as promising alternatives to conventional miRNA detection methods and paved the way for research towards sensitive, fast, and low-cost detection systems. In particular, due to their exceptional properties, the use of gold nanoparticles (AuNPs) has significantly improved the performance of miRNA biosensors. This review discusses the application of AuNPs in different miRNA sensor modalities, commenting on recently reported examples. A practical overview of each modality is provided, highlighting their future use in clinical diagnosis. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Catarina Coutinho
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049, Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049, Madrid, Spain.
| |
Collapse
|
35
|
Wu Y, Li Y, Han H, Zhao C, Zhang X. Dual cycle amplification and dual signal enhancement assisted sensitive SERS assay of MicroRNA. Anal Biochem 2018; 564-565:16-20. [PMID: 30312618 DOI: 10.1016/j.ab.2018.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/09/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022]
Abstract
A sensitive surface-enhanced Raman scattering (SERS) approach has been developed for detection of microRNA (miRNA) based on target-triggered dual signal amplification including strand displancement amplification (SDA) and hybridization chain reaction (HCR). With the assistant of polymerase and nicking endonuclease (NEase), target miRNA combines with the single stranded template DNA to generate a great amount of trigger DNA which can induce HCR. Coupled the dual cycle amplification of SDA and HCR with the dual enhancement of gold nanoparticles (AuNPs), a low detection limit of 0.5 fM for miRNA is obtained using the proposed strategy. With high sensitivity, universality, rapid analysis, and high selectivity, this method has a great potential for detecting biomolecules with trace amounts in bioanalysis and clinical biomedicine.
Collapse
Affiliation(s)
- Yingdi Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ying Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Huixia Han
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Caisheng Zhao
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaoru Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
36
|
Vlăsceanu GM, Amărandi RM, Ioniță M, Tite T, Iovu H, Pilan L, Burns JS. Versatile graphene biosensors for enhancing human cell therapy. Biosens Bioelectron 2018; 117:283-302. [DOI: 10.1016/j.bios.2018.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023]
|
37
|
Jiao M, Zhang P, Meng J, Li Y, Liu C, Luo X, Gao M. Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications. Biomater Sci 2018; 6:726-745. [PMID: 29308496 DOI: 10.1039/c7bm01020f] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Due to their intrinsic physical properties potentially useful for imaging and therapy as well as their highly engineerable surface, biocompatible inorganic nanoparticles offer novel platforms to develop advanced diagnostic and therapeutic agents for improved detection and more efficacious treatment of major diseases. The in vivo application of inorganic nanoparticles was demonstrated more than two decades ago, however it turns out to be very complicated as nanomaterials exhibit much more sophisticated pharmacokinetic properties than conventional drugs. In this review, we first discuss the in vivo behavior of inorganic nanoparticles after systematic administration, including the basic requirements for nanoparticles to be used in vivo, the impact of the particles' physicochemical properties on their pharmacokinetics, and the effects of the protein corona formed across the nano-bio interface. Next, we summarize the state-of-the-art of the preparation of biocompatible inorganic nanoparticles and bioconjugation strategies for obtaining target-specific nanoprobes. Then, the advancements in sensitive tumor imaging towards diagnosis and visualization of the abnormal signatures in the tumor microenvironment, together with recent studies on atherosclerosis imaging are highlighted. Finally, the future challenges and the potential for inorganic nanoparticles to be translated into clinical applications are discussed.
Collapse
Affiliation(s)
- Mingxia Jiao
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
An organic electrochemical transistor for determination of microRNA21 using gold nanoparticles and a capture DNA probe. Mikrochim Acta 2018; 185:408. [DOI: 10.1007/s00604-018-2944-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
|
39
|
Augspurger EE, Rana M, Yigit MV. Chemical and Biological Sensing Using Hybridization Chain Reaction. ACS Sens 2018; 3:878-902. [PMID: 29733201 DOI: 10.1021/acssensors.8b00208] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the advent of its theoretical discovery more than 30 years ago, DNA nanotechnology has been used in a plethora of diverse applications in both the fundamental and applied sciences. The recent prominence of DNA-based technologies in the scientific community is largely due to the programmable features stored in its nucleobase composition and sequence, which allow it to assemble into highly advanced structures. DNA nanoassemblies are also highly controllable due to the precision of natural and artificial base-pairing, which can be manipulated by pH, temperature, metal ions, and solvent types. This programmability and molecular-level control have allowed scientists to create and utilize DNA nanostructures in one, two, and three dimensions (1D, 2D, and 3D). Initially, these 2D and 3D DNA lattices and shapes attracted a broad scientific audience because they are fundamentally captivating and structurally elegant; however, transforming these conceptual architectural blueprints into functional materials is essential for further advancements in the DNA nanotechnology field. Herein, the chemical and biological sensing applications of a 1D DNA self-assembly process known as hybridization chain reaction (HCR) are reviewed. HCR is a one-dimensional (1D) double stranded (ds) DNA assembly process initiated only in the presence of a specific short ssDNA (initiator) and two kinetically trapped DNA hairpin structures. HCR is considered an enzyme-free isothermal amplification process, which shows substantial promise and offers a wide range of applications for in situ chemical and biological sensing. Due to its modular nature, HCR can be programmed to activate only in the presence of highly specific biological and/or chemical stimuli. HCR can also be combined with different types of molecular reporters and detection approaches for various analytical readouts. While the long dsDNA HCR product may not be as structurally attractive as the 2D and 3D DNA networks, HCR is highly instrumental for applied biological, chemical, and environmental sciences, and has therefore been studied to foster a variety of objectives. In this review, we have focused on nucleic acid, protein, metabolite, and heavy metal ion detection using this 1D DNA nanotechnology via fluorescence, electrochemical, and nanoparticle-based methodologies.
Collapse
|
40
|
Hakimian F, Ghourchian H, Hashemi AS, Arastoo MR, Behnam Rad M. Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles. Sci Rep 2018; 8:2943. [PMID: 29440644 PMCID: PMC5811613 DOI: 10.1038/s41598-018-20229-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/11/2018] [Indexed: 01/10/2023] Open
Abstract
An ultrasensitive optical biosensor for microRNA-155 (miR-155) was developed to diagnose breast cancer at early stages. At first, the probe DNA covalently bind to the negatively charged gold nanoparticles (citrate-capped AuNPs). Then, the target miR-155 electrostatically adsorb onto the positively charged gold nanoparticles (polyethylenimine-capped AuNP) surface. Finally, by mixing citrate-capped AuNP/probe and polyethylenimine-capped AuNP/miR-155, hybridization occurs and the optical signal of the mixture give a measure to quantify the miR-155 content. The proposed biosensor is able to specify 3-base-pair mismatches and genomic DNA from target miR-155. The novelty of this biosensor is in its ability to trap the label-free target by its branched positively charged polyethylenimine. This method increases loading the target on the polyethylenimine-capped AuNPs' surface. So, proposed sensor enables miR-155 detection at very low concentrations with the detection limit of 100 aM and a wide linear range from 100 aM to 100 fM.
Collapse
Affiliation(s)
- Fatemeh Hakimian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Azam Sadat Hashemi
- Hematology, Oncology & Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Reza Arastoo
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Mohammad Behnam Rad
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
41
|
Miao X, Cheng Z, Ma H, Li Z, Xue N, Wang P. Label-Free Platform for MicroRNA Detection Based on the Fluorescence Quenching of Positively Charged Gold Nanoparticles to Silver Nanoclusters. Anal Chem 2017; 90:1098-1103. [DOI: 10.1021/acs.analchem.7b01991] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiangmin Miao
- School
of Life Science, and ‡School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhiyuan Cheng
- School
of Life Science, and ‡School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Haiyan Ma
- School
of Life Science, and ‡School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Zongbing Li
- School
of Life Science, and ‡School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Ning Xue
- School
of Life Science, and ‡School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Po Wang
- School
of Life Science, and ‡School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
42
|
Yuan YH, Chi BZ, Wen SH, Liang RP, Li ZM, Qiu JD. Ratiometric electrochemical assay for sensitive detecting microRNA based on dual-amplification mechanism of duplex-specific nuclease and hybridization chain reaction. Biosens Bioelectron 2017; 102:211-216. [PMID: 29145074 DOI: 10.1016/j.bios.2017.11.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/26/2017] [Accepted: 11/07/2017] [Indexed: 01/05/2023]
Abstract
We propose a ratiometric electrochemical assay for detecting microRNA (miRNA) on the basis of dual-amplification mechanism by using distinguishable electrochemical signals from thionine (Thi) and ferrocene (Fc). The thiol-modified and ferrocene-labeled hairpin capture probes (CP) are first immobilized on an Au electrode via Au-S reaction. The target miRNA hybridizes with CP and unfolding the hairpin structure of CP to form miRNA-DNA duplexes. Then, kamchatka crab duplex specific nuclease (DSN) specifically cleaves the DNA in miRNA-DNA duplexes, leading to the release of miRNA and another cleaves cycle, meanwhile, numerous Fc leaves away from the electrode surface and leads to the signal-off of Fc. The residual fragment on electrode surface acts as a HCR primer to form dsDNA polymers through in situ HCR with the presence of the primer and two probes (HDNA and HDNA'), resulting in the capture of numerous DNA/Au NPs/Thi and the signal-on of Thi. The dual-amplification mechanism significantly amplifies the decrease of Fc signal and the increase of Thi signal for ratiometric readout (IThi/IFc), thus providing a sensitive method for the selective detection of miR-141 with a detection limit down to 11aM. The dual-signal ratiometric outputs have an intrinsic self-calibration to the effects from system, which is promising to be applied in biosensing and clinical diagnosis.
Collapse
Affiliation(s)
- Yan-Hong Yuan
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Bao-Zhu Chi
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Shao-Hua Wen
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China.
| | - Zhi-Mei Li
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China.
| |
Collapse
|
43
|
Moody L, He H, Pan YX, Chen H. Methods and novel technology for microRNA quantification in colorectal cancer screening. Clin Epigenetics 2017; 9:119. [PMID: 29090038 PMCID: PMC5655825 DOI: 10.1186/s13148-017-0420-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/17/2017] [Indexed: 02/08/2023] Open
Abstract
The screening and diagnosis of colorectal cancer (CRC) currently relies heavily on invasive endoscopic techniques as well as imaging and antigen detection tools. More accessible and reliable biomarkers are necessary for early detection in order to expedite treatment and improve patient outcomes. Recent studies have indicated that levels of specific microRNA (miRNA) are altered in CRC; however, measuring miRNA in biological samples has proven difficult, given the complicated and lengthy PCR-based procedures used by most laboratories. In this manuscript, we examine the potential of miRNA as CRC biomarkers, summarize the methods that have commonly been employed to quantify miRNA, and focus on novel strategies that can improve or replace existing technology for feasible implementation in a clinical setting. These include isothermal amplification techniques that can potentially eliminate the need for specialized thermocycling equipment. Additionally, we propose the use of near-infrared (NIR) probes which can minimize autofluorescence and photobleaching and streamline quantification without tedious sample processing. We suggest that novel miRNA quantification tools will be necessary to encourage new discoveries and facilitate their translation to clinical practice.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
| | - Hongshan He
- Department of Chemistry, Eastern Illinois University, Charleston, IL 62910 USA
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA.,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Hong Chen
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
| |
Collapse
|
44
|
Kalogianni DP, Kalligosfyri PM, Kyriakou IK, Christopoulos TK. Advances in microRNA analysis. Anal Bioanal Chem 2017; 410:695-713. [DOI: 10.1007/s00216-017-0632-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
|
45
|
Triggered hairpin switch and in situ nonlinear hybridization chain reaction enabling label-free electrochemiluminescent detection of BCR/ABL fusion gene. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Tuning stable and unstable aggregates of gallic acid capped gold nanoparticles using Mg2+ as coordinating agent. J Colloid Interface Sci 2017; 494:1-7. [DOI: 10.1016/j.jcis.2017.01.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 11/17/2022]
|
47
|
Colorimetric and visual determination of microRNA via cycling signal amplification using T7 exonuclease. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2238-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Hosseini M, Ahmadi E, Borghei YS, Reza Ganjali M. A new fluorescence turn-on nanobiosensor for the detection of micro-RNA-21 based on a DNA–gold nanocluster. Methods Appl Fluoresc 2017; 5:015005. [DOI: 10.1088/2050-6120/aa5e57] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Miao X, Cheng Z, Li Z, Wang P. A novel sensing platform for sensitive cholesterol detection by using positively charged gold nanoparticles. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|