1
|
Domínguez F, Adler E, García-Pavía P. Alcoholic cardiomyopathy: an update. Eur Heart J 2024; 45:2294-2305. [PMID: 38848133 PMCID: PMC11231944 DOI: 10.1093/eurheartj/ehae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/15/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Alcohol-induced cardiomyopathy (AC) is an acquired form of dilated cardiomyopathy (DCM) caused by prolonged and heavy alcohol intake in the absence of other causes. The amount of alcohol required to produce AC is generally considered as >80 g/day over 5 years, but there is still some controversy regarding this definition. This review on AC focuses on pathogenesis, which involves different mechanisms. Firstly, the direct toxic effect of ethanol promotes oxidative stress in the myocardium and activation of the renin-angiotensin system. Moreover, acetaldehyde, the best-studied metabolite of alcohol, can contribute to myocardial damage impairing actin-myosin interaction and producing mitochondrial dysfunction. Genetic factors are also involved in the pathogenesis of AC, with DCM-causing genetic variants in patients with AC, especially titin-truncating variants. These findings support a double-hit hypothesis in AC, combining genetics and environmental factors. The synergistic effect of alcohol with concomitant conditions such as hypertension or liver cirrhosis can be another contributing factor leading to AC. There are no specific cardiac signs and symptoms in AC as compared with other forms of DCM. However, natural history of AC differs from DCM and relies directly on alcohol withdrawal, as left ventricular ejection fraction recovery in abstainers is associated with an excellent prognosis. Thus, abstinence from alcohol is the most crucial step in treating AC, and specific therapies are available for this purpose. Otherwise, AC should be treated according to current guidelines of heart failure with reduced ejection fraction. Targeted therapies based on AC pathogenesis are currently being developed and could potentially improve AC treatment in the future.
Collapse
Affiliation(s)
- Fernando Domínguez
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Manuel de Falla, 2, Majadahonda, Madrid 28222, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Calle de Melchor Fernández Almagro, 3, Madrid, Spain
| | - Eric Adler
- Section Head of Heart Failure, University of California, San Diego, CA, USA
| | - Pablo García-Pavía
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Manuel de Falla, 2, Majadahonda, Madrid 28222, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Calle de Melchor Fernández Almagro, 3, Madrid, Spain
| |
Collapse
|
2
|
Zong H, Hu Z, Li W, Wang M, Zhou Q, Li X, Liu H. Electronic cigarettes and cardiovascular disease: epidemiological and biological links. Pflugers Arch 2024; 476:875-888. [PMID: 38376568 PMCID: PMC11139732 DOI: 10.1007/s00424-024-02925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Electronic cigarettes (e-cigarettes), as alternative nicotine delivery methods, has rapidly increased among youth and adults in recent years. However, cardiovascular safety is an important consideration regarding e-cigarettes usage. e-cigarette emissions, including nicotine, propylene glycol, flavorings, nitrosamine, and metals, might have adverse effects on cardiovascular health. A large body of epidemiological evidence has indicated that e-cigarettes are considered an independent risk factor for increased rates of cardiovascular disease occurrence and death. The incidence and mortality of various types of cardiovascular disease, such as cardiac arrhythmia, hypertension, acute coronary syndromes, and heart failure, have a modest growth in vapers (users of e-cigarettes). Although the underlying biological mechanisms have not been fully understood, studies have validated that oxidative stress, inflammation, endothelial dysfunction, atherosclerosis, hemodynamic effects, and platelet function play important roles in which e-cigarettes work in the human body. This minireview consolidates and discusses the epidemiological and biological links between e-cigarettes and various types of cardiovascular disease.
Collapse
Affiliation(s)
- Huiqi Zong
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhekai Hu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Xicheng District, Beijing, 100053, China
| | - Weina Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Xicheng District, Beijing, 100053, China
| | - Mina Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qi Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiang Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Hongxu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
3
|
Zhao H, Lin X, Chen Q, Wang X, Wu Y, Zhao X. Quercetin inhibits the NOX2/ROS-mediated NF-κB/TXNIP signaling pathway to ameliorate pyroptosis of cardiomyocytes to relieve sepsis-induced cardiomyopathy. Toxicol Appl Pharmacol 2023; 477:116672. [PMID: 37648089 DOI: 10.1016/j.taap.2023.116672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Sepsis-induced cardiomyopathy (SIC) has high morbidity and mortality. Quercetin (QUE) has been used to treat many inflammatory diseases related to pyroptosis. However, its effect on SIC has not been reported before. We aimed to explore the therapeutic mechanism of QUE on SIC. We found that the expression levels of NOX2, markers of myocardial injury and inflammatory factors related to pyroptosis were upregulated in the serum of SIC patients. QUE improved the viability and reduced the death rate of LPS-treated H9C2 cells. It could downregulate the expression level of NOX2 and alleviate NOX2-induced mitochondrial damage to inhibit the ROS-mediated NF-κB/TXNIP pathway thus ameliorating cell pyroptosis. Overexpression of NOX2 partially attenuated the anti-pyroptotic effects of QUE on LPS-treated H9C2 cells in vitro. Besides, the results of animal experiments reported that the mitochondrial damage was reduced by QUE treatment, which subsequently inhibited the ROS-mediated NF-κB/TXNIP pathway to ameliorate cell pyroptosis to further alleviate myocardial injury in CLP-induced rats in vivo. To conclude, QUE suppressed the NOX2/ROS-mediated NF-κB/TXNIP signaling pathway to ameliorate pyroptosis of cardiomyocytes to relieve SIC.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China
| | - Xin Lin
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China
| | - Qingfeng Chen
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China
| | - Xiaoyue Wang
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China
| | - Yongya Wu
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China
| | - Xiaoxia Zhao
- Department of Emergency and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhuaxi Road, Lixia District, Jinan City, Shandong Province 250014, China.
| |
Collapse
|
4
|
Kustova MV, Prokofiev II, Perfilova VN, Muzyko EA, Zavadskaya VE, Varlamova SV, Kucheryavenko AS, Tyurenkov IN, Vasilyeva OS. The role of iNOS inhibition in the mechanism of the cardioprotective effect of new GABA and glutamic acid derivatives in the model of acute alcoholic myocardial injury in rats. BIOMEDITSINSKAIA KHIMIIA 2023; 69:112-124. [PMID: 37132493 DOI: 10.18097/pbmc20236902112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The cardioprotective effects of new derivatives of glutamic acid (glufimet) and GABA (mefargin) were studied in rats exposed to acute alcohol intoxication (AAI) under conditions of selective blockade of inducible NO-synthase (iNOS). AAI induced a pronounced decrease in the contractile function of the myocardium during exercise tests (load by volume, test for adrenoreactivity, isometric exercise), caused mitochondrial dysfunction and increased processes of lipid peroxidation (LPO) in heart cells. A decrease in NO production during iNOS inhibition and AAI improved the respiratory function of mitochondria, a decreased the level of LPO products, and increased mitochondrial superoxide dismutase activity of heart cells. This led to an increase in myocardial contractility. The studied compounds, glufimet and mefargin, caused a statistically significant increase in the rates of myocardial contraction and relaxation, left ventricular pressure, and also reduced NO production. This was accompanied by a decrease in the intensity of LPO processes and an increase in the respiratory control ratio (RCR), reflecting the coupling between respiration and phosphorylation processes during activation of the respiratory chain complexes I and II. The decrease in NO concentration during selective blockade of iNOS and administration of the studied substances was less pronounced than without blockade of the enzyme. This suggests the putative effect of new derivatives of neuroactive amino acids on the NO system.
Collapse
Affiliation(s)
- M V Kustova
- Volgograd State Medical University, Volgograd, Russia
| | - I I Prokofiev
- Volgograd State Medical University, Volgograd, Russia
| | - V N Perfilova
- Volgograd State Medical University, Volgograd, Russia
| | - E A Muzyko
- Volgograd State Medical University, Volgograd, Russia
| | | | - S V Varlamova
- Volgograd State Medical University, Volgograd, Russia
| | | | - I N Tyurenkov
- Volgograd State Medical University, Volgograd, Russia
| | - O S Vasilyeva
- Herzen Russian State Pedagogical University, St. Petersburg, Russia
| |
Collapse
|
5
|
Dong XJ, Wang BB, Jiao Y, Hou FF, Zhang XQ. Global, regional and national burden of alcohol cardiomyopathy from Global Burden of Disease Study 2019. Intern Emerg Med 2023; 18:499-511. [PMID: 36786978 DOI: 10.1007/s11739-023-03204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/10/2023] [Indexed: 02/15/2023]
Abstract
This study aimed to provide up-to-date and comprehensive estimates on the global alcohol cardiomyopathy (ACM) from 1990 to 2019. Detailed data on the prevalence, disability-adjusted life-years (DALYs), deaths,percentage change in the number of cases and estimated annual percentage change (EAPC) of ACM worldwide from 1990 to 2019 were obtained or calculated from the Global Burden of Disease Study (GBD) 2019. Globally, the estimated prevalent cases of ACM in 2019 were 707,652 [95% uncertainty interval (UI): 545,182-924,392], with a 35.4% (28.2-44.2) increase from 522,616 (95% UI: 394,118-683,206) in 1990, while the age-standardized prevalence rate (ASPR) was slightly decreased with an overall EAPC of - 1.30 (- 1.38 - - 1.22). Similar to ASPR, the global age-standardized DALYs rate and age-standardized death rate (ASDR) also declined, with an EAPC of - 1.12(- 2.09 - - 0.14) and - 1.53(- 2.36 - - 0.70) from 1990 to 2019, respectively. Conversely, the number of ACM-related DALYs cases in 2019 was 2,441,108 (95% UI: 2,046,734-2,782,542), with an increase of 38.8%(2.8-59.9) over the past 30 years, and the number of ACM-related deaths in 2019 was 71,723 (95% UI: 60,167-81,995), with an increase of 33.1% (0.5- 51.9) compared with 1990. A significant variation in the burden of ACM was observed between different regions and countries. Although the ASPR, age-standardized DALYs rate and ASDR slightly decreased from 1990 to 2019, the absolute number of prevalent cases, DALYs cases and deaths significantly increased. This showed that the burden of ACM remains an important global public health concern. Public health policy and decision-makers should develop and implement more effective strategies specific to geographical location to combat and reduce the burden of ACM in the future.
Collapse
Affiliation(s)
- Xin-Jiang Dong
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, China.
| | - Bei-Bei Wang
- Department of Cardiology, The First People's Hospital of Jinzhong, Jinzhong, China
| | - Yang Jiao
- Department of Interventional Radiology, Shaanxi Provincial People's Hospital, Xian, China
| | - Fei-Fei Hou
- Department of Intensive Care Unit, Affiliated of Inner Mongolia Medical University, Huhehaote, China
| | - Xiao-Qi Zhang
- Department of Plastic Surgery, Taiyuan Army Plastic Surgery Hospital, Taiyuan, China
| |
Collapse
|
6
|
Maiuolo J, Oppedisano F, Carresi C, Gliozzi M, Musolino V, Macrì R, Scarano F, Coppoletta A, Cardamone A, Bosco F, Mollace R, Muscoli C, Palma E, Mollace V. The Generation of Nitric Oxide from Aldehyde Dehydrogenase-2: The Role of Dietary Nitrates and Their Implication in Cardiovascular Disease Management. Int J Mol Sci 2022; 23:ijms232415454. [PMID: 36555095 PMCID: PMC9779284 DOI: 10.3390/ijms232415454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Reduced bioavailability of the nitric oxide (NO) signaling molecule has been associated with the onset of cardiovascular disease. One of the better-known and effective therapies for cardiovascular disorders is the use of organic nitrates, such as glyceryl trinitrate (GTN), which increases the concentration of NO. Unfortunately, chronic use of this therapy can induce a phenomenon known as "nitrate tolerance", which is defined as the loss of hemodynamic effects and a reduction in therapeutic effects. As such, a higher dosage of GTN is required in order to achieve the same vasodilatory and antiplatelet effects. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a cardioprotective enzyme that catalyzes the bio-activation of GTN to NO. Nitrate tolerance is accompanied by an increase in oxidative stress, endothelial dysfunction, and sympathetic activation, as well as a loss of the catalytic activity of ALDH2 itself. On the basis of current knowledge, nitrate intake in the diet would guarantee a concentration of NO such as to avoid (or at least reduce) treatment with GTN and the consequent onset of nitrate tolerance in the course of cardiovascular diseases, so as not to make necessary the increase in GTN concentrations and the possible inhibition/alteration of ALDH2, which aggravates the problem of a positive feedback mechanism. Therefore, the purpose of this review is to summarize data relating to the introduction into the diet of some natural products that could assist pharmacological therapy in order to provide the NO necessary to reduce the intake of GTN and the phenomenon of nitrate tolerance and to ensure the correct catalytic activity of ALDH2.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Annarita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
7
|
Kustova MV, Perfilova VN, Prokofiev II, Musyko EA, Kucheryavenko AS, Kusnetsova EE, Tsetsera DE, Tyurenkov IN. Pharmacological correction of the sequelae of acute alcohol-induced myocardial damage with new derivatives of neuroactive amino acids coupled with the blockade of the neuronal NO synthase isoform. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.90241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Introduction: Acute alcohol intoxication (AAI) induces a number of myocardial disorders, which result in mitochondrial dysfunction in cardiomyocytes, oxidative stress, and decreased cardiac contractility. Nitric oxide produced by the nNOS is one of the major modulators of cardiac activity. New derivatives of GABA (RSPU-260 compound) and glutamate (glufimet) can be potentially regarded as such agents as the interaction between the NO system and the GABA and glutamatergic systems has been proved.
Materials and methods: All the studies were performed on female white Wistar rats, aged 10 months, whose weight was 280–320g AAI intoxication was modeled of 32% ethanol (gavage, 4g/kg).
Results and discussion: Glufimet and the RSPU-260 compound caused a significant improvement in myocardial contractility, increased oxygen consumption in the V3 state according to Chance, raised the respiratory control ratio and decreased the intensity of LPO intensity. Their effectiveness exceeded that of mildronate, their comparator. nNOS inhibition resulted in a pronounced aggravation of oxidative stress implicated in MDA accumulation in cardiac mitochondria and decreased activity of SOD; myocardial contractility and mitochondrial function indicators did not show a significant difference from the control group. The compounds under study coupled with nNOS inhibition had a cardioprotective effect.
Conclusion: Glufimet and the RSPU-260 compound, derivatives of neuroactive amino acids, have a pronounced cardioprotective effect, restrict LPO processes, enhance SOD activity, improve the mitochondrial respiratory function after acute alcohol intoxication when coupled with neuronal NO-synthase inhibition, the expression of which persists after AAI.
Graphical abstract:
Collapse
|
8
|
Brandt M, Dörschmann H, Khraisat S, Knopp T, Ringen J, Kalinovic S, Garlapati V, Siemer S, Molitor M, Göbel S, Stauber R, Karbach SH, Münzel T, Daiber A, Wenzel P. Telomere Shortening in Hypertensive Heart Disease Depends on Oxidative DNA Damage and Predicts Impaired Recovery of Cardiac Function in Heart Failure. Hypertension 2022; 79:2173-2184. [PMID: 35862118 DOI: 10.1161/hypertensionaha.121.18935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heart failure (HF) coincides with cardiomyocyte telomere shortening. Arterial hypertension is the most prominent risk factor for HF. Both HF and arterial hypertension are associated with dysregulation of the neurohormonal axis. How neurohormonal activation is linked to telomere shortening in the pathogenesis of HF is incompletely understood. METHODS Cardiomyocyte telomere length was assessed in a mouse model of hypertensive HF induced by excess neurohormonal activation (AngII [angiotensin II] infusion, high salt diet, and uninephrectomy), in AngII-stimulated cardiomyocytes and in endomyocardial biopsies from patients with HF. Superoxide production, expression of NOX2 (NADPH oxidase 2) and PRDX1 (peroxiredoxin 1) and HDAC6 (histone deacetylase 6) activity were assessed. RESULTS Telomere shortening occurred in vitro and in vivo, correlating with both left ventricular (LV) dilatation and LV systolic function impairment. Telomere shortening coincided with increased superoxide production, increased NOX2 expression, increased HDAC6 activity, loss of the telomere-specific antioxidant PRDX1, and increased oxidative DNA-damage. NOX2 knockout prevented PRDX1 depletion, DNA-damage and telomere shortening confirming this enzyme as a critical source of reactive oxygen species. Cotreatment with the NOX inhibitor apocynin ameliorated hypertensive HF and telomere shortening. Similarly, treatment with the HDAC6 inhibitor tubastatin A, which increases PRDX1 bioavailability, prevented telomere shortening in adult cardiomyocytes. To explore the clinical relevance of our findings, we examined endomyocardial biopsies from an all-comer population of patients with HF with reduced ejection fraction. Here, cardiomyocyte telomere length predicted the recovery of cardiac function. CONCLUSIONS Cardiomyocyte telomere shortening and oxidative damage in heart failure with reduced ejection fraction induced by excess neurohormonal activation depends on NOX2-derived superoxide and may help to stratify HF therapy.
Collapse
Affiliation(s)
- Moritz Brandt
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Hendrik Dörschmann
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Sana'a Khraisat
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Tanja Knopp
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Julia Ringen
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Sanela Kalinovic
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Venkata Garlapati
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Svenja Siemer
- Department of Otolaryngology, Head and Neck Surgery, University Medical Center Mainz' Mainz' Germany (S.S., R.S.)
| | - Michael Molitor
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Sebastian Göbel
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Roland Stauber
- Department of Otolaryngology, Head and Neck Surgery, University Medical Center Mainz' Mainz' Germany (S.S., R.S.)
| | - Susanne Helena Karbach
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Thomas Münzel
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Andreas Daiber
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.)
| | - Philip Wenzel
- Department of Cardiology' University Medical Center Mainz' Mainz' Germany (M.B., H.D., S.K., T.K., J.R., S.K., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Center for Thrombosis and Hemostasis' University Medical Center Mainz' Mainz' Germany (M.B., H.D., T.K., J.R., V.G., M.M., S.H.K., T.M., A.D., P.W.).,German Center for Cardiovascular Research (DZHK) - Partner site Rhine-Main (M.B., T.K., J.R., V.G., M.M., S.G., S.H.K., T.M., A.D., P.W.).,Department of Biochemistry, Cardiovascular Research Institute Maastricht School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands (P.W.)
| |
Collapse
|
9
|
Ohlrogge AH, Frost L, Schnabel RB. Harmful Impact of Tobacco Smoking and Alcohol Consumption on the Atrial Myocardium. Cells 2022; 11:2576. [PMID: 36010652 PMCID: PMC9406618 DOI: 10.3390/cells11162576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Tobacco smoking and alcohol consumption are widespread exposures that are legal and socially accepted in many societies. Both have been widely recognized as important risk factors for diseases in all vital organ systems including cardiovascular diseases, and with clinical manifestations that are associated with atrial dysfunction, so-called atrial cardiomyopathy, especially atrial fibrillation and stroke. The pathogenesis of atrial cardiomyopathy, atrial fibrillation, and stroke in context with smoking and alcohol consumption is complex and multifactorial, involving pathophysiological mechanisms, environmental, and societal aspects. This narrative review summarizes the current literature regarding alterations in the atrial myocardium that is associated with smoking and alcohol.
Collapse
Affiliation(s)
- Amelie H. Ohlrogge
- Department of Cardiology, University Heart and Vascular Centre Hamburg, 20246 Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Lars Frost
- Diagnostic Centre, University Clinic for Development of Innovative Patient Pathways, Silkeborg Regional Hospital, 8600 Silkeborg, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Renate B. Schnabel
- Department of Cardiology, University Heart and Vascular Centre Hamburg, 20246 Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
10
|
Ma X, Liao Z, Li R, Xia W, Guo H, Luo J, Sheng H, Tian M, Cao Z. Myocardial Injury Caused by Chronic Alcohol Exposure—A Pilot Study Based on Proteomics. Molecules 2022; 27:molecules27134284. [PMID: 35807529 PMCID: PMC9268295 DOI: 10.3390/molecules27134284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic alcohol exposure can cause myocardial degenerative diseases, manifested as cardiac insufficiency, arrhythmia, etc. These are defined as alcoholic cardiomyopathy (ACM). Alcohol-mediated myocardial injury has previously been studied through metabolomics, and it has been proved to be involved in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway concerning unsaturated fatty acids biosynthesis and oxidative phosphorylation, which tentatively explored the mechanism of ACM induced by chronic drinking. To further study alcohol-induced myocardial injury, myocardial specimens from a previously successfully established mouse model of ACM were subjected to histological, echocardiographic, and proteomic analyses, and validated by real-time quantitative polymerase chain reaction (qPCR). Results of histopathology and echocardiography showed the hypertrophy of cardiomyocytes, the dilation of ventricles, and decreased cardiac function. Proteomic results, available via ProteomeXchange with identifier PXD032949, revealed 56 differentially expressed proteins (DEPs) were identified, which have the potential to be involved in the KEGG pathway related to fatty acid biosynthesis disorders, lipid metabolism disorders, oxidative stress, and, ultimately, in the development of dilated cardiomyopathy (DCM). The present study further elucidates the underlying effects of myocardial injury due to chronic alcohol intake, laying a foundation for further studies to clarify the potential mechanisms of ACM.
Collapse
Affiliation(s)
- Xiaonan Ma
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang 110122, China; (X.M.); (Z.L.); (R.L.); (J.L.)
- The Third Clinical Department, China Medical University, Shenyang 110122, China
| | - Zihan Liao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang 110122, China; (X.M.); (Z.L.); (R.L.); (J.L.)
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Science, Shenyang 110122, China
| | - Rongxuan Li
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang 110122, China; (X.M.); (Z.L.); (R.L.); (J.L.)
- The Third Clinical Department, China Medical University, Shenyang 110122, China
| | - Wei Xia
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China; (W.X.); (H.G.)
| | - Honghui Guo
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China; (W.X.); (H.G.)
| | - Jiawei Luo
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang 110122, China; (X.M.); (Z.L.); (R.L.); (J.L.)
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Science, Shenyang 110122, China
| | - Huaxin Sheng
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Meihui Tian
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Science, Shenyang 110122, China
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, Shenyang 110122, China
- Correspondence: (M.T.); (Z.C.)
| | - Zhipeng Cao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang 110122, China; (X.M.); (Z.L.); (R.L.); (J.L.)
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Science, Shenyang 110122, China
- Correspondence: (M.T.); (Z.C.)
| |
Collapse
|
11
|
Li T, Shi H, Zhao Y. Acetaldehyde induces tau phosphorylation via activation of p38 MAPK/JNK and ROS production. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00193-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Du XY, Xiang DC, Gao P, Peng H, Liu YL. Inhibition of (Pro)renin Receptor-Mediated Oxidative Stress Alleviates Doxorubicin-Induced Heart Failure. Front Oncol 2022; 12:874852. [PMID: 35574363 PMCID: PMC9106363 DOI: 10.3389/fonc.2022.874852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Aim Clinical utility of doxorubicin (DOX) is limited by its cardiotoxic side effect, and the underlying mechanism still needs to be fully elucidated. This research aimed to examine the role of (pro)renin receptor (PRR) in DOX-induced heart failure (HF) and its underlying mechanism. Main Methods Sprague Dawley (SD) rats were injected with an accumulative dosage of DOX (15 mg/kg) to induce HF. Cardiac functions were detected by transthoracic echocardiography examination. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK) in serum were detected, and oxidative stress related injuries were evaluated. Furthermore, the mRNA expression of PRR gene and its related genes were detected by real-time PCR (RT-PCR), and protein levels of PRR, RAC1, NOX4 and NOX2 were determined by Western blot. Reactive oxygen species (ROS) were determined in DOX-treated rats or cells. Additionally, PRR and RAC1 were silenced with their respective siRNAs to validate the in vitro impacts of PRR/RAC1 on DOX-induced cardiotoxicity. Moreover, inhibitors of PRR and RAC1 were used to validate their effects in vivo. Key Findings PRR and RAC1 expressions increased in DOX-induced HF. The levels of CK and LDH as well as oxidative stress indicators increased significantly after DOX treatment. Oxidative injury and apoptosis of cardiomyocytes were attenuated both in vivo and in vitro upon suppression of PRR or RAC1. Furthermore, the inhibition of PRR could significantly down-regulate the expressions of RAC1 and NOX4 but not that of NOX2, while the inhibition of RAC1 did not affect PRR. Significance Our findings showed that PRR inhibition could weaken RAC1-NOX4 pathway and alleviate DOX-induced HF via decreasing ROS production, thereby suggesting a promising target for the treatment of DOX-induced HF.
Collapse
Affiliation(s)
- Xiao-yi Du
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pediatrics, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao-chun Xiang
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Gao
- Department of Clinical Pharmacy, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Peng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hua Peng, ; Ya-li Liu,
| | - Ya-li Liu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hua Peng, ; Ya-li Liu,
| |
Collapse
|
13
|
Acetaldehyde Induces Cytotoxicity via Triggering Mitochondrial Dysfunction and Overactive Mitophagy. Mol Neurobiol 2022; 59:3933-3946. [PMID: 35438433 DOI: 10.1007/s12035-022-02828-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
Overconsumption of alcohol damages brain tissue and causes cognitive dysfunction. It has been suggested that the neurotoxicity caused by excessive alcohol consumption is largely mediated by acetaldehyde, the most toxic metabolite of ethanol. Evidence shows that acetaldehyde impairs mitochondrial function and induces cytotoxicity of neuronal cells; however, the exact mechanisms are not fully understood. The aim of this study was to investigate the role of mitophagy in acetaldehyde-induced cytotoxicity. It was found that acetaldehyde treatment induced mitophagic responses and caused cytotoxicity in SH-SY5Y cells. The levels of light chain 3 (LC3)-II, Beclin1, autophagy-related protein (Atg) 5 and Atg16L1, PTEN-induced putative kinase (PINK)1, and Parkin were significantly elevated, while the level of p62 was reduced in acetaldehyde-treated cells. Acetaldehyde also promoted the accumulation of PINK1 and Parkin on mitochondria and caused a remarkable decrease of mitochondrial mass. Treatment with autophagy inhibitors prevented the decline of mitochondrial mass and alleviated the cytotoxicity induced by acetaldehyde, suggesting that overactive mitophagy might be an important mechanism contributing to acetaldehyde-induced cytotoxicity. Antioxidant N-acetyl-L-cysteine significantly attenuated the mitophagic responses and alleviated the cytotoxicity induced by acetaldehyde, indicating that oxidative stress was a major mediator of the excessive mitophagy induced by acetaldehyde. Taken together, these findings provided new insights into the role of mitophagy and oxidative stress in acetaldehyde-induced cytotoxicity.
Collapse
|
14
|
Losartan protects human stem cell-derived cardiomyocytes from angiotensin II-induced alcoholic cardiotoxicity. Cell Death Dis 2022; 8:134. [PMID: 35347130 PMCID: PMC8960777 DOI: 10.1038/s41420-022-00945-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 11/08/2022]
Abstract
Alcoholic cardiomyopathy (ACM) is a myocardial injury caused by long-term heavy drinking. Existing evidence indicates that high levels of oxidative stress are the key to pathological cardiomyopathy caused by long-term exposure to high concentrations of alcohol, while angiotensin II (AngII) and its type 1 receptor (AT1R) play an important role in excessive drinking. Whether oxidative stress-induced damage in ACM is related to AngII and AT1R is unclear, and the effects of alcohol on the electrophysiology of myocardial cells have not been reported. Most existing studies have used animal models. This study established an in vitro model of ACM based on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The transcriptional profiling of alcohol treatment was performed by RNA-seq analysis. The role of oxidative stress, the expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX), and the role of AngII and AT1R in the overactivation of oxidative stress were studied using fluorescent labeling, Western blotting, and high-content quantitative analysis. Real-time cell analysis(RTCA) and microelectrode array (MEA) were used to continuously monitor myocardial beating, observe the effects of alcohol on myocardial electrophysiological activity, and clarify the protective effects of the AT1R blocker losartan on ACM. We found that AngII and AT1R contribute to the effects of alcohol on the myocardium through oxidative stress damage, the mechanism of which may be achieved by regulating NOX.
Collapse
|
15
|
Alleyne J, Dopico AM. Alcohol Use Disorders and Their Harmful Effects on the Contractility of Skeletal, Cardiac and Smooth Muscles. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1:10011. [PMID: 35169771 PMCID: PMC8843239 DOI: 10.3389/adar.2021.10011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/21/2021] [Indexed: 06/14/2023]
Abstract
Alcohol misuse has deleterious effects on personal health, family, societal units, and global economies. Moreover, alcohol misuse usually leads to several diseases and conditions, including alcoholism, which is a chronic condition and a form of addiction. Alcohol misuse, whether as acute intoxication or alcoholism, adversely affects skeletal, cardiac and/or smooth muscle contraction. Ethanol (ethyl alcohol) is the main effector of alcohol-induced dysregulation of muscle contractility, regardless of alcoholic beverage type or the ethanol metabolite (with acetaldehyde being a notable exception). Ethanol, however, is a simple and "promiscuous" ligand that affects many targets to mediate a single biological effect. In this review, we firstly summarize the processes of excitation-contraction coupling and calcium homeostasis which are critical for the regulation of contractility in all muscle types. Secondly, we present the effects of acute and chronic alcohol exposure on the contractility of skeletal, cardiac, and vascular/ nonvascular smooth muscles. Distinctions are made between in vivo and in vitro experiments, intoxicating vs. sub-intoxicating ethanol levels, and human subjects vs. animal models. The differential effects of alcohol on biological sexes are also examined. Lastly, we show that alcohol-mediated disruption of muscle contractility, involves a wide variety of molecular players, including contractile proteins, their regulatory factors, membrane ion channels and pumps, and several signaling molecules. Clear identification of these molecular players constitutes a first step for a rationale design of pharmacotherapeutics to prevent, ameliorate and/or reverse the negative effects of alcohol on muscle contractility.
Collapse
Affiliation(s)
| | - Alex M. Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
16
|
Andreadou I, Efentakis P, Frenis K, Daiber A, Schulz R. Thiol-based redox-active proteins as cardioprotective therapeutic agents in cardiovascular diseases. Basic Res Cardiol 2021; 116:44. [PMID: 34275052 DOI: 10.1007/s00395-021-00885-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Thiol-based redox compounds, namely thioredoxins (Trxs), glutaredoxins (Grxs) and peroxiredoxins (Prxs), stand as a pivotal group of proteins involved in antioxidant processes and redox signaling. Glutaredoxins (Grxs) are considered as one of the major families of proteins involved in redox regulation by removal of S-glutathionylation and thereby reactivation of other enzymes with thiol-dependent activity. Grxs are also coupled to Trxs and Prxs recycling and thereby indirectly contribute to reactive oxygen species (ROS) detoxification. Peroxiredoxins (Prxs) are a ubiquitous family of peroxidases, which play an essential role in the detoxification of hydrogen peroxide, aliphatic and aromatic hydroperoxides, and peroxynitrite. The Trxs, Grxs and Prxs systems, which reversibly induce thiol modifications, regulate redox signaling involved in various biological events in the cardiovascular system. This review focuses on the current knowledge of the role of Trxs, Grxs and Prxs on cardiovascular pathologies and especially in cardiac hypertrophy, ischemia/reperfusion (I/R) injury and heart failure as well as in the presence of cardiovascular risk factors, such as hypertension, hyperlipidemia, hyperglycemia and metabolic syndrome. Further studies on the roles of thiol-dependent redox systems in the cardiovascular system will support the development of novel protective and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Katie Frenis
- Department of Cardiology 1, Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.,Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr 1, 55131, Mainz, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
17
|
Abstract
A link between oxidative stress and hypertension has been firmly established in multiple animal models of hypertension but remains elusive in humans. While initial studies focused on inactivation of nitric oxide by superoxide, our understanding of relevant reactive oxygen species (superoxide, hydrogen peroxide, and peroxynitrite) and how they modify complex signaling pathways to promote hypertension has expanded significantly. In this review, we summarize recent advances in delineating the primary and secondary sources of reactive oxygen species (nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, endoplasmic reticulum, and mitochondria), the posttranslational oxidative modifications they induce on protein targets important for redox signaling, their interplay with endogenous antioxidant systems, and the role of inflammasome activation and endoplasmic reticular stress in the development of hypertension. We highlight how oxidative stress in different organ systems contributes to hypertension, describe new animal models that have clarified the importance of specific proteins, and discuss clinical studies that shed light on how these processes and pathways are altered in human hypertension. Finally, we focus on the promise of redox proteomics and systems biology to help us fully understand the relationship between ROS and hypertension and their potential for designing and evaluating novel antihypertensive therapies.
Collapse
Affiliation(s)
- Kathy K Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, USA
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Francisco Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| |
Collapse
|
18
|
do Vale GT, da Silva CBP, Sousa AH, Gonzaga NA, Parente JM, Araújo KM, Castro MM, Tirapelli CR. Nebivolol Prevents Up-Regulation of Nox2/NADPH Oxidase and Lipoperoxidation in the Early Stages of Ethanol-Induced Cardiac Toxicity. Cardiovasc Toxicol 2021; 21:224-235. [PMID: 33067693 DOI: 10.1007/s12012-020-09614-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022]
Abstract
Changes in redox state are described in the early stages of ethanol-induced cardiac toxicity. Here, we evaluated whether nebivolol would abrogate ethanol-induced redox imbalance in the heart. Male Wistar rats were treated with a solution of ethanol (20% v/v) for 3 weeks. Treatment with nebivolol (10 mg/kg/day; p.o. gavage) prevented the increase of both superoxide (O2•-) and thiobarbituric acid reactive substances (TBARS) in the left ventricle of rats chronically treated with ethanol. Neither ethanol nor nebivolol affected the expression of Nox4, p47phox, or Rac-1. Nebivolol prevented ethanol-induced increase of Nox2 expression in the left ventricle. Superoxide dismutase (SOD) activity as well as the concentration of reduced glutathione (GSH) was not altered by ethanol or nebivolol. Augmented catalase activity was detected in the left ventricle of both ethanol- and nebivolol-treated rats. Treatment with nebivolol, but not ethanol increased eNOS expression in the left ventricle. No changes in the activity of matrix metalloproteinase (MMP)2 or in the expressions of MMP2, MMP9, and tissue inhibitor metalloproteinase (TIMP)1 were detected after treatment with ethanol or nebivolol. However, ethanol increased the expression of TIMP2, and this response was prevented by nebivolol. Our results provided novel insights into the mechanisms underlying the early stages of the cardiac injury induced by ethanol consumption. We demonstrated that Nox2/NADPH oxidase-derived ROS play a role in ethanol-induced lipoperoxidation and that this response was prevented by nebivolol. In addition, we provided evidence that MMPs are not activated in the early stages of ethanol-induced cardiac toxicity.
Collapse
Affiliation(s)
- Gabriel T do Vale
- Universidade do Estado de Minas Gerais (UEMG), Passos, MG, Brazil
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carla B P da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Programa de Pós-graduação em Toxicologia, USP, Ribeirão Preto, SP, Brazil
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, USP, Avenida Bandeirantes 3900, CEP 14040-902, Ribeirão Preto, SP, Brazil
| | - Arthur H Sousa
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, USP, Avenida Bandeirantes 3900, CEP 14040-902, Ribeirão Preto, SP, Brazil
| | - Natália A Gonzaga
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, USP, Avenida Bandeirantes 3900, CEP 14040-902, Ribeirão Preto, SP, Brazil
| | - Juliana M Parente
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Katiúscia M Araújo
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, USP, Avenida Bandeirantes 3900, CEP 14040-902, Ribeirão Preto, SP, Brazil
| | - Michele M Castro
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, USP, Avenida Bandeirantes 3900, CEP 14040-902, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
19
|
Zhang F, Wang K, Zhang S, Li J, Fan R, Chen X, Pei J. Accelerated FASTK mRNA degradation induced by oxidative stress is responsible for the destroyed myocardial mitochondrial gene expression and respiratory function in alcoholic cardiomyopathy. Redox Biol 2020; 38:101778. [PMID: 33197770 PMCID: PMC7677712 DOI: 10.1016/j.redox.2020.101778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 01/25/2023] Open
Abstract
Chronic alcoholism disrupts mitochondrial function and often results in alcoholic cardiomyopathy (ACM). Fas-activated serine/threonine kinase (FASTK) is newly recognized as a key post-transcriptional regulator of mitochondrial gene expression. However, the modulatory role of FASTK in cardiovascular pathophysiology remains totally unknown. In experimental ACM models, cardiac FASTK expression markedly declined. Ethanol directly suppressed FASTK expression at post-transcriptional level through NADPH oxidase-derived reactive oxygen species (ROS). Ethanol destabilized FASTK mRNA 3'-untranslated region (3'-UTR) and accelerated its decay, which was blocked by the clearance of ROS. Regnase-1 (Reg1), a ribonuclease regulating mRNA stability, was induced by ROS in ethanol-stimulated cardiomyocytes. Reg1 directly bound to FASTK mRNA 3'-UTR and promoted its degradation, whereas silencing of Reg1 reversed ethanol-induced FASTK downregulation. Compared to wild type control, alcohol-related myocardial morphological (hypertrophy, fibrosis and cardiomyocyte apoptosis) and functional (reduced ejection fraction and compromised cardiomyocyte contraction) anomalies were worsened in FASTK deficient mice. Mechanistically, FASTK ablation repressed NADH dehydrogenase subunit 6 (MTND6, a mitochondrial gene encoding a subunit of complex I) mRNA production and reduced complex I-supported respiration. Importantly, cardiomyocyte-specific upregulation of FASTK through intra-cardiac AAV9-cTNT injection mitigated myocardial mitochondrial dysfunction and restrained ACM progression. In vitro study showed that overexpression of FASTK ameliorated ethanol-induced MTND6 mRNA downregulation, complex I inactivation, and cardiomyocyte death, whereas these beneficial effects were counteracted by rotenone, a complex I inhibitor. Collectively, ROS-accelerated FASTK mRNA degradation via Reg1 underlies chronic ethanol ingestion-associated mitochondrial dysfunction and cardiomyopathy. Restoration of FASTK expression through genetic approaches might be a promising therapeutic strategy for ACM.
Collapse
Affiliation(s)
- Fuyang Zhang
- Department of Physiology and Pathophysiology, Basic Medicine School, National Key Discipline of Cell Biology, Air Force Medical University, China; Department of Cardiology, Xijing Hospital, Air Force Medical University, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, Basic Medicine School, National Key Discipline of Cell Biology, Air Force Medical University, China
| | - Shumiao Zhang
- Department of Physiology and Pathophysiology, Basic Medicine School, National Key Discipline of Cell Biology, Air Force Medical University, China
| | - Juan Li
- Department of Physiology and Pathophysiology, Basic Medicine School, National Key Discipline of Cell Biology, Air Force Medical University, China
| | - Rong Fan
- Department of Physiology and Pathophysiology, Basic Medicine School, National Key Discipline of Cell Biology, Air Force Medical University, China
| | - Xiyao Chen
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, China.
| | - Jianming Pei
- Department of Physiology and Pathophysiology, Basic Medicine School, National Key Discipline of Cell Biology, Air Force Medical University, China.
| |
Collapse
|
20
|
Göllner M, Ihrig-Biedert I, Petermann V, Saurin S, Oelze M, Kröller-Schön S, Vujacic-Mirski K, Kuntic M, Pautz A, Daiber A, Kleinert H. NOX2ko Mice Show Largely Increased Expression of a Mutated NOX2 mRNA Encoding an Inactive NOX2 Protein. Antioxidants (Basel) 2020; 9:antiox9111043. [PMID: 33114493 PMCID: PMC7692237 DOI: 10.3390/antiox9111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Background: The superoxide-generating enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2 or gp91phox, the phagocytic isoform) was reported as a major source of oxidative stress in various human diseases. Genetic deletion is widely used to study the impact of NOX2-derived reactive oxygen species (ROS) on disease development and progression in various animal models. Here, we investigate why NOX2 knockout mice show no NOX2 activity but express NOX2 mRNA and protein. Methods and Results: Oxidative burst (NOX2-dependent formation of ROS) was measured by L-012-based chemiluminescence and was largely absent in whole blood of NOX2 knockout mice. Protein expression was still detectable in different tissues of the NOX2 knockout mice, at the expected and a slightly lower molecular weight (determined by Western blot). The NOX2 gene was even largely enhanced at its expressional level in NOX2 knockout mice. RNA sequencing revealed a modified NOX2 mRNA in the knockout mice that is obviously translated to a truncated inactive mutant enzyme. Conclusion: Although the commercial NOX2 knockout mice display no considerable enzymatic NOX2 activity, expression of the NOX2 gene (when using standard primers) and protein (when using antibodies binding to the carboxy-terminal end) can still be detected, which may lead to confusion among investigators.
Collapse
Affiliation(s)
- Monika Göllner
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (M.G.); (I.I.-B.); (V.P.); (S.S.); (A.P.)
| | - Irmgard Ihrig-Biedert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (M.G.); (I.I.-B.); (V.P.); (S.S.); (A.P.)
| | - Victoria Petermann
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (M.G.); (I.I.-B.); (V.P.); (S.S.); (A.P.)
| | - Sabrina Saurin
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (M.G.); (I.I.-B.); (V.P.); (S.S.); (A.P.)
| | - Matthias Oelze
- Laboratory of Molecular Cardiology, Department of Cardiology 1, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (M.O.); (S.K.-S.); (K.V.-M.); (M.K.)
| | - Swenja Kröller-Schön
- Laboratory of Molecular Cardiology, Department of Cardiology 1, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (M.O.); (S.K.-S.); (K.V.-M.); (M.K.)
| | - Ksenija Vujacic-Mirski
- Laboratory of Molecular Cardiology, Department of Cardiology 1, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (M.O.); (S.K.-S.); (K.V.-M.); (M.K.)
| | - Marin Kuntic
- Laboratory of Molecular Cardiology, Department of Cardiology 1, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (M.O.); (S.K.-S.); (K.V.-M.); (M.K.)
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (M.G.); (I.I.-B.); (V.P.); (S.S.); (A.P.)
| | - Andreas Daiber
- Laboratory of Molecular Cardiology, Department of Cardiology 1, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (M.O.); (S.K.-S.); (K.V.-M.); (M.K.)
- Correspondence: (A.D.); (H.K.); Tel.: +49-(6131)-17-6280 (A.D.); +49-(6131)-17-9150 (H.K.)
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (M.G.); (I.I.-B.); (V.P.); (S.S.); (A.P.)
- Correspondence: (A.D.); (H.K.); Tel.: +49-(6131)-17-6280 (A.D.); +49-(6131)-17-9150 (H.K.)
| |
Collapse
|
21
|
Efentakis P, Varela A, Chavdoula E, Sigala F, Sanoudou D, Tenta R, Gioti K, Kostomitsopoulos N, Papapetropoulos A, Tasouli A, Farmakis D, Davos CH, Klinakis A, Suter T, Cokkinos DV, Iliodromitis EK, Wenzel P, Andreadou I. Levosimendan prevents doxorubicin-induced cardiotoxicity in time- and dose-dependent manner: implications for inotropy. Cardiovasc Res 2020; 116:576-591. [PMID: 31228183 DOI: 10.1093/cvr/cvz163] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/22/2019] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
AIMS Levosimendan (LEVO) a clinically-used inodilator, exerts multifaceted cardioprotective effects. Case-studies indicate protection against doxorubicin (DXR)-induced cardiotoxicity, but this effect remains obscure. We investigated the effect and mechanism of different regimens of levosimendan on sub-chronic and chronic doxorubicin cardiotoxicity. METHODS AND RESULTS Based on preliminary in vivo experiments, rats serving as a sub-chronic model of doxorubicin-cardiotoxicity and were divided into: Control (N/S-0.9%), DXR (18 mg/kg-cumulative), DXR+LEVO (LEVO, 24 μg/kg-cumulative), and DXR+LEVO (acute) (LEVO, 24 μg/kg-bolus) for 14 days. Protein kinase-B (Akt), endothelial nitric oxide synthase (eNOS), and protein kinase-A and G (PKA/PKG) pathways emerged as contributors to the cardioprotection, converging onto phospholamban (PLN). To verify the contribution of PLN, phospholamban knockout (PLN-/-) mice were assigned to PLN-/-/Control (N/S-0.9%), PLN-/-/DXR (18 mg/kg), and PLN-/-/DXR+LEVO (ac) for 14 days. Furthermore, female breast cancer-bearing (BC) mice were divided into: Control (normal saline 0.9%, N/S 0.9%), DXR (18 mg/kg), LEVO, and DXR+LEVO (LEVO, 24 μg/kg-bolus) for 28 days. Echocardiography was performed in all protocols. To elucidate levosimendan's cardioprotective mechanism, primary cardiomyocytes were treated with doxorubicin or/and levosimendan and with N omega-nitro-L-arginine methyl ester (L-NAME), DT-2, and H-89 (eNOS, PKG, and PKA inhibitors, respectively); cardiomyocyte-toxicity was assessed. Single bolus administration of levosimendan abrogated DXR-induced cardiotoxicity and activated Akt/eNOS and cAMP-PKA/cGMP-PKG/PLN pathways but failed to exert cardioprotection in PLN-/- mice. Levosimendan's cardioprotection was also evident in the BC model. Finally, in vitro PKA inhibition abrogated levosimendan-mediated cardioprotection, indicating that its cardioprotection is cAMP-PKA dependent, while levosimendan preponderated over milrinone and dobutamine, by ameliorating calcium overload. CONCLUSION Single dose levosimendan prevented doxorubicin cardiotoxicity through a cAMP-PKA-PLN pathway, highlighting the role of inotropy in doxorubicin cardiotoxicity.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- National and Kapodistrian University of Athens, Laboratory of Pharmacology, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens 15771, Greece.,Center of Cardiology, Cardiology 2, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.,Center of Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Aimilia Varela
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Evangelia Chavdoula
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Fragiska Sigala
- First Department of Surgery, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Despina Sanoudou
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, "Attikon" Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Roxane Tenta
- School of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Katerina Gioti
- School of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Andreas Papapetropoulos
- National and Kapodistrian University of Athens, Laboratory of Pharmacology, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens 15771, Greece.,Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | | | - Dimitrios Farmakis
- Second Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Athens University Hospital "Attikon", Athens, Greece.,School of Medicine, European University of Cyprus, Nicosia, Cyprus
| | - Costantinos H Davos
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Apostolos Klinakis
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Thomas Suter
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Dennis V Cokkinos
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Efstathios K Iliodromitis
- Second Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Athens University Hospital "Attikon", Athens, Greece
| | - Philip Wenzel
- Center of Cardiology, Cardiology 2, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.,Center of Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Ioanna Andreadou
- National and Kapodistrian University of Athens, Laboratory of Pharmacology, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens 15771, Greece
| |
Collapse
|
22
|
Liu R, Sun F, Forghani P, Armand LC, Rampoldi A, Li D, Wu R, Xu C. Proteomic Profiling Reveals Roles of Stress Response, Ca 2+ Transient Dysregulation, and Novel Signaling Pathways in Alcohol-Induced Cardiotoxicity. Alcohol Clin Exp Res 2020; 44:2187-2199. [PMID: 32981093 DOI: 10.1111/acer.14471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alcohol use in pregnancy increases the risk of abnormal cardiac development, and excessive alcohol consumption in adults can induce cardiomyopathy, contractile dysfunction, and arrhythmias. Understanding molecular mechanisms underlying alcohol-induced cardiac toxicity could provide guidance in the development of therapeutic strategies. METHODS We have performed proteomic and bioinformatic analysis to examine protein alterations globally and quantitatively in cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) treated with ethanol (EtOH). Proteins in both cell lysates and extracellular culture media were systematically quantitated. RESULTS Treatment with EtOH caused severe detrimental effects on hiPSC-CMs as indicated by significant cell death and deranged Ca2+ handling. Treatment of hiPSC-CMs with EtOH significantly affected proteins responsible for stress response (e.g., GPX1 and HSPs), ion channel-related proteins (e.g. ATP1A2), myofibril structure proteins (e.g., MYL2/3), and those involved in focal adhesion and extracellular matrix (e.g., ILK and PXN). Proteins involved in the TNF receptor-associated factor 2 signaling (e.g., CPNE1 and TNIK) were also affected by EtOH treatment. CONCLUSIONS The observed changes in protein expression highlight the involvement of oxidative stress and dysregulation of Ca2+ handling and contraction while also implicating potential novel targets in alcohol-induced cardiotoxicity. These findings facilitate further exploration of potential mechanisms, discovery of novel biomarkers, and development of targeted therapeutics against EtOH-induced cardiotoxicity.
Collapse
Affiliation(s)
- Rui Liu
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.,Department of Pediatrics, (RL), the Third Xiangya Hospital of Central South University, Changsha, China
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, (FS, RW), Georgia Institute of Technology, Atlanta, Georgia
| | - Parvin Forghani
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Lawrence C Armand
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Antonio Rampoldi
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Dong Li
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, (FS, RW), Georgia Institute of Technology, Atlanta, Georgia
| | - Chunhui Xu
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.,Wallace H. Coulter Department of Biomedical Engineering, (CX), Georgia Institute of Technology and Emory University, Atlanta, Georgia
| |
Collapse
|
23
|
Buchanan ND, Grimmer JA, Tanwar V, Schwieterman N, Mohler PJ, Wold LE. Cardiovascular risk of electronic cigarettes: a review of preclinical and clinical studies. Cardiovasc Res 2020; 116:40-50. [PMID: 31696222 DOI: 10.1093/cvr/cvz256] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/08/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Cigarette smoking is the most preventable risk factor related to cardiovascular morbidity and mortality. Tobacco usage has declined in recent years; however, the use of alternative nicotine delivery methods, particularly e-cigarettes, has increased exponentially despite limited data on their short- and long-term safety and efficacy. Due to their unique properties, the impact of e-cigarettes on cardiovascular physiology is not fully known. Here, we summarize both preclinical and clinical data extracted from short- and long-term studies on the cardiovascular effects of e-cigarette use. Current findings support that e-cigarettes are not a harm-free alternative to tobacco smoke. However, the data are primarily derived from acute studies. The impact of chronic e-cigarette exposure is essentially unstudied. To explore the uniqueness of e-cigarettes, we contemplate the cardiovascular effects of individual e-cigarette constituents. Overall, data suggest that exposure to e-cigarettes could be a potential cardiovascular health concern. Further preclinical research and randomized trials are needed to expand basic and clinical investigations before considering e-cigarettes safe alternatives to conventional cigarettes.
Collapse
Affiliation(s)
- Nicholas D Buchanan
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA.,College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Jacob A Grimmer
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA.,College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Vineeta Tanwar
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA.,College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Neill Schwieterman
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA.,College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA.,College of Nursing, The Ohio State University, Columbus, OH, USA.,Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
24
|
Investigating the Vascular Toxicity Outcomes of the Irreversible Proteasome Inhibitor Carfilzomib. Int J Mol Sci 2020; 21:ijms21155185. [PMID: 32707866 PMCID: PMC7432349 DOI: 10.3390/ijms21155185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Carfilzomib’s (Cfz) adverse events in myeloma patients include cardiovascular toxicity. Since carfilzomib’s vascular effects are elusive, we investigated the vascular outcomes of carfilzomib and metformin (Met) coadministration. Methods: Mice received: (i) saline; (ii) Cfz; (iii) Met; (iv) Cfz+Met for two consecutive (acute) or six alternate days (subacute protocol). Leucocyte-derived reactive oxygen species (ROS) and serum NOx levels were determined and aortas underwent vascular and molecular analyses. Mechanistic experiments were recapitulated in aged mice who received similar treatment to young animals. Primary murine (prmVSMCs) and aged human aortic smooth muscle cells (HAoSMCs) underwent Cfz, Met and Cfz+Met treatment and viability, metabolic flux and p53-LC3-B expression were measured. Experiments were recapitulated in AngII, CoCl2 and high-glucose stimulated HAoSMCs. Results: Acutely, carfilzomib alone led to vascular hypo-contraction and increased ROS release. Subacutely, carfilzomib increased ROS release without vascular manifestations. Cfz+Met increased PGF2α-vasoconstriction and LC3-B-dependent autophagy in both young and aged mice. In vitro, Cfz+Met led to cytotoxicity and autophagy, while Met and Cfz+Met shifted cellular metabolism. Conclusion: Carfilzomib induces a transient vascular impairment and oxidative burst. Cfz+Met increased vascular contractility and synergistically induced autophagy in all settings. Therefore, carfilzomib cannot be accredited for a permanent vascular dysfunction, while Cfz+Met exert vasoprotective potency.
Collapse
|
25
|
Lieb B, Schmitt P. Randomised double-blind placebo-controlled intervention study on the nutritional efficacy of a food for special medical purposes (FSMP) and a dietary supplement in reducing the symptoms of veisalgia. BMJ Nutr Prev Health 2020; 3:31-39. [PMID: 33235969 PMCID: PMC7664490 DOI: 10.1136/bmjnph-2019-000042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 02/28/2020] [Accepted: 03/07/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To assess whether the symptoms of veisalgia can be reduced by intense water supply and the intake of antioxidative supplements and plant extracts. METHODS We performed the world's largest randomised double-blind placebo-controlled intervention study (214 participants) on the efficacy of a food for special medical purposes (FSMP) against veisalgia symptoms. We analysed the effectiveness of: (1) an FSMP, including distinct plant extracts, vitamins and minerals, and additional (antioxidative) compounds; (2) a dietary supplement only comprising vitamins and minerals and additional (antioxidative) compounds; and (3) a placebo containing only glucose. The study followed the CONSORT (Consolidated Standards of Reporting Trials) guidelines and trial registration was not necessary. RESULTS Our study showed no statistically significant relationship between the variation of body water content and alcohol consumption. Contrary to common belief, the results showed that intervention with a supplement containing vitamins and minerals and additional antioxidative compounds did not lead to a statistically significant improvement in hangover symptoms. Additionally, our results confirmed a high individual variability in developing hangover symptoms depending on the amount of alcohol. Thus, standardisation of the amount of alcohol consumed in hangover studies does not necessarily contribute to the validity of the results. Finally, this study found a number of positive effects on certain hangover symptoms as a result of the FSMP, which were most likely due to the plant extracts contained within the food. CONCLUSION This study significantly supports the finding that haemostasis of electrolytes and minerals caused by alcohol consumption might be negligible and that no significant dehydration due to alcohol consumption seems to occur. Additionally, only the FSMP provides evidence for a significant efficiency in the reduction of hangover symptoms such as headache and nausea following moderate and non-excessive alcohol consumption.
Collapse
Affiliation(s)
- Bernhard Lieb
- Institute of Molecular Physiology (imP), Johannes Gutenberg-University (JGU), Mainz, Germany
| | - Patrick Schmitt
- Institute of Molecular Physiology (imP), Johannes Gutenberg-University (JGU), Mainz, Germany
| |
Collapse
|
26
|
Yan T, Zhao Y. Acetaldehyde induces phosphorylation of dynamin-related protein 1 and mitochondrial dysfunction via elevating intracellular ROS and Ca 2+ levels. Redox Biol 2019; 28:101381. [PMID: 31756635 PMCID: PMC6879985 DOI: 10.1016/j.redox.2019.101381] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 12/21/2022] Open
Abstract
Excessive alcohol consumption impairs brain function and has been associated with an earlier onset of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Acetaldehyde, the most toxic metabolite of alcohol, has been speculated to mediate the neurotoxicity induced by alcohol abuse. However, the precise mechanisms by which acetaldehyde induces neurotoxicity remain elusive. In this study, it was found that acetaldehyde treatment induced excessive mitochondrial fragmentation, impaired mitochondrial function and caused cytotoxicity in cortical neurons and SH-SY5Y cells. Further analyses showed that acetaldehyde induced the phosphorylation of mitochondrial fission related protein dynamin-related protein 1 (Drp1) at Ser616 and promoted its translocation to mitochondria. The elevation of Drp1 phosphorylation was partly dependent on the reactive oxygen species (ROS)-mediated activation of c-Jun-N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), as N-acetyl-l-cysteine (NAC) pretreatment inhibited the activation of JNK and p38 MAPK while attenuating Drp1 phosphorylation in acetaldehyde-treated cells. In addition, acetaldehyde treatment elevated intracellular Ca2+ level and activated Ca2+/calmodulin-dependent protein kinase II (CaMKII). Pretreatment of CaMKII inhibitor prevented Drp1 phosphorylation in acetaldehyde-treated cells and ameliorated acetaldehyde-induced cytotoxicity, suggesting that CaMKII was a key effector mediating acetaldehyde-induced Drp1 phosphorylation and mitochondrial dysfunction. Taken together, acetaldehyde induced cytotoxicity by promoting excessive Drp1 phosphorylation and mitochondrial fragmentation. Both ROS and Ca2+-mediated signaling pathways played important roles in acetaldehyde-induced Drp1 phosphorylation. The results also suggested that prevention of oxidative stress by antioxidants might be beneficial for preventing neurotoxicity associated with acetaldehyde and alcohol abuse.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Bioengineering, Harbin Institute of Technology, Weihai, 264209, Shandong, China
| | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai, 264209, Shandong, China.
| |
Collapse
|
27
|
Acetaldehyde dehydrogenase 2 deficiency exacerbates cardiac fibrosis by promoting mobilization and homing of bone marrow fibroblast progenitor cells. J Mol Cell Cardiol 2019; 137:107-118. [PMID: 31668970 DOI: 10.1016/j.yjmcc.2019.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022]
Abstract
Cardiac fibrosis is a common feature of various cardiovascular diseases. Previous studies showed that acetaldehyde dehydrogenase 2 (ALDH2) deficiency exacerbated pressure overload-induced heart failure. However, the role and mechanisms of cardiac fibrosis in this process remain largely unknown. This study aimed to investigate the effect of ALDH2 deficiency on cardiac fibrosis in transverse aortic constriction (TAC) induced pressure overload model in mice. Echocardiography and histological analysis revealed cardiac dysfunction and enhanced cardiac fibrosis in TAC-operated animals; ALDH2 deficiency further aggravated these changes. ALDH2 chimeric mice were generated by bone marrow (BM) transplantation of WT mice into the lethally irradiated ALDH2KO mice. The proportion of circulating fibroblast progenitor cells (FPCs) and ROS level in BM after TAC were significantly higher in ALDH2KO mice than in ALDH2 chimeric mice. Furthermore, FPCs were isolated and cultured for in vitro mechanistic studies. The results showed that the stem cell-derived factor 1 (SDF-1)/C-X-C chemokine receptor 4 (CXCR4) axis played a major role in the recruitment of FPCs. In conclusion, our research reveals that increased bone marrow FPCs mobilization and myocardial homing contribute to the enhanced cardiac fibrosis and dysfunction induced by TAC in ALDH2 KO mice via exacerbating accumulation of ROS in BM and myocardial SDF-1 expression.
Collapse
|
28
|
Cao Z, Zhang T, Xu C, Jia Y, Wang T, Zhu B. AIN-93 Diet as an Alternative Model to Lieber-DeCarli Diet for Alcoholic Cardiomyopathy. Alcohol Clin Exp Res 2019; 43:1452-1461. [PMID: 31034614 DOI: 10.1111/acer.14069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/23/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND The Lieber-DeCarli alcoholic liquid diet is a classical method for establishing animal models of alcoholic cardiomyopathy (ACM). No study has reported whether the AIN-93 diet, which is widely used as a standard diet for both long-term and short-term studies with laboratory animals, could be used to construct the ACM animal model. The present study intended to investigate whether the AIN-93 diet could be used to establish a mouse ACM model. METHODS Twenty-four C57BL/6 male mice were randomly divided into 4 equally sized groups. In ethanol (EtOH)-fed groups, mice were fed a 4%-EtOH (w/v, 28% of total calories) alcoholic liquid diet of Lieber-DeCarli or the AIN-93 diet for chronic alcohol exposure for 180 days. In control-fed groups, mice were fed with non-EtOH liquid diets with the same calories as EtOH-fed groups. Morphological observations of the hearts and molecular investigation of the brain natriuretic peptide (BNP) were carried out by echocardiography, hematoxylin and eosin (H&E) and immunohistochemistry (IHC) staining, real-time quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay. RESULTS Echocardiography showed that mice fed with either the 4%-EtOH Lieber-DeCarli diet or the 4%-EtOH AIN-93 diet had dilated ventricles and poor cardiac function. IHC staining of BNP, qPCR of BNP mRNA, and plasma concentration of BNP showed an up-regulated expression in mice fed with both the 4%-EtOH Lieber-DeCarli and 4%-EtOH AIN-93 diets. Less fatty liver was also observed in mice fed the AIN-93 alcoholic diet than those fed the Lieber-DeCarli alcoholic diet. CONCLUSIONS The AIN-93 alcoholic liquid diet can be used to establish ACM animal models, as with the conventional Lieber-DeCarli alcoholic liquid diet.
Collapse
Affiliation(s)
- Zhipeng Cao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Tianyi Zhang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Chengyang Xu
- The third clinical department of China Medical University, Shenyang, China
| | - Yuqing Jia
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Tianqi Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Baoli Zhu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
29
|
Effects of the (Pro)renin Receptor on Cardiac Remodeling and Function in a Rat Alcoholic Cardiomyopathy Model via the PRR-ERK1/2-NOX4 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4546975. [PMID: 31049135 PMCID: PMC6462324 DOI: 10.1155/2019/4546975] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/09/2019] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
Alcoholic cardiomyopathy (ACM) caused by alcohol consumption manifests mainly as by maladaptive myocardial function, which eventually leads to heart failure and causes serious public health problems. The (pro)renin receptor (PRR) is an important member of the local tissue renin-angiotensin system and plays a vital role in many cardiovascular diseases. However, the mechanism responsible for the effects of PRR on ACM remains unclear. The purpose of this study was to determine the role of PRR in myocardial fibrosis and the deterioration of cardiac function in alcoholic cardiomyopathy. Wistar rats were fed a liquid diet containing 9% v/v alcohol to establish an alcoholic cardiomyopathy model. Eight weeks later, rats were injected with 1 × 109v.g./100 μl of recombinant adenovirus containing EGFP (scramble-shRNA), PRR, and PRR-shRNA via the tail vein. Cardiac function was assessed by echocardiography. Cardiac histopathology was measured by Masson's trichrome staining, immunohistochemical staining, and dihydroethidium staining. In addition, cardiac fibroblasts (CFs) were cultured to evaluate the effects of alcohol stimulation on the production of the extracellular matrix and their underlying mechanisms. Our results indicated that overexpression of PRR in rats with alcoholic cardiomyopathy exacerbates myocardial oxidative stress and myocardial fibrosis. Silencing of PRR expression with short hairpin RNA (shRNA) technology reversed the myocardial damage mediated by PRR. Additionally, PRR activated phosphorylation of ERK1/2 and increased NOX4-derived reactive oxygen species and collagen expression in CFs with alcohol stimulation. Administration of the ERK kinase inhibitor (PD98059) significantly reduced NOX4 protein expression and collagen production, which indicated that PRR increases collagen production primarily through the PRR-ERK1/2-NOX4 pathway in CFs. In conclusion, our study demonstrated that PRR induces myocardial fibrosis and deteriorates cardiac function through ROS from the PRR-ERK1/2-NOX4 pathway during ACM development.
Collapse
|
30
|
Mustroph J, Lebek S, Maier LS, Neef S. Mechanisms of cardiac ethanol toxicity and novel treatment options. Pharmacol Ther 2018; 197:1-10. [PMID: 30557629 DOI: 10.1016/j.pharmthera.2018.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ethanol can acutely and chronically alter cardiomyocyte and whole-organ function in the heart. Importantly, ethanol acutely and chronically predisposes to arrhythmias, while chronic abuse can induce heart failure. However, the molecular mechanisms of ethanol toxicity in the heart are incompletely understood. In this review, we summarize the current mechanistic knowledge on cardiac ethanol toxicity, with a focus on druggable pathways. Ethanol effects on excitation-contraction coupling, oxidative stress, apoptosis, and cardiac metabolism, as well as effects of ethanol metabolites will be discussed. Important recent findings have been gained by investigation of acute ethanol effects. These include a renewed focus on reactive oxygen species (ROS) and induction of SR Ca2+ leak by CaMKII-mediated pathways downstream of ROS. Furthermore, a clinical outlook into potential novel treatment options is provided.
Collapse
Affiliation(s)
- Julian Mustroph
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - Simon Lebek
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - Stefan Neef
- Department of Internal Medicine II, University Medical Center Regensburg, Germany.
| |
Collapse
|
31
|
Liu B, Zhang R, Wei S, Yuan Q, Xue M, Hao P, Xu F, Wang J, Chen Y. ALDH2 protects against alcoholic cardiomyopathy through a mechanism involving the p38 MAPK/CREB pathway and local renin-angiotensin system inhibition in cardiomyocytes. Int J Cardiol 2018; 257:150-159. [PMID: 29506687 DOI: 10.1016/j.ijcard.2017.11.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Angiotensin II (Ang II) in the local cardiac renin-angiotensin system (RAS) is closely associated with alcoholic cardiomyopathy (ACM). Inhibition of local cardiac RAS has great significance in the treatment of ACM. Although aldehyde dehydrogenase 2 (ALDH2) has been demonstrated to protect against ACM through detoxification of aldehydes, the precise mechanisms are largely unknown. In the present study, we determined whether ALDH2 improved cardiac damage by inhibiting the local RAS in ACM and investigated the related regulatory mechanisms. METHODS AND RESULTS Adult male mice were fed with 5% ethanol or a control diet for 2months, with or without the ALDH2 activator Alda-1. Heavy ethanol consumption induced cardiac damage, increased angiotensinogen (AGT) and Ang II and decreased myocardial ALDH2 activity in hearts. ALDH2 activation improved ethanol-induced cardiac damage and decreased AGT and Ang II in hearts. In vitro, ALDH2 activation or overexpression decreased AGT and Ang II in cultured cardiomyocytes treated with 400mmol/L ethanol for 24h. Furthermore, p38 MAP kinase (p38 MAPK)/cyclic adenosine monophosphate response element-binding protein (CREB) pathway activation by ethanol increased AGT and Ang II in cardiomyocytes. In addition, ALDH2 activation or overexpression inhibited the p38 MAPK/CREB pathway leading to decreased AGT and Ang II in cardiomyocytes. We also found that p38 MAPK activation effectively mitigated Alda-1-decreased AGT and Ang II, the effect of which was reversed by inhibition of CREB. CONCLUSIONS ALDH2 decreased AGT and Ang II in the local cardiac RAS via inhibiting the p38 MAPK/CREB pathway in ACM, thus improving ethanol-induced cardiac damage.
Collapse
MESH Headings
- Adenoviridae/genetics
- Aldehyde Dehydrogenase, Mitochondrial/administration & dosage
- Aldehyde Dehydrogenase, Mitochondrial/genetics
- Aldehyde Dehydrogenase, Mitochondrial/metabolism
- Angiotensin II/metabolism
- Angiotensinogen/antagonists & inhibitors
- Angiotensinogen/metabolism
- Animals
- Animals, Newborn
- Cardiomyopathy, Alcoholic/metabolism
- Cardiomyopathy, Alcoholic/prevention & control
- Cardiotonic Agents/administration & dosage
- Cardiotonic Agents/metabolism
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/antagonists & inhibitors
- Cyclic AMP Response Element-Binding Protein/metabolism
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Rats
- Rats, Wistar
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/physiology
Collapse
Affiliation(s)
- Baoshan Liu
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Rui Zhang
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Shujian Wei
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Mengyang Xue
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
32
|
Adeyanju K, Bend JR, Rieder MJ, Dekaban GA. HIV-1 tat expression and sulphamethoxazole hydroxylamine mediated oxidative stress alter the disulfide proteome in Jurkat T cells. Virol J 2018; 15:82. [PMID: 29743079 PMCID: PMC5944096 DOI: 10.1186/s12985-018-0991-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/26/2018] [Indexed: 12/30/2022] Open
Abstract
Background Adverse drug reactions (ADRs) are a significant problem for HIV patients, with the risk of developing ADRs increasing as the infection progresses to AIDS. However, the pathophysiology underlying ADRs remains unknown. Sulphamethoxazole (SMX) via its active metabolite SMX-hydroxlyamine, when used prophylactically for pneumocystis pneumonia in HIV-positive individuals, is responsible for a high incidence of ADRs. We previously demonstrated that the HIV infection and, more specifically, that the HIV-1 Tat protein can exacerbate SMX-HA-mediated ADRs. In the current study, Jurkat T cell lines expressing Tat and its deletion mutants were used to determine the effect of Tat on the thiol proteome in the presence and absence of SMX-HA revealing drug-dependent changes in the disulfide proteome in HIV infected cells. Protein lysates from HIV infected Jurkat T cells and Jurkat T cells stably transfected with HIV Tat and Tat deletion mutants were subjected to quantitative slot blot analysis, western blot analysis and redox 2 dimensional (2D) gel electrophoresis to analyze the effects of SMX-HA on the thiol proteome. Results Redox 2D gel electrophoresis demonstrated that untreated, Tat-expressing cells contain a number of proteins with oxidized thiols. The most prominent of these protein thiols was identified as peroxiredoxin. The untreated, Tat-expressing cell lines had lower levels of peroxiredoxin compared to the parental Jurkat E6.1 T cell line. Conversely, incubation with SMX-HA led to a 2- to 3-fold increase in thiol protein oxidation as well as a significant reduction in the level of peroxiredoxin in all the cell lines, particularly in the Tat-expressing cell lines. Conclusion SMX-HA is an oxidant capable of inducing the oxidation of reactive protein cysteine thiols, the majority of which formed intermolecular protein bonds. The HIV Tat-expressing cell lines showed greater levels of oxidative stress than the Jurkat E6.1 cell line when treated with SMX-HA. Therefore, the combination of HIV Tat and SMX-HA appears to alter the activity of cellular proteins required for redox homeostasis and thereby accentuate the cytopathic effects associated with HIV infection of T cells that sets the stage for the initiation of an ADR. Electronic supplementary material The online version of this article (10.1186/s12985-018-0991-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kemi Adeyanju
- BioTherapeutics Research Laboratory, Molecular Medicine Research Laboratories, Robarts Research Institute, Rm 2214, 1151 Richmond Street North, London, Ontario, Canada.,Department of Microbiology and Immunology, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | - John R Bend
- Department of Pathology and Laboratory Medicine, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | - Michael J Rieder
- Drug Safety Laboratory, Molecular Medicine Research Laboratories, Robarts Research Institute, Rm 2214, 1151 Richmond Street North, London, Ontario, Canada.,Department of Pediatrics, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | - Gregory A Dekaban
- BioTherapeutics Research Laboratory, Molecular Medicine Research Laboratories, Robarts Research Institute, Rm 2214, 1151 Richmond Street North, London, Ontario, Canada. .,Department of Microbiology and Immunology, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada.
| |
Collapse
|
33
|
Wang S, Ren J. Role of autophagy and regulatory mechanisms in alcoholic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2003-2009. [PMID: 29555210 DOI: 10.1016/j.bbadis.2018.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 12/11/2022]
Abstract
Alcoholism is accompanied with a high incidence of cardiac morbidity and mortality due to the development of alcoholic cardiomyopathy, manifested as dilation of one or both ventricles, reduced ventricular wall thickness, myofibrillary disarray, interstitial fibrosis, hypertrophy and contractile dysfunction. Several theories have been postulated for the etiology of alcoholic cardiomyopathy including ethanol/acetaldehyde toxicity, mitochondrial production of reactive oxygen species, oxidative injury, apoptosis, impaired myofilament Ca2+ sensitivity and protein synthesis, altered fatty acid extraction and deposition, as well as accelerated protein catabolism. In particular, buildup of long-lived or dysfunctional organelles has been reported to contribute to cardiac structural and functional damage following alcoholism. Removal of cell debris and defective organelles by autophagy is essential to the maintenance of cardiac homeostasis in physiological and pathological conditions. However, insufficient understanding is currently available with regards to the involvement of autophagy in the pathogenesis of alcoholic cardiomyopathy. This review summarizes the recent findings on the pathophysiological role of dysregulated autophagy in one set and development of alcoholic cardiomyopathy. A thorough understanding of how autophagy is affected in alcoholism, and subsequently, contributes to the pathogenesis of alcoholic heart injury, will offer therapeutic guidance towards the management of alcoholic cardiomyopathy.
Collapse
Affiliation(s)
- Shuyi Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Center for Cardiovascular Research and Alternative Medicine, Biomedical Science Graduate Program, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Center for Cardiovascular Research and Alternative Medicine, Biomedical Science Graduate Program, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
34
|
Guo X, Chen M, Zeng H, Liu P, Zhu X, Zhou F, Liu J, Zhang J, Dong Z, Tang Y, Gao C, Yao P. Quercetin Attenuates Ethanol-Induced Iron Uptake and Myocardial Injury by Regulating the Angiotensin II-L-Type Calcium Channel. Mol Nutr Food Res 2018; 62. [PMID: 29266790 DOI: 10.1002/mnfr.201700772] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/19/2017] [Indexed: 01/19/2023]
Abstract
SCOPE Increased iron deposition in the myocardium in alcoholics may lead to increased risk of cardiac dysfunction. Quercetin has been demonstrated to quench production of intracellular free iron-induced -OH, but the effect of quercetin in ethanol-induced cardiac damage remains unclear. This study aims to explore whether quercetin attenuates ethanol-induced iron uptake and myocardial injury by regulating angiotensin II-L-type voltage-dependent Ca2+ channel (Ang II-LTCC). METHODS AND RESULTS Adult male C57BL/6J mice are isocalorically pair-fed either a regular or ethanol-containing Lieber De Carli liquid diets supplemented with either quercetin (100 mg kg-1 bw) or desferrioxamine mesylate (DFO, 100 mg kg-1 bw) for 15 weeks. Quercetin alleviated ethanol-induced histopathological changes, creatine kinase isoenzyme release, Ang II secretion, ROS generation, total cardiac iron, and labile iron level. Ethanol exposure or quercetin intervention fails to regulate traditional iron transporters except LTCC. LTCC is upregulated by ethanol and inhibited by quercetin. In H9C2 cell, LTCC is increased by ethanol (100 mm) and/or Ang II (1 μm) concomitant with iron disorders and oxidative stress. This effect is partially normalized by quercetin (50 μm), nifedipine (LTCC inhibitor, 15 μm), or losartan (Ang II receptor antagonist, 100 μm). CONCLUSION Alcohol-induced cardiac injury is associated with excessive NTBI uptake mediated by Ang II-LTCC activation which may be mediated by quercetin against ethanol cardiotoxicity.
Collapse
Affiliation(s)
- Xiaoping Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Chen
- Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Hongmei Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghong Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuangzhuang Dong
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Gao
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Münzel T, Daiber A. The potential of aldehyde dehydrogenase 2 as a therapeutic target in cardiovascular disease. Expert Opin Ther Targets 2018; 22:217-231. [PMID: 29431026 DOI: 10.1080/14728222.2018.1439922] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Mitochondrial aldehyde dehydrogenase (ALDH-2) plays a major role in the ethanol detoxification pathway by removing acetaldehyde. Therefore, ALDH-2 inhibitors such as disulfiram represent the first therapeutic targeting of ALDH-2 for alcoholism therapy. Areas covered: Recently, ALDH-2 was identified as an essential bioactivating enzyme of the anti-ischemic organic nitrate nitroglycerin, bringing ALDH-2 again into the focus of clinical interest. Mechanistic studies on the nitroglycerin bioactivation process revealed that during bioconversion of nitroglycerin and in the presence of reactive oxygen and nitrogen species the active site thiols of ALDH-2 are oxidized and the enzyme activity is lost. Thus, ALDH-2 activity represents a useful marker for cardiovascular oxidative stress, a concept, which has been meanwhile supported by a number of animal disease models. Mechanistic studies on the protective role of ALDH-2 in different disease processes identified the detoxification of 4-hydroxynonenal by ALDH-2 as a fundamental process of cardiovascular, cerebral and antioxidant protection. Expert opinion: The most recent therapeutic exploitation of ALDH-2 includes activators of the enzyme such as Alda-1 but also cell-based therapies (ALDH-bright cells) that deserve further clinical characterization in the future.
Collapse
Affiliation(s)
- Thomas Münzel
- a Center for Cardiology, Cardiology 1 , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,b Center for Thrombosis and Hemostasis (CTH) , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,c Partner Site Rhine-Main , German Center for Cardiovascular Research (DZHK) , Mainz , Germany
| | - Andreas Daiber
- a Center for Cardiology, Cardiology 1 , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,b Center for Thrombosis and Hemostasis (CTH) , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,c Partner Site Rhine-Main , German Center for Cardiovascular Research (DZHK) , Mainz , Germany
| |
Collapse
|
36
|
Mustroph J, Wagemann O, Lebek S, Tarnowski D, Ackermann J, Drzymalski M, Pabel S, Schmid C, Wagner S, Sossalla S, Maier LS, Neef S. SR Ca 2+-leak and disordered excitation-contraction coupling as the basis for arrhythmogenic and negative inotropic effects of acute ethanol exposure. J Mol Cell Cardiol 2018; 116:81-90. [PMID: 29410242 DOI: 10.1016/j.yjmcc.2018.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 02/03/2023]
Abstract
AIMS Ethanol has acute negative inotropic and arrhythmogenic effects. The underlying mechanisms, however, are largely unknown. Sarcoplasmic reticulum Ca2+-leak is an important mechanism for reduced contractility and arrhythmias. Ca2+-leak can be induced by oxidative stress and Ca2+/Calmodulin-dependent protein kinase II (CaMKII). Therefore, we investigated the influence of acute ethanol exposure on excitation-contraction coupling in atrial and ventricular cardiomyocytes. METHODS AND RESULTS Isolated human atrial and murine atrial or ventricular cardiomyocytes were preincubated for 30 min and then superfused with control solution or solution containing ethanol. Ethanol had acute negative inotropic and positive lusitropic effects in human atrial muscle strips and murine ventricular cardiomyocytes. Accordingly, Ca2+-imaging indicated lower Ca2+-transient amplitudes and increased SERCA2a activity, while myofilament Ca2+-sensitivity was reduced. SR Ca2+-leak was assessed by measuring Ca2+-sparks. Ethanol induced severe SR Ca2+-leak in human atrial cardiomyocytes (calculated leak: 4.60 ± 0.45 mF/F0 vs 1.86 ± 0.26 in control, n ≥ 80). This effect was dose-dependent, while spontaneous arrhythmogenic Ca2+-waves increased ~5-fold, as investigated in murine cardiomyocytes. Delayed afterdepolarizations, which can result from increased SR Ca2+-leak, were significantly increased by ethanol. Measurements using the reactive oxygen species (ROS) sensor CM-H2DCFDA showed increased ROS-stress in ethanol treated cells. ROS-scavenging with N-acetylcysteine prevented negative inotropic and positive lusitropic effects in human muscle strips. Ethanol-induced Ca2+-leak was abolished in mice with knockout of NOX2 (the main source for ROS in cardiomyocytes). Importantly, mice with oxidation-resistant CaMKII (Met281/282Val mutation) were protected from ethanol-induced Ca2+-leak. CONCLUSION We show for the first time that ethanol acutely induces strong SR Ca2+-leak, also altering excitation-contraction coupling. Acute negative inotropic effects of ethanol can be explained by reduced systolic Ca2+-release. Mechanistically, ROS-production via NOX2 and oxidative activation of CaMKII appear to play central roles. This provides a mechanism for the arrhythmogenic and negative inotropic effects of ethanol and suggests a druggable target (CaMKII).
Collapse
Affiliation(s)
- Julian Mustroph
- Dept. of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Olivia Wagemann
- Dept. of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Simon Lebek
- Dept. of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Daniel Tarnowski
- Dept. of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Jasmin Ackermann
- Dept. of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Marzena Drzymalski
- Dept. of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Steffen Pabel
- Dept. of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Christof Schmid
- Dept. of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Stefan Wagner
- Dept. of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Samuel Sossalla
- Dept. of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Lars S Maier
- Dept. of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Stefan Neef
- Dept. of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany.
| |
Collapse
|
37
|
Hatch E, Morrow D, Liu W, Cahill PA, Redmond EM. Differential effects of alcohol and its metabolite acetaldehyde on vascular smooth muscle cell Notch signaling and growth. Am J Physiol Heart Circ Physiol 2017; 314:H131-H137. [PMID: 29212792 DOI: 10.1152/ajpheart.00586.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alcohol (EtOH) consumption can variously affect cardiovascular disease. Our aim was to compare the effects of EtOH and its primary metabolite acetaldehyde (ACT) on vascular smooth muscle Notch signaling and cell growth, which are important for atherogenesis. Human coronary artery smooth muscle cells (HCASMCs) were treated with EtOH (25 mM) or ACT (10 or 25 μM). As previously reported, EtOH inhibited Notch signaling and growth of HCASMCs. In contrast, ACT treatment stimulated HCASMC proliferation (cell counts) and increased proliferating cell nuclear antigen expression, concomitant with stimulation of Notch signaling, as determined by increased Notch receptor (N1 and N3) and target gene (Hairy-related transcription factor 1-3) mRNA levels. Interaction of the ligand with the Notch receptor initiates proteolytic cleavage by α- and γ-secretase, resulting in the release of the active Notch intracellular domain. Neither EtOH nor ACT had any significant effect on α-secretase activity. A fluorogenic peptide cleavage assay demonstrated almost complete inhibition by EtOH of Delta-like ligand 4-stimulated γ-secretase activity in solubilized HCASMCs (similar to the effect of the control inhibitor DAPT) but no effect of ACT treatment. EtOH, but not ACT, affected the association and distribution of the γ-secretase catalytic subunit presenilin-1 with lipid rafts, as determined by dual fluorescent labeling and confocal microscopic visualization. In conclusion, ACT stimulates vascular smooth muscle cell Notch signaling and growth, effects opposite to those of EtOH. These differential actions on vascular smooth muscle cells of EtOH and its metabolite ACT may be important in mediating the ultimate effects of drinking on cardiovascular disease. NEW & NOTEWORTHY Acetaldehyde stimulates, in a Notch-dependent manner, the vascular smooth muscle cell growth that contributes to atherogenesis; effects opposite to those of ethanol. These data suggest that in addition to ethanol itself, its metabolite acetaldehyde may also mediate some of the effects of alcohol consumption on vascular cells and, thus, cardiovascular health.
Collapse
Affiliation(s)
- Ekaterina Hatch
- Department of Surgery, University of Rochester Medical Center , Rochester, New York
| | - David Morrow
- Department of Surgery, University of Rochester Medical Center , Rochester, New York
| | - Weimin Liu
- Department of Surgery, University of Rochester Medical Center , Rochester, New York
| | - Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Dublin City University , Dublin , Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
38
|
G6PD promotes renal cell carcinoma proliferation through positive feedback regulation of p-STAT3. Oncotarget 2017; 8:109043-109060. [PMID: 29312589 PMCID: PMC5752502 DOI: 10.18632/oncotarget.22566] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023] Open
Abstract
Ectopic Glucose 6-phosphate dehydrogenase (G6PD) expression plays important role in tumor cell metabolic reprogramming and results in poor prognosis of multiple malignancies. Our previous study indicated that G6PD is overexpressed in clear cell renal cell carcinoma (ccRCC), the most common subtype of RCC. However, its role in RCC is still unclear. Here, we demonstrate that G6PD is not only up-regulated in all types of RCC specimens but also displays higher activities in RCC cell lines. G6PD overexpression promoted RCC cell proliferation, altered cell cycle distribution, and enhanced xenografted RCC development. G6PD up-regulated ROS generation by facilitating NADPH-dependent NOX4 activation, which led to increased expression of p-STAT3 and CyclinD1. Enhanced ROS generation rescued the p-STAT3 and CyclinD1 expression reduction in G6PD-knockdown cells, while ROS scavengers reversed the up-regulated p-STAT3 and CyclinD1 expression in G6PD-overexpressing cells. Furthermore, p-STAT3 activated G6PD gene expression via binding to the G6PD promoter, demonstrating that p-STAT3 forms a positive feedback regulatory loop for G6PD overexpression. G6PD expression was up or down-regulated in response to the impact of p-STAT3 activators or inhibitors. Therefore, G6PD may be an effective RCC therapeutic target.
Collapse
|
39
|
Mitochondria-targeted ubiquinone (MitoQ) enhances acetaldehyde clearance by reversing alcohol-induced posttranslational modification of aldehyde dehydrogenase 2: A molecular mechanism of protection against alcoholic liver disease. Redox Biol 2017; 14:626-636. [PMID: 29156373 PMCID: PMC5700831 DOI: 10.1016/j.redox.2017.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022] Open
Abstract
Alcohol metabolism in the liver generates highly toxic acetaldehyde. Breakdown of acetaldehyde by aldehyde dehydrogenase 2 (ALDH2) in the mitochondria consumes NAD+ and generates reactive oxygen/nitrogen species, which represents a fundamental mechanism in the pathogenesis of alcoholic liver disease (ALD). A mitochondria-targeted lipophilic ubiquinone (MitoQ) has been shown to confer greater protection against oxidative damage in the mitochondria compared to untargeted antioxidants. The present study aimed to investigate if MitoQ could preserve mitochondrial ALDH2 activity and speed up acetaldehyde clearance, thereby protects against ALD. Male C57BL/6 J mice were exposed to alcohol for 8 weeks with MitoQ supplementation (5 mg/kg/d) for the last 4 weeks. MitoQ ameliorated alcohol-induced oxidative/nitrosative stress and glutathione deficiency. It also reversed alcohol-reduced hepatic ALDH activity and accelerated acetaldehyde clearance through modulating ALDH2 cysteine S-nitrosylation, tyrosine nitration and 4-hydroxynonenol adducts formation. MitoQ ameliorated nitric oxide (NO) donor-mediated ADLH2 S-nitrosylation and nitration in Hepa-1c1c7 cells under glutathion depletion condition. In addition, alcohol-increased circulating acetaldehyde levels were accompanied by reduced intestinal ALDH activity and impaired intestinal barrier. In accordance, MitoQ reversed alcohol-increased plasma endotoxin levels and hepatic toll-like receptor 4 (TLR4)-NF-κB signaling along with subsequent inhibition of inflammatory cell infiltration. MitoQ also reversed alcohol-induced hepatic lipid accumulation through enhancing fatty acid β-oxidation. Alcohol-induced ER stress and apoptotic cell death signaling were reversed by MitoQ. This study demonstrated that speeding up acetaldehyde clearance by preserving ALDH2 activity critically mediates the beneficial effect of MitoQ on alcohol-induced pathogenesis at the gut-liver axis. PTMs of ALDH2 participated in the pathogenesis of alcoholic liver disease. MitoQ treatment accelerated acetaldehyde detoxification. MitoQ ameliorated acetaldehyde-related tight junction disruption. MitoQ reversed TLR4-mediated inflammatory response in alcoholic liver disease. MitoQ counteracts alcohol-induced ER stress and cell apoptosis.
Collapse
|
40
|
Arumugam S, Girish Subbiah K, Kemparaju K, Thirunavukkarasu C. Neutrophil extracellular traps in acrolein promoted hepatic ischemia reperfusion injury: Therapeutic potential of NOX2 and p38MAPK inhibitors. J Cell Physiol 2017; 233:3244-3261. [PMID: 28884828 DOI: 10.1002/jcp.26167] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/24/2017] [Indexed: 12/24/2022]
Abstract
Neutrophil is a significant contributor to ischemia reperfusion (IR) induced liver tissue damage. However, the exact role of neutrophils in IR induced innate immune activation and liver damage is not quite clear. Our study sheds light on the role of chronic oxidative stress end products in worsening the IR inflammatory process by neutrophil recruitment and activation following liver surgery. We employed specific inhibitors for molecular targets-NOX2 (NADPH oxidase 2) and P38 MAPK (Mitogen activated protein kinase) signal to counteract neutrophil activation and neutrophil extracellular trap (NET) release induced liver damage in IR injury. We found that acrolein initiated neutrophil chemotaxis and induced NET release both in vitro and in vivo. Acrolein exposure caused NET induced nuclear and mitochondrial damage in HepG2 cells as well as aggravated the IR injury in rat liver. Pretreatment with F-apocynin and naringin, efficiently suppressed acrolein induced NET release in vitro. Notably, it suppressed the expression of inflammatory cytokines, P38MAPK-ERK activation, and apoptotic signals in rat liver exposed to acrolein and subjected to IR. Moreover, this combination effectively attenuated acrolein induced NET release and hepatic IR injury. In the current study we have shown that the acrolein accumulation in liver due to chronic stress, is responsible for neutrophil recruitment and its activation leading to NET induced liver damage during surgery. Our study shows that therapeutic targeting of NOX2 and P38MAPK signaling in patients with chronic hepatic disorders would improve post operative hepatic function and survival.
Collapse
Affiliation(s)
- Suyavaran Arumugam
- Department of Biochemistry and Molecular Biology, School of life sciences, Pondicherry University, Pondicherry, India
| | | | | | - Chinnasamy Thirunavukkarasu
- Department of Biochemistry and Molecular Biology, School of life sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
41
|
Priya LB, Baskaran R, Huang CY, Padma VV. Neferine ameliorates cardiomyoblast apoptosis induced by doxorubicin: possible role in modulating NADPH oxidase/ROS-mediated NFκB redox signaling cascade. Sci Rep 2017; 7:12283. [PMID: 28947826 PMCID: PMC5612945 DOI: 10.1038/s41598-017-12060-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/29/2017] [Indexed: 12/04/2022] Open
Abstract
Doxorubicin (DOX) mediated cardiomyopathy is a major challenge in cancer chemotherapy. Redox-cycling of doxorubicin by flavoenzymes makes the heart more vulnerable to oxidative stress leading to cardiac dysfunction. The present study evaluates the role of neferine, a bisbenzylisoquinoline alkaloid, in curbing the molecular consequences of DOX-exposure in H9c2 cardiomyoblasts. Neferine pre-treatment increased cell viability upon DOX-exposure. DOX activates NADPH oxidase subunits, (p22phox, p47phox, gp91phox) as the primary event followed by peak in [Ca2+]i accumulation by 2 h, ROS by 3 h and activated ERK1/2 and p38 MAPKinases, time dependently along with the activation and translocation of NFκB and up-regulated COX2 and TNF-α expressions. Neferine pre-treatment modulated NADPH oxidase/ROS system, inhibited MAPKinases and NFκB activation, reduced sub G1 cell population and concomitantly increased cyclin D1 expression reducing DOX-mediated apoptosis. The study demonstrates for the first time, the molecular sequential events behind DOX toxicity and the mechanism of protection offered by neferine with specific relevance to NADPH oxidase system, MAPKinases, inflammation and apoptosis in H9c2 cells. Our data suggests the use of neferine as a new approach in pharmacological interventions against cardiovascular disorders as secondary complications.
Collapse
Affiliation(s)
- Lohanathan Bharathi Priya
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Rathinasamy Baskaran
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Viswanadha Vijaya Padma
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
42
|
Daiber A, Oelze M, Steven S, Kröller-Schön S, Münzel T. Taking up the cudgels for the traditional reactive oxygen and nitrogen species detection assays and their use in the cardiovascular system. Redox Biol 2017; 12:35-49. [PMID: 28212522 PMCID: PMC5312509 DOI: 10.1016/j.redox.2017.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen and nitrogen species (RONS such as H2O2, nitric oxide) confer redox regulation of essential cellular functions (e.g. differentiation, proliferation, migration, apoptosis), initiate and catalyze adaptive stress responses. In contrast, excessive formation of RONS caused by impaired break-down by cellular antioxidant systems and/or insufficient repair of the resulting oxidative damage of biomolecules may lead to appreciable impairment of cellular function and in the worst case to cell death, organ dysfunction and severe disease phenotypes of the entire organism. Therefore, the knowledge of the severity of oxidative stress and tissue specific localization is of great biological and clinical importance. However, at this level of investigation quantitative information may be enough. For the development of specific drugs, the cellular and subcellular localization of the sources of RONS or even the nature of the reactive species may be of great importance, and accordingly, more qualitative information is required. These two different philosophies currently compete with each other and their different needs (also reflected by different detection assays) often lead to controversial discussions within the redox research community. With the present review we want to shed some light on these different philosophies and needs (based on our personal views), but also to defend some of the traditional assays for the detection of RONS that work very well in our hands and to provide some guidelines how to use and interpret the results of these assays. We will also provide an overview on the "new assays" with a brief discussion on their strengths but also weaknesses and limitations.
Collapse
Affiliation(s)
- Andreas Daiber
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Matthias Oelze
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Steven
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Swenja Kröller-Schön
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Münzel
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
43
|
Steven S, Oelze M, Hanf A, Kröller-Schön S, Kashani F, Roohani S, Welschof P, Kopp M, Gödtel-Armbrust U, Xia N, Li H, Schulz E, Lackner KJ, Wojnowski L, Bottari SP, Wenzel P, Mayoux E, Münzel T, Daiber A. The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biol 2017; 13:370-385. [PMID: 28667906 PMCID: PMC5491464 DOI: 10.1016/j.redox.2017.06.009] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022] Open
Abstract
Hyperglycemia associated with inflammation and oxidative stress is a major cause of vascular dysfunction and cardiovascular disease in diabetes. Recent data reports that a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), empagliflozin (Jardiance®), ameliorates glucotoxicity via excretion of excess glucose in urine (glucosuria) and significantly improves cardiovascular mortality in type 2 diabetes mellitus (T2DM). The overarching hypothesis is that hyperglycemia and glucotoxicity are upstream of all other complications seen in diabetes. The aim of this study was to investigate effects of empagliflozin on glucotoxicity, β-cell function, inflammation, oxidative stress and endothelial dysfunction in Zucker diabetic fatty (ZDF) rats. Male ZDF rats were used as a model of T2DM (35 diabetic ZDF‐Leprfa/fa and 16 ZDF-Lepr+/+ controls). Empagliflozin (10 and 30 mg/kg/d) was administered via drinking water for 6 weeks. Treatment with empagliflozin restored glycemic control. Empagliflozin improved endothelial function (thoracic aorta) and reduced oxidative stress in the aorta and in blood of diabetic rats. Inflammation and glucotoxicity (AGE/RAGE signaling) were epigenetically prevented by SGLT2i treatment (ChIP). Linear regression analysis revealed a significant inverse correlation of endothelial function with HbA1c, whereas leukocyte-dependent oxidative burst and C-reactive protein (CRP) were positively correlated with HbA1c. Viability of hyperglycemic endothelial cells was pleiotropically improved by SGLT2i. Empagliflozin reduces glucotoxicity and thereby prevents the development of endothelial dysfunction, reduces oxidative stress and exhibits anti-inflammatory effects in ZDF rats, despite persisting hyperlipidemia and hyperinsulinemia. Our preclinical observations provide insights into the mechanisms by which empagliflozin reduces cardiovascular mortality in humans (EMPA-REG trial). Hyperglycemia induces vascular complications and cardiovascular disease. Empagliflozin reduces hyperglycemia and cardiovascular mortality (EMPA-REG trial). Here, empagliflozin normalized vascular function and oxidative stress in ZDF rats. Here, empagliflozin reduced AGE/RAGE signaling, inflammation and oxidative stress. Here, empagliflozin conferred glycemic control, epigenetic and pleiotropic effects.
Collapse
Affiliation(s)
- Sebastian Steven
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Oelze
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Alina Hanf
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Swenja Kröller-Schön
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Fatemeh Kashani
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Siyer Roohani
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Philipp Welschof
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Maximilian Kopp
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ute Gödtel-Armbrust
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ning Xia
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Huige Li
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Eberhard Schulz
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Karl J Lackner
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR 5309, Grenoble-Alps University and Institute for Biology and Pathology, CHU, Grenoble, France
| | - Leszek Wojnowski
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Serge P Bottari
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Philip Wenzel
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Eric Mayoux
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Thomas Münzel
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Andreas Daiber
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.
| |
Collapse
|
44
|
Sun X, Zhu H, Dong Z, Liu X, Ma X, Han S, Lu F, Wang P, Qian S, Wang C, Shen C, Zhao X, Zou Y, Ge J, Sun A. Mitochondrial aldehyde dehydrogenase-2 deficiency compromises therapeutic effect of ALDH bright cell on peripheral ischemia. Redox Biol 2017; 13:196-206. [PMID: 28582728 PMCID: PMC5458766 DOI: 10.1016/j.redox.2017.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/16/2017] [Accepted: 05/24/2017] [Indexed: 01/07/2023] Open
Abstract
The autologous ALDH bright (ALDHbr) cell therapy for ischemic injury is clinically safe and effective, while the underlying mechanism remains elusive. Here, we demonstrated that the glycolysis dominant metabolism of ALDHbr cells is permissive to restore blood flow in an ischemic hind limb model compared with bone marrow mononuclear cells (BMNCs). PCR array analysis showed overtly elevated Aldh2 expression of ALDHbr cells following hypoxic challenge. Notably, ALDHbr cells therapy induced blood flow recovery in this model was reduced in case of ALDH2 deficiency. Moreover, significantly reduced glycolysis flux and increased reactive oxygen species (ROS) levels were detected in ALDHbr cell from Aldh2-/- mice. Compromised effect on blood flow recovery was also noticed post transplanting the human ALDHbr cell from ALDH2 deficient patients (GA or AA genotypes) in this ischemic hindlimb mice model. Taken together, our findings illustrate the indispensable role of ALDH2 in maintaining glycolysis dominant metabolism of ALDHbr cell and advocate that patient's Aldh2 genotype is a prerequisite for the efficacy of ALDHbr cell therapy for peripheral ischemia.
Collapse
Affiliation(s)
- Xiaolei Sun
- Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Hong Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai 200032, China
| | - Zhen Dong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai 200032, China
| | - Xiangwei Liu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai 200032, China
| | - Xin Ma
- Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Shasha Han
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai 200032, China
| | - Fei Lu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai 200032, China
| | - Peng Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai 200032, China
| | - Sanli Qian
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai 200032, China
| | - Cong Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai 200032, China
| | - Cheng Shen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai 200032, China
| | - Xiaona Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai 200032, China
| | - Yunzeng Zou
- Institute of Biomedical Science, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai 200032, China
| | - Junbo Ge
- Institute of Biomedical Science, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai 200032, China
| | - Aijun Sun
- Institute of Biomedical Science, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai 200032, China.
| |
Collapse
|
45
|
Cesselli D, Aleksova A, Sponga S, Cervellin C, Di Loreto C, Tell G, Beltrami AP. Cardiac Cell Senescence and Redox Signaling. Front Cardiovasc Med 2017; 4:38. [PMID: 28612009 PMCID: PMC5447053 DOI: 10.3389/fcvm.2017.00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
Aging is characterized by a progressive loss of the ability of the organism to cope with stressors and to repair tissue damage. As a result, chronic diseases, including cardiovascular disease, increase their prevalence with aging, underlining the existence of common mechanisms that lead to frailty and age-related diseases. In this frame, the progressive decline of the homeostatic and reparative function of primitive cells has been hypothesized to play a major role in the evolution of cardiac pathology to heart failure. Although initially it was believed that reactive oxygen species (ROS) were produced in an unregulated manner as a byproduct of cellular metabolism, causing macromolecular damage and aging, accumulating evidence indicate the major role played by redox signaling in physiology. Aim of this review is to critically revise evidence linking ROS to cell senescence and aging and to provide evidence of the primary role played by redox signaling, with a particular emphasis on the multifunctional protein APE1/Ref in stem cell biology. Finally, we will discuss evidence supporting the role of redox signaling in cardiovascular cells.
Collapse
Affiliation(s)
| | - Aneta Aleksova
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata di Trieste, University of Trieste, Trieste, Italy
| | - Sandro Sponga
- Cardiothoracic Surgery, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | | | | | - Gianluca Tell
- Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|