1
|
Mir TUG, Wani AK, Akhtar N, Katoch V, Shukla S, Kadam US, Hong JC. Advancing biological investigations using portable sensors for detection of sensitive samples. Heliyon 2023; 9:e22679. [PMID: 38089995 PMCID: PMC10711145 DOI: 10.1016/j.heliyon.2023.e22679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024] Open
Abstract
Portable biosensors are emerged as powerful diagnostic tools for analyzing intricately complex biological samples. These biosensors offer sensitive detection capabilities by utilizing biomolecules such as proteins, nucleic acids, microbes or microbial products, antibodies, and enzymes. Their speed, accuracy, stability, specificity, and low cost make them indispensable in forensic investigations and criminal cases. Notably, portable biosensors have been developed to rapidly detect toxins, poisons, body fluids, and explosives; they have proven invaluable in forensic examinations of suspected samples, generating efficient results that enable effective and fair trials. One of the key advantages of portable biosensors is their ability to provide sensitive and non-destructive detection of forensic samples without requiring extensive sample preparation, thereby reducing the possibility of false results. This comprehensive review provides an overview of the current advancements in portable biosensors for the detection of sensitive materials, highlighting their significance in advancing investigations and enhancing sensitive sample detection capabilities.
Collapse
Affiliation(s)
- Tahir ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- State Forensic Science Laboratory, Srinagar, Jammu and Kashmir, 190001, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vaidehi Katoch
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Saurabh Shukla
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
2
|
Samad MIA, Ponnuthurai DR, Badrudin SI, Ali MAM, Razak MAA, Buyong MR, Latif R. Migration Study of Dielectrophoretically Manipulated Red Blood Cells in Tapered Aluminium Microelectrode Array: A Pilot Study. MICROMACHINES 2023; 14:1625. [PMID: 37630162 PMCID: PMC10457829 DOI: 10.3390/mi14081625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023]
Abstract
Dielectrophoresis (DEP) is one of the microfluid-based techniques that can manipulate the red blood cells (RBC) for blood plasma separation, which is used in many medical screening/diagnosis applications. The tapered aluminium microelectrode array (TAMA) is fabricated for potential sensitivity enhancement of RBC manipulation in lateral and vertical directions. In this paper, the migration properties of dielectrophoretically manipulated RBC in TAMA platform are studied at different peak-to-peak voltage (Vpp) and duration supplied onto the microelectrodes. Positive DEP manipulation is conducted at 440 kHz with the RBC of 4.00 ± 0.2 µm average radius attracted to the higher electric field intensity regions, which are the microelectrodes. High percentage of RBC migration occurred at longer manipulation time and high electrode voltage. During DEP manipulation, the RBC are postulated to levitate upwards, experience the electro-orientation mechanism and form the pearl chains before migrating to the electrodes. The presence of external forces other than the dielectrophoretic force may also affect the migration response of RBC. The safe operating limit of 10 Vpp and manipulation duration of ≤50 s prevent RBC rupture while providing high migration percentage. It is crucial to define the safe working region for TAMA devices that manipulate small RBC volume (~10 µL).
Collapse
Affiliation(s)
- Muhammad Izzuddin Abd Samad
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (M.I.A.S.); (D.R.P.); (S.I.B.); (M.R.B.)
| | - Darven Raj Ponnuthurai
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (M.I.A.S.); (D.R.P.); (S.I.B.); (M.R.B.)
| | - Syazwani Izrah Badrudin
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (M.I.A.S.); (D.R.P.); (S.I.B.); (M.R.B.)
| | - Mohd Anuar Mohd Ali
- School of Electrical Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; (M.A.M.A.); (M.A.A.R.)
| | - Mohd Azhar Abdul Razak
- School of Electrical Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; (M.A.M.A.); (M.A.A.R.)
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (M.I.A.S.); (D.R.P.); (S.I.B.); (M.R.B.)
| | - Rhonira Latif
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (M.I.A.S.); (D.R.P.); (S.I.B.); (M.R.B.)
| |
Collapse
|
3
|
Deivasigamani R, Mohd Maidin NN, Abdul Nasir NS, Abdulhameed A, Ahmad Kayani AB, Mohamed MA, Buyong MR. A correlation of conductivity medium and bioparticle viability on dielectrophoresis-based biomedical applications. Electrophoresis 2023; 44:573-620. [PMID: 36604943 DOI: 10.1002/elps.202200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
Dielectrophoresis (DEP) bioparticle research has progressed from micro to nano levels. It has proven to be a promising and powerful cell manipulation method with an accurate, quick, inexpensive, and label-free technique for therapeutic purposes. DEP, an electrokinetic phenomenon, induces particle movement as a result of polarization effects in a nonuniform electrical field. This review focuses on current research in the biomedical field that demonstrates a practical approach to DEP in terms of cell separation, trapping, discrimination, and enrichment under the influence of the conductive medium in correlation with bioparticle viability. The current review aims to provide readers with an in-depth knowledge of the fundamental theory and principles of the DEP technique, which is influenced by conductive medium and to identify and demonstrate the biomedical application areas. The high conductivity of physiological fluids presents obstacles and opportunities, followed by bioparticle viability in an electric field elaborated in detail. Finally, the drawbacks of DEP-based systems and the outlook for the future are addressed. This article will aid in advancing technology by bridging the gap between bioscience and engineering. We hope the insights presented in this review will improve cell suspension medium and promote DEP-viable bioparticle manipulation for health-care diagnostics and therapeutics.
Collapse
Affiliation(s)
- Revathy Deivasigamani
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nur Nasyifa Mohd Maidin
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nur Shahira Abdul Nasir
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | | | - Aminuddin Bin Ahmad Kayani
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia.,ARC Research Hub for Connected Sensors for Health, RMIT University, Melbourne, Australia
| | - Mohd Ambri Mohamed
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
4
|
Grigorev GV, Lebedev AV, Wang X, Qian X, Maksimov GV, Lin L. Advances in Microfluidics for Single Red Blood Cell Analysis. BIOSENSORS 2023; 13:117. [PMID: 36671952 PMCID: PMC9856164 DOI: 10.3390/bios13010117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 05/24/2023]
Abstract
The utilizations of microfluidic chips for single RBC (red blood cell) studies have attracted great interests in recent years to filter, trap, analyze, and release single erythrocytes for various applications. Researchers in this field have highlighted the vast potential in developing micro devices for industrial and academia usages, including lab-on-a-chip and organ-on-a-chip systems. This article critically reviews the current state-of-the-art and recent advances of microfluidics for single RBC analyses, including integrated sensors and microfluidic platforms for microscopic/tomographic/spectroscopic single RBC analyses, trapping arrays (including bifurcating channels), dielectrophoretic and agglutination/aggregation studies, as well as clinical implications covering cancer, sepsis, prenatal, and Sickle Cell diseases. Microfluidics based RBC microarrays, sorting/counting and trapping techniques (including acoustic, dielectrophoretic, hydrodynamic, magnetic, and optical techniques) are also reviewed. Lastly, organs on chips, multi-organ chips, and drug discovery involving single RBC are described. The limitations and drawbacks of each technology are addressed and future prospects are discussed.
Collapse
Affiliation(s)
- Georgii V. Grigorev
- Data Science and Information Technology Research Center, Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
- School of Information Technology, Cherepovets State University, 162600 Cherepovets, Russia
| | - Alexander V. Lebedev
- Machine Building Department, Bauman Moscow State University, 105005 Moscow, Russia
| | - Xiaohao Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiang Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - George V. Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Physical metallurgy Department, Federal State Autonomous Educational Institution of Higher Education National Research Technological University “MISiS”, 119049 Moscow, Russia
| | - Liwei Lin
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Wang B, Park B. Microfluidic Sampling and Biosensing Systems for Foodborne Escherichia coli and Salmonella. Foodborne Pathog Dis 2022; 19:359-375. [PMID: 35713922 DOI: 10.1089/fpd.2021.0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developments of portable biosensors for field-deployable detections have been increasingly important to control foodborne pathogens in regulatory environment and in early stage of outbreaks. Conventional cultivation and gene amplification methods require sophisticated instruments and highly skilled professionals; while portable biosensing devices provide more freedom for rapid detections not only in research laboratories but also in the field; however, their sensitivity and specificity are limited. Microfluidic methods have the advantage of miniaturizing instrumental size while integrating multiple functions and high-throughput capability into one streamlined system at low cost. Minimal sample consumption is another advantage to detect samples in different sizes and concentrations, which is important for the close monitoring of pathogens at consumer end. They improve measurement or manipulation of bacteria by increasing the ratio of functional interface of the device to the targeted biospecies and in turn reducing background interference. This article introduces the major active and passive microfluidic devices that have been used for bacteria sampling and biosensing. The emphasis is on particle-based sorting/enrichment methods with or without external physical fields applied to the microfluidic devices and on various biosensing applications reported for bacteria sampling. Three major fabrication methods for microfluidics are briefly discussed with their advantages and limitations. The applications of these active and passive microfluidic sampling methods in the past 5 years have been summarized, with the focus on Escherichia coli and Salmonella. The current challenges to microfluidic bacteria sampling are caused by the small size and nonspherical shape of various bacterial cells, which can induce unpredictable deviations in sampling and biosensing processes. Future studies are needed to develop rapid prototyping methods for device manufacturing, which can facilitate rapid response to various foodborne pathogen outbreaks.
Collapse
Affiliation(s)
- Bin Wang
- U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Bosoon Park
- U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| |
Collapse
|
6
|
Marvi F, Jafari K. A label-free biomarkers detection platform relied on a bilayer long-wave infrared metamaterials BioNEMS sensor. NANOTECHNOLOGY 2022; 33:265502. [PMID: 35299159 DOI: 10.1088/1361-6528/ac5ee1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
A novel approach based on optical Biological-Nano-Electro-Mechanical-Systems (BioNEMS) sensor is presented in this paper to provide highly sensitive and precise detection of biomolecules. The proposed BioNEMS sensor is relied on a bi-layer metamaterials structure, tuned by its wavelength. The presented biosensor consists of a BioNEMS membrane coated by Complementary Split Ring Resonators and an array of Split Ring Resonators cells on the substrate. While the immobilized bioreceptors adsorb the biomarkers (i.e. mRNA or protein), it causes a bending of the suspended membrane. This is due to the differential surface stress which is induced on the Nano-Electro-Mechanical-Systems structure. As a consequence, the coupling strength of two complementary metamaterial layers and thus the electromagnetic response of the biosensor are changed. Furthermore, the proposed device is designed and analyzed by numerical and analytical approaches in order to obtain its functional characteristics as follows: detection sensitivity of 21 967 nm/RIU, figure of merit of 327.8 RIU-1", mechanical sensitivity of 2.6μm/Nm-1" and resonant frequency of 4.92 kHz. According to the obtained results, the functional characteristics of the proposed label-free biosensor show its high potential for highly sensitive and accurate molecule detections, disease diagnosis as well as drug delivery tests for Lab-On-Chip systems.
Collapse
Affiliation(s)
- Fahimeh Marvi
- Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
| | - Kian Jafari
- Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Padhy P, Zaman MA, Jensen MA, Hesselink L. Dynamically controlled dielectrophoresis using resonant tuning. Electrophoresis 2021; 42:1079-1092. [PMID: 33599974 PMCID: PMC8122061 DOI: 10.1002/elps.202000328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Electrically polarizable micro- and nanoparticles and droplets can be trapped using the gradient electric field of electrodes. But the spatial profile of the resultant dielectrophoretic force is fixed once the electrode structure is defined. To change the force profile, entire complex lab-on-a-chip systems must be re-fabricated with modified electrode structures. To overcome this problem, we propose an approach for the dynamic control of the spatial profile of the dielectrophoretic force by interfacing the trap electrodes with a resistor and an inductor to form a resonant resistor-inductor-capacitor (RLC) circuit. Using a dielectrophoretically trapped water droplet suspended in silicone oil, we show that the resonator amplitude, detuning, and linewidth can be continuously varied by changing the supply voltage, supply frequency, and the circuit resistance to obtain the desired trap depth, range, and stiffness. We show that by proper tuning of the resonator, the trap range can be extended without increasing the supply voltage, thus preventing sensitive samples from exposure to high electric fields at the stable trapping position. Such unprecedented dynamic control of dielectrophoretic forces opens avenues for the tunable active manipulation of sensitive biological and biochemical specimen in droplet microfluidic devices used for single-cell and biochemical reaction analysis.
Collapse
Affiliation(s)
- Punnag Padhy
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Mohammad Asif Zaman
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | - Lambertus Hesselink
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Li Y, Wang Y, Wan K, Wu M, Guo L, Liu X, Wei G. On the design, functions, and biomedical applications of high-throughput dielectrophoretic micro-/nanoplatforms: a review. NANOSCALE 2021; 13:4330-4358. [PMID: 33620368 DOI: 10.1039/d0nr08892g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As an efficient, rapid and label-free micro-/nanoparticle separation technique, dielectrophoresis (DEP) has attracted widespread attention in recent years, especially in the field of biomedicine, which exhibits huge potential in biomedically relevant applications such as disease diagnosis, cancer cell screening, biosensing, and others. DEP technology has been greatly developed recently from the low-flux laboratory level to high-throughput practical applications. In this review, we summarize the recent progress of DEP technology in biomedical applications, including firstly the design of various types and materials of DEP electrode and flow channel, design of input signals, and other improved designs. Then, functional tailoring of DEP systems with endowed specific functions including separation, purification, capture, enrichment and connection of biosamples, as well as the integration of multifunctions, are demonstrated. After that, representative DEP biomedical application examples in aspects of disease detection, drug synthesis and screening, biosensing and cell positioning are presented. Finally, limitations of existing DEP platforms on biomedical application are discussed, in which emphasis is given to the impact of other electrodynamic effects such as electrophoresis (EP), electroosmosis (EO) and electrothermal (ET) effects on DEP efficiency. This article aims to provide new ideas for the design of novel DEP micro-/nanoplatforms with desirable high throughput toward application in the biomedical community.
Collapse
Affiliation(s)
- Yalin Li
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Mingxue Wu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Lei Guo
- Research Center for High-Value Utilization of Waste Biomass, College of Life Science, College of Life Science, Qingdao University, 266071 Qingdao, PR China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| |
Collapse
|
9
|
Lapizco-Encinas BH. Microscale nonlinear electrokinetics for the analysis of cellular materials in clinical applications: a review. Mikrochim Acta 2021; 188:104. [PMID: 33651196 DOI: 10.1007/s00604-021-04748-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/06/2021] [Indexed: 12/16/2022]
Abstract
This review article presents a discussion of some of the latest advancements in the field of microscale electrokinetics for the analysis of cells and subcellular materials in clinical applications. The introduction presents an overview on the use of electric fields, i.e., electrokinetics, in microfluidics devices and discusses the potential of electrokinetic-based methods for the analysis of liquid biopsies in clinical and point-of-care applications. This is followed by four comprehensive sections that present some of the newest findings on the analysis of circulating tumor cells, blood (red blood cells, white blood cells, and platelets), stem cells, and subcellular particles (extracellular vesicles and mitochondria). The valuable contributions discussed here (with 131 references) were mainly published during the last 3 to 4 years, providing the reader with an overview of the state-of-the-art in the use of microscale electrokinetic methods in clinical analysis. Finally, the conclusions summarize the main advancements and discuss the future prospects.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Institute Hall (Bldg. 73), Room 3103, 160 Lomb Memorial Drive, Rochester, NY, 14623-5604, USA.
| |
Collapse
|
10
|
Senf B, Yeo WH, Kim JH. Recent Advances in Portable Biosensors for Biomarker Detection in Body Fluids. BIOSENSORS-BASEL 2020; 10:bios10090127. [PMID: 32961853 PMCID: PMC7559030 DOI: 10.3390/bios10090127] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022]
Abstract
A recent development in portable biosensors allows rapid, accurate, and on-site detection of biomarkers, which helps to prevent disease spread by the control of sources. Less invasive sample collection is necessary to use portable biosensors in remote environments for accurate on-site diagnostics and testing. For non- or minimally invasive sampling, easily accessible body fluids, such as saliva, sweat, blood, or urine, have been utilized. It is also imperative to find accurate biomarkers to provide better clinical intervention and treatment at the onset of disease. At the same time, these reliable biomarkers can be utilized to monitor the progress of the disease. In this review, we summarize the most recent development of portable biosensors to detect various biomarkers accurately. In addition, we discuss ongoing issues and limitations of the existing systems and methods. Lastly, we present the key requirements of portable biosensors and discuss ideas for functional enhancements.
Collapse
Affiliation(s)
- Brian Senf
- School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA;
| | - Woon-Hong Yeo
- Human-Centric Interfaces and Engineering Program, Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Jong-Hoon Kim
- School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA;
- Correspondence: ; Tel.: +1-360-546-9250; Fax: +1-360-546-9438
| |
Collapse
|
11
|
Henslee EA. Review: Dielectrophoresis in cell characterization. Electrophoresis 2020; 41:1915-1930. [DOI: 10.1002/elps.202000034] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/31/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Erin A. Henslee
- Department of Engineering Wake Forest University 455 Vine St. Winston‐Salem USA
| |
Collapse
|
12
|
Two-dimensional Simulation of Motion of Red Blood Cells with Deterministic Lateral Displacement Devices. MICROMACHINES 2019; 10:mi10060393. [PMID: 31212873 PMCID: PMC6630740 DOI: 10.3390/mi10060393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023]
Abstract
Deterministic lateral displacement (DLD) technology has great potential for the separation, enrichment, and sorting of red blood cells (RBCs). This paper presents a numerical simulation of the motion of RBCs using DLD devices with different pillar shapes and gap configurations. We studied the effect of the pillar shape, row shift, and pillar diameter on the performance of RBC separation. The numerical results show that the RBCs enter "displacement mode" under conditions of low row-shift (∆λ < 1.4 µm) and "zigzag mode" with large row shift (∆λ > 1.5 µm). RBCs can pass the pillar array when the size of the pillar (d > 6 µm) is larger than the cell size. We show that these conclusions can be helpful for the design of a reliable DLD microfluidic device for the separation of RBCs.
Collapse
|
13
|
Abd Samad MI, Buyong MR, Kim SS, Yeop Majlis B. Dielectrophoresis velocities response on tapered electrode profile: simulation and experimental. MICROELECTRONICS INTERNATIONAL 2019; 36:45-53. [DOI: 10.1108/mi-06-2018-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Purpose
The purpose of this paper is to use a particle velocity measurement technique on a tapered microelectrode device via changes of an applied voltage, which is an enhancement of the electric field density in influencing the dipole moment particles. Polystyrene microbeads (PM) have used to determine the responses of the dielectrophoresis (DEP) voltage based on the particle velocity technique.
Design/methodology/approach
Analytical modelling was used to simulate the particles’ polarization and their velocity based on the Clausius–Mossotti Factor (CMF) equation. The electric field intensity and DEP forces were simulated through the COMSOL numerical study of the variation of applied voltages such as 5 V p-p, 7 V p-p and 10 V p-p. Experimentally, the particle velocity on a tapered DEP response was quantified via the particle travelling distance over a time interval through a high-speed camera adapted to a high-precision non-contact depth measuring microscope.
Findings
The result of the particle velocity was found to increase, and the applied voltage has enhanced the particle trajectory on the tapered microelectrode, which confirmed its dependency on the electric field intensity at the top and bottom edges of the electrode. A higher magnitude of particle levitation was recorded with the highest particle velocity of 11.19 ± 4.43 µm/s at 1 MHz on 10 V p-p, compared to the lowest particle velocity with 0.62 ± 0.11 µm/s at 10 kHz on 7 V p-p.
Practical implications
This research can be applied for high throughout sensitivity and selectivity of particle manipulation in isolating and concentrating biological fluid for biomedical implications.
Originality/value
The comprehensive manipulation method based on the changes of the electrical potential of the tapered electrode was able to quantify the magnitude of the particle trajectory in accordance with the strong electric field density.
Collapse
|
14
|
Rapid and selective concentration of bacteria, viruses, and proteins using alternating current signal superimposition on two coplanar electrodes. Sci Rep 2018; 8:14942. [PMID: 30297764 PMCID: PMC6175930 DOI: 10.1038/s41598-018-33329-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/14/2018] [Indexed: 12/01/2022] Open
Abstract
Dielectrophoresis (DEP) is usually effective close to the electrode surface. Several techniques have been developed to overcome its drawbacks and to enhance dielectrophoretic particle capture. Here we present a simple technique of superimposing alternating current DEP (high-frequency signals) and electroosmosis (EO; low-frequency signals) between two coplanar electrodes (gap: 25 μm) using a lab-made voltage adder for rapid and selective concentration of bacteria, viruses, and proteins, where we controlled the voltages and frequencies of DEP and EO separately. This signal superimposition technique enhanced bacterial capture (Escherichia coli K-12 against 1-μm-diameter polystyrene beads) more selectively (>99%) and rapidly (~30 s) at lower DEP (5 Vpp) and EO (1.2 Vpp) potentials than those used in the conventional DEP capture studies. Nanometer-sized MS2 viruses and troponin I antibody proteins were also concentrated using the superimposed signals, and significantly more MS2 and cTnI-Ab were captured using the superimposed signals than the DEP (10 Vpp) or EO (2 Vpp) signals alone (p < 0.035) between the two coplanar electrodes and at a short exposure time (1 min). This technique has several advantages, such as simplicity and low cost of electrode fabrication, rapid and large collection without electrolysis.
Collapse
|