1
|
Xu C, Gao X, Ren T, Geng H, Yang K, Huang Y, Zhang W, Hou S, Song A, Zhang Y, Zhao Q. The ADAM17 inhibitor ZLDI-8 sensitized hepatocellular carcinoma cells to sorafenib through Notch1-integrin β-talk. Pharmacol Res 2024; 203:107142. [PMID: 38522759 DOI: 10.1016/j.phrs.2024.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
ZLDI-8 is an A disintegrin and metalloproteinase domain 17 (ADAM17) inhibitor that suppresses the shedding of Notch1 to the Notch1 intracellular domain (NICD). In previous studies, we found that ZLDI-8 was able to sensitize HCC to sorafenib, but the mechanism of action remains unclear. The sensitizing effects of ZLDI-8 were tested both in vitro and in vivo. EMT-related factors, sorafenib sensitivity-related proteins and ECM-related gene expression were assessed using immunohistochemistry, RTPCR and Western blotting. Knockdown assays were conducted to determine the relationship between the Notch and Integrin pathways. CoIP assays, nuclear and cytoplasmic fractionation and immunofluorescence colocalization were applied to explore the interaction between the Notch and Integrin pathways. Appropriate statistical analysis methods were used to assess the significance of the experimental results and to ensure the scientific validity and reliability of the experimental design. We found that ECM- and EMT-related proteins were downregulated after ZLDI-8 treatment (P<0.05). ZLDI-8 significantly downregulated Integrinβ1 and Integrinβ3 in HCC in vitro and in vivo (P<0.05), possibly through Foxc2-dependent regulation. Mechanistically, interfering with the expression of both Integrin-linked kinase (ILK) and the NICD may downregulate the expression of proteins targeted by sorafenib, thereby sensitizing cells to sorafenib. The retroregulation of Integrinβ by ILK may occur through the interaction between the NICD and ILK and may be the result of the translocation of the complexus. Our study indicates that blocking the Notch pathway may affect Integrinβ through crosstalk between the Notch1 and Integrinβ/ILK signaling pathways, thus providing a potential therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Chang Xu
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenhe District, Shenyang 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xudong Gao
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Tianshu Ren
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Hefeng Geng
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenhe District, Shenyang 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Kaisi Yang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenhe District, Shenyang 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yaoguang Huang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Weige Zhang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Shanbo Hou
- Shandong Luoxin Pharmaceutical Group Stock Co., Ltd., No. 18, Huxi Rd., National New and High-tech Industrial Development Zone, Linyi, Shandong 276017, China
| | - Aigang Song
- Shandong Luoxin Pharmaceutical Group Stock Co., Ltd., No. 18, Huxi Rd., National New and High-tech Industrial Development Zone, Linyi, Shandong 276017, China
| | - Yingshi Zhang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenhe District, Shenyang 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Qingchun Zhao
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenhe District, Shenyang 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
2
|
Bai X, Shao J, Duan T, Liu X, Wang M, Li X, You Q, Zhang Z, Pan J. Exo-miR-1290-induced by COX-2 overexpression promotes cancer-associated fibroblasts activation and tumor progression by CUL3-Nrf2 pathway in lung adenocarcinoma. Cell Commun Signal 2023; 21:242. [PMID: 37723559 PMCID: PMC10506250 DOI: 10.1186/s12964-023-01268-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/12/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are critically involved in tumor progression by maintaining extracellular mesenchyma (ECM) production and improving tumor development. Cyclooxygenase-2 (COX-2) has been proved to promote ECM formation and tumor progression. However, the mechanisms of COX-2 mediated CAFs activation have not yet been elucidated. Therefore, we conducted this study to identify the effects and mechanisms of COX-2 underlying CAFs activation by tumor-derived exosomal miRNAs in lung adenocarcinoma (LUAD) progression. METHODS As measures of CAFs activation, the expressions of fibroblasts activated protein-1 (FAP-1) and α-smooth muscle actin (α-SMA), the main CAFs markers, were detected by Western blotting and Immunohistochemistry. And the expression of Fibronectin (FN1) was used to analyze ECM production by CAFs. The exosomes were extracted by ultracentrifugation and exo-miRNAs were detected by qRT-PCR. Herein, we further elucidated the implicated mechanisms using online prediction software, luciferase reporter assays, co-immunoprecipitation, and experimental animal models. RESULTS In vivo, a positive correlation was observed between the COX-2 expression levels in parenchyma and α-SMA/FN1 expression levels in mesenchyma in LUAD. However, PGE2, one of major product of COX-2, did not affect CAFs activation directly. COX-2 overexpression increased exo-miR-1290 expression, which promoted CAFs activation. Furthermore, Cullin3 (CUL3), a potential target of miR-1290, was found to suppress COX-2/exo-miR-1290-mediated CAFs activation and ECM production, consequently impeding tumor progression. CUL3 is identified to induce the Nuclear Factor Erythroid 2-Related Factor 2 (NFE2L2, Nrf2) ubiquitination and degradation, while exo-miR-1290 can prevent Nrf2 ubiquitination and increase its protein stability by targeting CUL3. Additionally, we identified that Nrf2 is direcctly bound with promoters of FAP-1 and FN1, which enhanced CAFs activation by promoting FAP-1 and FN1 transcription. CONCLUSIONS Our data identify a new CAFs activation mechanism by exosomes derived from cancer cells that overexpress COX-2. Specifically, COX-2/exo-miR-1290/CUL3 is suggested as a novel signaling pathway for mediating CAFs activation and tumor progression in LUAD. Consequently, this finding suggests a novel strategy for cancer treatment that may tackle tumor progression in the future. Video Abstract.
Collapse
Affiliation(s)
- Xiaoming Bai
- Department of Pathology, Nanjing Medical University, 101Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Jiaofang Shao
- Department of Bioinformatics, Nanjing Medical University, 101Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Tinghong Duan
- Department of Pathology, Nanjing Medical University, 101Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Xue Liu
- Department of Pathology, Nanjing Medical University, 101Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Min Wang
- Department of Pathology, Nanjing Medical University, 101Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Xuanya Li
- Department of Pathology, Nanjing Medical University, 101Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Qiang You
- Department of Biotherapy, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, P.R. China
| | - Zhiyuan Zhang
- Department of Pathology, Nanjing Medical University, 101Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China.
| | - Jinshun Pan
- Department of Biotherapy, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, P.R. China.
| |
Collapse
|
3
|
Képes Z, Dénes N, Kertész I, Hajdu I, Trencsényi G. Overview of Prostaglandin E2 (PGE2)-Targeting Radiolabelled Imaging Probes from Preclinical Perspective: Lessons Learned and Road Ahead. Int J Mol Sci 2023; 24:ijms24086942. [PMID: 37108106 PMCID: PMC10138785 DOI: 10.3390/ijms24086942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
As malignancies still represent one of the major health concerns worldwide, early tumor identification is among the priorities of today's science. Given the strong association between cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2), PGE2 receptors (EPs), and carcinogenesis, target-specific molecules directed towards the components of the COX2/PGE2/EP axis seem to be promising imaging probes in the diagnostics of PGE2pos. neoplasms and in the design of anti-cancer drugs. Featured with outstanding inclusion forming capability, β-cyclodextrins (CDs) including randomly methylated β-CD (RAMEB) were reported to complex with PGE2. Therefore, radiolabelled β-CDs could be valuable vectors in the molecular imaging of PGE2-related tumorigenesis. In vivo preclinical small animal model systems applying positron emission tomography (PET) ensure a well-suited scenario for the assessment of PGE2-affine labelled CD derivatives. Previous translational studies dealt with the evaluation of the tumor-homing capability of Gallium-68 (68Ga) and Bismuth-205/206 (205/206Bi)-appended β-CD compounds conjugated with chelator NODAGA or DOTAGA: [68Ga]Ga-NODAGA-2-hydroxypropyl-β-cyclodextrin/HPBCD, [68Ga]Ga-NODAGA-RAMEB, [68Ga]Ga-DOTAGA-RAMEB, and [205/206Bi]Bi-DOTAGA-RAMEB in experimental tumors with different PGE2 expression. These imaging probes project the establishment of tailor-made PET diagnostics of PGE2pos. malignancies. In the present review, we provide a detailed overview of the in vivo investigations of radiolabelled PGE2-directed CDs, highlighting the importance of the integration of translational discoveries into routine clinical usage.
Collapse
Affiliation(s)
- Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Noémi Dénes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - István Kertész
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - István Hajdu
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
4
|
Chen S, He T, Zhong Y, Chen M, Yao Q, Chen D, Shao Z, Xiao G. Roles of focal adhesion proteins in skeleton and diseases. Acta Pharm Sin B 2023; 13:998-1013. [PMID: 36970189 PMCID: PMC10031257 DOI: 10.1016/j.apsb.2022.09.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
The skeletal system, which contains bones, joints, tendons, ligaments and other elements, plays a wide variety of roles in body shaping, support and movement, protection of internal organs, production of blood cells and regulation of calcium and phosphate metabolism. The prevalence of skeletal diseases and disorders, such as osteoporosis and bone fracture, osteoarthritis, rheumatoid arthritis, and intervertebral disc degeneration, increases with age, causing pain and loss of mobility and creating a huge social and economic burden globally. Focal adhesions (FAs) are macromolecular assemblies that are composed of the extracellular matrix (ECM), integrins, intracellular cytoskeleton and other proteins, including kindlin, talin, vinculin, paxillin, pinch, Src, focal adhesion kinase (FAK) and integrin-linked protein kinase (ILK) and other proteins. FA acts as a mechanical linkage connecting the ECM and cytoskeleton and plays a key role in mediating cell-environment communications and modulates important processes, such as cell attachment, spreading, migration, differentiation and mechanotransduction, in different cells in skeletal system by impacting distinct outside-in and inside-out signaling pathways. This review aims to integrate the up-to-date knowledge of the roles of FA proteins in the health and disease of skeletal system and focuses on the specific molecular mechanisms and underlying therapeutic targets for skeletal diseases.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Hargadon KM, Goodloe TB, Lloyd ND. Oncogenic functions of the FOXC2 transcription factor: a hallmarks of cancer perspective. Cancer Metastasis Rev 2022; 41:833-852. [PMID: 35701636 DOI: 10.1007/s10555-022-10045-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023]
Abstract
Epigenetic regulation of gene expression is a fundamental determinant of molecular and cellular function, and epigenetic reprogramming in the context of cancer has emerged as one of the key enabling characteristics associated with acquisition of the core hallmarks of this disease. As such, there has been renewed interest in studying the role of transcription factors as epigenetic regulators of gene expression in cancer. In this review, we discuss the current state of knowledge surrounding the oncogenic functions of FOXC2, a transcription factor that frequently becomes dysregulated in a variety of cancer types. In addition to highlighting the clinical impact of aberrant FOXC2 activity in cancer, we discuss mechanisms by which this transcription factor becomes dysregulated in both tumor and tumor-associated cells, placing particular emphasis on the ways in which FOXC2 promotes key hallmarks of cancer progression. Finally, we bring attention to important issues related to the oncogenic dysregulation of FOXC2 that must be addressed going forward in order to improve our understanding of FOXC2-mediated cancer progression and to guide prognostic and therapeutic applications of this knowledge in clinical settings.
Collapse
Affiliation(s)
- Kristian M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA.
| | - Travis B Goodloe
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA
| | - Nathaniel D Lloyd
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA
| |
Collapse
|
6
|
Prostaglandin E2 receptor EP1 expression in vulvar cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04487-z. [DOI: 10.1007/s00432-022-04487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022]
Abstract
Abstract
Purpose
In recent years, incidence of vulvar cancer has been on the rise, whereas therapeutic options are still restricted. Therefore, new prognosticators and therapeutic targets are essential. Chronic inflammation plays an important role in carcinogenesis and COX-2, and its product prostaglandin E2 and its receptors EP1–4 are known to be important mediators in cancer initiation and progression.
Methods
EP1 expression in vulvar cancer specimens (n = 129) was investigated via immunohistochemistry and evaluated using the well-established immunoreactive score (IRS). Subsequently, the values were correlated with clinicopathological parameters.
Results
Our analysis did not reveal EP1 expression as a negative prognostic factor in overall and disease-free survival. However, in the subgroup of patients with lymph-node metastasis, overall survival was significantly shorter in tumors with high EP1 expression. Moreover, EP1 expression correlated positively with good differentiation of the tumor, but not with p16 status or COX-2 expression.
Conclusions
This study shed first light on EP1 expression in vulvar carcinoma. EP1 expression correlated significantly with the grading of the tumor, suggesting that it influences cell differentiation. Further research on EP1 signaling may lead to a deeper understanding of the molecular mechanisms of carcinogenesis.
Collapse
|
7
|
EL-Ashmawy NE, EL-Zamarany EA, Khedr EG, Selim HM, Khedr NF. Blocking of The Prostaglandin E2 Receptor as a Therapeutic Strategy for Treatment of Breast Cancer: Promising Findings in a Mouse Model. Asian Pac J Cancer Prev 2022; 23:3763-3770. [PMID: 36444589 PMCID: PMC9930950 DOI: 10.31557/apjcp.2022.23.11.3763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The study aimed to investigate the anticancer effect of E-prostanoid receptor 1 (EP1) antagonist, SC19220, alone or in combination with the COX-2 inhibitor Celecoxob(CXB)® in mice bearing solid Ehrlich carcinoma (SEC). METHODS The tumors were induced in 40 female mice, which were divided randomly into four equal groups (n= 10 in each group): Tumor control, CXB, EP1 antagonist, and co-treatment. CXB (10mg/kg) and EP1 antagonist (2mg/kg) were given intraperitoneally every three days, six times in total, then tissue was extracted and prepared for histopathology and measurement of weight, PGE2, and gene expression of EP1 and β 1 integrin. RESULTS Both inhibitors, alone or in combination, showed a significant (p<0.001) antitumorigenic effect by decreasing, significantly (p<0.001), each of the tumor weights, tumor volumes, PGE2 levels, EP1 and β1-integrin gene expression along with increasing, significantly (p<0.001), the P53 tumor suppressor protein. The survival rate was improved from 80% in the control group to reach 100% in the treated groups. The co-treatment by CXB and EP1 antagonist showed a marked decrease in tumor weights and volumes as compared with the single treatment. In parallel, the histopathological findings showed enhanced apoptosis and diminished necrosis in the co-treated group. CONCLUSION EP1 antagonist proved an antitumorigenic effect alone or combined with CXB and could play a new therapeutic strategy against breast cancer.
Collapse
Affiliation(s)
- Nahla E EL-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt.
| | - Enas A EL-Zamarany
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Egypt.
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt.
| | - Hend M Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt. ,For Correspondence:
| | - Naglaa F Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt.
| |
Collapse
|
8
|
Mao Z, Jia X, Jiang P, Wang Q, Zhang Y, Li Y, Fu X, Jiao M, Jiang L, Liu Z, Guo H. Effect of Concomitant Use of Analgesics on Prognosis in Patients Treated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:861723. [PMID: 35603146 PMCID: PMC9120587 DOI: 10.3389/fimmu.2022.861723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Drug–drug interactions (DDIs) pose new challenges beyond traditional pharmacodynamics in the context of optimizing the treatment options with immune checkpoint inhibitors (ICIs). To alleviate cancer-related pain, analgesics are of absolute vital importance as chronic medications used by cancer patients. However, the possible outcome of ICI treatment concomitant with analgesics remains unclear. Methods Original articles describing the possible influence of analgesics use on ICI treatment published before December 1, 2021 were retrieved from PubMed, Embase, and the Cochrane Library. Odds ratio (OR) with 95% confidence interval (CI) for objective response rate (ORR), hazard ratio (HR) with 95% CI for progression-free survival (PFS), and overall survival (OS) were calculated using the random-effects or fixed-effects model, and heterogeneity was assessed using the χ2-based Q-test. Publication bias was examined by funnel plot analysis. Results A total of 11 studies involving 4,404 patients were included. The pooled OR showed that opioid use decreased the response of opioid users to ICIs compared to non-opioid users (OR = 0.49, 95% CI = 0.37–0.65, p < 0.001). Compared to patients who did not receive opioids, opioid users had an increased risk of progression and mortality (HR = 1.61, 95% CI = 1.37–1.89, p < 0.001; HR = 1.67, 95% CI =1.30–2.14, p < 0.001, respectively). Furthermore, the concomitant use of non-steroidal anti-inflammatory drugs (NSAIDs) was not significantly associated with differences in ORR, PFS, and OS in patients treated with ICIs (OR = 1.40, 95% CI = 0.84–2.32, p = 0.190; HR = 0.90, 95% CI = 0.77–1.06, p = 0.186; HR = 0.90, 95% CI = 0.71–1.14, p = 0.384, respectively). Conclusion The concomitant use of opioids during ICI treatment has an adverse effect on patient prognosis, while the use of NSAIDs is not significantly associated with the prognosis in patients treated with ICIs.
Collapse
Affiliation(s)
- Ziyang Mao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaohui Jia
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Panpan Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qinyang Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yajuan Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanlin Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaolan Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Min Jiao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lili Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhiyan Liu
- Department of Respiratory and Critical Care Medicine, Respiratory and Critical Care Medicine, The Affiliated Hospital of Northwest University, Xi'an No. 3 Hospital, Xi'an, China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Centre for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
| |
Collapse
|
9
|
Tao X, Zhang R, Du R, Yu T, Yang H, Li J, Wang Y, Liu Q, Zuo S, Wang X, Lazarus M, Zhou L, Wang B, Yu Y, Shen Y. EP3 enhances adhesion and cytotoxicity of NK cells toward hepatic stellate cells in a murine liver fibrosis model. J Exp Med 2022; 219:213141. [PMID: 35420633 DOI: 10.1084/jem.20212414] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/07/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells exhibit antifibrotic properties in liver fibrosis (LF) by suppressing activated hepatic stellate cell (HSC) populations. Prostaglandin E2 (PGE2) plays a dual role in innate and adaptive immunity. Here, we found that E-prostanoid 3 receptor (EP3) was markedly downregulated in NK cells from liver fibrosis mice and patients with liver cirrhosis. NK cell-specific deletion of EP3 aggravated hepatic fibrogenesis in mouse models of LF. Loss of EP3 selectively reduced the cytotoxicity of the CD27+CD11b+ double positive (DP) NK subset against activated HSCs. Mechanistically, deletion of EP3 impaired the adhesion and cytotoxicity of DP NK cells toward HSCs through modulation of Itga4-VCAM1 binding. EP3 upregulated Itga4 expression in NK cells through promoting Spic nuclear translocation via PKC-mediated phosphorylation of Spic at T191. Activation of EP3 by sulprostone alleviated CCL4-induced liver fibrosis in mice. Thus, EP3 is required for adhesion and cytotoxicity of NK cells toward HSCs and may serve as a therapeutic target for the management of LF.
Collapse
Affiliation(s)
- Xixi Tao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Rui Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ronglu Du
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tingting Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jiwen Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yuhong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shengkai Zuo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
10
|
Wang Q, Morris RJ, Bode AM, Zhang T. Prostaglandin Pathways: Opportunities for Cancer Prevention and Therapy. Cancer Res 2021; 82:949-965. [PMID: 34949672 DOI: 10.1158/0008-5472.can-21-2297] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/27/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
Because of profound effects observed in carcinogenesis, prostaglandins (PGs), prostaglandin-endoperoxide synthases, and PG receptors are implicated in cancer development and progression. Understanding the molecular mechanisms of PG actions has potential clinical relevance for cancer prevention and therapy. This review focuses on the current status of PG signaling pathways in modulating cancer progression and aims to provide insights into the mechanistic actions of PGs and their receptors in influencing tumor progression. We also examine several small molecules identified as having anticancer activity that target prostaglandin receptors. The literature suggests that targeting PG pathways could provide opportunities for cancer prevention and therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota
| | | | - Ann M Bode
- The Hormel Institute, University of Minnesota
| | | |
Collapse
|
11
|
Zhao L, Song X, Guo Y, Ding N, Wang T, Huang L. Long non‑coding RNA SNHG3 promotes the development of non‑small cell lung cancer via the miR‑1343‑3p/NFIX pathway. Int J Mol Med 2021; 48:147. [PMID: 34132359 PMCID: PMC8208627 DOI: 10.3892/ijmm.2021.4980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 04/09/2021] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to identify the function of long non‑coding RNA (lncRNA) small nucleolar RNA host gene 3 (SNHG3) and examine its effects on non‑small cell lung cancer (NSCLC). A series of in vitro experiments were employed to evaluate the effects of SNHG3 on the progression of NSCLC, including Cell Counting Kit‑8, 5‑Ethynyl‑2'‑deoxyuridine, flow cytometry, wound healing, Transwell, western blotting and reverse transcription‑quantitative PCR assays. Bioinformatics analyses and a luciferase reporter assay were performed to identify the target gene of SNHG3 and microRNA (miR)‑1343‑3p. Finally, recuse experiments were conducted to verify the effect of SNHG3 and its target gene on proliferation, apoptosis, migration and invasion. The findings indicated that lncRNA SNHG3 was highly expressed in NSCLC tissues and cell lines. Knockdown of lncRNA SNHG3 inhibited cell proliferation, migration and invasion, and accelerated cell apoptosis in NSCLC cell lines. The results of the bioinformatics analysis and the luciferase reporter assay indicated that lncRNA SNHG3 directly bound to miR‑1343‑3p and that it could downregulate the expression levels of miR‑1343‑3p to promote the progression of NSCLC. Rescue experiments indicated that lncRNA SNHG3 increased nuclear factor IX (NFIX) expression by sequestering miR‑1343‑3p in NSCLC. These results suggested that the SNHG3/miR‑1343‑3p/NFIX axis may serve as a novel prognostic biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Lijun Zhao
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Xue Song
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yesong Guo
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Naixin Ding
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Tingting Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Lei Huang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
12
|
Saito S, Ozawa H, Imanishi Y, Sekimizu M, Watanabe Y, Ito F, Ikari Y, Nakahara N, Kameyama K, Ogawa K. Cyclooxygenase-2 expression is associated with chemoresistance through cancer stemness property in hypopharyngeal carcinoma. Oncol Lett 2021; 22:533. [PMID: 34084214 PMCID: PMC8161457 DOI: 10.3892/ol.2021.12794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/20/2021] [Indexed: 01/05/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is one of the two isoforms of COX, an enzyme that catalyzes the conversion of arachidonic acid to prostaglandins. COX-2 is associated with the progression in various types of cancer, and its expression has been associated with a poor prognosis in head and neck squamous cell carcinoma (HNSCC). Furthermore, COX-2 expression has been associated with resistance to anticancer drugs. However, the precise mechanism of COX-2 for chemoresistance in HNSCC has not been fully elucidated. The present study aimed to investigate the effect of COX-2 on cancer stem cell (CSC) property and to reveal its effect on chemoresistance using in vitro and clinicopathological assays in HNSCC cells and tissues. The current study analyzed the immunohistochemical expression levels of COX-2 and clinicopathological factors using matched samples of pretreatment biopsy and surgical specimens from patients with hypopharyngeal carcinoma who underwent tumor resection with preoperative chemotherapy, including docetaxel. Additionally, the chemoresistance to docetaxel with or without a COX-2 inhibitor (celecoxib) was examined in HNSCC cell lines by MTS assays. To evaluate the association of COX-2 expression with stemness property, the expression levels of CSC-associated genes after exposure to celecoxib were assessed by reverse transcription-quantitative PCR. A sphere formation assay was also performed using ultra-low attachment dishes and microscopic imaging. The immunohistochemical analysis of biopsy specimens revealed a negative association between COX-2 expression in biopsy specimens and the pathological effect of induction chemotherapy in surgical specimens. The cell survival rate under exposure to docetaxel was decreased by the addition of celecoxib. COX-2 inhibition led to downregulation of CSC-associated gene expression and sphere formation. The present findings suggested that COX-2 expression may be associated with chemoresistance through the cancer stemness property, and inhibition of COX-2 may enhance chemo-sensitivity in HNSCC. Therefore, COX-2 may be an attractive target for the treatment of HNSCC.
Collapse
Affiliation(s)
- Shin Saito
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yorihisa Imanishi
- Department of Otorhinolaryngology-Head and Neck Surgery, International University of Health and Welfare, Narita, Chiba 286-8582, Japan
| | - Mariko Sekimizu
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshihiro Watanabe
- Department of Otorhinolaryngology-Head and Neck Surgery, International University of Health and Welfare, Narita, Chiba 286-8582, Japan
| | - Fumihiro Ito
- Department of Otorhinolaryngology-Head and Neck Surgery, National Hospital Organization Tokyo Medical Center, Tokyo 152-8902, Japan
| | - Yuichi Ikari
- Department of Otorhinolaryngology-Head and Neck Surgery, Kawasaki Municipal Kawasaki Hospital, Kawasaki, Kanagawa 210-0013, Japan
| | - Nana Nakahara
- Department of Otorhinolaryngology-Head and Neck Surgery, Saitama City Hospital, Saitama 336-8522, Japan
| | - Kaori Kameyama
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
13
|
Atypical p38 Signaling, Activation, and Implications for Disease. Int J Mol Sci 2021; 22:ijms22084183. [PMID: 33920735 PMCID: PMC8073329 DOI: 10.3390/ijms22084183] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) p38 is an essential family of kinases, regulating responses to environmental stress and inflammation. There is an ever-increasing plethora of physiological and pathophysiological conditions attributed to p38 activity, ranging from cell division and embryonic development to the control of a multitude of diseases including retinal, cardiovascular, and neurodegenerative diseases, diabetes, and cancer. Despite the decades of intense investigation, a viable therapeutic approach to disrupt p38 signaling remains elusive. A growing body of evidence supports the pathological significance of an understudied atypical p38 signaling pathway. Atypical p38 signaling is driven by a direct interaction between the adaptor protein TAB1 and p38α, driving p38 autophosphorylation independent from the classical MKK3 and MKK6 pathways. Unlike the classical MKK3/6 signaling pathway, atypical signaling is selective for just p38α, and at present has only been characterized during pathophysiological stimulation. Recent studies have linked atypical signaling to dermal and vascular inflammation, myocardial ischemia, cancer metastasis, diabetes, complications during pregnancy, and bacterial and viral infections. Additional studies are required to fully understand how, when, where, and why atypical p38 signaling is induced. Furthermore, the development of selective TAB1-p38 inhibitors represents an exciting new opportunity to selectively inhibit pathological p38 signaling in a wide array of diseases.
Collapse
|
14
|
Gong Z, Huang W, Wang B, Liang N, Long S, Li W, Zhou Q. Interplay between cyclooxygenase‑2 and microRNAs in cancer (Review). Mol Med Rep 2021; 23:347. [PMID: 33760116 PMCID: PMC7974460 DOI: 10.3892/mmr.2021.11986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor‑associated inflammation and aberrantly expressed biomarkers have been demonstrated to play crucial roles in the cancer microenvironment. Cyclooxygenase‑2 (COX‑2), a prominent inflammatory factor, is highly expressed in tumor cells and contributes to tumor growth, recurrence and metastasis. Overexpression of COX‑2 may occur at both transcriptional and post‑transcriptional levels. Thus, an improved understanding of the regulatory mechanisms of COX‑2 can facilitate the development of novel antitumor therapies. MicroRNAs (miRNAs) are a group of small non‑coding RNAs that act as translation repressors of target mRNAs, and play vital roles in regulating cancer development and progression. The present review discusses the association between miRNAs and COX‑2 expression in different types of cancer. Understanding the regulatory role of miRNAs in COX‑2 post‑transcription can provide novel insight for suppressing COX‑2 expression via gene silencing mechanisms, which offer new perspectives and future directions for the development of novel COX‑2 selective inhibitors based on miRNAs.
Collapse
Affiliation(s)
- Zexiong Gong
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Weiguo Huang
- Cancer Research Institute, Medical College of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Baiyun Wang
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Na Liang
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Songkai Long
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Wanjun Li
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Qier Zhou
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| |
Collapse
|
15
|
Wang W, Fang Q, Zhang Z, Wang D, Wu L, Wang Y. PPARα Ameliorates Doxorubicin-Induced Cardiotoxicity by Reducing Mitochondria-Dependent Apoptosis via Regulating MEOX1. Front Pharmacol 2020; 11:528267. [PMID: 33132907 PMCID: PMC7578427 DOI: 10.3389/fphar.2020.528267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/16/2020] [Indexed: 11/28/2022] Open
Abstract
Doxorubicin (DOX), a chemotherapeutic drug widely used in the clinical setting, is known to cause serious cardiotoxicity and greatly reduces the survival rate as well as quality of life of patients receiving chemotherapy. Peroxisome proliferation activated receptor α (PPARα) is a type of ligand activated receptor of the nuclear hormone receptor family that regulates multiple gene expression. Several studies have shown that PPARα has anti-apoptotic and cardio-protective effects. However, its role in DOX-induced cardiotoxicity is rarely reported. In this study, we observed decreased expression of PPARα in the heart of tumor-bearing mice already treated with DOX; however, no such phenomenon was observed in tumor tissues. Next, we observed that the PPARα agonist, fenofibrate (FENO), had no effect on tumor progression; however, it enhanced cardiac function in tumor-bearing mice treated with DOX. Subsequently, recombinant adeno-associated virus serotype 9 (rAAV9) was used to manipulate the expression of PPARα in the heart of DOX-induced mice. Our results showed that PPARα gene delivery reduced cardiac dysfunction and mitochondria-dependent apoptosis in DOX-induced mice. Furthermore, we found that PPARα directly regulated the expression of mesenchyme homeobox 1 (MEOX1). Most importantly, the cardioprotective effects of PPARα could be neutralized by knocking down MEOX1. In summary, PPARα plays a vital role in DOX-induced cardiotoxicity and is a promising treatment target.
Collapse
Affiliation(s)
- Wei Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Fang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihao Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Varunkumar K, Anusha C, Saranya T, Ramalingam V, Raja S, Ravikumar V. Avicennia marina engineered nanoparticles induce apoptosis in adenocarcinoma lung cancer cell line through p53 mediated signaling pathways. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Chiang KH, Shieh JM, Shen CJ, Chang TW, Wu PT, Hsu JY, Tsai JP, Chang WC, Chen BK. Epidermal growth factor-induced COX-2 regulates metastasis of head and neck squamous cell carcinoma through upregulation of angiopoietin-like 4. Cancer Sci 2020; 111:2004-2015. [PMID: 32227417 PMCID: PMC7293094 DOI: 10.1111/cas.14400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) expression and activation are the major causes of metastasis in cancers such as head and neck squamous cell carcinoma (HNSCC). However, the reciprocal effect of EGF‐induced COX‐2 and angiopoietin‐like 4 (ANGPTL4) on HNSCC metastasis remains unclear. In this study, we revealed that the expression of ANGPTL4 is essential for COX‐2‐derived prostaglandin E2 (PGE2)‐induced tumor cell metastasis. We showed that EGF‐induced ANGPTL4 expression was dramatically inhibited with the depletion and inactivation of COX‐2 by knockdown of COX‐2 and celecoxib treatment, respectively. Prostaglandin E2 induced ANGPTL4 expression in a time‐ and dose‐dependent manners in various HNSCC cell lines through the ERK pathway. In addition, the depletion of ANGPTL4 and MMP1 significantly impeded the PGE2‐induced transendothelial invasion ability of HNSCC cells and the binding of tumor cells to endothelial cells. The induction of molecules involved in the regulation of epithelial‐mesenchymal transition was also dependent on ANGPTL4 expression in PGE2‐treated cells. The depletion of ANGPTL4 further blocked PGE2‐primed tumor cell metastatic seeding of lungs. These results indicate that the EGF‐activated PGE2/ANGPTL4 axis enhanced HNSCC metastasis. The concurrent expression of COX‐2 and ANGPTL4 in HNSCC tumor specimens provides insight into potential therapeutic targets for the treatment of EGFR‐associated HNSCC metastasis.
Collapse
Affiliation(s)
- Kuo-Hwa Chiang
- Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jiunn-Min Shieh
- Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chih-Jie Shen
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Wei Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ting Wu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jinn-Yuan Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jhih-Peng Tsai
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ben-Kuen Chen
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
18
|
Hargadon KM, Györffy B, Strong EW, Tarnai BD, Thompson JC, Bushhouse DZ, Johnson CE, Williams CJ. The FOXC2 Transcription Factor Promotes Melanoma Outgrowth and Regulates Expression of Genes Associated With Drug Resistance and Interferon Responsiveness. Cancer Genomics Proteomics 2020; 16:491-503. [PMID: 31659103 DOI: 10.21873/cgp.20152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND/AIM The FOXC2 transcription factor promotes the progression of several cancer types, but has not been investigated in the context of melanoma cells. To study FOXC2's influence on melanoma progression, we generated a FOXC2-deficient murine melanoma cell line and evaluated The Cancer Genome Atlas (TCGA) patient datasets. MATERIALS AND METHODS We compared tumor growth kinetics and RNA-seq/qRT-PCR gene expression profiles from wild-type versus FOXC2-deficient murine melanomas. We also performed Kaplan-Meier survival analysis of TCGA data to assess the influence of FOXC2 gene expression on melanoma patients' response to chemotherapy and immunotherapy. RESULTS FOXC2 promotes melanoma progression and regulates the expression of genes associated with multiple oncogenic pathways, including the oxidative stress response, xenobiotic metabolism, and interferon responsiveness. FOXC2 expression in melanoma correlates negatively with patient response to chemotherapy and immunotherapy. CONCLUSION FOXC2 drives a tumor-promoting gene expression program in melanoma and is a prognostic indicator of patient response to multiple cancer therapies.
Collapse
Affiliation(s)
- Kristian M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A.
| | - Balázs Györffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.,Semmelweis University, 2nd Department of Pediatrics, Budapest, Hungary
| | - Elijah W Strong
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| | - Brian D Tarnai
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| | - Jefferson C Thompson
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| | - David Z Bushhouse
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| | - Coleman E Johnson
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| | - Corey J Williams
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| |
Collapse
|
19
|
Sheng J, Sun H, Yu FB, Li B, Zhang Y, Zhu YT. The Role of Cyclooxygenase-2 in Colorectal Cancer. Int J Med Sci 2020; 17:1095-1101. [PMID: 32410839 PMCID: PMC7211146 DOI: 10.7150/ijms.44439] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer is the third common cancer in this world, accounting for more than 1 million cases each year. However, detailed etiology and mechanism of colorectal cancer have not been fully understood. For example, cyclooxygenase-2 (COX-2) and its product prostaglandin E2 (PGE2) have been closely linked to its occurrence, progression and prognosis. However, the mechanisms on how COX-2 and PGE2-mediate the pathogenesis of colorectal cancer are obscure. In this review, we have summarized recent advances in studies of pathogenesis and control in colorectal cancer to assist further advances in the research for the cure of the cancer. In addition, the knowledge gained may also guide the audiences for reduction of the risk and control of this deadly disease.
Collapse
Affiliation(s)
- Juan Sheng
- Department of Gastroenterology, the Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Hong Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fu-Bing Yu
- Department of Gastroenterology, the Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Bo Li
- Department of General Surgery, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Yuan Zhang
- Tissue Tech Inc, Miami, Florida 33032, USA
| | | |
Collapse
|
20
|
COX-2 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1277:87-104. [PMID: 33119867 DOI: 10.1007/978-3-030-50224-9_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumorigenesis is a multistep, complicated process, and many studies have been completed over the last few decades to elucidate this process. Increasingly, many studies have shifted focus toward the critical role of the tumor microenvironment (TME), which consists of cellular players, cell-cell communications, and extracellular matrix (ECM). In the TME, cyclooxygenase-2 (COX-2) has been found to be a key molecule mediating the microenvironment changes. COX-2 is an inducible form of the enzyme that converts arachidonic acid into the signal transduction molecules (thromboxanes and prostaglandins). COX-2 is frequently expressed in many types of cancers and has been closely linked to its occurrence, progression, and prognosis. For example, COX-2 has been shown to (1) regulate tumor cell growth, (2) promote tissue invasion and metastasis, (3) inhibit apoptosis, (4) suppress antitumor immunity, and (5) promote sustainable angiogenesis. In this chapter, we summarize recent advances of studies that have evaluated COX-2 signaling in TME.
Collapse
|
21
|
Zhang L, Peng R, Sun Y, Wang J, Chong X, Zhang Z. Identification of key genes in non-small cell lung cancer by bioinformatics analysis. PeerJ 2019; 7:e8215. [PMID: 31844590 PMCID: PMC6911687 DOI: 10.7717/peerj.8215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors in the world, and it has become the leading cause of death of malignant tumors. However, its mechanisms are not fully clear. The aim of this study is to investigate the key genes and explore their potential mechanisms involving in NSCLC. Methods We downloaded gene expression profiles GSE33532, GSE30219 and GSE19804 from the Gene Expression Omnibus (GEO) database and analyzed them by using GEO2R. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used for the functional and pathway enrichment analysis. We constructed the protein-protein interaction (PPI) network by STRING and visualized it by Cytoscape. Further, we performed module analysis and centrality analysis to find the potential key genes. Finally, we carried on survival analysis of key genes by GEPIA. Results In total, we obtained 685 DEGs. Moreover, GO analysis showed that they were mainly enriched in cell adhesion, proteinaceous extracellular region, heparin binding. KEGG pathway analysis revealed that transcriptional misregulation in cancer, ECM-receptor interaction, cell cycle and p53 signaling pathway were involved in. Furthermore, PPI network was constructed including 249 nodes and 1,027 edges. Additionally, a significant module was found, which included eight candidate genes with high centrality features. Further, among the eight candidate genes, the survival of NSCLC patients with the seven high expression genes were significantly worse, including CDK1, CCNB1, CCNA2, BIRC5, CCNB2, KIAA0101 and MELK. In summary, these identified genes should play an important role in NSCLC, which can provide new insight for NSCLC research.
Collapse
Affiliation(s)
- Li Zhang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Jia Wang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Xinyu Chong
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Zheng Zhang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Niu JC, Ma N, Liu W, Wang PJ. EP1 receptor is involved in prostaglandin E2-induced osteosarcoma growth. Bosn J Basic Med Sci 2019; 19:265-273. [PMID: 30995899 DOI: 10.17305/bjbms.2019.4177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 03/30/2019] [Indexed: 12/12/2022] Open
Abstract
Recent studies showed that the activation of prostaglandin (PG) receptor EP1 promotes cell migration and invasion in different cancers. The aim of this study was to investigate the role of EP1 in the proliferation of osteosarcoma (OS) cells in vitro and in vivo. EP1 mRNA and protein levels were analyzed by real-time RT-PCR and Western blot, respectively in human OS cell lines MG63, OS732, U-2OS, and 143B compared to human fetal osteoblastic hFOB 1.19 cells. MG63 cells were treated with PGE2, EP1 specific agonist 17-PT-PGE2, 17-PT-PGE2 + EP1 specific antagonist SC51089, or DMSO (control). EP1R-siRNA or a non-silencing irrelevant RNA duplex (negative control) were used for the transfection of MG63 cells, followed by PGE2 treatment. Nude mice carrying MG63 xenografts were treated with SC51089 (2 mg/kg/day). MG63 cells/xenografts were analyzed by MTT assay, TUNEL assay, PKC enzyme activity assay, and Western blot (EP1 and apoptotic proteins), and tumor growth/volume was evaluated in mice. EP1 levels were significantly higher in OS cells compared to osteoblasts. PGE2 or 17-PT-PGE2 treatment increased the proliferation and decreased the apoptosis of MG63 cells. Inhibition of EP1 by SC51089 or siRNA markedly decreased the viability of MG63 cells. Similarly, SC51089 treatment significantly inhibited MG63 cell proliferation and promoted apoptosis in vivo. The silencing of EP1 receptor by siRNA or blockade of EP1 signaling by SC51089 activated extrinsic and intrinsic apoptotic pathways both in vivo and in vitro, as evidenced by increased levels of Bax, cyt c, cleaved caspase-3, caspase-8 and caspase-9. EP1 appears to be involved in PGE2-induced proliferative activity of MG63 cells. Antagonizing EP1 may provide a novel therapeutic approach to the treatment of OS.
Collapse
Affiliation(s)
- Jing-Cai Niu
- Department of Hand and Foot Surgery, Second Affiliated Hospital of Soochow University, Suzhou; Department of Orthopedics, Second Affiliated Hospital of Anhui Medical University, Hefei Anhui, China.
| | | | | | | |
Collapse
|
23
|
Kim DS, Kwon NS, Yun HY. Leucine rich repeat LGI family member 3: Integrative analyses reveal its prognostic association with non-small cell lung cancer. Oncol Lett 2019; 18:3388-3398. [PMID: 31452819 PMCID: PMC6704323 DOI: 10.3892/ol.2019.10648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 06/21/2019] [Indexed: 12/25/2022] Open
Abstract
Leucine rich repeat LGI family member 3 (LGI3) is a member of the LGI protein family. Our previous studies reported that LGI3 was expressed in adipose tissues, brain and skin, where it served roles as a multifunctional cytokine and pro-inflammatory adipokine. It was hypothesized that LGI3 may be involved in cytokine networks in cancer. The present study aimed to analyze differentially expressed genes in non-small cell lung cancer (NSCLC) tissues and NSCLC cohort data, to evaluate the prognostic role of LGI3. Expression microarray and NSCLC cohort data were statistically analyzed by bioinformatic methods, and protein-protein interactions, functional enrichment and pathway, gene coexpression network (GCN) and prognostic association analyses were performed. The results demonstrated that the expression levels of LGI3 and its receptor a disintegrin and metalloproteinase domain-containing protein 22 were significantly decreased in NSCLC tissues. A total of two upregulated genes and 11 downregulated genes in NSCLC tissues were identified as LGI3-regulated genes. Protein-protein interaction network analysis demonstrated that all LGI3-regulated genes that were altered in NSCLC were involved in a protein-protein interaction network cluster. Functional enrichment, Kyoto Encyclopedia of Genes and Genomes pathway and GCN analyses demonstrated the association of these genes with the immune and inflammatory responses, angiogenesis, the tumor necrosis factor pathway, and chemokine and peroxisome proliferator-activated receptor signaling pathways. Analysis of NSCLC cohorts revealed that low expression levels of LGI3 was significantly associated with poor prognosis of NSCLC. Analysis of the somatic mutations of the LGI3 gene in NSCLC revealed that the amino acid residues altered in NSCLC included two single nucleotide polymorphism sites and three phylogenetically coevolved amino acid residues. Taken together, these results suggest that LGI3 may be a potential prognostic marker of NSCLC.
Collapse
Affiliation(s)
- Dong-Seok Kim
- Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul 06974, Republic of Korea
| | - Nyoun Soo Kwon
- Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul 06974, Republic of Korea
| | - Hye-Young Yun
- Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
24
|
Zhang Y, Wu Z, Yu H, Wang H, Liu G, Wang S, Ji X. Chinese Herbal Medicine Wenxia Changfu Formula Reverses Cell Adhesion-Mediated Drug Resistance via the Integrin β1-PI3K-AKT Pathway in Lung Cancer. J Cancer 2019; 10:293-304. [PMID: 30719123 PMCID: PMC6360309 DOI: 10.7150/jca.25163] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
In the treatment of lung cancer, the multidrug resistance to chemotherapeutic drugs is one of the reasons of low rates for cure and treatment failure, the combination of chemotherapeutic drugs and traditional Chinese medicine can increase the sensitivity of chemotherapy and reduce its adverse effects. Our previous study has proved that Chinese herbal medicine (CHM) Wenxia Changfu Formula (WCF for short) effectively enhances chemotherapeutic efficacy in lung cancer treatment and reverses multidrug resistance in lung cancer cells in vitro. The present study aims to investigate the effect and mechanism of WCF in reversing cell adhesion-mediated drug resistance of lung cancer by using A549 three-dimensional cell culture and nude mouse model of the A549 cell line with Integrin β1 overexpression. We show that the combination of WCF with DDP can decrease proliferation of lung cancer cells by inducing cell cycle arrest and apoptosis. Moreover, we find that the combination of WCF with DDP suppresses the expression of certain molecules which regulate cell cycle and apoptosis. Mechanistically, we show that the Integrin β1, FAK, PI3K, and AKT protein expressions are suppressed by DDP and even more responses are observed when DDP and WCF are combined, showing WCF treatment enhances the effect of commonly used anticancer drugs. In line with the above findings, our results confirm that WCF reverses cell adhesion-mediated drug resistance of lung cancer via inactivating Integrin β1/PI3K/AKT and apoptosis induction.
Collapse
Affiliation(s)
- YaNan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - ZhiChun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - HuaYun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - HuaXin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - Guowei Liu
- Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - ShiJun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - XuMing Ji
- College of Basic Medicine,Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| |
Collapse
|
25
|
Li L, Lv Y, Yan D. Inhibition of Ep3 attenuates migration and promotes apoptosis of non-small cell lung cancer cells via suppression of TGF-β/Smad signaling. Oncol Lett 2018; 16:5645-5654. [PMID: 30344720 PMCID: PMC6176252 DOI: 10.3892/ol.2018.9391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/19/2018] [Indexed: 01/05/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common cause of cancer-associated mortality worldwide. Prostaglandin E2 (PGE2) regulates various biological processes, including invasion, proliferation and apoptosis. E-prostanoid 3 (Ep3) is a PGE2 receptor, and the functional role of Ep3 in the progression of NSCLC remains unresolved. The present study investigated the effects of Ep3 in A549 cells and explored the underlying molecular mechanisms. The results revealed that the mRNA and protein expression levels of Ep3 were significantly upregulated in NSCLC tissues and A549 cells. Pharmacological inhibition of Ep3 or RNA interference against Ep3 attenuated the cell viability, migration and invasion, and promoted apoptosis in A549 cells. Ep3 deficiency also decreased the expression of transforming growth factor (TGF)-β, phosphorylated (p)-Smad2 and p-Smad3. The transfection of TGF-β overexpression plasmids reversed the effects of Ep3 deficiency on the cell viability and apoptosis in A549 cells. Finally, an in vivo experiment revealed that Ep3-siRNA transfection strongly reduced the tumor growth and tumor volume. The Ep3-siRNA transfection also inhibited tumor metastasis via suppression of the expression of metastasis-associated proteins. Taken together, these findings indicate that inhibition of Ep3 attenuates the viability and migration, and promotes the apoptosis of NSCLC through suppression of the TGF-β/Smad signaling pathway. Targeting of the Ep3/TGF-β/Smad signaling pathway may be a novel therapeutic strategy for the prevention and treatment of NSCLC.
Collapse
Affiliation(s)
- Lei Li
- Department of Respiration, Zhoukou Central Hospital, Zhoukou, Henan 466000, P.R. China
| | - Yanping Lv
- Department of Respiration, Zhoukou Central Hospital, Zhoukou, Henan 466000, P.R. China
| | - Dengfeng Yan
- Department of Respiration, Zhoukou Central Hospital, Zhoukou, Henan 466000, P.R. China
| |
Collapse
|
26
|
Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase-2 in cancer: A review. J Cell Physiol 2018; 234:5683-5699. [PMID: 30341914 DOI: 10.1002/jcp.27411] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
Abstract
Cyclooxygenase-2 (COX-2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of carcinogenesis and cancer cell resistance to chemo- and radiotherapy. COX-2 is released by cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and cancer cells to the tumor microenvironment (TME). COX-2 induces cancer stem cell (CSC)-like activity, and promotes apoptotic resistance, proliferation, angiogenesis, inflammation, invasion, and metastasis of cancer cells. COX-2 mediated hypoxia within the TME along with its positive interactions with YAP1 and antiapoptotic mediators are all in favor of cancer cell resistance to chemotherapeutic drugs. COX-2 exerts most of the functions through its metabolite prostaglandin E2. In some and limited situations, COX-2 may act as an antitumor enzyme. Multiple signals are contributed to the functions of COX-2 on cancer cells or its regulation. Members of mitogen-activated protein kinase (MAPK) family, epidermal growth factor receptor (EGFR), and nuclear factor-κβ are main upstream modulators for COX-2 in cancer cells. COX-2 also has interactions with a number of hormones within the body. Inhibition of COX-2 provides a high possibility to exert therapeutic outcomes in cancer. Administration of COX-2 inhibitors in a preoperative setting could reduce the risk of metastasis in cancer patients. COX-2 inhibition also sensitizes cancer cells to treatments like radio- and chemotherapy. Chemotherapeutic agents adversely induce COX-2 activity. Therefore, choosing an appropriate chemotherapy drugs along with adjustment of the type and does for COX-2 inhibitors based on the type of cancer would be an effective adjuvant strategy for targeting cancer.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Eniseh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
27
|
Shen L, Ke Q, Chai J, Zhang C, Qiu L, Peng F, Deng X, Luo Z. PAG1 promotes the inherent radioresistance of laryngeal cancer cells via activation of STAT3. Exp Cell Res 2018; 370:127-136. [DOI: 10.1016/j.yexcr.2018.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022]
|
28
|
Tong D, Liu Q, Wang LA, Xie Q, Pang J, Huang Y, Wang L, Liu G, Zhang D, Lan W, Jiang J. The roles of the COX2/PGE2/EP axis in therapeutic resistance. Cancer Metastasis Rev 2018; 37:355-368. [PMID: 30094570 DOI: 10.1007/s10555-018-9752-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Li L, Dong X, Peng F, Shen L. Integrin β1 regulates the invasion and radioresistance of laryngeal cancer cells by targeting CD147. Cancer Cell Int 2018; 18:80. [PMID: 29930482 PMCID: PMC5992723 DOI: 10.1186/s12935-018-0578-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/02/2018] [Indexed: 11/29/2022] Open
Abstract
Background Increased expression of integrin β1 has been reported to correlate with progression and therapy resistance in many types of cancers. The aim of this study was to investigate the effects of integrin β1 on the invasion and radioresistance of laryngeal cancer cells. Methods The expression of integrin β1 in the tumor specimens of laryngeal cancer patients was assessed by immunohistochemical assays. The invasion ability of laryngeal cancer cells was detected by transwell and wound healing assays. The radiosensitivity of laryngeal cancer cells was evaluated by flow cytometry and colony formation assays. Results High expression of integrin β1 was significantly associated with lymph node metastasis, TNM stage and poor clinical outcomes (all p < 0.05). Knockdown of integrin β1 in laryngeal cancer cells inhibited invasion and increased radiosensitivity. Mechanistically, these effects were caused by suppression of the downstream focal adhesion kinase (FAK)/cortactin pathway. In addition, integrin β1 could interact with CD147 and the antibody blockade of CD147 led to the deactivation of FAK/cortactin signaling. Further studies revealed that the interaction between integrin β1 and CD147 relied on intact lipid rafts. Disruption of lipid rafts by methyl beta cyclodextrin in laryngeal cancer cells was able to reverse integrin β1-mediated malignant phenotypes. Conclusions Integrin β1 has potential as a therapeutic target in prevention and treatment of laryngeal cancer.
Collapse
Affiliation(s)
- Li Li
- 1The Functional Science Laboratory, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 Hubei People's Republic of China
| | - Xiaoxia Dong
- 2Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000 Hubei People's Republic of China
| | - Feng Peng
- 3Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, 30 South Renmin Road, Shiyan, 442000 Hubei People's Republic of China
| | - Li Shen
- 3Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, 30 South Renmin Road, Shiyan, 442000 Hubei People's Republic of China
| |
Collapse
|
30
|
Wang J, Yue X. Role and importance of the expression of transcription factor FOXC2 in cervical cancer. Oncol Lett 2017; 14:6627-6631. [PMID: 29151910 PMCID: PMC5678244 DOI: 10.3892/ol.2017.7004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the relationship between the expression of transcription factor forkhead box C2 (FOXC2) and the clinical features of cervical cancer. A total of 66 patients with cervical cancer, 42 patients with cervical intraepithelial neoplasia (CIN) and 25 patients with cervical inflammation were enrolled. The positive expression rates and expression levels of mRNA of FOXC2, E-cadherin, N-cadherin, vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 (SDF-1), Notch protein and lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) in cervical tissues were detected using immunohistochemistry and RT-PCR. The positive expression rates and expression levels of mRNA of FOXC2, N-cadherin, VEGF, SDF-1, Notch and LYVE-1 in cervical cancer were significantly higher than those in CIN, and those in the inflammatory tissues were the lowest, while the positive expression rate of E-cadherin in cervical cancer was lower than that in CIN, and that in the inflammatory tissues was the highest (P<0.05). The positive expression rates of FOXC2, N-cadherin, VEGF, SDF-1, Notch and LYVE-1 in patients with cervical cancer [human papillomavirus (HPV) positive, squamous cell carcinoma, Stages III–IV, maximal diameter ≥3.8 cm and low differentiation] were increased, and the positive expression rate of E-cadherin was decreased (P<0.05). Correlation analysis revealed that FOXC2 was positively correlated with the positive expression rates of N-cadherin, VEGF, SDF-1, Notch and LYVE-1, and negatively correlated with E-cadherin (P<0.05). In conclusion, the high expression of FOXC2 is correlated with the HPV infection, pathological pattern, clinical stage, tumor diameter and differentiation grade of cervical cancer, which may be involved in the epithelial-mesenchymal transition, vascular and matrix formation, Notch signaling pathway and lymphangiogenesis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Obstetrics and Gynecology, Linyi Hospital of Τraditional Chinese Medicine, Linyi, Shandong 276000, P.R. China
| | - Xiujuan Yue
- Department of Obstetrics, Linyi Hospital of Τraditional Chinese Medicine, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
31
|
Stankiewicz E, Mao X, Mangham DC, Xu L, Yeste-Velasco M, Fisher G, North B, Chaplin T, Young B, Wang Y, Kaur Bansal J, Kudahetti S, Spencer L, Foster CS, Møller H, Scardino P, Oliver RT, Shamash J, Cuzick J, Cooper CS, Berney DM, Lu YJ. Identification of FBXL4 as a Metastasis Associated Gene in Prostate Cancer. Sci Rep 2017; 7:5124. [PMID: 28698647 PMCID: PMC5505985 DOI: 10.1038/s41598-017-05209-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/24/2017] [Indexed: 01/26/2023] Open
Abstract
Prostate cancer is the most common cancer among western men, with a significant mortality and morbidity reported for advanced metastatic disease. Current understanding of metastatic disease is limited due to difficulty of sampling as prostate cancer mainly metastasizes to bone. By analysing prostate cancer bone metastases using high density microarrays, we found a common genomic copy number loss at 6q16.1-16.2, containing the FBXL4 gene, which was confirmed in larger series of bone metastases by fluorescence in situ hybridisation (FISH). Loss of FBXL4 was also detected in primary tumours and it was highly associated with prognostic factors including high Gleason score, clinical stage, prostate-specific antigen (PSA) and extent of disease, as well as poor patient survival, suggesting that FBXL4 loss contributes to prostate cancer progression. We also demonstrated that FBXL4 deletion is detectable in circulating tumour cells (CTCs), making it a potential prognostic biomarker by 'liquid biopsy'. In vitro analysis showed that FBXL4 plays a role in regulating the migration and invasion of prostate cancer cells. FBXL4 potentially controls cancer metastasis through regulation of ERLEC1 levels. Therefore, FBXL4 could be a potential novel prostate cancer suppressor gene, which may prevent cancer progression and metastasis through controlling cell invasion.
Collapse
Affiliation(s)
- Elzbieta Stankiewicz
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Xueying Mao
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - D Chas Mangham
- The Robert Jones and Agnes Hunt Orthopaedic Hospital, Department of Pathology, Oswestry, Shropshire, SY10 7AG, UK
| | - Lei Xu
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Marc Yeste-Velasco
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Gabrielle Fisher
- Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, EC1 6BQ, UK
| | - Bernard North
- Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, EC1 6BQ, UK
| | - Tracy Chaplin
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Bryan Young
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Yuqin Wang
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jasmin Kaur Bansal
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Sakunthala Kudahetti
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Lucy Spencer
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Christopher S Foster
- Division of Cellular and Molecular Pathology, University of Liverpool, Liverpool, L69 3BX, UK
- HCA Pathology Laboratories, Shropshire House, Capper Street, London, WC1E6JA, UK
| | - Henrik Møller
- King's College London, Cancer Epidemiology and Population Health, London, SE1 9RT, UK
| | - Peter Scardino
- Department of Urology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - R Tim Oliver
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jonathan Shamash
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jack Cuzick
- Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, EC1 6BQ, UK
| | - Colin S Cooper
- School of Medicine, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Daniel M Berney
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Yong-Jie Lu
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
32
|
Li B, Li X, Xiong H, Zhou P, Ni Z, Yang T, Zhang Y, Zeng Y, He J, Yang F, Zhang N, Wang Y, Zheng Y, He F. Inhibition of COX2 enhances the chemosensitivity of dichloroacetate in cervical cancer cells. Oncotarget 2017; 8:51748-51757. [PMID: 28881683 PMCID: PMC5584284 DOI: 10.18632/oncotarget.18518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/06/2017] [Indexed: 12/14/2022] Open
Abstract
Dichloroacetate (DCA), a traditional mitochondria-targeting agent, has shown promising prospect as a sensitizer in fighting against malignancies including cervical cancer. But it is unclear about the effect of DCA alone on cervical tumor. Moreover, previous reports have demonstrated that the increased cyclooxygenase-2 (COX2) expression is associated with chemoresistance and poor prognosis of cervical cancer. However, it is still unknown whether COX2 can affect the sensitivity of DCA in cervical cancer cells. In this study, we found that cervical cancer cells were insensitive to DCA. Furthermore, we for the first time revealed that DCA could upregulate COX2 which impeded the chemosensitivity of DCA in cervical cancer cells. Mechanistic study showed that DCA reduced the level of RNA binding protein quaking (QKI), leading to the decay suppression of COX2 mRNA and the subsequent elevation of COX2 protein. Inhibition of COX2 using celecoxib could sensitize DCA in repressing the growth of cervical cancer cells both in vitro and in vivo. These results indicate that COX2 is a novel resistance factor of DCA, and combination of celecoxib with DCA may be beneficial to the treatment of cervical cancer.
Collapse
Affiliation(s)
- Bo Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Xinzhe Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Haojun Xiong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Peng Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Zhenhong Ni
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Teng Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yijun Zeng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Jintao He
- Battalion 17 of Students, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Fan Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yuting Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yingru Zheng
- Department of Obstetrics and Gynecology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
33
|
Zang S, Ma X, Wu Y, Liu W, Cheng H, Li J, Liu J, Huang A. PGE 2 synthesis and signaling in malignant transformation and progression of human hepatocellular carcinoma. Hum Pathol 2017; 63:120-127. [PMID: 28300577 DOI: 10.1016/j.humpath.2017.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/12/2022]
Abstract
Prostaglandin E 2 (PGE2), which is the most abundant prostaglandin produced in hepatocellular carcinoma (HCC), may be involved in hepatocarcinogenesis. Here, the amount of PGE2 was significantly increased in HCC tissue and adjacent noncancerous tissues relative to normal liver tissue (P<.001). In addition, the expression of EP2 receptor was considerably upregulated in HCC tissue compared with the expression of EP1 (P<.05), EP3 (P<.01), and EP4 (P<.01) receptor. The expression of EP2 receptor was positively correlated with the level of PGE2 in HCC tissue (P<.001). Furthermore, PGE2 significantly increased proliferation and invasion potential of human HCC cells. However, antagonism of EP2 signaling suppressed PGE2-induced growth and invasion in human HCC cells. Taken together, upregulation of PGE2 level was associated with proliferation and invasion potential of HCC, and EP2 receptor predominately mediated the function of PGE2 in the transformation and progression of HCC.
Collapse
Affiliation(s)
- Shengbing Zang
- Department of Pathology and Institute of Oncology, School of Basic Medical Science, Fujian Medical University, Fuzhou, 350004, China
| | - Xiaojie Ma
- Department of Pathology and Institute of Oncology, School of Basic Medical Science, Fujian Medical University, Fuzhou, 350004, China; Department of Pathology, Henan Provincial Chest Hospital, Zhengzhou, 450000, China
| | - Yanbin Wu
- Department of Hepatic Surgery, Liver Disease Center of the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Wenwen Liu
- Department of Pathology and Institute of Oncology, School of Basic Medical Science, Fujian Medical University, Fuzhou, 350004, China
| | - Haili Cheng
- Department of Pathology and Institute of Oncology, School of Basic Medical Science, Fujian Medical University, Fuzhou, 350004, China
| | - Jiasi Li
- Department of Pathology and Institute of Oncology, School of Basic Medical Science, Fujian Medical University, Fuzhou, 350004, China
| | - Jingfeng Liu
- Department of Hepatic Surgery, Liver Disease Center of the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Aimin Huang
- Department of Pathology and Institute of Oncology, School of Basic Medical Science, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
34
|
Lv M, Zhong Z, Chi H, Huang M, Jiang R, Chen J. Genome-Wide Screen of miRNAs and Targeting mRNAs Reveals the Negatively Regulatory Effect of miR-130b-3p on PTEN by PI3K and Integrin β1 Signaling Pathways in Bladder Carcinoma. Int J Mol Sci 2016; 18:E78. [PMID: 28042869 PMCID: PMC5297712 DOI: 10.3390/ijms18010078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/17/2016] [Accepted: 12/28/2016] [Indexed: 01/14/2023] Open
Abstract
miRNAs have emerged as promising markers for tumors. However, the underlying mechanism of specific miRNAs in bladder cancer (BC) remains largely unknown. Here, a comprehensive miRNA/mRNA expression profile was executed by microarray assay for four pairs of bladder carcinoma and para-carcinoma tissues from patients with grade 2 (G2) T2. A total of 99 miRNAs and 4416 mRNAs were discovered to be significantly differentially expressed in BC tissues compared with controls. Five microRNAs and two mRNAs were validated by qRT-PCR in 30 pairs of samples, including G1-G3/T1-T4. Subsequently, we constructed a network with the five miRNAs-target mRNAs; gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were utilized to recognize the functions and associated pathways. Moreover, we further found that miR-130b-3p was significantly up-regulated and negatively correlated with phosphatase and tensin homolog (PTEN) expression in bladder cancer tissues. Next, we demonstrated that miR-130b-3p might target PTEN through bioinformatics and dual-luciferase reporter assay. Finally, we showed that miR-130b-3p could down-regulate PTEN expression, which promoted proliferation, migration, invasion and rearranged cytoskeleton through the activation of the PI3K and integrin β1 signaling pathway in bladder cancer cells. Inversely, miR-130b-3p inhibitors induced apoptosis. Taken together, this research investigated, for the first time, miR-130b-3p by an incorporated analysis of microRNA/mRNA expressions of a genome-wide screen in BC. Our findings suggest that the miR-130b-3p/PTEN/integrin β1 axis could play a critical role in the progression and development of BC and that miR-130b-3p might be a valuable clinical marker and therapeutical target for BC patients.
Collapse
Affiliation(s)
- Mengxin Lv
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China.
| | - Zhenyu Zhong
- The First Clinical College, Chongqing Medical University, Chongqing 400016, China.
| | - Hong Chi
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China.
| | - Mengge Huang
- College of Clinical Medicine, Southwest Medical University, Luzhou 646000, China.
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Junxia Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|