1
|
Zhang H, Li Y, Wei L, Wang Z, Zhang Y. Recombinant Esterase (BaCE m) Immobilized on Polyethyleneimine-Impregnated Mesoporous Silica SBA-15 Exhibits Outstanding Catalytic Performance. Appl Biochem Biotechnol 2025; 197:735-753. [PMID: 39222168 DOI: 10.1007/s12010-024-05045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
A recombinant esterase, BaCEm, derived from Bacillus aryabhattai and heterologously expressed in Escherichia coli, was successfully immobilized on polyethyleneimine-impregnated mesoporous silica SBA-15. This immobilization utilized glutaraldehyde as a crosslinker. Optimal conditions were established with a PEI/SBA-15 ratio of 25% (w/w), a pH of 7.5, and a glutaraldehyde concentration of 0.5% (w/w), resulting in a loading capacity of 76.4 mg/g, a recovery activity of 43.5%, and a specific activity of 7917 U/g for BaCEm. The immobilized BaCEm demonstrated high enantioselectivity, with an "E" value of 203.92, in the resolution assay of (R,S)-ethyl indoline-2-carboxylate. Notably, the immobilized enzyme, compared to its free counterpart, exhibited enhanced thermostability, maintaining 95.4% of its activity after 3 h at 30 °C. It also showed significant tolerance to organic solvents, retaining 48.4% and 28.7% residual activity in 10% v/v acetonitrile and acetone, respectively. Moreover, its storage stability was confirmed, with 68.5% residual activity preserved after 30 days at 4 °C. Remarkably, the immobilized BaCEm retained 58.1% of its activity after 10 reuse cycles, underscoring the potential of polyethyleneimine-impregnated mesoporous silica SBA-15 as an effective support for enzyme immobilization, promising for industrial applications.
Collapse
Affiliation(s)
- Hongjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yichao Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Litian Wei
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yinjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
2
|
Hosseini K, Zivari-Ghader T, Dilmaghani A, Akbarzadehlaleh P, Jafarzadeh-Chehraghi EA. Review on up and downstream processing of L-asparaginase. Prep Biochem Biotechnol 2025:1-9. [PMID: 39853162 DOI: 10.1080/10826068.2024.2449139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
L-asparaginase (asparagine amidohydrolase) contributes to 40% of the total enzyme demands worldwide and is one-third of the global requirement as an anti-cancerous drug in treating acute lymphocytic leukemia (ALL), a type of leukemia. This protein breaks down L-asparagine into aspartic acid and ammonia those involved in ALL, rely on for growth and survival. Both non-recombinant and recombinant L-asparaginase can be produced by bacteria when a suitable substrate and method (solid-state fermentation (SSF) or submerged fermentation (SmF) which are techniques to grow microorganisms under controlled conditions), is provided. Between both L-asparaginase's isozymes, asparaginase type II displays higher specific action against L-asparagine and precisely shows antitumor activity. The applied methods in purification of L-asparaginase in the frame of three phases of protein purification strategy known as CIPP (including capture, intermediate purification, and polishing phase) are discussed in this review. Depending on whether the production of the enzyme is intracellular or extracellular, various steps in each phase, like removal of insoluble material, extraction, concentration, and purification, must followed. In this review, authors summarize the upstream processes in L-asparaginase production and the various applied chromatographic and non-chromatographic methods in each step of CIPP, in downstream processes.
Collapse
Affiliation(s)
- Kamran Hosseini
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azita Dilmaghani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
3
|
Sapkota H, Singhania U, Jadhav S, Pathan EK, Roy B. Isolation, Identification, and Characterization of L-asparaginase-Producing Human Commensal Bacterial Strains: A Promising Next-Gen Probiotics. Appl Biochem Biotechnol 2025; 197:241-267. [PMID: 39110329 DOI: 10.1007/s12010-024-05002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/19/2025]
Abstract
L-asparaginase is an FDA-approved drug for treating blood cancer, but its inherent antigenicity and L-glutaminase activity are associated with hypersensitivity and organ toxicity. Extracellularly produced glutaminase-free L-asparaginase from human commensal bacteria may be a good alternative to reduce the side effects of therapeutic L-asparaginase. Here, we report the isolation and characterization of fourteen L-asparaginase-producing bacterial strains belonging to the genera Acinetobacter, Escherichia, Klebsiella, and Pseudomonas from human stool and saliva samples. To the best of our knowledge, this is the first report of L-asparaginase-producing human commensal bacterial strains isolated from healthy individuals. L-asparaginase produced by fecal and salivary isolates exhibited significantly higher activity (3.64 to 16.96 U/ml) toward L-asparagine than L-glutamine. Interestingly, L-asparaginase from fecal isolates, Escherichia coli strains 3F1 and 3F2 and salivary isolate Klebsiella pneumoniae 3S3, exhibited no L-glutaminase activity. These isolates were also sensitive to all tested antibiotics. Additionally, these three isolates demonstrated tolerance to pH 3.0 (≥ 88% survival) and 0.3% bile (≥ 95% survival), indicating their potential as probiotics. Among these isolates, L-asparaginase from the highest-producing K. pneumoniae 3S3 strain was found to be a homodimer, with native and subunit molecular weights of 110 kDa and 55 kDa, respectively. The purified enzyme can be further explored for its antitumor and immunomodulatory properties. Overall, future research can be expanded to include the use of a pool of human commensal bacteria as genuine and alternative sources of L-asparaginase for effective cancer treatments and cutting-edge next-generation probiotics.
Collapse
Affiliation(s)
- Himal Sapkota
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India
| | - Unnati Singhania
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India
| | - Savita Jadhav
- Department of Microbiology, LNCT Medical College and Sewakunj Hospital, Kanadia Road, Indore, 452001, Madhya Pradesh, India
| | - Ejaj K Pathan
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India.
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
4
|
Wu C, Nazemi SA, Santacroce N, Sahlin JA, Suter-Dick L, Shahgaldian P. Reduction-responsive immobilised and protected enzymes. NANOSCALE ADVANCES 2024; 7:89-93. [PMID: 39619388 PMCID: PMC11603382 DOI: 10.1039/d4na00580e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024]
Abstract
We report a synthetic strategy to produce nano-immobilised and organosilica-shielded enzymes of which the biocatalytic activity is, by design, chemically enhanced under reductive conditions. The enzymes were immobilised onto silica nanoparticles through a reduction-responsive crosslinker and further shielded in an organosilica layer of controlled thickness. Under reducing conditions, disulphide bonds linking the protein to the carrier material were reduced, triggering enzyme activation. The organosilica shield prevents the enzymes from leaching from the nanobiocatalysts and preserves their integrity.
Collapse
Affiliation(s)
- Congyu Wu
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30, Muttenz CH-4132 Switzerland
| | - Seyed Amirabbas Nazemi
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30, Muttenz CH-4132 Switzerland
| | - Natascha Santacroce
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30, Muttenz CH-4132 Switzerland
| | - Jenny A Sahlin
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30, Muttenz CH-4132 Switzerland
| | - Laura Suter-Dick
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30, Muttenz CH-4132 Switzerland
- Swiss Center for Applied Human Toxicology (SCAHT) Missionsstrasse 64 Basel CH-4055 Switzerland
| | - Patrick Shahgaldian
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30, Muttenz CH-4132 Switzerland
- Swiss Nanoscience Institute Klingelbergstrasse 82 Basel CH-4056 Switzerland
| |
Collapse
|
5
|
Sundaram SS, Kannan A, Chintaluri PG, Sreekala AGV, Nathan VK. Thermostable bacterial L-asparaginase for polyacrylamide inhibition and in silico mutational analysis. Int Microbiol 2024; 27:1765-1779. [PMID: 38519776 DOI: 10.1007/s10123-024-00493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
The L-asparaginase (ASPN) enzyme has received recognition in various applications including acrylamide degradation in the food industry. The synthesis and application of thermostable ASPN enzymes is required for its use in the food sector, where thermostable enzymes can withstand high temperatures. To achieve this goal, the bacterium Bacillus subtilis was isolated from the hot springs of Tapovan for screening the production of thermostable ASPN enzyme. Thus, ASPN with a maximal specific enzymatic activity of 0.896 U/mg and a molecular weight of 66 kDa was produced from the isolated bacteria. The kinetic study of the enzyme yielded a Km value of 1.579 mM and a Vmax of 5.009 µM/min with thermostability up to 100 min at 75 °C. This may have had a positive indication for employing the enzyme to stop polyacrylamide from being produced. The current study has also been extended to investigate the interaction of native and mutated ASPN enzymes with acrylamide. This concluded that the M10 (with 10 mutations) has the highest protein and thermal stability compared to the wild-type ASPN protein sequence. Therefore, in comparison to a normal ASPN and all other mutant ASPNs, M10 is the most favorable mutation. This research has also demonstrated the usage of ASPN in food industrial applications.
Collapse
Affiliation(s)
| | - Aravind Kannan
- School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamil Nadu, India
| | - Pratham Gour Chintaluri
- School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamil Nadu, India
| | | | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
6
|
Pinzan CF, Valero C, de Castro PA, da Silva JL, Earle K, Liu H, Horta MAC, Kniemeyer O, Krüger T, Pschibul A, Cömert DN, Heinekamp T, Brakhage AA, Steenwyk JL, Mead ME, Hermsdorf N, Filler SG, da Rosa-Garzon NG, Delbaje E, Bromley MJ, Cabral H, Diehl C, Angeli CB, Palmisano G, Ibrahim AS, Rinker DC, Sauters TJC, Steffen K, Gumilang A, Rokas A, Gago S, Dos Reis TF, Goldman GH. Aspergillus fumigatus conidial surface-associated proteome reveals factors for fungal evasion and host immunity modulation. Nat Microbiol 2024; 9:2710-2726. [PMID: 39191887 PMCID: PMC11699518 DOI: 10.1038/s41564-024-01782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Aspergillus fumigatus causes aspergillosis and relies on asexual spores (conidia) for initiating host infection. There is scarce information about A. fumigatus proteins involved in fungal evasion and host immunity modulation. Here we analysed the conidial surface proteome of A. fumigatus, two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis, as well as pathogenic Aspergillus lentulus, to identify such proteins. After identifying 62 proteins exclusively detected on the A. fumigatus conidial surface, we assessed null mutants for 42 genes encoding these proteins. Deletion of 33 of these genes altered susceptibility to macrophage, epithelial cells and cytokine production. Notably, a gene that encodes a putative glycosylasparaginase, modulating levels of the host proinflammatory cytokine IL-1β, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins are important for evasion and modulation of the immune response at the onset of fungal infection.
Collapse
Affiliation(s)
- Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Jefferson Luiz da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Kayleigh Earle
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hong Liu
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Annica Pschibul
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Derya Nur Cömert
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Matthew E Mead
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Nico Hermsdorf
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Scott G Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Endrews Delbaje
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Michael J Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Antimicrobial Resistance Network, University of Manchester, Manchester, UK
| | - Hamilton Cabral
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Diehl
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Claudia B Angeli
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David C Rinker
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Thomas J C Sauters
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Karin Steffen
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Adiyantara Gumilang
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Thaila F Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil.
| |
Collapse
|
7
|
Kumar V, Anand P, Srivastava A, Akhter Y, Verma D. The structural insights of L-asparaginase from Pseudomonas aeruginosa CSPS4 at elevated temperatures highlight its thermophilic nature. 3 Biotech 2024; 14:230. [PMID: 39280800 PMCID: PMC11391003 DOI: 10.1007/s13205-024-04072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024] Open
Abstract
In the present investigation, a novel thermophilic L-asparaginase (Asn_PA) from Pseudomonas aeruginosa CSPS4 was investigated to explore its structural insights at elevated temperatures. Sequence analysis of Asn_PA depicted three conserved motifs (VVILATGGTIAG, DGIVITHGTDTLEETAYFL, and, LRKQGVQIIRSSHVNAGGF), of them, two motifs exhibit catalytically-important residues i.e., T45 and T125. A homology modelling-based structure model for Asn_PA was generated with 4PGA as the top-matched template. The predicted structure was validated and energy was minimized. Molecular docking was carried out cantered at the active site for asparagine and glutamine as its substrate ligands. The enzyme-substrate interaction analysis showed binding affinities of - 4.8 and - 4.1 kcal/mol for asparagine and glutamine respectively. Molecular dynamics (MD) simulation studies showed a better stability of Asn_PA at temperatures of 60 °C, over 40, 50 and, 80 °C, making this enzyme a novel L-asparaginase from other mesophilic P. aeruginosa strain. The trajectory analysis showed that RMSD, Rg, and, SASA values correlate well with each other in the different tested temperatures during the MD analysis. Thus, the present findings encourage extensive characterization of the Asn_PA using laboratory experiments to understand the structural behavior of the active site loop in an open or closed state with and without the substrate molecules. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04072-w.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
| | - Pragya Anand
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
| | - Ankita Srivastava
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
| | - Yusuf Akhter
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
| |
Collapse
|
8
|
Konwar AN, Basak S, Saikia K, Gurumayum S, Panthi N, Borah JC, Thakur D. Antimicrobial potential of Streptomyces sp. NP73 isolated from the forest soil of Northeast India against multi-drug resistant Escherichia coli. Lett Appl Microbiol 2024; 77:ovae086. [PMID: 39264087 DOI: 10.1093/lambio/ovae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
This study reports the isolation and characterization of a Streptomyces sp. from soil, capable of producing bioactive secondary metabolites active against a variety of bacterial human pathogens. We targeted the antimicrobial activity against Escherichia coli ATCC-BAA 2469, a clinically relevant strain of bacteria harbouring resistance genes for carbapenems, extended spectrum beta-lactams, tetracyclines, fluoroquinones, etc. Preliminary screening using the spot inoculation technique identified Streptomyces sp. NP73 as the potent strain among the 74 isolated Actinomycetia strain. 16S rRNA gene and whole genome sequencing (WGS) confirmed its taxonomical identity and helped in the construction of the phylogenetic tree. WGS revealed the predicted pathways and biosynthetic gene clusters responsible for producing various types of antibiotics including the isolated compound. Bioactivity guided fractionation and chemical characterization of the active fraction, carried out using liquid chromatography, gas chromatography-mass spectrometry, infra-red spectroscopy, and nuclear magnetic resonance spectroscopy, led to the tentative identification of the active compound as Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-, a diketopiperazine molecule. This compound exhibited excellent antimicrobial and anti-biofilm properties against E. coli ATCC-BAA 2469 with an MIC value of 15.64 µg ml-1, and the low cytotoxicity of the compound identified in this study provides hope for future drug development.
Collapse
Affiliation(s)
- Aditya Narayan Konwar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surajit Basak
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kangkon Saikia
- Bioinformatics Infrastructure Facility, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
| | - Shalini Gurumayum
- Chemical Biology Laboratory-1, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
| | - Nitya Panthi
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
| | - Jagat Chandra Borah
- Chemical Biology Laboratory-1, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
| |
Collapse
|
9
|
Abdelrazek NA, Saleh SE, Raafat MM, Ali AE, Aboulwafa MM. Production of highly cytotoxic and low immunogenic L-asparaginase from Stenotrophomonas maltophilia EMCC2297. AMB Express 2024; 14:51. [PMID: 38704453 PMCID: PMC11069494 DOI: 10.1186/s13568-024-01700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024] Open
Abstract
L-asparaginase is an important therapeutic enzyme that is frequently utilized in the chemotherapy regimens of adults as well as pediatric patients with acute lymphoblastic leukemia. However, a high rate of hypersensitivity with prolonged use has limited its utilization. Stenotrophomonas maltophilia (S. maltophilia) EMCC2297 isolate was reported as a novel and promising source for L- asparaginase. The present study aimed at the production, purification, and characterization of L- asparaginase from S. maltophilia EMCC2297 isolate. The microbial production of L-asparaginase by the test isolate could be increased by pre-exposure to chloramphenicol at 200 µg/ml concentration. S. maltophilia EMCC2297 L-asparaginase could be purified to homogeneity by ammonium sulphate precipitation and the purified form obtained by gel exclusion chromatography showed total activity of 96.4375 IU/ml and specific activity of 36.251 IU/mg protein. SDS-PAGE analysis revealed that the purified form of the enzyme is separated at an apparent molecular weight of 17 KDa. Michaelis-Menten constant analysis showed a Km value of 4.16 × 10- 2 M with L-asparagine as substrate and Vmax of 10.67 IU/ml. The antitumor activity of the purified enzyme was evaluated on different cell lines and revealed low IC50 of 2.2 IU/ml and 2.83 IU/ml for Hepatocellular cancer cell line (HepG-2), human leukemia cancer cell line (K-562), respectively whereas no cytotoxic effect could be detected on normal human lung fibroblast cells (MRC-5). However, mice treated with native L-asparaginase showed lower IgG titre compared to commercial L-asparaginase. This study highlights the promising characteristics of this enzyme making it a valuable candidate for further research and development to be an adduct in cancer chemotherapy.
Collapse
Affiliation(s)
- Nada A Abdelrazek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Maamoun St., Abbassia, Cairo, 11517, Egypt
| | - Sarra E Saleh
- Department of Microbiology and immunology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Marwa M Raafat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Maamoun St., Abbassia, Cairo, 11517, Egypt
| | - Amal E Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Maamoun St., Abbassia, Cairo, 11517, Egypt
| | - Mohammad M Aboulwafa
- Department of Microbiology and immunology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, King Salman International University, South Sinai, Ras-Sudr, Egypt.
| |
Collapse
|
10
|
Kumar V, Kumar R, Sharma S, Shah A, Chaturvedi CP, Verma D. Cloning, expression, and characterization of a novel thermo-acidophilic l-asparaginase of Pseudomonas aeruginosa CSPS4. 3 Biotech 2024; 14:54. [PMID: 38282912 PMCID: PMC10808081 DOI: 10.1007/s13205-024-03916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024] Open
Abstract
In the present investigation, a soil isolate Pseudomonas aeruginosa CSPS4 was used for retrieving the l-asparaginase encoding gene (Asn_PA) of size 1089 bp. The gene was successfully cloned into the pET28a (+) vector and expressed into E. coli BL21(DE3) for characterization of the protein. The recombinant rAsn_PA enzyme was purified by affinity chromatography using Ni-NTA2+ resins. Molecular weight analysis using SDS-PAGE unveiled rAsn_PA as a monomeric protein of molecular weight ~ 35 kDa. On characterization, the recombinant rAsn_PA showed optimum pH and temperature of 6.0 and 60 °C, respectively, along with significant stability at 50-70 °C, along with 50% residual activity at 80 °C after 3 h of incubation. Similarly, the rAsn_PA exhibited asparaginase activity over a broad pH range between 4 and 8. The enzyme was not significantly inhibited in the presence of detergents. The rAsn_PA was grouped into the asparaginase-glutaminase family II due to the glutaminase activity. The purified rAsn_PA showed antitumor activity by exhibiting a cytotoxic effect on three different cell lines, where IC50 of purified rAsn_PA was 2.3 IU, 3.7 IU, and 20.5 IU for HL-60, MOLM-13, and K-562 cell lines, respectively. Thus, recombinant rAsn_PA of P. aeruginosa CSPS4 may also be explored as an antitumor agent after reducing or minimizing the glutaminase activity. Thermo-acidophilic properties of rAsn_PA make it a novel enzyme that needs to be further investigated.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
| | - Ravi Kumar
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
- Department of Applied Sciences and Humanities (Faculty of Technology), University of Delhi, Delhi, India
| | - Shilpa Sharma
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
- Department of Applied Sciences and Humanities (Faculty of Technology), University of Delhi, Delhi, India
| | - Arunim Shah
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Chandra Prakash Chaturvedi
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
| |
Collapse
|
11
|
Khabade S, Sirigiri DNR, Ram AB. l-Asparaginase from Solanum lycopersicum as a Nutraceutical for Acute Lymphoblastic Leukemia. ACS OMEGA 2024; 9:3616-3624. [PMID: 38284052 PMCID: PMC10809669 DOI: 10.1021/acsomega.3c07633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/25/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
l-Asparaginase (E.C. 3.5.1.1) is an indispensable analeptic anticancer enzyme used as an amalgam with additional cancer medicines for the cure of acute lymphoblastic leukemia (ALL). The presence of lAparaginase in tomato was confirmed byWestern blotting and DNA sequencing. The l-Asparaginase gene from tomato has been deposited in the NCBI database with accession number: OR736141. Crude enzyme was extracted from the fruit pulp of Solanum lycopersicum, and the activity was determined by the Nesslerization method. Further, the crude extract was subjected to purification, and kinetic parameters were studied. The percentage yield was calculated to be 6.457, and the purification fold was 0.086. The enzyme showed maximum activity at optimum pH 7.0, optimum temperature 37 °C, and incubation time of 05 min. The Michaelis constant "Km" and maximum velocity "Vmax" values were determined by the Lineweaver-Burk plot, which showed a low Km value of 0.66 and Vmax of 3.846 IU. Cytotoxic studies were carried out for crude and purified l-asparaginase. Purified l-Asparaginase has exhibited anticancer activity against the ALL model system, K-562 cell line, comparable to that of the anticancer compound vinblastine. Hence, l-Asparaginase from the fruit extract of tomato could be used as a nutraceutical to support cancer treatment in acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Sarina
P. Khabade
- Department
of PG Studies in Biotechnology, Nrupathunga
University, Bangalore 560001, India
| | - Divijendra Natha Reddy Sirigiri
- Department
of Biotechnology, BMS College of Engineering, Bangalore, Affiliated to Visvesvaraya Technological University, Belagavi, Karnataka 560019, India
| | - Anshu Beulah Ram
- Department
of PG Studies in Biotechnology, Nrupathunga
University, Bangalore 560001, India
| |
Collapse
|
12
|
Mihooliya KN, Nandal J, Kalidas N, Ashish, Chand S, Verma DK, Bhattacharyya MS, Sahoo DK. Assessment of structural behaviour of a new L-asparaginase and SAXS data-based evidence for catalytic activity in its monomeric form. Int J Biol Macromol 2023; 253:126803. [PMID: 37689286 DOI: 10.1016/j.ijbiomac.2023.126803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The present study reports the structural and functional characterization of a new glutaminase-free recombinant L-asparaginase (PrASNase) from Pseudomonas resinovorans IGS-131. PrASNase showed substrate specificity to L-asparagine, and its kinetic parameters, Km, Vmax, and kcat were 9.49 × 10-3 M, 25.13 IUmL-1 min-1, and 3.01 × 103 s-1, respectively. The CD spectra showed that PrASNase consisted of 18.5 % helix, 21.5 % antiparallel sheets, 4.2 % parallel sheets, 14 % turns, and rest other structures. FTIR was used for the functional characterization, and molecular docking predicted that the substrate interacts with serine, alanine, and glutamine in the binding pocket of PrASNase. Differing from known asparaginases, structural characterization by small-angle X-ray scattering (SAXS) and analytical ultracentrifugation (AUC) unambiguously revealed PrASNase to exist as a monomer in solution at low temperatures and oligomerized to a higher state with temperature rise. Through SAXS studies and enzyme assay, PrASNase was found to be mostly monomer and catalytically active at 37 °C. Furthermore, this glutaminase-free PrASNase showed killing effects against WIL2-S and TF-1.28 cells with IC50 of 7.4 μg.mL-1 and 5.6 μg.mL-1, respectively. This is probably the first report with significant findings of fully active L-asparaginase in monomeric form using SAXS and AUC and demonstrated the potential of PrASNase in inhibiting cancerous cells, making it a potential therapeutic candidate.
Collapse
Affiliation(s)
- Kanti N Mihooliya
- Biochemical Engineering Research and Process Development Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Jitender Nandal
- Biochemical Engineering Research and Process Development Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Nidhi Kalidas
- GNR Advanced Protein Centre, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Ashish
- GNR Advanced Protein Centre, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Subhash Chand
- National Institute of Biologicals, Ministry of Health & Family Welfare, NOIDA, Uttar Pradesh, India
| | - Dipesh K Verma
- Structural Biology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mani S Bhattacharyya
- Biochemical Engineering Research and Process Development Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Debendra K Sahoo
- Biochemical Engineering Research and Process Development Centre, CSIR-Institute of Microbial Technology, Chandigarh, India.
| |
Collapse
|
13
|
Osama S, El-Sherei MM, Al-Mahdy DA, Bishr M, Salama O, Raafat MM. Optimization and characterization of antileukemic L-asparaginase produced by Fusarium solani endophyte. AMB Express 2023; 13:96. [PMID: 37702815 PMCID: PMC10499768 DOI: 10.1186/s13568-023-01602-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
L-asparaginase is an antileukemic enzyme that hydrolyzes L-asparagine into L-aspartic acid and ammonia, causing cell starvation and apoptosis in susceptible leukemic cell populations. Currently, L-asparaginase obtained from bacterial sources is constrained by several issues, including lesser productivity, stability, selectivity, and higher toxicity. The goal of this study is to provide fungal L-asparaginase with in-vitro effectiveness towards different human carcinomas. L-asparaginase from endophytic Fusarium solani (Gene Bank accession number MW209717) isolated from the roots of the medicinal plant Hedera helix L. was characterized and optimized experimentally for maximum L-asparaginase production in addition to evaluating its subsequent cytotoxicity towards acute monocytic leukemia and human skin fibroblast cell lines. The enzyme production was maximized using potato dextrose media (15.44 IU/ml/hr) at the 5th and 6th days of fermentation with incubation temperature 30 °C, 3% asparagine, 150-180 rpm agitation rate and a 250 ml flask. Enzyme characterization studies revealed that the enzyme maintained its thermal stability with temperatures up to 60 °C. However, its optimal activity was achieved at 35 °C. On measuring the enzymatic activity at various temperatures and different pH, maximum enzyme activity was recorded at 40 °C and pH 8 using 0.1 M asparagine concentration. Results also revealed promising cytotoxic activity against acute monocytic leukemia with IC50 = 3.66 µg/ml and low cytotoxicity against tested normal human skin fibroblast cell line which suggested that it might have selective toxicity, and consequently it could be used as a less toxic alternative to the current formulations.
Collapse
Affiliation(s)
- Sarah Osama
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Moshera M El-Sherei
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Dalia A Al-Mahdy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mokhtar Bishr
- Arab Company for Pharmaceuticals and Medicinal Plants (Mepaco), Cairo, Egypt
| | - Osama Salama
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Marwa M Raafat
- Microbiology and Immunology Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt.
| |
Collapse
|
14
|
Shahana Kabeer S, Francis B, Vishnupriya S, Kattatheyil H, Joseph KJ, Krishnan KP, Mohamed Hatha AA. Characterization of L-asparaginase from Streptomyces koyangensis SK4 with acrylamide-minimizing potential in potato chips. Braz J Microbiol 2023; 54:1645-1654. [PMID: 37036659 PMCID: PMC10485229 DOI: 10.1007/s42770-023-00967-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/03/2023] [Indexed: 04/11/2023] Open
Abstract
Microbial L-asparaginase is well known for its application in food industries to reduce acrylamide content in fried starchy food. L-asparaginase produced by Arctic actinomycetes Streptomyces koyangensis SK4 was purified and studied for biochemical characterization. The L-asparaginase was purified with a yield of 15.49% and final specific activity of 179.77 IU/mg of protein. The enzyme exhibited a molecular weight of 43 kDa. The optimum pH and temperature for maximum activity of the purified enzyme were 8.5 °C and 40 °C, respectively. The enzyme expressed maximum activity at an incubation period of 30 min and a substrate concentration of 0.06 M. The enzyme has a low Km value of 0.041 M and excellent substrate specificity toward L-asparagine. The enzyme activity was inhibited by metal ions Ba2+ and Hg2+, while Mn2+ and Mg2+ enhanced the activity. The study evaluated the acrylamide reduction potential of L-asparaginase from Streptomyces koyangensis SK4 in potato chips. The blanching plus L-asparaginase treatment of potato slices resulted in a 50% reduction in acrylamide content. The study illustrated an effective acrylamide reduction strategy in potato chips using L-asparaginase from a psychrophilic actinomycete. Besides the acrylamide reduction potential, L-asparaginase from Streptomyces koyangensis SK4 also did not exhibit any glutaminase or urease activity which is an outstanding feature of L-asparaginase to be used as a chemotherapeutic agent.
Collapse
Affiliation(s)
- S Shahana Kabeer
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India.
| | - Bini Francis
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| | - S Vishnupriya
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Hafsa Kattatheyil
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| | - K J Joseph
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Vasco da Gama, Goa, India
- CUSAT-NCPOR Centre for Polar Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| | - A A Mohamed Hatha
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
- CUSAT-NCPOR Centre for Polar Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| |
Collapse
|
15
|
Konwar AN, Basak S, Devi SG, Borah JC, Thakur D. Streptomyces sp. MNP32, a forest-dwelling Actinomycetia endowed with potent antibacterial metabolites. 3 Biotech 2023; 13:257. [PMID: 37405270 PMCID: PMC10314884 DOI: 10.1007/s13205-023-03670-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
The Actinomycetia isolate, MNP32 was isolated from the Manas National Park of Assam, India, located in the Indo-Burma biodiversity hotspot region of Northeast India. Morphological observations and molecular characterization revealed its identity to be Streptomyces sp. with a 99.86% similar to Streptomyces camponoticapitis strain I4-30 through 16S rRNA gene sequencing. The strain exhibited broad-spectrum antimicrobial activity against a wide range of bacterial human pathogens including WHO-listed critical priority pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii. The ethyl acetate extract was found to disrupt the membrane of the test pathogens which was evidenced through scanning electron microscopy, membrane disruption assay and confocal microscopy. Cytotoxicity studies against CC1 hepatocytes demonstrated that EA-MNP32 had a negligible effect on cell viability. Chemical analysis of the bioactive fraction using gas chromatography-mass spectrometry (GC-MS) showed the presence of 2 major chemical compounds that include Phenol, 3,5-bis(1,1-dimethylethyl)- and [1,1'-Biphenyl]-2,3'-diol, 3,4',5,6'-tetrakis(1,1-dimethylethyl)- which have been reported to possess antimicrobial activity. The phenolic hydroxyl groups of these compounds were proposed to interact with the carbonyl group of the cytoplasmic proteins and lipids leading to destabilization and rupture of the cell membrane. These findings highlight the potential of exploring culturable actinobacteria from the microbiologically under-explored forest ecosystem of Northeast India and bioactive compounds from MNP32 which can be beneficial for future antibacterial drug development.
Collapse
Affiliation(s)
- Aditya Narayan Konwar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Studies in Science and Technology, Guwahati, Assam 781035 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Surajit Basak
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Studies in Science and Technology, Guwahati, Assam 781035 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Shalini Gurumayum Devi
- Chemical Biology Laboratory-1, Life Sciences Division, Institute of Advanced Studies in Science and Technology, Guwahati, Assam 781035 India
| | - Jagat Chandra Borah
- Chemical Biology Laboratory-1, Life Sciences Division, Institute of Advanced Studies in Science and Technology, Guwahati, Assam 781035 India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Studies in Science and Technology, Guwahati, Assam 781035 India
| |
Collapse
|
16
|
El-Ghonemy DH, Ali SA, Abdel-Megeed RM, Elshafei AM. Therapeutic impact of purified Trichoderma viride L-asparaginase in murine model of liver cancer and in vitro Hep-G2 cell line. J Genet Eng Biotechnol 2023; 21:38. [PMID: 36995465 PMCID: PMC10063745 DOI: 10.1186/s43141-023-00493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is among the common cancers, but difficult to diagnose and treat. L-asparaginase has been introduced in the treatment protocol of pediatric acute lymphoblastic leukemia (ALL) since the 1960s with a good outcome and increased survival rates to nearly 90%. Moreover, it has been found to have therapeutic potential in solid tumors. Production of glutaminase-free-L-asparaginase is of interest to avoid glutaminase-related toxicity and hypersensitivity. In the current study, an extracellular L-asparaginase that is free of L-glutaminase was purified from the culture filtrate of an endophytic fungus Trichoderma viride. The cytotoxic effect of the purified enzyme was evaluated in vitro against a panel of human tumor cell lines and in vivo against male Wister albino mice intraperitoneally injected with diethyl nitrosamine (200 mg/kg bw), followed by (after 2 weeks) oral administration of carbon tetrachloride (2 mL/kg bw). This dose was repeated for 2 months, and after that, the blood samples were collected to estimate hepatic and renal injury markers, lipid profiles, and oxidative stress parameters. RESULTS L-asparaginase was purified from T. viride culture filtrate with 36 purification folds, 688.1 U/mg specific activity, and 38.9% yield. The highest antiproliferative activity of the purified enzyme was observed against the hepatocellular carcinoma (Hep-G2) cell line, with an IC50 of 21.2 g/mL, which was higher than that observed for MCF-7 (IC50 34.2 g/mL). Comparing the DENA-intoxicated group to the negative control group, it can be demonstrated that L-asparaginase adjusted the levels of the liver function enzymes and the hepatic injury markers that had previously changed with DENA intoxication. DENA causes kidney dysfunction and altered serum albumin and creatinine levels as well. Administration of L-asparaginase was found to improve the levels of the tested biomarkers including kidney and liver function tests. L-asparaginase treatment of the DENA-intoxicated group resulted in a significant improvement in the liver and kidney tissues to near normal similar to the healthy control group. CONCLUSION The results suggest that this purified T. viride L-asparaginase may be able to delay the development of liver cancer and may be used as a potential candidate for future application in medicine as an anticancer medication.
Collapse
Affiliation(s)
- Dina H El-Ghonemy
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St, Giza, EG-12622, Egypt.
| | - Sanaa A Ali
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, 33 El Buhouth St., Giza, EG-12622, Egypt
| | - Rehab M Abdel-Megeed
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, 33 El Buhouth St., Giza, EG-12622, Egypt
| | - Ali M Elshafei
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St, Giza, EG-12622, Egypt
| |
Collapse
|
17
|
C. F. Nunes J, Almeida MR, de Paiva GB, Pedrolli DB, Santos-Ebinuma VC, Neves MC, Freire MG, P. M. Tavares A. A flow-through strategy using supported ionic liquids for L-asparaginase purification. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
18
|
Saleena SK, Johnson JI, Joseph JK, Padinchati KK, Abdulla MHA. Production and optimization of l-asparaginase by Streptomyces koyangensis SK4 isolated from Arctic sediment. J Basic Microbiol 2023; 63:417-426. [PMID: 35462434 DOI: 10.1002/jobm.202200116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 11/06/2022]
Abstract
Actinomycetes isolated from the Arctic sediment were evaluated for the production of the enzyme l-asparaginase, an enzyme used to treat acute lymphoblastic leukemia. The most potent strain Streptomyces koyangensis SK4 was selected for l-asparaginase enzyme production by submerged fermentation. The effect of various fermentation parameters on enzyme production was analyzed statistically using the Plackett-Burman design and response surface method. Effects of eight parameters including temperature, pH, incubation time, inoculum size, agitation speed, the concentration of starch, l-asparagine, and yeast extract were studied on l-asparaginase production by the Arctic isolate S. koyangensis SK4. Factors such as temperature, pH, incubation time, agitation speed, and l-asparagine concentration were found to be important factors influencing l-asparaginase production. Maximum enzyme activity of 136 IU/ml was obtained at 20°C on the seventh day of incubation in the asparagine dextrose broth maintained at pH 7.5, agitation speed 125 rpm, and l-asparagine concentration of 7.5 g/L. The statistical optimization method described in this study proved effective for increasing the l-asparaginase production by Arctic actinomycetes.
Collapse
Affiliation(s)
- Shahana K Saleena
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Jeslin I Johnson
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Joseph K Joseph
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kochi, Kerala, India
| | | | - Mohamed H A Abdulla
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kochi, Kerala, India
| |
Collapse
|
19
|
Gavanji S, Bakhtari A, Famurewa AC, Othman EM. Cytotoxic Activity of Herbal Medicines as Assessed in Vitro: A Review. Chem Biodivers 2023; 20:e202201098. [PMID: 36595710 DOI: 10.1002/cbdv.202201098] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Since time immemorial, human beings have sought natural medications for treatment of various diseases. Weighty evidence demonstrates the use of chemical methodologies for sensitive evaluation of cytotoxic potentials of herbal agents. However, due to the ubiquitous use of cytotoxicity methods, there is a need for providing updated guidance for the design and development of in vitro assessment. The aim of this review is to provide practical guidance on common cell-based assays for suitable assessment of cytotoxicity potential of herbal medicines and discussing their advantages and disadvantages Relevant articles in authentic databases, including PubMed, Web of Science, Science Direct, Scopus, Google Scholar and SID, from 1950 to 2022 were collected according to selection criteria of in vitro cytotoxicity assays and protocols. In addition, the link between cytotoxicity assay selection and different factors such as the drug solvent, concentration and exposure duration were discussed.
Collapse
Affiliation(s)
- Shahin Gavanji
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, 8415683111, Isfahan, Iran
| | - Azizollah Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, 7133654361, Shiraz, Iran
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, PMB 1010, Ikwo, Ebonyi State, Nigeria.,Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576104, Manipal, Karnataka State, India
| | - Eman M Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.,Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Wuerzburg, Germany
| |
Collapse
|
20
|
Asitok A, Ekpenyong M, Amenaghawon A, Akwagiobe E, Asuquo M, Rao A, Ubi D, Iheanacho J, Etiosa J, Antai A, Essien J, Antai S. Production, characterization and techno-economic evaluation of Aspergillus fusant L-asparaginase. AMB Express 2023; 13:2. [PMID: 36609612 PMCID: PMC9823191 DOI: 10.1186/s13568-022-01505-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
Protoplast fusion is one of the most reliable methods of introducing desirable traits into industrially-promising fungal strains. It harnesses the entire genomic repertoire of fusing microorganisms by routing the natural barrier and genetic incompatibility between them. In the present study, the axenic culture of a thermo-halotolerant strain of Aspergillus candidus (Asp-C) produced an anti-leukemic L-asparaginase (L-ASNase) while a xylan-degrading strain of Aspergillus sydowii (Asp-S) produced the acrylamide-reduction type. Protoplast fusion of the wild strains generated Fusant-06 with improved anti-leukemic and acrylamide reduction potentials. Submerged fed-batch fermentation was preferred to batch and continuous modes on the basis of impressive techno-economics. Fusant-06 L-ASNase was purified by PEG/Na+ citrate aqueous two-phase system (ATPS) to 146.21-fold and global sensitivity analysis report revealed polymer molecular weight and citrate concentration as major determinants of yield and purification factor, respectively. The enzyme was characterized by molecular weight, amino acid profile, activity and stability to chemical agents. Michaelis-Menten kinetics, evaluated under optimum conditions gave Km, Vmax, Kcat, and Kcat/Km as 6.67 × 10-5 M, 1666.67 µmolmin-1 mg-1 protein, 3.88 × 104 min-1 and 5.81 × 108 M-1.min-1 respectively. In-vitro cytotoxicity of HL-60 cell lines by Fusant-06 L-ASNase improved significantly from their respective wild strains. Stability of Fusant-06 L-ASNase over a wide range of pH, temperature and NaCl concentration, coupled with its micromolar Km value, confers commercial and therapeutic value on the product. Free-radical scavenging and acrylamide reduction activities were intermediate and the conferred thermo-halo-stability could be exploited for sustainable clinical and food industry applications.
Collapse
Affiliation(s)
- Atim Asitok
- grid.413097.80000 0001 0291 6387Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria ,grid.413097.80000 0001 0291 6387University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Maurice Ekpenyong
- grid.413097.80000 0001 0291 6387Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria ,grid.413097.80000 0001 0291 6387University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Andrew Amenaghawon
- grid.413068.80000 0001 2218 219XDepartment of Chemical Engineering, University of Benin, Benin City, Nigeria
| | - Ernest Akwagiobe
- grid.413097.80000 0001 0291 6387Industrial Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Marcus Asuquo
- grid.413097.80000 0001 0291 6387Department of Hematology, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Anitha Rao
- grid.413097.80000 0001 0291 6387Industrial Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - David Ubi
- grid.413097.80000 0001 0291 6387Industrial Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Juliet Iheanacho
- grid.413097.80000 0001 0291 6387Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Joyce Etiosa
- grid.413097.80000 0001 0291 6387Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Agnes Antai
- grid.413097.80000 0001 0291 6387Department of Economics, Faculty of Social Sciences, University of Calabar, Calabar, Nigeria
| | - Joseph Essien
- grid.412960.80000 0000 9156 2260Department of Microbiology, Faculty of Science, University of Uyo, Uyo, Nigeria
| | - Sylvester Antai
- grid.413097.80000 0001 0291 6387Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria ,grid.413097.80000 0001 0291 6387University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Calabar, Nigeria
| |
Collapse
|
21
|
Sharma D, Mishra A. Apoptosis induction in leukemic cells by L-asparaginase preparation from Bacillus indicus: bench-scale production, purification and therapeutic application. 3 Biotech 2023; 13:21. [PMID: 36568498 PMCID: PMC9772365 DOI: 10.1007/s13205-022-03440-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
With the emergence of multiple side effects on the usage of commercial L-asparaginase formulations, keen interest is provoked to investigate new sources of L-asparaginases that possess antileukemic properties with minimal side effects. The present study reports the cost-effective bench-scale production, homogeneity purification and apoptosis induction potential of a new L-asparaginase preparation from Bacillus indicus against human leukemia cells. The enzyme is highly specific toward the natural substrate L-asparagine. The study initiated with the enzyme production using cost-effective substrates in which a 3.28-fold enhancement of enzyme activity was achieved in comparison with an unoptimized medium using the central composite experimental design approach. The scale-up of the process in a 3.7-L batch bioreactor resulted in 16.42 ± 0.17 IU/mL of L-asparaginase activity in 24 h. The crude extracellular enzyme was purified to homogeneity using anion exchange chromatography followed by gel filtration chromatography. A single band of approximately 35 kDa molecular weight was obtained on SDS-PAGE, while native PAGE analysis confirmed it to be a tetramer of four identical subunits. The circular dichroism spectroscopic study revealed the α + β mixed type of secondary structure with 38.7% α-helices and 27.4% β pleated sheets. The antitumor toxicity exhibited on the MOLT-4 leukemia cells by the new L-asparaginase was revealed using the MTT assay and acridine orange/propidium iodide dual staining for live/dead cells. The flow cytometry analysis established the potential of the purified L-asparaginase to induce the apoptotic cell death mechanism in MOLT-4 leukemia cells. Conclusively, the L-asparaginase of Bacillus indicus is a highly promising candidate that can be introduced as a new enzyme therapeutic against various leukemia disorders.
Collapse
Affiliation(s)
- Deepankar Sharma
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005 India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005 India
| |
Collapse
|
22
|
Comparative structural and kinetic study for development of a novel candidate L-asparaginase based pharmaceutical. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Patel P, Patel A, Agarwal-Rajput R, Rawal R, Dave B, Gosai H. Characterization, Anti-proliferative Activity, and Bench-Scale Production of Novel pH-Stable and Thermotolerant L-Asparaginase from Bacillus licheniformis PPD37. Appl Biochem Biotechnol 2022; 195:3122-3141. [PMID: 36564676 DOI: 10.1007/s12010-022-04281-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
Bacterial L-asparaginase (LA) is a chemotherapeutic drug that has remained mainstay of cancer treatment for several decades. LA has been extensively used worldwide for the treatment of acute lymphoblastic leukemia (ALL). A halotolerant bacterial strain Bacillus licheniformis sp. isolated from marine environment was used for LA production. The enzyme produced was subjected to purification and physico-chemical characterisation. Purified LA was thermotolerant and demonstrated more than 90% enzyme activity after 1 h of incubation at 80 °C. LA has also proved to be resistant against pH gradient and retained activity at pH ranging from 3.0 to 10. The enzyme also had high salinity tolerance with 90% LA activity at 10% NaCl concentration. Detergents like Triton X-100 and Tween-80 were observed to inhibit LA activity while more than 70% catalytic activity was maintained in the presence of metals. Electrophoretic analysis revealed that LA is a heterodimer (~ 63 and ~ 65 kDa) and has molecular mass of around 130 kDa in native form. The kinetic parameters of LA were tested with LA having low Km value of 1.518 µM and Vmax value of 6.94 µM/min/mL. Purified LA has also exhibited noteworthy antiproliferative activity against cancer cell lines-HeLa, SiHa, A549, and SH-SY-5Y. In addition, bench-scale LA production was conducted in a 5-L bioreactor using moringa leaves as cost-effective substrate.
Collapse
Affiliation(s)
- Payal Patel
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382740, India
| | - Ajay Patel
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382740, India
| | - Reena Agarwal-Rajput
- Immunology Lab, Indian Institute of Advanced Research (IIAR), Gandhinagar, Gujarat, India
| | - Rakesh Rawal
- Department of Biochemistry & Forensic Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Bharti Dave
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382740, India
| | - Haren Gosai
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382740, India.
| |
Collapse
|
24
|
Asitok A, Ekpenyong M, Akwagiobe E, Asuquo M, Rao A, Ubi D, Iheanacho J, Ikharia E, Antai A, Essien J, Antai S. Interspecific protoplast fusion of atmospheric and room-temperature plasma mutants of Aspergillus generates an L-asparaginase hyper-producing hybrid with techno-economic benefits. Prep Biochem Biotechnol 2022:1-14. [PMID: 36449415 DOI: 10.1080/10826068.2022.2150643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The axenic culture of Aspergillus candidus (Asp-C) produced an anti-leukemic L-asparaginase while Aspergillus sydowii (Asp-S) produced the acrylamide-reduction type. Upon mutagenesis by atmospheric and room-temperature plasma (ARTP), their individual L-asparaginase activities improved 2.3-folds in each of Ile-Thr-Asp-C-180-K and Val-Asp-S-180-E stable mutants. Protoplast fusion of selected stable mutants generated fusant-09 with improved anti-leukemic activity, acrylamide reduction, higher temperature optimum and superior kinetic parameters. Submerged (SmF) and solid-state fermentation (SSF) types were compared; likewise batch, fed-batch and continuous fermentation modes; and fed-batch submerged fermentation was selected on the basis of impressive techno-economics. Fusant L-asparaginase was purified by PEG/Na+ citrate aqueous two-phase system and molecular exclusion chromatography to 69.96 and 146.21-fold, respectively, and characterized by molecular weight, specificity, activity and stability to chemical and physical agents. Michaelis-Menten kinetics, evaluated under optimum conditions gave Km, Vmax, Kcat, and Kcat/Km as 1.667 × 10-3 M, 1666.67 µmol min-1 mg-1 protein, 645.99 s-1 and 3.88 × 105 M-1 s-1 respectively. In-vitro cytotoxicity of HL-60 cell lines by fusant-09 L-asparaginase improved 3.00 and 18.71-folds from mutants Ile-Thr-Asp-C-180-K and Val-Asp-S-180-E, and from 5.73 and 32.55 from respective original strains. Free-radical scavenging and acrylamide reduction improvements were intermediate. Fusant-09 L-asparaginase is strongly recommended for sustainable economic anti-leukemic and food industry applications.
Collapse
Affiliation(s)
- Atim Asitok
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Maurice Ekpenyong
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Ernest Akwagiobe
- Food and Industrial Microbiology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Marcus Asuquo
- Department of Hematology, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Anitha Rao
- Food and Industrial Microbiology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - David Ubi
- Food and Industrial Microbiology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Juliet Iheanacho
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Eloghosa Ikharia
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Agnes Antai
- Department of Economics, Faculty of Social Sciences, University of Calabar, Calabar, Nigeria
| | - Joseph Essien
- Department of Microbiology, Faculty of Science, University of Uyo, Uyo, Nigeria
| | - Sylvester Antai
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Calabar, Nigeria
| |
Collapse
|
25
|
Molecular Characterization of a Stable and Robust L-Asparaginase from Pseudomonas sp. PCH199: Evaluation of Cytotoxicity and Acrylamide Mitigation Potential. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
L-asparaginase is an important industrial enzyme widely used to treat acute lymphoblastic leukemia (ALL) and to reduce acrylamide formation in food products. In the current study, a stable and robust L-asparaginase from Pseudomonas sp. PCH199, with a high affinity for L-asparagine, was cloned and expressed in Escherichia coli BL21(DE3). Recombinant L-asparaginase (Pg-ASNase II) was purified with a monomer size of 37.0 kDa and a native size of 148.0 kDa. During characterization, Pg-ASNase II exhibited 75.8 ± 3.84 U/mg specific activities in 50.0 mM Tris-HCl buffer (pH 8.5) at 50 °C. However, it retained 80 and 70% enzyme activity at 37 °C and 50 °C after 60 min, respectively. The half-life and kd values were 625.15 min and 1.10 × 10−3 min−1 at 37 °C. The kinetic constant Km, Vmax, kcat, and kcat/Km values were 0.57 mM, 71.42 U/mg, 43.34 s−1, and 77.90 ± 9.81 s−1 mM−1 for L-asparagine, respectively. In addition, the enzyme has shown stability in the presence of most metal ions and protein-modifying agents. Pg-ASNase II was cytotoxic towards the MCF-7 cell line (breast cancer) with an estimated IC50 value of 0.169 U/mL in 24 h. Further, Pg-ASNase II treatment led to a 70% acrylamide reduction in baked foods. These findings suggest the potential of Pg-ASNase II in therapeutics and the food industry.
Collapse
|
26
|
Enhancing the Catalytic Activity of Type II L-Asparaginase from Bacillus licheniformis through Semi-Rational Design. Int J Mol Sci 2022; 23:ijms23179663. [PMID: 36077061 PMCID: PMC9456134 DOI: 10.3390/ijms23179663] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 01/10/2023] Open
Abstract
Low catalytic activity is a key factor limiting the widespread application of type II L-asparaginase (ASNase) in the food and pharmaceutical industries. In this study, smart libraries were constructed by semi-rational design to improve the catalytic activity of type II ASNase from Bacillus licheniformis. Mutants with greatly enhanced catalytic efficiency were screened by saturation mutations and combinatorial mutations. A quintuple mutant ILRAC was ultimately obtained with specific activity of 841.62 IU/mg and kcat/Km of 537.15 min−1·mM−1, which were 4.24-fold and 6.32-fold more than those of wild-type ASNase. The highest specific activity and kcat/Km were firstly reported in type II ASNase from Bacillus licheniformis. Additionally, enhanced pH stability and superior thermostability were both achieved in mutant ILRAC. Meanwhile, structural alignment and molecular dynamic simulation demonstrated that high structure stability and strong substrate binding were beneficial for the improved thermal stability and enzymatic activity of mutant ILRAC. This is the first time that enzymatic activity of type II ASNase from Bacillus licheniformis has been enhanced by the semi-rational approach, and results provide new insights into enzymatic modification of L-asparaginase for industrial applications.
Collapse
|
27
|
Shen X, Jain A, Aladelokun O, Yan H, Gilbride A, Ferrucci LM, Lu L, Khan SA, Johnson CH. Asparagine, colorectal cancer, and the role of sex, genes, microbes, and diet: A narrative review. Front Mol Biosci 2022; 9:958666. [PMID: 36090030 PMCID: PMC9453556 DOI: 10.3389/fmolb.2022.958666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Asparagine (Asn) and enzymes that catalyze the metabolism of Asn have been linked to the regulation and propagation of colorectal cancer (CRC). Increased Asn and asparagine synthetase (ASNS) expression, both contribute to CRC progression and metastasis. In contradistinction, L-asparaginase (ASNase) which breaks down Asn, exhibits an anti-tumor effect. Metabolic pathways such as KRAS/PI3K/AKT/mTORC1 signaling and high SOX12 expression can positively regulate endogenous Asn production. Conversely, the tumor suppressor, TP53, negatively impacts ASNS, thus limiting Asn synthesis and reducing tumor burden. Asn abundance can be altered by factors extrinsic to the cancer cell such as diet, the microbiome, and therapeutic use of ASNase. Recent studies have shown that sex-related factors can also influence the regulation of Asn, and high Asn production results in poorer prognosis for female CRC patients but not males. In this narrative review, we critically review studies that have examined endogenous and exogenous modulators of Asn bioavailability and summarize the key metabolic networks that regulate Asn metabolism. We also provide new hypotheses regarding sex-related influences on Asn, including the involvement of the sex-steroid hormone estrogen and estrogen receptors. Further, we hypothesize that sex-specific factors that influence Asn metabolism can influence clinical outcomes in CRC patients.
Collapse
Affiliation(s)
- Xinyi Shen
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, United States
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Abhishek Jain
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Oladimeji Aladelokun
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Hong Yan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Austin Gilbride
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Leah M. Ferrucci
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Sajid A. Khan
- Division of Surgical Oncology, Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Caroline H. Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| |
Collapse
|
28
|
Chand S, Mihooliya KN, Sahoo DK, Prasad JP, Sharma G. L-asparaginase from Bacillus flexus strain SS: Isolation, Screening, Production Process Optimization, Purification, and Anticancer Activity. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Darvishi F, Jahanafrooz Z, Mokhtarzadeh A. Microbial L-asparaginase as a promising enzyme for treatment of various cancers. Appl Microbiol Biotechnol 2022; 106:5335-5347. [DOI: 10.1007/s00253-022-12086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
|
30
|
Biochemical and Biological Evaluation of an L-Asparaginase from Isolated Escherichia coli MF-107 as an Anti-Tumor Enzyme on MCF7 Cell Line. IRANIAN BIOMEDICAL JOURNAL 2022; 26:279-90. [PMID: 35690915 PMCID: PMC9432472 DOI: 10.52547/ibj.3494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Methods: Results: Conclusion:
Collapse
|
31
|
Chakravarty N, Sharma M, Kumar P, Singh RP. Biochemical and molecular insights on the bioactivity and binding interactions of Bacillus australimaris NJB19 L-asparaginase. Int J Biol Macromol 2022; 215:1-11. [PMID: 35718140 DOI: 10.1016/j.ijbiomac.2022.06.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/05/2022]
Abstract
L-asparaginase, an antileukemic enzyme, is indispensable to the treatment of Acute Lymphoblastic Leukemia (ALL). However, the intrinsic glutaminase activity entails various side effects to the patients; thus, an improved version of the enzyme lacking glutaminase activity would be a requisite for effective treatment management of ALL. The present study highlights the biochemical and molecular characteristics of the recombinant glutaminase-free L-asparaginase from Bacillus australimaris NJB19 (BaAsp). Investigation of the active site architecture of the protein unraveled the binding interactions of BaAsp with its substrate. Comparative analysis of the L-asparaginase sequences revealed few substitutions of key amino acids in the BaAsp that could construe its substrate selectivity and specificity. The purified heterologously expressed protein (42 kDa) displayed maximum L-asparaginase activity at 35-40 °C and pH 8.5-9, with no observed L-glutaminase activity. The kinetic parameters, Km and Vmax, were determined as 45.6 μM and 0.16 μmoles min-1, respectively. Furthermore, in silico analysis revealed a conserved zinc-binding site in the protein, which is generally implicated in inhibiting the L-asparaginase activity. However, BaAsp was not inhibited by zinc at 1 mM concentration. Therefore, the findings provide insights on the biochemical and molecular details of BaAsp, which could be valuable in formulating it for alternate antileukemic drug therapy.
Collapse
Affiliation(s)
- Namrata Chakravarty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Monica Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - R P Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
32
|
Lailaja VP, Sumithra TG, Reshma KJ, Anusree VN, Amala PV, Kishor TG, Sanil NK. Characterization of novel L-asparaginases having clinically safe profiles from bacteria inhabiting the hemolymph of the crab, Scylla serrata (Forskål, 1775). Folia Microbiol (Praha) 2022; 67:491-505. [PMID: 35138564 DOI: 10.1007/s12223-022-00952-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/24/2022] [Indexed: 11/04/2022]
Abstract
L-asparaginase (ASNase) is the principal chemotherapeutic agent against different blood cancers. The risks associated with current clinical preparations demand screening for novel ASNases. Accordingly, the study was conducted to shortlist ASNases having clinically safer profiles from a novel niche, namely, microbes in the gut and hemolymph of apparently healthy Scylla serrata. A four-step strategic approach incorporating the essential requirements for clinically safer profiles was followed. The initial step through plate assay showed five (9.61%) potential ASNase producers. The relative prevalence of ASNase producers was higher in hemolymph (13.33%) than gut (4.5%). The positive isolates were identified as Priestia aryabhattai, Priestia megaterium, Bacillus altitudinis, Shewanella decolorationis, and Chryseomicrobium amylolyticum. Quantitative profiles revealed high ASNase production (114.29 to 287.36 U/mL) without any optimization, with an added advantage of the extracellular production. The second step for substrate specificity studies revealed the absence of L-glutaminase and urease activities in ASNases from C. amylolyticum and P. megaterium, the most desirable properties for safe clinical applications. This is the first report of glutaminase and urease-free ASNase from these two bacteria. The third step ensured type II nature of selected ASNases, the targeted form in clinical applications. The fourth step confirmed the activity and stability in human physiological conditions. Altogether, the results revealed two potential ASNases with clinically compatible profiles.
Collapse
Affiliation(s)
- V P Lailaja
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| | - T G Sumithra
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India.
| | - K J Reshma
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| | - V N Anusree
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| | - P V Amala
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| | - T G Kishor
- Fishery Resources Assessment Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| | - N K Sanil
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| |
Collapse
|
33
|
Masri M, Nur F, Widodo J, Jusuf E, Sahar W, Wahida N, Risnawati R, Nurbaya S, Asri TA, Fadly N. A novel L‐asparaginase from the symbiotic
Enterobacter aerogenes
isolated from
Eucheuma
sp. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mashuri Masri
- Department of Biology, Faculty of Science and Technology Alauddin State Islamic University Makassar Indonesia
| | - Fatmawati Nur
- Department of Biology, Faculty of Science and Technology Alauddin State Islamic University Makassar Indonesia
| | - Joko Widodo
- Laboratory of Technology Department STIKES Mega Rezky Makassar Indonesia
| | - Ekafadly Jusuf
- School of Management and Business (STIE) Amkop Makassar Indonesia
| | - Windy Sahar
- Department of Biology, Faculty of Science and Technology Alauddin State Islamic University Makassar Indonesia
| | - Nurul Wahida
- Department of Biology, Faculty of Science and Technology Alauddin State Islamic University Makassar Indonesia
| | - Risnawati Risnawati
- Department of Biology, Faculty of Science and Technology Alauddin State Islamic University Makassar Indonesia
| | - Siti Nurbaya
- Department of Biology, Faculty of Science and Technology Alauddin State Islamic University Makassar Indonesia
| | - Tuti Asriani Asri
- Department of Biology, Faculty of Science and Technology Alauddin State Islamic University Makassar Indonesia
| | - Nurul Fadly
- Department of Biology, Faculty of Science and Technology Alauddin State Islamic University Makassar Indonesia
| |
Collapse
|
34
|
Mukherjee R, Bera D. Biochemical characterization and thermodynamic principles of purified l-Asparaginase from novel Brevibacillus borstelensis ML12. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Vimal A, Siddiqui MH, Verma A, Kumar A. Degradation product of curcumin restrain Salmonella typhimurium virulent protein L-asparaginase. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021:jcim-2021-0172. [PMID: 34860475 DOI: 10.1515/jcim-2021-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/14/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Salmonella typhimurium is a pathogen responsible for causing a wide range of infectious diseases. The emergence of multi-drug resistance (MDR) in this microbe is a big challenge. L-asparaginase (less explored drug target) is selected as a drug target because it is actively involved in the virulence mechanism. To block this virulent enzyme, curcumin that is traditionally renowned for its medicinal properties was examined. However, its pharmacological behavior and targeting property is less understood because of its poor bioavailability. Therefore, the present work explores the antimicrobial effect of both curcumin and its degradation product against the MDR pathogen. METHODS Molecular docking studies were carried out to evaluate the inhibitory effect of curcumin and its degradation product against the L-asparaginase enzyme using Schrodinger Maestro interface tools. The Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) profile of all the test ligands was also performed. RESULTS The docking score of curcumin was -5.465 kcal/mol while its degradation product curcumin glucuronide has the lowest i.e., -6.240 kcal/mol. All the test ligands showed better or comparable docking scores with respect to control (Ciprofloxacin). Arg 142 and Asn 84 amino acid residues of L-asparaginase were found to be interacting with test ligands inside the binding pocket of the target protein. ADME/toxicology study also indicated the potency of curcumin/curcumin degradation products as a potent inhibitor. CONCLUSIONS It was found that both curcumin and its degradation products have the potential to inhibit Salmonella. This information could be valuable for futuristic drug candidate development against this pathogen and could be a potential lead for mitigation of MDR.
Collapse
Affiliation(s)
- Archana Vimal
- Department of Bioengineering, Integral University, Lucknow, India
| | | | - Ashish Verma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| |
Collapse
|
36
|
Chi H, Chen M, Jiao L, Lu Z, Bie X, Zhao H, Lu F. Characterization of a Novel L-Asparaginase from Mycobacterium gordonae with Acrylamide Mitigation Potential. Foods 2021; 10:foods10112819. [PMID: 34829099 PMCID: PMC8617759 DOI: 10.3390/foods10112819] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/18/2022] Open
Abstract
L-asparaginase (E.C.3.5.1.1) is a well-known agent that prevents the formation of acrylamide both in the food industry and against childhood acute lymphoblastic leukemia in clinical settings. The disadvantages of L-asparaginase, which restrict its industrial application, include its narrow range of pH stability and low thermostability. In this study, a novel L-asparaginase from Mycobacterium gordonae (GmASNase) was cloned and expressed in Escherichia coli BL21 (DE3). GmASNase was found to be a tetramer with a monomeric size of 32 kDa, sharing only 32% structural identity with Helicobacter pylori L-asparaginases in the Protein Data Bank database. The purified GmASNase had the highest specific activity of 486.65 IU mg−1 at pH 9.0 and 50 °C. In addition, GmASNase possessed superior properties in terms of stability at a wide pH range of 5.0–11.0 and activity at temperatures below 40 °C. Moreover, GmASNase displayed high substrate specificity towards L-asparagine with Km, kcat, and kcat/Km values of 6.025 mM, 11,864.71 min−1 and 1969.25 mM−1min−1, respectively. To evaluate its ability to mitigate acrylamide, GmASNase was used to treat potato chips prior to frying, where the acrylamide content decreased by 65.09% compared with the untreated control. These results suggest that GmASNase is a potential candidate for applications in the food industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengxia Lu
- Correspondence: ; Tel.: +0086-25-84395963
| |
Collapse
|
37
|
Arumugam N, Thangavelu P. Purification and anticancer activity of glutaminase and urease free intracellular l-asparaginase from Chaetomium sp. Protein Expr Purif 2021; 190:106006. [PMID: 34742913 DOI: 10.1016/j.pep.2021.106006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023]
Abstract
l-asparaginase is a chemotherapeutic drug used in the treatment of acute lymphoblastic leukemia, a malignant disorder in children. l-asparaginase helps in removing acrylamide found in fried and baked foods which is carcinogenic in nature. The search for new therapeutic enzymes is of great interest in both medical and food applications. The present work aims to isolate the intracellular l-asparaginase from endophytic fungi Chaetomium sp. The intracellular enzyme was partially purified by chromatographic techniques. Molecular weight of enzyme was found to be ~66 kDa by SDS PAGE analysis. The enzyme is highly specific for l-asparagine and did not show glutaminase and urease activity. Maximum enzyme activity was found to be 58 ± 5 U/mL at 40 °C, pH 7.0 with 2 μg of protein. Intracellular l-asparaginase from Chaetomium sp. exhibited anticancer activity on human blood cancer (MOLT-4) cells.
Collapse
Affiliation(s)
- Nagarajan Arumugam
- Thermal and Bio Analysis Lab, Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, India
| | - Perarasu Thangavelu
- Thermal and Bio Analysis Lab, Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, India.
| |
Collapse
|
38
|
Arumugam N, Shanmugam MK, Thangavelu P. Purification and anticancer activity of glutaminase and urease-free l-asparaginase from novel endophyte Chaetomium sp. Biotechnol Appl Biochem 2021; 69:2161-2175. [PMID: 34694636 DOI: 10.1002/bab.2276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/18/2021] [Indexed: 11/06/2022]
Abstract
l-Asparaginase catalyzes the hydrolysis of asparagine into aspartic acid and ammonia. The present work elaborates the isolation and identification of a novel endophytic fungal isolate producing l-glutaminase and urease-free l-asparaginase. Cell growth and enzyme production were investigated for large production. The isolated endophytic fungi were identified at molecular levels and a phylogenetic tree was constructed. The enzyme synthesis was evaluated by cultivating the isolated microorganisms in potato dextrose agar medium. Out of 27 isolated endophytes, nine were producing "l-glutaminase and urease-free l-asparaginase." l-Asparaginase from Chaetomium sp. exhibited superior enzyme activity than from the other isolates. Observed optimal conditions for l-asparaginase activity were 25 min of incubation time, 0.5 mg of enzyme source, 40°C of temperature, and pH 7.0. l-Asparaginase from Chaetomium sp. exhibited anticancer activity on human blood cancer (MOLT-4) cells. The current study has demonstrated the production of contaminant-free l-asparaginase enzyme from endophytic fungal species. The results showed that: (a) maximum enzyme activity was observed for l-asparaginase from Chaetomium sp., (b) concentration of glucose in the medium as a carbon source suppressed the enzyme production. Chaetomium sp. is a novel source for "l-glutaminase and urease-free l-asparaginase," which may play a major role in pharmacotherapy.
Collapse
Affiliation(s)
- Nagarajan Arumugam
- Thermal and Bio Analysis Lab, Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, India
| | - Manoj Kumar Shanmugam
- Applied and Industrial Microbiology Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Perarasu Thangavelu
- Thermal and Bio Analysis Lab, Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, India
| |
Collapse
|
39
|
Ebrahimzadeh S, Ahangari H, Soleimanian A, Hosseini K, Ebrahimi V, Ghasemnejad T, Soofiyani SR, Tarhriz V, Eyvazi S. Colorectal cancer treatment using bacteria: focus on molecular mechanisms. BMC Microbiol 2021; 21:218. [PMID: 34281519 PMCID: PMC8287294 DOI: 10.1186/s12866-021-02274-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Colorectal cancer which is related to genetic and environmental risk factors, is among the most prevalent life-threatening cancers. Although several pathogenic bacteria are associated with colorectal cancer etiology, some others are considered as highly selective therapeutic agents in colorectal cancer. Nowadays, researchers are concentrating on bacteriotherapy as a novel effective therapeutic method with fewer or no side effects to pay the way of cancer therapy. The introduction of advanced and successful strategies in bacterial colorectal cancer therapy could be useful to identify new promising treatment strategies for colorectal cancer patients. MAIN TEXT In this article, we scrutinized the beneficial effects of bacterial therapy in colorectal cancer amelioration focusing on different strategies to use a complete bacterial cell or bacterial-related biotherapeutics including toxins, bacteriocins, and other bacterial peptides and proteins. In addition, the utilization of bacteria as carriers for gene delivery or other known active ingredients in colorectal cancer therapy are reviewed and ultimately, the molecular mechanisms targeted by the bacterial treatment in the colorectal cancer tumors are detailed. CONCLUSIONS Application of the bacterial instrument in cancer treatment is on its way through becoming a promising method of colorectal cancer targeted therapy with numerous successful studies and may someday be a practical strategy for cancer treatment, particularly colorectal cancer.
Collapse
Affiliation(s)
- Sara Ebrahimzadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Soleimanian
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Kamran Hosseini
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vida Ebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
40
|
Bioprospecting of the agaricomycete Ganoderma australe GPC191 as novel source for L-asparaginase production. Sci Rep 2021; 11:6192. [PMID: 33737513 PMCID: PMC7973716 DOI: 10.1038/s41598-021-84949-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/09/2021] [Indexed: 11/21/2022] Open
Abstract
l-Asparaginase is a therapeutically and industrially-competent enzyme, acting predominantly as an anti-neoplastic and anti-cancerous agent. The existing formulations of prokaryotic l-asparaginase are often toxic and contain l-glutaminase and urease residues, thereby increasing the purification steps. Production of l-glutaminase and urease free l-asparaginase is thus desired. In this research, bioprospecting of isolates from the less explored class Agaricomycetes was undertaken for l-asparaginase production. Plate assay (using phenol red and bromothymol blue dyes) was performed followed by estimation of l-asparaginase, l-glutaminase and urease activities by Nesslerization reaction for all the isolates. The isolate displaying the desired enzyme production was subjected to morphological, molecular identification, and phylogenetic analysis with statistical validation using Jukes-Cantor by Neighbour-joining tree of Maximum Likelihood statistical method. Among the isolates, Ganoderma australe GPC191 with significantly high zone index value (5.581 ± 0.045 at 120 h) and enzyme activity (1.57 ± 0.006 U/mL), devoid of l-glutaminase and urease activity was selected. The present study for the first-time reported G. australe as the potential source of l-glutaminase and urease-free l-asparaginase and also is one of the few studies contributing to the literature of G. australe in India. Hence, it can be postulated that it may find its future application in pharmaceutical and food industries.
Collapse
|
41
|
Chakravarty N, Priyanka, Singh J, Singh RP. A potential type-II L-asparaginase from marine isolate Bacillus australimaris NJB19: Statistical optimization, in silico analysis and structural modeling. Int J Biol Macromol 2021; 174:527-539. [PMID: 33508362 DOI: 10.1016/j.ijbiomac.2021.01.130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/04/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
L-asparaginase is a cardinal biotherapeutic drug for treating acute lymphoblastic leukemia, which is highly prevalent in children worldwide. In the current investigation, L-asparaginase producing marine bacterial isolate, Bacillus australimaris NJB19 (MG734654), was observed to be producing extracellular glutaminase free L-asparaginase (13.27 ± 0.4 IU mL-1). Production of L-asparaginase was enhanced by the Box-Behnken design approach that enumerated the significant variables affecting the enzyme production. The optimum levels of the derived variables resulted in 2.8-fold higher levels of the enzyme production (37.93 ± 1.06 IU mL-1). An 1146 bp L-asparaginase biosynthetic gene of Bacillus australimaris NJB19 was identified and cloned in E. coli DH5α, fused with a histidine tag. The in silico analysis of the protein sequence revealed the presence of a signal peptide and classified it as a type II L-asparaginase. Toxic peptide prediction disclosed no toxin domain in the protein sequence, hence suggesting it as a non-toxic protein. The secondary structure analysis of the enzyme displayed a comparable percentage of alpha-helical and random coil structure, while 14.39% and 6.57% of amino acid residues were composed of extended strands and beta-turns, respectively. The functional sites in the three-dimensional structural model of the protein were predicted and interestingly had a few less conserved residues. Bacillus australimaris NJB19 identified in this study produces type-II L-asparaginase, known for its high affinity for asparagine and effectiveness against leukemic cells. Hence, these observations indicate the L-asparaginase, thus obtained, as a potentially significant and novel therapeutic drug.
Collapse
Affiliation(s)
- Namrata Chakravarty
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Priyanka
- Department of Chemical Engineering, Shiv Nadar University, NH-91, Tehsil Dadri Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Jyoti Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - R P Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
42
|
Sobat M, Asad S, Kabiri M, Mehrshad M. Metagenomic discovery and functional validation of L-asparaginases with anti-leukemic effect from the Caspian Sea. iScience 2021; 24:101973. [PMID: 33458619 PMCID: PMC7797908 DOI: 10.1016/j.isci.2020.101973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/21/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
By screening 27,000 publicly available prokaryotic genomes, we recovered ca. 6300 type I and ca. 5200 type II putative L-asparaginase highlighting the vast potential of prokaryotes. Caspian water with similar salt composition to the human serum was targeted for in silico L-asparaginase screening. We screened ca. three million predicted genes of its assembled metagenomes that resulted in annotation of 87 putative L-asparaginase genes. The L-asparagine hydrolysis was experimentally confirmed by synthesizing and cloning three selected genes in E. coli. Catalytic parameters of the purified enzymes were determined to be among the most desirable reported values. Two recombinant enzymes represented remarkable anti-proliferative activity (IC50 <1IU/ml) against leukemia cell line Jurkat while no cytotoxic effect on human erythrocytes or human umbilical vein endothelial cells was detected. Similar salinity and ionic concentration of the Caspian water to the human serum highlights the potential of secretory L-asparaginases recovered from these metagenomes as potential treatment agents.
Collapse
Affiliation(s)
- Motahareh Sobat
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Maliheh Mehrshad
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
43
|
Ameen F, Alshehri WA, Al-Enazi NM, Almansob A. L-Asparaginase activity analysis, ansZ gene identification and anticancer activity of a new Bacillus subtilis isolated from sponges of the Red Sea. Biosci Biotechnol Biochem 2020; 84:2576-2584. [DOI: 10.1080/09168451.2020.1807310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
This study describes the isolation of various marine bacteriafrom sponges collected from the Red Sea (Saudi Arabia) andL-asparaginase (anti-cancer enzyme) production from bacterialisolates. The 16S rDNA based phylogenetic analysis revealed thatthe isolate WSA3 was a Bacillus subtilis. Its partial-length genesequence was submitted to GenBank under the accession numberMK072695. The new B. subtilis strain harbored the exact size(1128 bp) of the new L-asparaginase (ansZ) gene as confirmedby PCR and in gel visualization, which was submitted to the NCBIdatabase (accession number MN566442). The molecular weightof partially purified L-asparaginase was determined as 45 kDa bySDS-PAGE. In addition, the enzyme L-asparaginase did not showglutaminase activity which is very important from a medical pointof view. Moreover, 100 μg/mL of the partially purified B. subtilis Lasparaginaseshowed promising anti-cancer activities when testedagainst three cancer cell lines (HCT-116, MCF-7, and HepG2).
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wafa A Alshehri
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Nouf M Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Abobakr Almansob
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
44
|
González-Torres I, Perez-Rueda E, Evangelista-Martínez Z, Zárate-Romero A, Moreno-Enríquez A, Huerta-Saquero A. Identification of L-asparaginases from Streptomyces strains with competitive activity and immunogenic profiles: a bioinformatic approach. PeerJ 2020; 8:e10276. [PMID: 33240625 PMCID: PMC7668207 DOI: 10.7717/peerj.10276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/08/2020] [Indexed: 11/24/2022] Open
Abstract
The enzyme L-asparaginase from Escherichia coli is a therapeutic enzyme that has been a cornerstone in the clinical treatment of acute lymphoblastic leukemia for the last decades. However, treatment effectiveness is limited by the highly immunogenic nature of the protein and its cross-reactivity towards L-glutamine. In this work, a bioinformatic approach was used to identify, select and computationally characterize L-asparaginases from Streptomyces through sequence-based screening analyses, immunoinformatics, homology modeling, and molecular docking studies. Based on its predicted low immunogenicity and excellent enzymatic activity, we selected a previously uncharacterized L-asparaginase from Streptomyces scabrisporus. Furthermore, two putative asparaginase binding sites were identified and a 3D model is proposed. These promising features allow us to propose L-asparaginase from S. scabrisporus as an alternative for the treatment of acute lymphocytic leukemia.
Collapse
Affiliation(s)
- Iván González-Torres
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
| | - Ernesto Perez-Rueda
- Instituto de Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de México, Mérida, Yucatán, México
| | - Zahaed Evangelista-Martínez
- Subsede Sureste, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Mérida, Yucatán, México
| | - Andrés Zárate-Romero
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
- Consejo Nacional de Ciencia y Tecnología, Ciudad de México, Mexico
| | | | - Alejandro Huerta-Saquero
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
| |
Collapse
|
45
|
Liu S, Li Z, Yu B, Wang S, Shen Y, Cong H. Recent advances on protein separation and purification methods. Adv Colloid Interface Sci 2020; 284:102254. [PMID: 32942182 DOI: 10.1016/j.cis.2020.102254] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Protein, as the material basis of vita, is the crucial undertaker of life activities, which constitutes the framework and main substance of human tissues and organs, and takes part in various forms of life activities in organisms. Separating proteins from biomaterials and studying their structures and functions are of great significance for understanding the law of life activities and clarifying the essence of life phenomena. Therefore, scientists have proposed the new concept of proteomics, in which protein separation technology plays a momentous role. It has been diffusely used in the food industry, agricultural biological research, drug development, disease mechanism, plant stress mechanism, and marine environment research. In this paper, combined with the recent research situation, the progress of protein separation technology was reviewed from the aspects of extraction, precipitation, membrane separation, chromatography, electrophoresis, molecular imprinting, microfluidic chip and so on.
Collapse
|
46
|
Costa-Silva T, Costa I, Biasoto H, Lima G, Silva C, Pessoa A, Monteiro G. Critical overview of the main features and techniques used for the evaluation of the clinical applicability of L-asparaginase as a biopharmaceutical to treat blood cancer. Blood Rev 2020; 43:100651. [DOI: 10.1016/j.blre.2020.100651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/14/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
|
47
|
Paul V, Tiwary BN. An investigation on the acrylamide mitigation potential of l-asparaginase from BV-C strain. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Radha R, Gummadi SN. Optimisation of physical parameters pH and temperature for maximised activity and stability of Vibrio cholerae L-asparaginase by statistical experimental design. Chem Ind 2020. [DOI: 10.1080/00194506.2020.1758224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Remya Radha
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sathyanarayana N. Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
49
|
El-Naggar NEA, El-Shweihy NM. Bioprocess development for L-asparaginase production by Streptomyces rochei, purification and in-vitro efficacy against various human carcinoma cell lines. Sci Rep 2020; 10:7942. [PMID: 32409719 PMCID: PMC7224186 DOI: 10.1038/s41598-020-64052-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
In the near future, the demand for L-asparaginase is expected to rise several times due to an increase in its clinical and industrial applications in various industrial sectors, such as food processing. Streptomyces sp. strain NEAE-K is potent L-asparaginase producer, isolated and identified as new subsp. Streptomyces rochei subsp. chromatogenes NEAE-K and the sequence data has been deposited under accession number KJ200343 at the GenBank database. Sixteen different independent factors were examined for their effects on L-asparaginase production by Streptomyces rochei subsp. chromatogenes NEAE-K under solid state fermentation conditions using Plackett-Burman design. pH, dextrose and yeast extract were the most significant factors affecting L-asparaginase production. Thus, using central composite design, the optimum levels of these variables were determined. L-asparaginase purification was carried out by ammonium sulfate followed by DEAE-Sepharose CL-6B ion exchange column with a final purification fold of 16.18. The monomeric molecular weight of the purified L-asparaginase was 64 kD as determined by SDS-PAGE method. The in vitro effects of L-asparaginase were evaluated on five human tumor cell lines and found to have a strong anti-proliferative effects. The results showed that the strongest cytotoxic effect of L-asparaginase was exerted on the HeLa and HepG-2 cell lines (IC50 = 2.16 ± 0.2 and 2.54 ± 0.3 U/mL; respectively). In addition, the selectivity index of L-asparaginase against HeLa and HepG-2 cell lines was 3.94 and 3.35; respectively.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt.
| | - Nancy M El-Shweihy
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| |
Collapse
|
50
|
Golbabaie A, Nouri H, Moghimi H, Khaleghian A. l-asparaginase production and enhancement by Sarocladium strictum: In vitro evaluation of anti-cancerous properties. J Appl Microbiol 2020; 129:356-366. [PMID: 32119169 DOI: 10.1111/jam.14623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/11/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
AIMS Utilization of l-asparaginase has been one of the effective strategies for the treatment of lymphoblastic leukaemia. Since the currently used bacterial l-asparaginase causes side effects, searching for new enzyme sources has been an active field of research. This study focuses on the characterization of an l-asparaginase-producing fungal strain. METHODS AND RESULTS Sarocladium strictum was identified as a potent enzyme-producing strain. For the enhancement of enzyme production, we used two-level factorial design and response surface methodology. The optimization of significant factors showed a 1·84-fold increase in enzyme production. The Km and Vmax values of the enzyme were 9·74 mmol l-1 and 8·19 μmol min-1 . The toxicity of the produced l-asparaginase was measured on K562 and HL60 cancer cell lines and L6 as normal cells. The IC50 values were calculated as 0·4 and 0·5 IU ml-1 for K562 and HL60 respectively and no significant effect was observed in L6. BrdU proliferation and caspase-3 activity assay in l-asparaginase treated HL60 and K562 cells indicated that cell proliferation rates and apoptotic cell death were reduced. CONCLUSIONS The cytotoxic properties of the produced fungal enzyme indicated significant growth inhibition in cancer cells while having a little toxic effect on normal cells. The possibility of mass production alongside having suitable cytotoxic and kinetic properties suggest the probable use of the produced l-asparaginase for further researches as a potential chemotherapeutic agent. SIGNIFICANCE AND IMPACT OF THE STUDY The lack of significant l-glutaminase activity and promising toxicity properties in S. strictum and the closer evolutionary relativeness of fungi enzymes to human enzymes compared to bacterial enzymes suggest a new source with lower toxicity and anti-cancerous properties, causing less side effect problems.
Collapse
Affiliation(s)
- A Golbabaie
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - H Nouri
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - H Moghimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - A Khaleghian
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|