1
|
Tang D, Zheng X, Zhao Y, Zhang C, Chen C, Chen Y, Du L, Liu K, Li S. Engineered Microbial Consortium for De Novo Production of Sclareolide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19977-19984. [PMID: 39213654 DOI: 10.1021/acs.jafc.4c05506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sclareolide, a natural product with bioactive and fragrant properties, is not only utilized in the food, healthcare, and cosmetics industries but also serves as a precursor for the production of ambroxide and some bioactive compounds. Currently, there are three primary methods for producing sclareolide: direct extraction from plants, chemical synthesis using sclareol as a precursor, and the biotransformation of sclareol. Here, we established a platform for producing sclareolide through a modular coculture system with Saccharomyces cerevisiae and Cryptococcus albidus ATCC 20918. S. cerevisiae was engineered for de novo sclareol biosynthesis from glucose, while C. albidus enabled the production of sclareolide via sclareol biotransformation. To enhance the supply of sclareol, a recombinant yeast strain was constructed through metabolic engineering to produce 536.2 mg/L of sclareol. Further improvement of the coculture system for sclareolide production was achieved by incorporating Triton X-100 facilitated intermediate permeability, inoculation proportion adjustment, and culture temperature optimization. These refinements culminated in a sclareolide yield of 626.3 mg/L. This study presents a novel streamlined and efficient approach for sclareolide preparation, showcasing the potential of the microbial consortium in sustainable bioproduction.
Collapse
Affiliation(s)
- Dandan Tang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong 266237, China
| | - Xianliang Zheng
- Angel Yeast Co., Ltd., Yichang, Hubei 443003, China
- National Key Laboratory of Agricultural Microbiology, Yichang, Hubei 443003, China
| | - Yushuo Zhao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong 266237, China
| | - Chengsong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong 266237, China
| | - Cheng Chen
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong 266237, China
| | - Yuexing Chen
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong 266237, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong 266237, China
| | - Kun Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| |
Collapse
|
2
|
Bibik JD, Hamberger B. Plant Engineering to Enable Platforms for Sustainable Bioproduction of Terpenoids. Methods Mol Biol 2024; 2760:3-20. [PMID: 38468079 DOI: 10.1007/978-1-0716-3658-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Terpenoids represent the most diverse class of natural products, with a broad spectrum of industrial relevance including applications in green solvents, flavors and fragrances, nutraceuticals, colorants, and therapeutics. They are typically challenging to extract from their natural sources, where they occur in small amounts and mixtures of related but unwanted byproducts. Formal chemical synthesis, where established, is reliant on petrochemistry. Hence, there is great interest in developing sustainable solutions to assemble biosynthetic pathways in engineered host organisms. Metabolic engineering for chemical production has largely focused on microbial hosts, yet plants offer a sustainable production platform. In addition to containing the precursor pathways that generate the terpenoid building blocks as well as the cell structures and compartments required, or tractable localization for the enzymes involved, plants may provide a low input system to produce these chemicals using carbon dioxide and sunlight only. There have been significant recent advancements in the discovery of pathways to terpenoids of interest as well as strategies to boost yields in host plants. While part of the phytochemical field is focusing on the discovery of biosynthetic pathways, this review will focus on advancements using the pathway toolbox and toward engineering plants for the production of terpenoids. We will highlight strategies currently used to produce target products, optimization of known pathways to improve yields, compartmentalization of pathways within cells, and genetic tools developed to facilitate complex engineering of biosynthetic pathways. These advancements in Synthetic Biology are bringing engineered plant systems closer to commercially relevant hosts for the bioproduction of terpenoids.
Collapse
Affiliation(s)
- Jacob D Bibik
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
- MelaTech, LLC, Baltimore, MD, USA
| | - Björn Hamberger
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Diao M, Li C, Lu J, Meng L, Xie N. Biotransformation of Sclareol by a Fungal Endophyte of Salvia sclarea. Chem Biodivers 2023; 20:e202301363. [PMID: 37899305 DOI: 10.1002/cbdv.202301363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 10/31/2023]
Abstract
Microbial endophytes are known as versatile producers of useful metabolites, which have extensive applications in pharmacy, fragrance, agriculture and food. This study aims to screen sclareol-biotransforming microorganisms from Salvia sclarea, an untapped source of diverse endophytes. In this study, 50 culturable endophytes were isolated from S. sclarea grown in Xinjiang using sclareol as the sole carbon source and screened for their potential to transform sclareol into analogues. A fungal endophyte, identified as the generally recognized as safe (GRAS) strain Aspergillus tubingensis, can produce labd-14-ene-3β,8α,13β-triol and 8α,13β-dihydroxylabd-14-en-3-one from sclareol, involving hydroxylation and carbonylation at the C3 site. Structures of the two metabolites were elucidated by HR-ESI-MS and NMR analysis. S. sclarea was proven to be a good source of endophytes that are prospective producers of secondary metabolites with valuable chemical and biological properties. This study is the first report regarding the isolation of endophytes from S. sclarea.
Collapse
Affiliation(s)
- Mengxue Diao
- National key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Chi Li
- Life Science and Technology College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Jian Lu
- Life Science and Technology College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Lijun Meng
- National key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Nengzhong Xie
- National key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| |
Collapse
|
4
|
Liu Y, Chen X, Zhang C. Sustainable biosynthesis of valuable diterpenes in microbes. ENGINEERING MICROBIOLOGY 2023; 3:100058. [PMID: 39628524 PMCID: PMC11611012 DOI: 10.1016/j.engmic.2022.100058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 12/06/2024]
Abstract
Diterpenes, or diterpenoids, are the most abundant and diverse subgroup of terpenoids, the largest family of secondary metabolites. Most diterpenes possess broad biological activities including anti-inflammatory, antiviral, anti-tumoral, antimicrobial, anticancer, antifungal, antidiabetic, cardiovascular protective, and phytohormone activities. As such, diterpenes have wide applications in medicine (e.g., the anticancer drug Taxol and the antibiotic pleuromutilin), agriculture (especially as phytohormones such as gibberellins), personal care (e.g., the fragrance sclareol) and food (e.g., steviol glucosides as low-calorie sweeteners) industries. Diterpenes are biosynthesized in a common route with various diterpene synthases and decoration enzymes like cytochrome P450 oxidases, glycosidases, and acyltransferases. Recent advances in DNA sequencing and synthesis, omics analysis, synthetic biology, and metabolic engineering have enabled efficient production of diterpenes in several chassis hosts like Escherichia coli, Saccharomyces cerevisiae, Yarrowia lipolytica, Rhodosporidium toruloides, and Fusarium fujikuroi. This review summarizes the recently discovered diterpenes, their related enzymes and biosynthetic pathways, particularly highlighting the microbial synthesis of high-value diterpenes directly from inexpensive carbon sources (e.g., sugars). The high titers (>4 g/L) achieved mean that some of these endeavors are reaching or close to commercialization. As such, we envisage a bright future in translating microbial synthesis of diterpenes into commercialization.
Collapse
Affiliation(s)
- Yanbin Liu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| |
Collapse
|
5
|
Zhou J, Xie X, Tang H, Peng C, Peng F. The bioactivities of sclareol: A mini review. Front Pharmacol 2022; 13:1014105. [PMID: 36263135 PMCID: PMC9574335 DOI: 10.3389/fphar.2022.1014105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Sclareol, a diterpene alcohol isolated from the herbal and flavor plant clary sage (Salvia sclarea L.), is far-famed as the predominant ingredient in the refined oil of Salvia sclarea (L.). The empirical medicine of Salvia sclarea L. focused on various diseases, such as arthritis, oral inflammation, digestive system diseases, whereas the sclareol possessed more extensive and characteristic bioactivities, including anti-tumor, anti-inflammation and anti-pathogenic microbes, even anti-diabetes and hypertension. However, there is a deficiency of literature to integrate and illuminate the pharmacological attributes of sclareol based on well-documented investigations. Interestingly, sclareol has been recently considered as the potential candidate against COVID-19 and Parkinson’s disease. Accordingly, the bioactive attributes of sclareol in cancer, inflammation, even pharmacochemistry and delivery systems are reviewed for comprehensively dissecting its potential application in medicine.
Collapse
Affiliation(s)
- Jianbo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Fu Peng,
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Cheng Peng, ; Fu Peng,
| |
Collapse
|
6
|
Diao M, Li C, Li J, Lu J, Xie N. Probing the Biotransformation Process of Sclareol by Resting Cells of Hyphozyma roseonigra. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10563-10570. [PMID: 35993186 DOI: 10.1021/acs.jafc.2c04651] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sclareol glycol is a key starting material with significant market interest for synthesizing high-value ambroxide, a sustainable substitute for ambergris in high-end fragrances. Sclareol glycol can be obtained by biotransformation of sclareol, a labdane-type diterpene, using Hyphozyma roseonigra. However, the pathway and mechanism of sclareol glycol biosynthesis remain unclear. In this study, the dynamic time course of sclareol biotransformation was explored by resting cell assays and several intermediates produced during biotransformation were detected. The results show that (1) sclareol glycol and sclareolide are not interconverted and are potentially synthesized via different metabolic pathways and (2) several putative intermediates resulting from biotransformation are featured with a labdane carbon backbone, including isomerized and oxidized analogues. A plausible transformation pathway of sclareol in H. roseonigra was proposed based on detected metabolites. This study sheds light on the biosynthetic mechanism of sclareol glycol and paves a way for the future biotechnological production of this promising compound.
Collapse
Affiliation(s)
- Mengxue Diao
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Chi Li
- Life Science and Technology College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Jianxiu Li
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Jian Lu
- Life Science and Technology College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Nengzhong Xie
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| |
Collapse
|
7
|
Makarouni D, Kordulis C, Dourtoglou V. Solvent-Driven Selectivity on the One-Step Catalytic Synthesis of Manoyl Oxide Based on a Novel and Sustainable “Zeolite Catalyst–Solvent” System. Catal Letters 2022. [DOI: 10.1007/s10562-021-03721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractApplication of a novel “zeolite catalyst–solvent” system for the sustainable one-step synthesis of the terpenoid manoyl oxide, the potential precursor of forskolin and ambrox. Manoyl oxide high-yield and large-scale production over a zeolite catalyst has been infeasible so far, while this system results in 90% yields at 135 °C and atmospheric pressure. Substrate-controlled methodology is used to achieve selectivity. Solvent-driven catalysis is shown, as the activation energy barrier decreases in the presence of appropriate solvents, being 62.7 and 93.46 kJmol−1 for a glyme-type solvent and dodecane, respectively. Finally, catalyst acidity is key parameter for the process.
Graphic Abstract
Collapse
|
8
|
Cabo M, M N P, Song JI. Synthesis of non-phosphorylated epoxidised corn oil as a novel green flame retardant thermoset resin. Sci Rep 2021; 11:24140. [PMID: 34921150 PMCID: PMC8683440 DOI: 10.1038/s41598-021-03274-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022] Open
Abstract
This study aimed to produce a new potential flame retardant thermoset resin from epoxidised corn oil through a one-pot method using liquid inorganic catalysed with hydrogen peroxide. Using a gas chromatography-mass selective detector, attenuated total reflectance-fourier transform infrared spectroscopy, proton nuclear magnetic resonance imaging, optical microscopy, and scanning emission microscopy, we synthesised a bio-based resin based on newly designed parameters. The flame retardant capacity was fully established using thermogravimetric analysis and a micro calorimeter. The produced epoxidised corn oil had a relative percentage conversion of oxirane of approximately 91.70%, wherein the amount of double bonds converted into epoxides was calculated. A significant reduction from 17 to 40% in peak heat rate release (pHRR) and 26-30% in total heat release was observed, confirming its flame retardant property. Thus, the potential of epoxidised corn oil was demonstrated.
Collapse
Affiliation(s)
- Maurelio Cabo
- Department of Smart Manufacturing Engineering, Changwon National University, Uichang-gu, Changwon, Gyeongsangnam-do, 51140, Republic of Korea
| | - Prabhakar M N
- Research Institute of Mechatronics, Department of Mechanical Engineering, Changwon National University, Uichang-gu, Changwon, Gyeongsangnam-do, 51140, Republic of Korea
| | - Jung-Il Song
- Department of Mechanical Engineering, Changwon National University, Uichang-gu, Changwon, Gyeongsangnam-do, 51140, Republic of Korea.
| |
Collapse
|
9
|
Zubar V, Lichtenberger N, Schelwies M, Oeser T, Hashmi ASK, Schaub T. Manganese‐Catalyzed Hydrogenation of Sclareolide to Ambradiol. ChemCatChem 2021. [DOI: 10.1002/cctc.202101443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Viktoriia Zubar
- Catalysis Research Laboratory (CaRLa) University of Heidelberg Im Neuenheimer Feld 584 69120 Heidelberg Germany
| | - Niels Lichtenberger
- Catalysis Research Laboratory (CaRLa) University of Heidelberg Im Neuenheimer Feld 584 69120 Heidelberg Germany
| | | | - Thomas Oeser
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Catalysis Research Laboratory (CaRLa) University of Heidelberg Im Neuenheimer Feld 584 69120 Heidelberg Germany
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa) University of Heidelberg Im Neuenheimer Feld 584 69120 Heidelberg Germany
- BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen Germany
| |
Collapse
|
10
|
Chalvin C, Drevensek S, Gilard F, Mauve C, Chollet C, Morin H, Nicol E, Héripré E, Kriegshauser L, Gakière B, Dron M, Bendahmane A, Boualem A. Sclareol and linalyl acetate are produced by glandular trichomes through the MEP pathway. HORTICULTURE RESEARCH 2021; 8:206. [PMID: 34593779 PMCID: PMC8484277 DOI: 10.1038/s41438-021-00640-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Sclareol, an antifungal specialized metabolite produced by clary sage, Salvia sclarea, is the starting plant natural molecule used for the hemisynthesis of the perfume ingredient ambroxide. Sclareol is mainly produced in clary sage flower calyces; however, the cellular localization of the sclareol biosynthesis remains unknown. To elucidate the site of sclareol biosynthesis, we analyzed its spatial distribution in the clary sage calyx epidermis using laser desorption/ionization mass spectrometry imaging (LDI-FTICR-MSI) and investigated the expression profile of sclareol biosynthesis genes in isolated glandular trichomes (GTs). We showed that sclareol specifically accumulates in GTs' gland cells in which sclareol biosynthesis genes are strongly expressed. We next isolated a glabrous beardless mutant and demonstrate that more than 90% of the sclareol is produced by the large capitate GTs. Feeding experiments, using 1-13C-glucose, and specific enzyme inhibitors further revealed that the methylerythritol-phosphate (MEP) biosynthetic pathway is the main source of isopentenyl diphosphate (IPP) precursor used for the biosynthesis of sclareol. Our findings demonstrate that sclareol is an MEP-derived diterpene produced by large capitate GTs in clary sage emphasing the role of GTs as biofactories dedicated to the production of specialized metabolites.
Collapse
Affiliation(s)
- Camille Chalvin
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Stéphanie Drevensek
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Françoise Gilard
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Caroline Mauve
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Christel Chollet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Halima Morin
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Edith Nicol
- Molecular Chemistry Laboratory (LCM), UMR 9168, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128, Palaiseau Cedex, France
| | - Eva Héripré
- Laboratory of Mechanics of Soils, Structures and Materials (MSSMAT), UMR 8579, CNRS, Ecole CentraleSupélec, Université Paris-Saclay, Bâtiment Eiffel, 8-10 rue Joliot-Curie, 91190, Gif-Sur-Yvette, France
| | - Lucie Kriegshauser
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Bertrand Gakière
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Michel Dron
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| |
Collapse
|
11
|
Ncube EN, Steenkamp L, Dubery IA. Ambrafuran (Ambrox TM) Synthesis from Natural Plant Product Precursors. Molecules 2020; 25:molecules25173851. [PMID: 32854176 PMCID: PMC7504449 DOI: 10.3390/molecules25173851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 11/23/2022] Open
Abstract
Ambergris, an excretion product of sperm whales, has been a valued agent in the formulation of perfumes. The composition of ambergris consists of two major components: 40–46% cholestanol type steroids and approximately 25–45% of a triterpenoid known as ambrein. Ambergris undergoes oxidative decomposition in the environment to result in odorous compounds, such as ambraoxide, methylambraoxide, and ambracetal. Its oxidized form, ambrafuran (IUPAC name: 3a,6,6,9a-tetramethyl-2,4,5,5a,7,8,9,9b-octahydro-1H-benzo[e][1]benzofuran), is a terpene furan with a pleasant odor and unique olfactive and fixative properties. The current state of the fragrance industry uses ambrafuran materials entirely from synthetic or semisynthetic sources. However, natural compounds with the potential to be converted to ambergris-like odorants have been extracted from several different types of plants. Here we review plant terpenoids suitable as starting materials for the semisyntheses of ambrafuran or intermediates, such as ambradiol, that can be used in biocatalytic transformations to yield ambrafuran.
Collapse
Affiliation(s)
- Efficient N. Ncube
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa;
| | - Lucia Steenkamp
- Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), P.O. Box 395, Pretoria 0001, South Africa;
| | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa;
- Correspondence: ; Tel.: +27-11-559-2401
| |
Collapse
|
12
|
Chalvin C, Drevensek S, Dron M, Bendahmane A, Boualem A. Genetic Control of Glandular Trichome Development. TRENDS IN PLANT SCIENCE 2020; 25:477-487. [PMID: 31983619 DOI: 10.1016/j.tplants.2019.12.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/06/2019] [Accepted: 12/20/2019] [Indexed: 05/28/2023]
Abstract
Plant glandular trichomes are epidermal secretory structures producing various specialized metabolites. These metabolites are involved in plant adaptation to its environment and many of them have remarkable properties exploited by fragrance, flavor, and pharmaceutical industries. The identification of genes controlling glandular trichome development is of high interest to understand how plants produce specialized metabolites. Our knowledge about this developmental process is still limited, but genes controlling glandular trichome initiation and morphogenesis have recently been identified. In particular, R2R3-MYB and HD-ZIP IV transcription factors appear to play essential roles in glandular trichome initiation in Artemisia annua and tomato. In this review, we focus on the results obtained in these two species and we propose genetic regulation models integrating these data.
Collapse
Affiliation(s)
- Camille Chalvin
- Université Paris-Saclay, INRAE, CNRS, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Stéphanie Drevensek
- Université Paris-Saclay, INRAE, CNRS, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Michel Dron
- Université Paris-Saclay, INRAE, CNRS, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, INRAE, CNRS, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Adnane Boualem
- Université Paris-Saclay, INRAE, CNRS, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| |
Collapse
|
13
|
Moser S, Leitner E, Plocek TJ, Vanhessche K, Pichler H. Engineering of Saccharomyces cerevisiae for the production of (+)-ambrein. Yeast 2019; 37:163-172. [PMID: 31606910 DOI: 10.1002/yea.3444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
The triterpenoid (+)-ambrein is the major component of ambergris, a coprolite of the sperm whale that can only be rarely found on shores. Upon oxidative degradation of (+)-ambrein, several fragrance molecules are formed, amongst them (-)-ambrox, one of the highest valued compounds in the perfume industry. In order to generate a Saccharomyces cerevisiae whole-cell biocatalyst for the production of (+)-ambrein, intracellular supply of the squalene was enhanced by overexpression of two central enzymes in the mevalonate and sterol biosynthesis pathway, namely the N-terminally truncated 3-hydroxy-3-methylglutaryl-CoA reductase 1 (tHMG) and the squalene synthase (ERG9). In addition, another key enzyme in sterol biosynthesis, squalene epoxidase (ERG1) was inhibited by an experimentally defined amount of the inhibitor terbinafine in order to reduce flux of squalene towards ergosterol biosynthesis while retaining sufficient activity to maintain cell viability and growth. Heterologous expression of a promiscuous variant of Bacillus megaterium tetraprenyl-β-curcumene cyclase (BmeTC-D373C), which has been shown to be able to catalyse the conversion of squalene to 3-deoxyachillol and then further to (+)-ambrein resulted in production of these triterpenoids in S. cerevisiae for the first time. Triterpenoid yields are comparable with the best microbial production chassis described in literature so far, the methylotrophic yeast Pichia pastoris. Consequently, we discuss similarities and differences of these two yeast species when applied for whole-cell (+)-ambrein production.
Collapse
Affiliation(s)
- Sandra Moser
- Austrian Centre of Industrial Biotechnology, Graz, Austria.,NAWI Graz, BioTechMed Graz, Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Erich Leitner
- NAWI Graz, Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria
| | | | | | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Graz, Austria.,NAWI Graz, BioTechMed Graz, Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
14
|
Sun Y, Huang Y, Li M, Lu J, Jin N, Fan B. Synthesis of cyclic ethers by cyclodehydration of 1, n-diols using heteropoly acids as catalysts. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180740. [PMID: 30839702 PMCID: PMC6170547 DOI: 10.1098/rsos.180740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/29/2018] [Indexed: 06/09/2023]
Abstract
Heteropoly acids were used as catalysts for cyclodehydration of various 1,n-diols. Cyclodehydration of butane-1,4-diol, pentane-1,5-diol and hexane-1,6-diol catalysed by H3PW12O40 gave tetrahydrofuran, tetrahydropyran and oxepane, respectively. Cyclodehydration of diethylene glycol, triethylene glycol, diethylene glycol monomethyl ether and polyethylene glycol 200 catalysed by H3PW12O40 gave 1,4-dioxane. In particular, cyclodehydration of hexane-1,6-diol gave an excellent yield of oxepane (80%). The selectivity exhibited by the H3PW12O40 catalyst was even better than that exhibited by other reported catalyst systems for similar cyclodehydration reactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| |
Collapse
|
15
|
Yang S, Hao Y, Wang J, Wang H, Zheng Y, Tian H, Liu Y, Sun B. Selective catalytic dehydration of furfuryl alcohol to 2, 2'-difurfuryl ether using a polyoxometalate catalyst. Sci Rep 2017; 7:12954. [PMID: 29021544 PMCID: PMC5636835 DOI: 10.1038/s41598-017-13472-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/26/2017] [Indexed: 01/18/2023] Open
Abstract
The spice flavour compound 2, 2'-difurfuryl ether (DFE) is widely utilised in the food industry as it has a coffee-like, nutty, earthy, mushroom-like odour. However, despite intensive research efforts, to date, an environmentally friendly and practical synthetic preparation technique for 2, 2'-difurfuryl ether is still unavailable. Here, we investigate a new approach using polyoxometalate catalysts to selectively catalytically dehydrate furfuryl alcohol to 2, 2'-difurfuryl ether. We have successfully applied this methodology using the polyoxometalate (POMs) catalyst {[(CH3CH2CH2CH2)4N]2[SMo12O40]} to produce 2,2'-difurfuryl ether in a 30.86% isolated yield.
Collapse
Affiliation(s)
- Shaoxiang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing, 100048, P. R. China.
| | - Yanfeng Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing, 100048, P. R. China
| | - Jialin Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing, 100048, P. R. China
| | - Hao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing, 100048, P. R. China
| | - Yimeng Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing, 100048, P. R. China
| | - Hongyu Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing, 100048, P. R. China.
| | - Yongguo Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing, 100048, P. R. China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing, 100048, P. R. China
| |
Collapse
|