1
|
Ritson M, Wheeler-Jones CPD, Stolp HB. Endothelial dysfunction in neurodegenerative disease: Is endothelial inflammation an overlooked druggable target? J Neuroimmunol 2024; 391:578363. [PMID: 38728929 DOI: 10.1016/j.jneuroim.2024.578363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Neurological diseases with a neurodegenerative component have been associated with alterations in the cerebrovasculature. At the anatomical level, these are centred around changes in cerebral blood flow and vessel organisation. At the molecular level, there is extensive expression of cellular adhesion molecules and increased release of pro-inflammatory mediators. Together, these has been found to negatively impact blood-brain barrier integrity. Systemic inflammation has been found to accelerate and exacerbate endothelial dysfunction, neuroinflammation and degeneration. Here, we review the role of cerebrovasculature dysfunction in neurodegenerative disease and discuss the potential contribution of intermittent pro-inflammatory systemic disease in causing endothelial pathology, highlighting a possible mechanism that may allow broad-spectrum therapeutic targeting in the future.
Collapse
Affiliation(s)
- Megan Ritson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | | | - Helen B Stolp
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK.
| |
Collapse
|
2
|
Yuzkan S, Hasimoglu O, Balsak S, Mutlu S, Karagulle M, Kose F, Altinkaya A, Tugcu B, Kocak B. Utility of diffusion tensor imaging and generalized q-sampling imaging for predicting short-term clinical effect of deep brain stimulation in Parkinson's disease. Acta Neurochir (Wien) 2024; 166:217. [PMID: 38748304 PMCID: PMC11096246 DOI: 10.1007/s00701-024-06096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE To assess whether diffusion tensor imaging (DTI) and generalized q-sampling imaging (GQI) metrics could preoperatively predict the clinical outcome of deep brain stimulation (DBS) in patients with Parkinson's disease (PD). METHODS In this single-center retrospective study, from September 2021 to March 2023, preoperative DTI and GQI examinations of 44 patients who underwent DBS surgery, were analyzed. To evaluate motor functions, the Unified Parkinson's Disease Rating Scale (UPDRS) during on- and off-medication and Parkinson's Disease Questionnaire-39 (PDQ-39) scales were used before and three months after DBS surgery. The study population was divided into two groups according to the improvement rate of scales: ≥ 50% and < 50%. Five target regions, reported to be affected in PD, were investigated. The parameters having statistically significant difference were subjected to a receiver operating characteristic (ROC) analysis. RESULTS Quantitative anisotropy (qa) values from globus pallidus externus, globus pallidus internus (qa_Gpi), and substantia nigra exhibited significant distributional difference between groups in terms of the improvement rate of UPDRS-3 scale during on-medication (p = 0.003, p = 0.0003, and p = 0.0008, respectively). In ROC analysis, the best parameter in predicting DBS response included qa_Gpi with a cut-off value of 0.01370 achieved an area under the ROC curve, accuracy, sensitivity, and specificity of 0.810, 73%, 62.5%, and 85%, respectively. Optimal cut-off values of ≥ 0.01864 and ≤ 0.01162 yielded a sensitivity and specificity of 100%, respectively. CONCLUSION The imaging parameters acquired from GQI, particularly qa_Gpi, may have the ability to non-invasively predict the clinical outcome of DBS surgery.
Collapse
Affiliation(s)
| | - Ozan Hasimoglu
- Department of Neurosurgery, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Serdar Balsak
- Department of Radiology, Bezmialem Vakif University Hospital, Istanbul, Turkey
| | - Samet Mutlu
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Mehmet Karagulle
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Fadime Kose
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Ayca Altinkaya
- Department of Neurosurgery, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Bekir Tugcu
- Department of Neurosurgery, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey.
| |
Collapse
|
3
|
Welton T, Teo TWJ, Chan LL, Tan EK, Tan LCS. Parkinson's Disease Risk Variant rs9638616 is Non-Specifically Associated with Altered Brain Structure and Function. JOURNAL OF PARKINSON'S DISEASE 2024; 14:713-724. [PMID: 38640170 PMCID: PMC11191537 DOI: 10.3233/jpd-230455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/21/2024]
Abstract
Background A genome-wide association study (GWAS) variant associated with Parkinson's disease (PD) risk in Asians, rs9638616, was recently reported, and maps to WBSCR17/GALNT17, which is involved in synaptic transmission and neurite development. Objective To test the association of the rs9638616 T allele with imaging-derived measures of brain microstructure and function. Methods We analyzed 3-Tesla MRI and genotyping data from 116 early PD patients (aged 66.8±9.0 years; 39% female; disease duration 1.25±0.71 years) and 57 controls (aged 68.7±7.4 years; 54% female), of Chinese ethnicity. We performed voxelwise analyses for imaging-genetic association of rs9638616 T allele with white matter tract fractional anisotropy (FA), grey matter volume and resting-state network functional connectivity. Results The rs9638616 T allele was associated with widespread lower white matter FA (t = -1.75, p = 0.042) and lower functional connectivity of the supplementary motor area (SMA) (t = -5.05, p = 0.001), in both PD and control groups. Interaction analysis comparing the association of rs9638616 and FA between PD and controls was non-significant. These imaging-derived phenotypes mediated the association of rs9638616 to digit span (indirect effect: β= -0.21 [-0.42,-0.05], p = 0.031) and motor severity (indirect effect: β= 0.15 [0.04,0.26], p = 0.045). Conclusions We have shown that a novel GWAS variant which is biologically linked to synaptic transmission is associated with white matter tract and functional connectivity dysfunction in the SMA, supported by changes in clinical motor scores. This provides pathophysiologic clues linking rs9638616 to PD risk and might contribute to future risk stratification models.
Collapse
Affiliation(s)
- Thomas Welton
- National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
| | | | - Ling Ling Chan
- National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Eng-King Tan
- National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
| | - Louis Chew Seng Tan
- National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
| |
Collapse
|
4
|
Xie H, Yang Y, Sun Q, Li ZY, Ni MH, Chen ZH, Li SN, Dai P, Cui YY, Cao XY, Jiang N, Du LJ, Yu Y, Yan LF, Cui GB. Abnormalities of cerebral blood flow and the regional brain function in Parkinson's disease: a systematic review and multimodal neuroimaging meta-analysis. Front Neurol 2023; 14:1289934. [PMID: 38162449 PMCID: PMC10755479 DOI: 10.3389/fneur.2023.1289934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Background Parkinson's disease (PD) is a neurodegenerative disease with high incidence rate. Resting state functional magnetic resonance imaging (rs-fMRI), as a widely used method for studying neurodegenerative diseases, has not yet been combined with two important indicators, amplitude low-frequency fluctuation (ALFF) and cerebral blood flow (CBF), for standardized analysis of PD. Methods In this study, we used seed-based d-mapping and permutation of subject images (SDM-PSI) software to investigate the changes in ALFF and CBF of PD patients. After obtaining the regions of PD with changes in ALFF or CBF, we conducted a multimodal analysis to identify brain regions where ALFF and CBF changed together or could not synchronize. Results The final study included 31 eligible trials with 37 data sets. The main analysis results showed that the ALFF of the left striatum and left anterior thalamic projection decreased in PD patients, while the CBF of the right superior frontal gyrus decreased. However, the results of multimodal analysis suggested that there were no statistically significant brain regions. In addition, the decrease of ALFF in the left striatum and the decrease of CBF in the right superior frontal gyrus was correlated with the decrease in clinical cognitive scores. Conclusion PD patients had a series of spontaneous brain activity abnormalities, mainly involving brain regions related to the striatum-thalamic-cortex circuit, and related to the clinical manifestations of PD. Among them, the left striatum and right superior frontal gyrus are more closely related to cognition. Systematic review registration https://www.crd.york.ac.uk/ PROSPERO (CRD42023390914).
Collapse
Affiliation(s)
- Hao Xie
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Yang Yang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Qian Sun
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ze-Yang Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Min-Hua Ni
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Zhu-Hong Chen
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Si-Ning Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Pan Dai
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Yan-Yan Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Xin-Yu Cao
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Medical School of Yan’an University, Yan’an, Shaanxi, China
| | - Nan Jiang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Li-Juan Du
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ying Yu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Lin-Feng Yan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| |
Collapse
|
5
|
He X, Dou W, Shi H. The Diagnostic Value of the Combined 3D Pseudo-Continuous Arterial Spin Labeling and Diffusion Kurtosis Imaging in Patients With Binswanger’s Disease. Front Neurosci 2022; 16:853422. [PMID: 35844226 PMCID: PMC9280636 DOI: 10.3389/fnins.2022.853422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
Background and Purpose The clinical diagnosis of Binswanger’s disease (BD), a chronic progressive form of subcortical vascular dementia, remains challenging. 3D pseudo-continuous arterial-spin-labeling (pcASL) and diffusion kurtosis imaging (DKI) can quantitatively reveal the microcirculation changes and heterogeneity of white matter (WM), respectively. We thus aimed to determine the diagnostic value of the combined 3D-pcASL and DKI in BD. Materials and Methods A total of 35 patients with BD and 33 healthy controls underwent 3D-ASL and DKI experiments. The perfusion parameter of cerebral blood flow (CBF), diffusion parameters of fractional anisotropy (FA), mean/axial/radial diffusivity (MD/Da/Dr), and kurtosis parameters of anisotropy fraction of kurtosis (FAk) and mean/axial/radial kurtosis MK/Ka/Kr were obtained to quantitatively measure the parametric distributions of functional brain subregions. One-way analysis of variance and post hoc t-test were applied to explore the different distributions of DKI/ASL-derived parameters among brain subregions of BD. In addition, all region-specific DKI/ASL parameters were separately analyzed in Pearson correlation analysis to investigate the relationship with Mini-Mental State Examination (MMSE), a typical clinical scale for cognitive function assessment in patients with BD. Results FA/FAk/MK/Ka/Kr was significantly declined in all WM hyperintensities (WMHs) of BD compared with healthy controls, while the corresponding MD/Da/Dr was significantly increased (all p < 0.005). In addition, significant changes, similar to the WMHs of patients with BD, were also observed in almost all DKI parameters in WM normal areas and genu/splenium of the corpus callosum (GCC/SCC) in BD (p < 0.005). Finally, CBF was significantly reduced in all of the above regions we measured in patients with BD (p < 0.005). For patients with BD, MMSE showed a negative correlation with MD/Da in thalamus (r = −0.42/−0.58; p < 0.05), and a positive correlation with CBF in PWM/TWM (r = 0.49/0.39; p < 0.05). Using receiver operating characteristic (ROC) analysis, FA/FAk/Kr in GCC, CBF/FA/Dr/FAk in SCC, MD/Da/Ka in thalamus, and the combined FA/MD/Dr/CBF in TWM showed high accuracy [area under the curves (AUCs) 0.957/0.946/0.942/0.986] in distinguishing patients with BD from healthy controls. Conclusion We found that combined DKI and 3D-ASL are helpful in diagnosing patients with BD, especially with FA, MD, Dr, and CBF in the temporal WM region. Additionally, the kurtosis parameters of DKI can sensitively monitor the potentially damaged WM areas in patients with BD patients, adding complementary clinical value.
Collapse
Affiliation(s)
- Xiaoyi He
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Radiology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Hao Shi
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Hao Shi,
| |
Collapse
|
6
|
The role of the autonomic nervous system in cerebral blood flow regulation in dementia: A review. Auton Neurosci 2022; 240:102985. [DOI: 10.1016/j.autneu.2022.102985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/19/2022]
|
7
|
White Matter Microstructural Alterations in Newly Diagnosed Parkinson’s Disease: A Whole-Brain Analysis Using dMRI. Brain Sci 2022; 12:brainsci12020227. [PMID: 35203990 PMCID: PMC8870150 DOI: 10.3390/brainsci12020227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by cardinal motor symptoms and other non-motor symptoms. Studies have investigated various brain areas in PD by detecting white matter alterations using diffusion magnetic resonance imaging processing techniques, which can produce diffusion metrics such as fractional anisotropy and quantitative anisotropy. In this study, we compared the quantitative anisotropy of whole brain regions throughout the subcortical and cortical areas between newly diagnosed PD patients and healthy controls. Additionally, we evaluated the correlations between the quantitative anisotropy of each region and respective neuropsychological test scores to identify the areas most affected by each neuropsychological dysfunction in PD. We found significant quantitative anisotropy differences in several subcortical structures such as the basal ganglia, limbic system, and brain stem as well as in cortical structures such as the temporal lobe, occipital lobe, and insular lobe. Additionally, we found that quantitative anisotropy of some subcortical structures such as the basal ganglia, cerebellum, and brain stem showed the highest correlations with motor dysfunction, whereas cortical structures such as the temporal lobe and occipital lobe showed the highest correlations with olfactory dysfunction in PD. Our study also showed evidence regarding potential neural compensation by revealing higher diffusion metric values in early-stage PD than in healthy controls. We anticipate that our results will improve our understanding of PD’s pathophysiology.
Collapse
|
8
|
Liu Z, Zhang Y, Wang H, Xu D, You H, Zuo Z, Feng F. Altered cerebral perfusion and microstructure in advanced Parkinson's disease and their associations with clinical features. Neurol Res 2021; 44:47-56. [PMID: 34313185 DOI: 10.1080/01616412.2021.1954842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To explore the whole cerebral perfusion and microstructure alteration patterns in Parkinson's disease (PD) and the associations of these patterns with clinical features. METHODS Forty-one subjects [20 PD patients and 21 healthy controls (HCs)] underwent arterial spin labeling (ASL), diffusion tensor imaging (DTI) and 3D T1-weighted imaging (T1WI) MRI. The cerebral blood flow (CBF) of the whole brain and the fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) of subcortical and cerebellar regions were measured and compared between groups. Pearson's correlation was calculated between MRI measurements and clinical features [Unified Parkinson's Disease Rating Scale (UPDRS), UPDRS III, Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA) and olfactory test scores]. RESULTS Compared to HCs, PD patients showed lower CBF in the frontal, parietal and temporal lobes but higher CBF in bilateral hippocampi, red nuclei, right substantia nigra, thalamus and most cerebellar regions. The MD in the right thalamus and several regions in the cerebellum increased in PD compared to HCs. In PD patients, the total UPDRS, UPDRS III, MoCA, MMSE and olfactory test scores were related to FA or CBF in cerebellum. (all p < 0.05). CONCLUSION Hypoperfusion in cortical regions, together with hyperperfusion in subcortical and cerebellar regions may be the characteristic perfusion pattern in advanced PD patients. The microstructures of the right thalamus and cerebellum were changed in PD patients. The cognitive, motor and olfactory performance of PD patients is closely related to the perfusion and microstructure of the brain, especially the cerebellum.
Collapse
Affiliation(s)
- Zhaoxi Liu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yiwei Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Han Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Dan Xu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhentao Zuo
- Brain Mapping Center, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Bae YJ, Kim JM, Sohn CH, Choi JH, Choi BS, Song YS, Nam Y, Cho SJ, Jeon B, Kim JH. Imaging the Substantia Nigra in Parkinson Disease and Other Parkinsonian Syndromes. Radiology 2021; 300:260-278. [PMID: 34100679 DOI: 10.1148/radiol.2021203341] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Parkinson disease is characterized by dopaminergic cell loss in the substantia nigra of the midbrain. There are various imaging markers for Parkinson disease. Recent advances in MRI have enabled elucidation of the underlying pathophysiologic changes in the nigral structure. This has contributed to accurate and early diagnosis and has improved disease progression monitoring. This article aims to review recent developments in nigral imaging for Parkinson disease and other parkinsonian syndromes, including nigrosome imaging, neuromelanin imaging, quantitative iron mapping, and diffusion-tensor imaging. In particular, this article examines nigrosome imaging using 7-T MRI and 3-T susceptibility-weighted imaging. Finally, this article discusses volumetry and its clinical importance related to symptom manifestation. This review will improve understanding of recent advancements in nigral imaging of Parkinson disease. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Yun Jung Bae
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Jong-Min Kim
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Chul-Ho Sohn
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Ji-Hyun Choi
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Byung Se Choi
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Yoo Sung Song
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Yoonho Nam
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Se Jin Cho
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Beomseok Jeon
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Jae Hyoung Kim
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| |
Collapse
|
10
|
Pourzinal D, Yang JHJ, Bakker A, McMahon KL, Byrne GJ, Pontone GM, Mari Z, Dissanayaka NN. Hippocampal correlates of episodic memory in Parkinson's disease: A systematic review of magnetic resonance imaging studies. J Neurosci Res 2021; 99:2097-2116. [PMID: 34075634 DOI: 10.1002/jnr.24863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
The present review asks whether magnetic resonance imaging (MRI) studies are able to define neural correlates of episodic memory within the hippocampus in Parkinson's disease (PD). Systematic searches were performed in PubMed, Web of Science, Medline, CINAHL, and EMBASE using search terms related to structural and functional MRI (fMRI), the hippocampus, episodic memory, and PD. Risk of bias was assessed for each study using the Newtown-Ottawa Scale. Thirty-nine studies met inclusion criteria; eight fMRI, seven diffusion MRI (dMRI), and 24 structural MRI (14 exploring whole hippocampus and 10 exploring hippocampal subfields). Critical analysis of the literature revealed mixed evidence from functional and dMRI, but stronger evidence from sMRI of the hippocampus as a biomarker for episodic memory impairment in PD. Hippocampal subfield studies most often implicated CA1, CA3/4, and subiculum volume in episodic memory and cognitive decline in PD. Despite differences in imaging methodology, study design, and sample characteristics, MRI studies have helped elucidate an important neural correlate of episodic memory impairment in PD with both clinical and theoretical implications. Natural progression of this work encourages future research on hippocampal subfield function as a potential biomarker of, or therapeutic target for, episodic memory dysfunction in PD.
Collapse
Affiliation(s)
- Dana Pourzinal
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| | - Ji Hyun J Yang
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Katie L McMahon
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gerard J Byrne
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia.,Mental Health Service, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| | - Gregory M Pontone
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Zoltan Mari
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Nadeeka N Dissanayaka
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia.,School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Dong Y, Liu D, Zhao Y, Yuan Y, Wang W, Wu S, Liang X, Wang Z, Liu L. Assessment of Neuroprotective Effects of Low-Intensity Transcranial Ultrasound Stimulation in a Parkinson's Disease Rat Model by Fractional Anisotropy and Relaxation Time T2 ∗ Value. Front Neurosci 2021; 15:590354. [PMID: 33633533 PMCID: PMC7900573 DOI: 10.3389/fnins.2021.590354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Low-intensity transcranial ultrasound (LITUS) may have a therapeutic effect on Parkinson's disease (PD) patients to some extent. Fractional anisotropy (FA) and relaxation time T2∗ that indicate the integrity of fiber tracts and iron concentrations in brain tissue have been used to evaluate the therapeutic effects of LITUS. Purpose: This study aims to use FA and T2∗ values to evaluate the therapeutic effects of LITUS in a PD rat model. Materials and Methods: Twenty Sprague-Dawley rats were randomly divided into a hemi-PD group (n = 10) and a LITUS group (n = 10). Single-shot spin echo echo-planar imaging and fast low-angle shot T2WI sequences at 3.0 T were used. The FA and T2∗ values on the right side of the substantia nigra (SN) pars compacta were measured to evaluate the therapeutic effect of LITUS in the rats. Results: One week after PD-like signs were induced in the rats, the FA value in the LITUS group was significantly larger compared with the PD group (0.214 ± 0.027 vs. 0.340 ± 0.032, t = 2.864, P = 0.011). At the 5th and 6th weeks, the FA values in the LITUS group were significantly smaller compared with the PD group (5th week: 0.290 ± 0.037 vs. 0.405 ± 0.027, t = 2.385, P = 0.030; 6th week: 0.299 ± 0.021 vs. 0.525 ± 0.028, t = 6.620, P < 0.0001). In the 5th and 6th weeks, the T2∗ values in the injected right SN of the LITUS group were significantly higher compared with the PD group (5th week, 12.169 ± 0.826 in the LITUS group vs. 7.550 ± 0.824 in the PD group; 6th week, 11.749 ± 0.615 in the LITUS group vs. 7.550 ± 0.849 in the PD group). Conclusion: LITUS had neuroprotective effects and can reduce the damage of 6-OHDA-induced neurotoxicity in hemi-PD rats. The combination of FA and T2∗ assessments can potentially serve as a new and effective method to evaluate the therapeutic effects of LITUS.
Collapse
Affiliation(s)
- Yanchao Dong
- Department of Interventional Treatment, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Defeng Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yuemei Zhao
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yi Yuan
- College of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Wenxi Wang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Shuo Wu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Xin Liang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Zhanqiu Wang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| |
Collapse
|
12
|
Ivanidze J, Skafida M, Pandya S, Patel D, Osborne JR, Raj A, Gupta A, Henchcliffe C, Dyke JP. Molecular Imaging of Striatal Dopaminergic Neuronal Loss and the Neurovascular Unit in Parkinson Disease. Front Neurosci 2020; 14:528809. [PMID: 33071729 PMCID: PMC7530280 DOI: 10.3389/fnins.2020.528809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder, characterized by loss of nigrostriatal dopaminergic neurons. Impairment of the neurovascular unit (NVU) has been hypothesized to play a critical role in early PD pathophysiology, and to precede neurodegenerative mechanisms. [C-11]-PE2I (N-(3-iodoprop-2E-enyl)-2b-carbomethoxy-3b-(4-methyl-phenyl)nortropane) (PE2I) is a PET radiotracer targeting neuronal dopamine transporters (DaT) with high specificity, allowing for highly accurate and specific DaT quantification. We investigated NVU integrity using arterial spin labeling (ASL) MRI in a prospective cohort of 26 patients with PD, and correlated our findings with analysis of striatal DaT density using PE2I PET in a subcohort of 17 patients. Analysis was performed in FreeSurfer to obtain rCBF and mean standardized regional PET avidity. Pearson correlations and Mann-Whitney tests were performed. Significantly lower mean normalized striatal PE2I SUV values were seen in multiple regions in patients with greater disease duration (p < 0.05). PET uptake in the putamen correlated with disease duration independent of patient age. Stratifying patients based on Montreal Cognitive Assessment (MoCA) scores (stratified into ≥ 27 vs. < 27), there was statistically significantly lower PE2I PET avidity in the higher MoCA score group in both more and less affected sides of the caudate, putamen and pallidum (p < 0.05). A moderate negative correlation between MDS-UPDRS part 3 (motor) "off" and rCBF values was also seen in the L and R cerebellum WM (r = -0.43 and -0.47, p < 0.05). A statistically significant negative correlation was found between dominant hand pegboard test results and rCBF in the less affected pallidum (r = -0.41; p = 0.046). A statistically significant negative correlation of ASL MRI with [11C]-PE2I PET was also found (r = -0.53 to -0.58; p-value 0.017-0.033) between left cerebral WM rCBF and more and less affected striatal PET regions. Our ROI-based analyses suggest that longer disease duration is associated with lower rCBF and lower PE2I mean SUV, implying greater NVU dysfunction and dopaminergic neuronal loss, respectively. Combined ASL MRI and PE2I PET imaging could inform future prospective clinical trials providing an improved mechanistic understanding of the disease, laying the foundation for the development of early disease biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Myrto Skafida
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Sneha Pandya
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylon Patel
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Joseph R Osborne
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Ashish Raj
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Claire Henchcliffe
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
13
|
Zhang Y, Burock MA. Diffusion Tensor Imaging in Parkinson's Disease and Parkinsonian Syndrome: A Systematic Review. Front Neurol 2020; 11:531993. [PMID: 33101169 PMCID: PMC7546271 DOI: 10.3389/fneur.2020.531993] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Diffusion tensor imaging (DTI) allows measuring fractional anisotropy and similar microstructural indices of the brain white matter. Lower than normal fractional anisotropy as well as higher than normal diffusivity is associated with loss of microstructural integrity and neurodegeneration. Previous DTI studies in Parkinson's disease (PD) have demonstrated abnormal fractional anisotropy in multiple white matter regions, particularly in the dopaminergic nuclei and dopaminergic pathways. However, DTI is not considered a diagnostic marker for the earliest Parkinson's disease since anisotropic alterations present a temporally divergent pattern during the earliest Parkinson's course. This article reviews a majority of clinically employed DTI studies in PD, and it aims to prove the utilities of DTI as a marker of diagnosing PD, correlating clinical symptomatology, tracking disease progression, and treatment effects. To address the challenge of DTI being a diagnostic marker for early PD, this article also provides a comparison of the results from a longitudinal, early stage, multicenter clinical cohort of Parkinson's research with previous publications. This review provides evidences of DTI as a promising marker for monitoring PD progression and classifying atypical PD types, and it also interprets the possible pathophysiologic processes under the complex pattern of fractional anisotropic changes in the first few years of PD. Recent technical advantages, limitations, and further research strategies of clinical DTI in PD are additionally discussed.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Psychiatry, War Related Illness and Injury Study Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Marc A Burock
- Department of Psychiatry, Mainline Health, Bryn Mawr Hospital, Bryn Mawr, PA, United States
| |
Collapse
|
14
|
Cheng L, Wu X, Guo R, Wang Y, Wang W, He P, Lin H, Shen J. Discriminative pattern of reduced cerebral blood flow in Parkinson's disease and Parkinsonism-Plus syndrome: an ASL-MRI study. BMC Med Imaging 2020; 20:78. [PMID: 32660445 PMCID: PMC7359235 DOI: 10.1186/s12880-020-00479-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022] Open
Abstract
Background Accurate identification of Parkinson’s disease (PD) and Parkinsonism-Plus syndrome (PPS), especially in the early stage of the disease, is very important. The purpose of this study was to investigate the discriminative spatial pattern of cerebral blood flow (CBF) between patients with PD and PPS. Methods Arterial spin labeling (ASL) perfusion-weighted imaging was performed in 20 patients with PD (mean age 56.35 ± 7.56 years), 16 patients with PPS (mean age 59.62 ± 6.89 years), and 17 healthy controls (HCs, mean age 54.17 ± 6.58 years). Voxel-wise comparison of the CBF was performed among PD, PPS, and HC groups. The receiver operating characteristic (ROC) curve was used to evaluate the performance of CBF in discriminating between PD and PPS. The relationship between CBF and non-motor neuropsychological scores was assessed by correlation analysis. Results PD group showed a significantly decreased CBF in the right cerebelum_crus2, the left middle frontal gyrus (MFG), the triangle inferior frontal gyrus (IFG_Tri), the left frontal medial orbital gyrus (FG_Med_Orb) and the left caudate nucleus (CN) compared with the HC group (P < 0.05). Besides the above regions, the left supplementary motor area (SMA), the right thalamus had decreased CBF in the PPS group compared with the HC group (P < 0.05). PPS group had lower CBF value in the left MFG, the left IFG_Tri, the left CN, the left SMA, and the right thalamus compared with the PD group (P < 0.05). CBFs in left IFG_Tri, the left CN, the left SMA, and the right thalamus had moderate to high capacity in discriminating between PD and PPS patients (AUC 0.719–0.831). The CBF was positively correlated with the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores in PD patients, while positively correlated with the MMSE, Hamilton Anxiety Scale (HAMA), Hamilton Depression Scale (HAMD) scores in PPS patients (P < 0.05). Conclusion PD and PPS patients have certain discriminative patterns of reduced CBFs, which can be used as a surrogate marker for differential diagnosis.
Collapse
Affiliation(s)
- Lina Cheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Radiology, Guangdong 999 Brain Hospital, Guangzhou, 510510, China
| | - Xiaoyan Wu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ruomi Guo
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yuzhou Wang
- Department of Neurology, Guangdong 999 Brain Hospital, Guangzhou, 510510, China
| | - Wensheng Wang
- Department of Radiology, Guangdong 999 Brain Hospital, Guangzhou, 510510, China
| | - Peng He
- Department of Radiology, Guangdong 999 Brain Hospital, Guangzhou, 510510, China
| | - Hanbo Lin
- Department of Radiology, Guangdong 999 Brain Hospital, Guangzhou, 510510, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
15
|
The cerebral blood flow deficits in Parkinson's disease with mild cognitive impairment using arterial spin labeling MRI. J Neural Transm (Vienna) 2020; 127:1285-1294. [PMID: 32632889 DOI: 10.1007/s00702-020-02227-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) with mild cognitive impairment (PD-MCI) is currently diagnosed based on an arbitrarily predefined standard deviation of neuropsychological test scores, and more objective biomarkers for PD-MCI diagnosis are needed. The purpose of this study was to define possible brain perfusion-based biomarkers of not only mild cognitive impairment, but also risky gene carriers in PD using arterial spin labeling magnetic resonance imaging (ASL-MRI). Fifteen healthy controls (HC), 26 cognitively normal PD (PD-CN), and 27 PD-MCI subjects participated in this study. ASL-MRI data were acquired by signal targeting with alternating radio-frequency labeling with Look-Locker sequence at 3 T. Single nucleotide polymorphism genotyping for rs9468 [microtubule-associated protein tau (MAPT) H1/H1 versus H1/H2 haplotype] was performed using a Stratagene Mx3005p real-time polymerase chain-reaction system (Agilent Technologies, USA). There were 15 subjects with MAPT H1/H1 and 11 subjects with MAPT H1/H2 within PD-MCI, and 33 subjects with MAPT H1/H1 and 19 subjects with MAPT H1/H2 within all PD. Voxel-wise differences of cerebral blood flow (CBF) values between HC, PD-CN and PD-MCI were assessed by one-way analysis of variance followed by pairwise post hoc comparisons. Further, the subgroup of PD patients carrying the risky MAPT H1/H1 haplotype was compared with noncarriers (MAPT H1/H2 haplotype) in terms of CBF by a two-sample t test. A pattern that could be summarized as "posterior hypoperfusion" (PH) differentiated the PD-MCI group from the HC group with an accuracy of 92.6% (sensitivity = 93%, specificity = 93%). Additionally, the PD patients with MAPT H1/H1 haplotype had decreased perfusion than the ones with H1/H2 haplotype at the posterior areas of the visual network (VN), default mode network (DMN), and dorsal attention network (DAN). The PH-type pattern in ASL-MRI could be employed as a biomarker of both current cognitive impairment and future cognitive decline in PD.
Collapse
|
16
|
Belani P, Kihira S, Pacheco F, Pawha P, Cruciata G, Nael K. Addition of arterial spin-labelled MR perfusion to conventional brain MRI: clinical experience in a retrospective cohort study. BMJ Open 2020; 10:e036785. [PMID: 32532776 PMCID: PMC7295400 DOI: 10.1136/bmjopen-2020-036785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE The usage of arterial spin labelling (ASL) perfusion has exponentially increased due to improved and faster acquisition time and ease of postprocessing. We aimed to report potential additional findings obtained by adding ASL to routine unenhanced brain MRI for patients being scanned in a hospital setting for various neurological indications. DESIGN Retrospective. SETTING Large tertiary hospital. PARTICIPANTS 676 patients. PRIMARY OUTCOME Additional findings from ASL sequence compared with conventional MRI. RESULTS Our patient cohorts consisted of 676 patients with 257 with acute infarcts and 419 without an infarct. Additional findings from ASL were observed in 13.9% (94/676) of patients. In the non-infarct group, additional findings from ASL were observed in 7.4% (31/419) of patients, whereas in patients with an acute infarct, supplemental information was obtained in 24.5% (63/257) of patients. CONCLUSION The addition of an ASL sequence to routine brain MRI in a hospital setting provides additional findings compared with conventional brain MRI in about 7.4% of patients with additional supplementary information in 24.5% of patients with acute infarct.
Collapse
Affiliation(s)
- Puneet Belani
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shingo Kihira
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Felipe Pacheco
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Puneet Pawha
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Giuseppe Cruciata
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kambiz Nael
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
17
|
Bergamino M, Keeling EG, Mishra VR, Stokes AM, Walsh RR. Assessing White Matter Pathology in Early-Stage Parkinson Disease Using Diffusion MRI: A Systematic Review. Front Neurol 2020; 11:314. [PMID: 32477235 PMCID: PMC7240075 DOI: 10.3389/fneur.2020.00314] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Structural brain white matter (WM) changes such as axonal caliber, density, myelination, and orientation, along with WM-dependent structural connectivity, may be impacted early in Parkinson disease (PD). Diffusion magnetic resonance imaging (dMRI) has been used extensively to understand such pathological WM changes, and the focus of this systematic review is to understand both the methods utilized and their corresponding results in the context of early-stage PD. Diffusion tensor imaging (DTI) is the most commonly utilized method to probe WM pathological changes. Previous studies have suggested that DTI metrics are sensitive in capturing early disease-associated WM changes in preclinical symptomatic regions such as olfactory regions and the substantia nigra, which is considered to be a hallmark of PD pathology and progression. Postprocessing analytic approaches include region of interest-based analysis, voxel-based analysis, skeletonized approaches, and connectome analysis, each with unique advantages and challenges. While DTI has been used extensively to study WM disorganization in early-stage PD, it has several limitations, including an inability to resolve multiple fiber orientations within each voxel and sensitivity to partial volume effects. Given the subtle changes associated with early-stage PD, these limitations result in inaccuracies that severely impact the reliability of DTI-based metrics as potential biomarkers. To overcome these limitations, advanced dMRI acquisition and analysis methods have been employed, including diffusion kurtosis imaging and q-space diffeomorphic reconstruction. The combination of improved acquisition and analysis in DTI may yield novel and accurate information related to WM-associated changes in early-stage PD. In the current article, we present a systematic and critical review of dMRI studies in early-stage PD, with a focus on recent advances in DTI methodology. Yielding novel metrics, these advanced methods have been shown to detect diffuse WM changes in early-stage PD. These findings support the notion of early axonal damage in PD and suggest that WM pathology may go unrecognized until symptoms appear. Finally, the advantages and disadvantages of different dMRI techniques, analysis methods, and software employed are discussed in the context of PD-related pathology.
Collapse
Affiliation(s)
- Maurizio Bergamino
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Elizabeth G. Keeling
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Virendra R. Mishra
- Imaging Research, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
| | - Ashley M. Stokes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Ryan R. Walsh
- Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
18
|
Pelizzari L, Laganà MM, Di Tella S, Rossetto F, Bergsland N, Nemni R, Clerici M, Baglio F. Combined Assessment of Diffusion Parameters and Cerebral Blood Flow Within Basal Ganglia in Early Parkinson's Disease. Front Aging Neurosci 2019; 11:134. [PMID: 31214017 PMCID: PMC6558180 DOI: 10.3389/fnagi.2019.00134] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Diffusion tensor imaging (DTI) is a sensitive tool for detecting brain tissue microstructural alterations in Parkinson’s disease (PD). Abnormal cerebral perfusion patterns have also been reported in PD patients using arterial spin labeling (ASL) MRI. In this study we aimed to perform a combined DTI and ASL assessment in PD patients within the basal ganglia, in order to test the relationship between microstructural and perfusion alterations. Fifty-two subjects participated in this study. Specifically, 26 PD patients [mean age (SD) = 66.7 (8.9) years, 21 males, median (IQR) Modified Hoehn and Yahr = 1.5 (1–1.6)] and twenty-six healthy controls [HC, mean age (SD) = 65.2 (7.5), 15 males] were scanned with 1.5T MRI. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD) maps were derived from diffusion-weighted images, while cerebral blood flow (CBF) maps were computed from ASL data. After registration to Montreal Neurological Institute standard space, FA, MD, AD, RD and CBF median values were extracted within specific regions of interest: substantia nigra, caudate, putamen, globus pallidus, thalamus, red nucleus and subthalamic nucleus. DTI measures and CBF were compared between the two groups. The relationship between diffusion parameters and CBF was tested with Spearman’s correlations. False discovery rate (FDR)-corrected p-values lower than 0.05 were considered significant, while uncorrected p-values <0.05 were considered a trend. No significant FA, MD and RD differences were observed. AD was significantly increased in PD patients compared with HC in the putamen (p = 0.005, pFDR = 0.035). No significant CBF differences were found between PD patients and HC. Diffusion parameters were not significantly correlated with CBF in the HC group, while a significant correlation emerged for PD patients in the caudate nucleus, for all DTI measures (with FA: r = 0.543, pFDR = 0.028; with MD: r = −0.661, pFDR = 0.002; with AD: r = −0.628, pFDR = 0.007; with RD: r = −0.635, pFDR = 0.003). This study showed that DTI is a more sensitive technique than ASL to detect alterations in the basal ganglia in the early phase of PD. Our results suggest that, although DTI and ASL convey different information, a relationship between microstructural integrity and perfusion changes in the caudate may be present.
Collapse
Affiliation(s)
| | | | | | | | - Niels Bergsland
- IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy.,Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Raffaello Nemni
- IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Mario Clerici
- IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
19
|
Xie F, Gao X, Yang W, Chang Z, Yang X, Wei X, Huang Z, Xie H, Yue Z, Zhou F, Wang Q. Advances in the Research of Risk Factors and Prodromal Biomarkers of Parkinson's Disease. ACS Chem Neurosci 2019; 10:973-990. [PMID: 30590011 DOI: 10.1021/acschemneuro.8b00520] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. With the advent of an aging population and improving life expectancy worldwide, the number of PD patients is expected to increase, which may lead to an urgent need for effective preventive and diagnostic strategies for PD. Although there is increasing research regarding the pathogenesis of PD, there is limited knowledge regarding the prevention of PD. Moreover, the diagnosis of PD depends on clinical criteria, which require the occurrence of bradykinesia and at least one symptom of rest tremor or rigidity. However, converging evidence from clinical, genetic, neuropathological, and imaging studies suggests the initiation of PD-specific pathology prior to the initial presentation of these classical motor clinical features by years or decades. This latent stage of neurodegeneration in PD is a particularly important stage for effective neuroprotective therapies, which might retard the progression or prevent the onset of PD. Therefore, the exploration of risk factors and premotor biomarkers is not only crucial to the early diagnosis of PD but is also helpful in the development of effective neuroprotection and health care strategies for appropriate populations at risk for PD. In this review, we searched and summarized ∼249 researches and 31 reviews focusing on the risk factors and prodromal biomarkers of PD and published in MEDLINE.
Collapse
Affiliation(s)
- Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Gongye Road 253, Guangzhou, Guangdong 510280, P. R. China
| | - Xiaoya Gao
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Gongye Road 253, Guangzhou, Guangdong 510280, P. R. China
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Gongye Road 253, Guangzhou, Guangdong 510280, P. R. China
| | - Zihan Chang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Gongye Road 253, Guangzhou, Guangdong 510280, P. R. China
| | - Xiaohua Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Gongye Road 253, Guangzhou, Guangdong 510280, P. R. China
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Gongye Road 253, Guangzhou, Guangdong 510280, P. R. China
| | - Zifeng Huang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Gongye Road 253, Guangzhou, Guangdong 510280, P. R. China
| | - Huifang Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Gongye Road 253, Guangzhou, Guangdong 510280, P. R. China
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Hess Research Center Ninth Floor, New York, New York 10029, United States
| | - Fengli Zhou
- Department of Respiratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Gongye Road 253, Guangzhou, Guangdong 510280, P. R. China
| |
Collapse
|
20
|
Suo X, Lei D, Cheng L, Li N, Zuo P, Wang DJJ, Huang X, Lui S, Kemp GJ, Peng R, Gong Q. Multidelay multiparametric arterial spin labeling perfusion MRI and mild cognitive impairment in early stage Parkinson's disease. Hum Brain Mapp 2018; 40:1317-1327. [PMID: 30548099 DOI: 10.1002/hbm.24451] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 02/05/2023] Open
Abstract
Mild cognitive impairment (MCI), a well-defined nonmotor manifestation of Parkinson's disease (PD), greatly impairs functioning and quality of life. However, the contribution of cerebral perfusion, quantified by arterial spin labeling (ASL), to MCI in PD remains poorly understood. The selection of an optimal delay time is difficult for single-delay ASL, a problem which is avoided by multidelay ASL. This study uses a multidelay multiparametric ASL to investigate cerebral perfusion including cerebral blood flow (CBF) and arterial transit time (ATT) in early stage PD patients exhibiting MCI using a voxel-based brain analysis. Magnetic resonance imaging data were acquired on a 3.0 T system at rest in 39 early stage PD patients either with MCI (PD-MCI, N = 22) or with normal cognition (PD-N, N = 17), and 36 age- and gender-matched healthy controls (HCs). CBF and ATT were compared among the three groups with SPM using analysis of variance followed by post hoc analyses to define regional differences and examine their relationship to clinical data. PD-MCI showed prolonged ATT in right thalamus compared to both PD-N and HC, and in right supramarginal gyrus compared to HC. PD-N showed shorter ATT in left superior frontal cortex compared to HC. Prolonged ATT in right thalamus was negatively correlated with the category fluency test (p = .027, r = -0.495) in the PD-MCI group. This study shows that ATT may be a more sensitive marker than CBF for the MCI, and highlights the potential role of thalamus and inferior parietal region for MCI in early stage PD.
Collapse
Affiliation(s)
- Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Lan Cheng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Nannan Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Panli Zuo
- MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
| | - Danny J J Wang
- Department of Neurology, University of California, Los Angeles, California
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Rong Peng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Rana AQ, Qureshi AR, Akhter S, Ingar Y, Ayub A, Abdullah I, Madhosh O, Sarfraz Z, Rana MB, Rana R. Osteoarthritis Increases Paresthestic and Akathisic Pain, Anxiety Case-ness, and Depression Severity in Patients With Parkinson's Disease. Front Neurol 2018; 9:409. [PMID: 29951029 PMCID: PMC6008414 DOI: 10.3389/fneur.2018.00409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
Objective: Parkinson's disease (PD) patients are known to suffer from pain, anxiety, and depression, but the exact degree of association between the two is unknown. As many PD patients also suffer from physical impairments, this cross-sectional case-control study sets out to compare and determine the case-ness of pain, anxiety and depression in PD patients that suffer with or without symptomatic osteoarthritis (OA). The goal of this study, therefore, was to observe if additional pain associated with comorbid OA in PD patients is correlated with greater depression and anxiety rates. The importance of understanding the burden of pain and increased depression severity of PD and OA patients is so that they may be screened appropriately based on the symptoms, which may increase their overall quality of life. Methods:This cross-sectional case-control study included 3 groups of 34 patients and 78 healthy age and gender-matched control participants. PD patients with symptomatic OA (PD+OA), PD patients without symptomatic OA (PD), patients with symptomatic OA but no PD (OA), and healthy control participants (Control). A PD patient group with Restless Legs Syndrome (PD+RLS) of 27 patients was also included. All participants completed questionnaires to assess for pain, depression, and anxiety. Results:PD+OA and PD patients had worsened depression severity and were more likely to report anxiety and depression case-ness than OA patients. PD+OA patients were more likely to complain about paresthestic and akasthisic pain, but less likely to complain about aching pain compared to PD patients and OA patients. PD+OA patients were more likely to have greater pain severity, and were more likely to report radiating and sharp pain than PD+RLS patients. PD+OA patients were also more likely to report higher depression case-ness than PD+RLS patients. Conclusion:PD with OA seems to be linked with specific pain characteristics (akathisia and paraesthesia) as well as heightened overall pain severity and pain interference in comparison to OA alone, PD alone and PD with RLS. PD is also correlated with depression severity and anxiety case-ness in OA when compared to the OA alone, PD alone and PD with RLS.
Collapse
Affiliation(s)
- Abdul Qayyum Rana
- Clinical Neurology, Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre, Toronto, ON, Canada
| | - Abdul Rehman Qureshi
- Clinical Neurology, Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre, Toronto, ON, Canada
| | - Shakib Akhter
- Clinical Neurology, Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre, Toronto, ON, Canada
| | - Yameen Ingar
- Clinical Neurology, Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre, Toronto, ON, Canada
| | - Ali Ayub
- Clinical Neurology, Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre, Toronto, ON, Canada
| | - Ismael Abdullah
- Clinical Neurology, Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre, Toronto, ON, Canada
| | - Obaidullah Madhosh
- Clinical Neurology, Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre, Toronto, ON, Canada
| | - Zainab Sarfraz
- Clinical Neurology, Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre, Toronto, ON, Canada
| | - Muhammad B Rana
- Clinical Neurology, Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre, Toronto, ON, Canada
| | - Ruqqiyah Rana
- Clinical Neurology, Parkinson's Clinic of Eastern Toronto & Movement Disorders Centre, Toronto, ON, Canada
| |
Collapse
|
22
|
赵 茸, 王 天, 狄 政, 杨 军, 徐 敏, 刘 志, 朱 旭, 邬 小, 高 晓. [Voxel-based analysis of cerebral blood flow changes in Parkinson disease using arterial spin labeling technique]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:117-122. [PMID: 33177029 PMCID: PMC6765609 DOI: 10.3969/j.issn.1673-4254.2018.01.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To explore the imaging biomarker for early diagnosis and disease course monitoring of Parkinson disease (PD) in arterial spin labeling (ASL) technique. METHODS Between July, 2014 and May, 2017, 23 patients with PD underwent magnetic resonance imaging (MRI) and ASL examinations in our hospital, including 13 in the early stage and 10 in advanced stages. Voxel-based analysis (VBA) was used to observe the regional cerebral blood flow (rCBF) characteristics in PD patients in different stages and three-dimensional continuous arterial spin labeling (3D CASL) was used to analyze the mean cerebral blood flow (mCBF). RESULTS No significant difference was found in mCBF among PD patients in the early stage, patients in advanced stages and normal control subjects (P=0.30). Compared with the normal control group, the patients with early-stage PD had decreased rCBF in resting state mainly in the right superior occipital gyrus and the right superior frontal gyrus as revealed by VBA (P < 0.001); the patients with advanced PD showed decreased rCBF mainly in the left precentral gyrus and the postcentral gyrus (P < 0.001). The patients with advanced PD exhibited lowered rCBF in the right substantia nigra and the bilateral corpus callosum as compared with the early-stage patients (P < 0.001). CONCLUSIONS VBA of ASL reveals rCBF alterations in association with the disease progression in PD patients, suggesting that this technique might provide assistance in identification of potential markers for early PD diagnosis and for monitoring the disease course.
Collapse
Affiliation(s)
- 茸 赵
- 西安交通大学医学院附属西安市中心医院 神经内科,陕西 西安 710003Department of Neurology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an 710003, China
| | - 天仲 王
- 西安交通大学医学院附属西安市中心医院 神经内科,陕西 西安 710003Department of Neurology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an 710003, China
- 延安大学医学院,陕西 延安 716000Medical College of Yan'an University, Yan'an 716000, China
| | - 政莉 狄
- 西安交通大学医学院附属西安市中心医院 神经内科,陕西 西安 710003Department of Neurology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an 710003, China
| | - 军乐 杨
- 西安交通大学医学院附属西安市中心医院 放射科,陕西 西安 710003Department of Radiology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an 710003, China
| | - 敏 徐
- 西安交通大学医学院附属西安市中心医院 放射科,陕西 西安 710003Department of Radiology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an 710003, China
| | - 志勤 刘
- 西安交通大学医学院附属西安市中心医院 神经内科,陕西 西安 710003Department of Neurology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an 710003, China
| | - 旭蓉 朱
- 西安交通大学医学院附属西安市中心医院 神经内科,陕西 西安 710003Department of Neurology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an 710003, China
- 延安大学医学院,陕西 延安 716000Medical College of Yan'an University, Yan'an 716000, China
| | - 小平 邬
- 西安交通大学医学院附属西安市中心医院 放射科,陕西 西安 710003Department of Radiology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an 710003, China
| | - 晓宇 高
- 西安交通大学医学院附属西安市中心医院 神经内科,陕西 西安 710003Department of Neurology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an 710003, China
- 延安大学医学院,陕西 延安 716000Medical College of Yan'an University, Yan'an 716000, China
| |
Collapse
|
23
|
Microstructural network alterations of olfactory dysfunction in newly diagnosed Parkinson's disease. Sci Rep 2017; 7:12559. [PMID: 28970540 PMCID: PMC5624890 DOI: 10.1038/s41598-017-12947-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/12/2017] [Indexed: 12/28/2022] Open
Abstract
Olfactory dysfunction is a robust and early sign for Parkinson's disease (PD). Previous studies have revealed its association with dementia and related neural changes in PD. Yet, how olfactory dysfunction affects white matter (WM) microstructure in newly diagnosed and untreated PD remains unclear. Here we comprehensively examined WM features using unbiased whole-brain analyses. 88 newly diagnosed PD patients without dementia (70 with hyposmia and 18 without hyposmia) and 33 healthy controls underwent clinical assessment and diffusion tensor imaging (DTI) scanning. Tract-based special statistics (TBSS), graph-theoretic methods and network-based statistics (NBS) were used to compare regional and network-related WM features between groups. TBSS analysis did not show any differences in fractional anisotropy and mean diffusivity between groups. Compared with controls, PD patients without hyposmia showed a significant decrease in global efficiency, whilst PD patients with hyposmia exhibited significantly reduced global and local efficiency and additionally a disrupted connection between the right medial orbitofrontal cortex and left rectus and had poorer frontal-related cognitive functioning. These results demonstrate that hyposmia-related WM changes in early PD only occur at the network level. The confined disconnectivity between the bilateral olfactory circuitry may serve as a biomarker for olfactory dysfunction in early PD.
Collapse
|
24
|
Li Y, Kang W, Zhang L, Zhou L, Niu M, Liu J. Hyposmia Is Associated with RBD for PD Patients with Variants of SNCA. Front Aging Neurosci 2017; 9:303. [PMID: 28979204 PMCID: PMC5611699 DOI: 10.3389/fnagi.2017.00303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/04/2017] [Indexed: 01/14/2023] Open
Abstract
Objective: Hyposmia may occur simultaneously with REM sleep behavior disorder (RBD) as a specific phenotype in Parkinson's Diseases (PD), of which the disease progression is fast. In the study, we tried to identify whether the genotypic characteristics could participate in the co-occurrence of hyposmia and RBD in PD patients. Methods: 152 PD patients were recruited from the Department of Neurology, Ruijin Hospital affiliated to Shanghai JiaoTong University School of Medicine from 2011 to 2016, with comprehensive clinical assessment performing. Two SNPs of SNCA (rs11931074 and rs894278) in 105 patients were also analyzed. Results: Overall, 84 of 152 PD patients (55.3%) were diagnosed with RBD after PSG evaluation. After regression analysis, higher levels of three parts of UPDRS and SCOPA-AUT scores were all associated with increased risk of RBD in PD patients, respectively. While for olfactory function, we didn't find significant correlation between hyposmia and RBD in PD patients. However, we found that in the group of minor G allele of rs894278, patients with lower score of SS-16 had a 4.76-fold risk of suffering from RBD in patients (95% CI: 1.39–16.67; p = 0.013). Furthermore, we analyzed SNP associated gene expression by eQTL analysis in Genevar database and found that GG genotype of rs894278 was associated with higher levels of α-synuclein in Nerve tissue (p = 1.5E-8) while TT genotype of rs11931074 was associated with higher levels of α-synuclein in Brain (p = 0.0082), which suggesting a potential functional relevance with different symptoms of PD. Conclusions: Hyposmia was associated with RBD in PD patients with the minor G allele of rs894278, which represent one specific subtype of PD. This study could provide more detail information about PD subtype of RBD with hyposmia in the future.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Neurology, Institute of Neurology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiaotong UniversityShanghai, China
| | - Wenyan Kang
- Department of Neurology, Institute of Neurology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiaotong UniversityShanghai, China
| | - Linyuan Zhang
- Department of Neurology, Institute of Neurology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiaotong UniversityShanghai, China
| | - Liche Zhou
- Department of Neurology, Institute of Neurology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiaotong UniversityShanghai, China
| | - Mengyue Niu
- Department of Neurology, Institute of Neurology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiaotong UniversityShanghai, China
| | - Jun Liu
- Department of Neurology, Institute of Neurology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiaotong UniversityShanghai, China
| |
Collapse
|
25
|
Lourenço CF, Ledo A, Barbosa RM, Laranjinha J. Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration. Free Radic Biol Med 2017; 108:668-682. [PMID: 28435052 DOI: 10.1016/j.freeradbiomed.2017.04.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
Abstract
The strict energetic demands of the brain require that nutrient supply and usage be fine-tuned in accordance with the specific temporal and spatial patterns of ever-changing levels of neuronal activity. This is achieved by adjusting local cerebral blood flow (CBF) as a function of activity level - neurovascular coupling - and by changing how energy substrates are metabolized and shuttled amongst astrocytes and neurons - neuroenergetic coupling. Both activity-dependent increase of CBF and O2 and glucose utilization by active neural cells are inextricably linked, establishing a functional metabolic axis in the brain, the neurovascular-neuroenergetic coupling axis. This axis incorporates and links previously independent processes that need to be coordinated in the normal brain. We here review evidence supporting the role of neuronal-derived nitric oxide (•NO) as the master regulator of this axis. Nitric oxide is produced in tight association with glutamatergic activation and, diffusing several cell diameters, may interact with different molecular targets within each cell type. Hemeproteins such as soluble guanylate cyclase, cytochrome c oxidase and hemoglobin, with which •NO reacts at relatively fast rates, are but a few of the key in determinants of the regulatory role of •NO in the neurovascular-neuroenergetic coupling axis. Accordingly, critical literature supporting this concept is discussed. Moreover, in view of the controversy regarding the regulation of catabolism of different neural cells, we further discuss key aspects of the pathways through which •NO specifically up-regulates glycolysis in astrocytes, supporting lactate shuttling to neurons for oxidative breakdown. From a biomedical viewpoint, derailment of neurovascular-neuroenergetic axis is precociously linked to aberrant brain aging, cognitive impairment and neurodegeneration. Thus, we summarize current knowledge of how both neurovascular and neuroenergetic coupling are compromised in aging, traumatic brain injury, epilepsy and age-associated neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, suggesting that a shift in cellular redox balance may contribute to divert •NO bioactivity from regulation to dysfunction.
Collapse
Affiliation(s)
- Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rui M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
26
|
Gambardella S, Ferese R, Biagioni F, Busceti CL, Campopiano R, Griguoli AMP, Limanaqi F, Novelli G, Storto M, Fornai F. The Monoamine Brainstem Reticular Formation as a Paradigm for Re-Defining Various Phenotypes of Parkinson's Disease Owing Genetic and Anatomical Specificity. Front Cell Neurosci 2017; 11:102. [PMID: 28458632 PMCID: PMC5394114 DOI: 10.3389/fncel.2017.00102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/27/2017] [Indexed: 12/11/2022] Open
Abstract
The functional anatomy of the reticular formation (RF) encompasses a constellation of brain regions which are reciprocally connected to sub-serve a variety of functions. Recent evidence indicates that neuronal degeneration within one of these regions spreads synaptically along brainstem circuitries. This is exemplified by the recruitment of various brainstem reticular nuclei in specific Parkinson’s disease (PD) phenotypes, and by retrospective analysis of lethargic post-encephalitic parkinsonism. In fact, the spreading to various monoamine reticular nuclei can be associated with occurrence of specific motor and non-motor symptoms (NMS). This led to re-consider PD as a brainstem monoamine disorder (BMD). This definition surpasses the anatomy of meso-striatal motor control to include a variety of non-motor domains. This concept clearly emerges from the quite specific clinical-anatomical correlation which can be drawn in specific paradigms of PD genotypes. Therefore, this review article focuses on the genetics and neuroanatomy of three PD genotypes/phenotypes which can be selected as prototype paradigms for a differential recruitment of the RF leading to differential occurrence of NMS: (i) Parkin-PD, where NMS are rarely reported; (ii) LRRK2-PD and slight SNC point mutations, where the prevalence of NMS resembles idiopathic PD; (iii) Severe SNCA point mutations and multiplications, where NMS are highly represented.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Giuseppe Novelli
- IRCCS NeuromedPozzilli, Italy.,Department of Biomedicine and Prevention, School of Medicine, University of Rome Tor VergataRome, Italy
| | | | - Francesco Fornai
- IRCCS NeuromedPozzilli, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| |
Collapse
|